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Device-to-device (D2D) o	oading has been shown to be a highly e
ective technique to enhance the performance of wireless
networks. Yet, for any two mobile users to share data e�ciently and reliably via D2D links, they should be in close proximity for
long enough period of time, share similar content interests, and have some level of incentive and trust to cooperate. In this work, we
focus on the practical implementation aspects of D2D data sharing taking into account realistic operational conditions. To this end,
we design and conduct an experimental study to collect location and neighbor discovery data from 38 mobile users in a university
campus over several weeks using our own customized crowdsourcing Android mobile application. �e collected data is then
processed and utilized to empiricallymodelmobility-related parameters that include contact frequency, contact duration, and inter-
contact duration. �e participating users did also �ll a user interest survey in order to correlate mobility and connectivity patterns
with content interests and social network relations. �e obtained insights are then used to develop a practical implementation
framework for designing e
ective D2D data sharing strategies. To test the proposed ideas under realistic operational constraints,
we design and implement a social-aware D2D data sharing Android mobile application and demonstrate its functionality and
e
ectiveness using an example case study scenario.

1. Introduction

�e computing and communications capabilities and the
user-friendly interfaces of smartphones are facilitating the
creation and sharing of content between devices without
relying on existing wireless infrastructure, such as WiFi
access points or cellular base stations [1–3]. Data sharing over
device-to-device (D2D) links has been shown to provide a
multitude of performance gains in terms of throughput and
spectral e�ciency enhancement [4–6], energy consumption
reduction [7–10], and end user cost savings and incentives
[11–13]. However, reliable and e�cient D2D data sharing
in practice hinges on several factors that include content
availability, users’ proximity and ability to connect to each
other, users’ mobility patterns, and contact intervals [14], in
addition to other aspects such as cooperation incentives and
trust establishment [15, 16].

Supporting D2D communications in wireless networks
can be achieved with di
erent levels of network operator

assistance ranging from full to partial to none; for example,
see [17, 18].We focus on a fully device-centric approachwhich
requires direct coordination and communication between the
devices over short-range wireless links (e.g., Bluetooth or
WiFi-Direct) viamobile application solutions.�ismakes the
proposed ideas and techniques independent from existing
long-range wireless technologies such as WiFi or cellular
networks and, thus, does not require any modi�cation to
existing wireless standards.

�e main objective of this work is to address practical
aspects of D2D data sharing following an experimental
approach using our own developed crowdsourcing Android
mobile application in order to capture realistic system and
performance constraints. We model empirically key met-
rics for e
ective D2D data sharing including the number
of contacts, contact duration, and inter-contact duration
among a set of mobile users in a bounded geographical
environment. We complement these empirical models with
data collected via user surveys on content similarity and
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social networking relations. We then overlay the contact
models, content similarity, and social relationship links to
generate novel insights that can help in designing e�cient and
reliable D2D data sharing strategies. Finally, we demonstrate
the practical feasibility of the various presented ideas by
performing experiments using our own developed social-
awareD2Ddata sharing solution based on anAndroidmobile
application.�e key novelty of ourwork is twofold: (i) holistic
approach by jointly capturing within one framework the
users’ mobility and inter-contact statistics, content interests,
and social relations; (ii) experimental methodology with
empirical models in order to obtain practical results that can
bridge a gap between theoretical studies and real wireless
devices, systems, and technologies.

In the literature, there have been several experimental
studies focused on mobility and contact modeling for D2D
data sharing. In [19], location data was collected by using
LifeMap application on mobile devices carried by four

graduate students for eight weeks in a 15 × 20 km2 area in
Seoul, Korea; mobility information was used to devise an
e�cient routing algorithm that learns the users’ mobility
patterns and predicts future interactions. In [20], the authors
gathered traces on a university campus using HYCCUPS
tracer [21], a mobile application running in the background
that collects information about a device’s encounters with
other nodes or access points. Information was gathered via
Bluetooth and AllJoyn. �is experiment spanned 64 days
and involved 66 participants. A node’s past encounters were
analyzed and their time series was approximated as a Poisson
distribution, representing the probability that a node will
make a given number of distinct contacts within a speci�c
time frame. �e authors show that the Poisson distribution
prediction is accurate if computed as an average per hour
per day of the week, since academic schedules are repetitive
and have an hour as a unit of time. In [22], six di
erent
traces were analyzed to study smartphone mobility. Data was
gathered via WiFi, GPS, GSM, and Bluetooth. Analysis of
these traces showed a power-law distribution of inter-contact
time between smartphones up to a characteristic time, then
an exponential decay. In [23], the number of connected
pairs over time was evaluated, taking into consideration
multihop contacts; it was observed that number of nodes
in �-contact is much larger than the number of nodes in
direct contact. All these references do relate to the scope
of our work, yet they are mostly focused on mobility and
contact durationmodeling and analysiswithout capturing the
other dimensions of content similarity and social relations.
Moreover, they demonstrate the importance of relatively
small-scale experimental studies in a bounded geographical
areas as they can provide insights into use cases with hot
spot locations and homogenous communities (e.g., university
campuses, schools, factory facilities, and enterprises).

Another line of related work in the literature has focused
on content similarity among mobile users. For example,
in [24], data was collected from various services to obtain
the distribution characteristics of requests across videos,
the evolution of viewer’s focus, and the shi�s in content
popularity; data was collected by crawling thewebsites of four

di
erent online video providers. User generated content was
modeled using a power law with a truncated tail probability
distribution due to the fetch-at-most-once user behavior in
peer-to-peer environments. �e e
ect of this behavior is
ampli�ed when the number of videos is small and/or the
average number of requests per user is large. �e authors
in [25] collected a list of shared iTunes songs from 239
users in 2006 at University of Missouri School of Journalism.
�e popularity distribution of song names proved to follow
a Zipf-like distribution in a log-log scale, indicating that
few objects are extremely popular while many objects are
rare. User availability information was also collected and
the number of unique users seen daily was plotted. �e
authors in [26] measured a �le’s popularity by its replication
degree. �ey observed that few �les are highly replicated,
while most are not replicated at all. Another observation was
the correlation between geographical clustering and video
�les: peers requesting a certain video �le are more liable to
download it from peers in their own country, thus reducing
the delay and download time. In our work, we consider
content interests within a given community in a university
campus environment which will lead to new perspectives
that do complement insights generated from the large-scale
studies discussed above.

Recently, there has been increased interest in utilizing
social networking relations among users to leverage content
downloading and sharing for improved quality of experience.
In [27], the authors presented interesting observations on the
bene�ts of exploring social relations to enhance the perfor-
mance of D2D communication systems and used simulation
studies based on real traces. In [28], the authors proposed a
novel framework to extract useful information from social
networks and utilize it to improve the performance of
D2D communications; they applied their framework to the
problem of spectrum sharing for in-band D2D communi-
cations and presented numerical results to show signi�cant
improvements in spectrum utilization e�ciency.�e authors
in [29] de�ned social spreading impact andmobility patterns
of users to evaluate one’s signi�cance in propagating posts
and sharing content via encounters; several factors were
integrated in a social-aware D2D sharing framework to
achieve major o	oading of mobile tra�c while satisfying
users’ delay requirements. From a di
erent perspective, the
authors in [30] used social relationship among users to
address the problem of optimal peer selection in cooperative
D2D communications to enhance data privacy in dynamic
scenarios where users move within a given area. Users that
su
er from poor channel quality opt to use nearby users
with close social relation as relays to protect their privacy.
Simulation results demonstrated the e
ectiveness of the
proposed physical-social model to provide better data rates
while protecting privacy. In [31], the authors considered social
relations and user mobility attributes to select core users that
may reliably and e
ectively assist base stations in distributing
video content through D2D multicast. In [32], the authors
utilized user mobility, opportunistic encounters, and social
relations to build D2D data dissemination model based
on a three-phase approach with analytical and simulation
based performance analysis. In [11], the authors proposed
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Figure 1: CARMA graphical user interface snapshots: (a) home screen; (b) neighbor discovery screen; (c) settings screen.

the integration of a social networking layer to enhance the
e�ciency of physical D2D communications using an analyt-
ical approach based on Indian Bu
et Process with evaluation
using simulation results based on real traces. �is summary
of selected recent works from the literature demonstrates
the bene�ts of utilizing metrics based on social networks’
relationships in the design of D2D data sharing mechanisms;
this is one of the key components of our proposed framework
and analysis.

�e rest of the paper is organized as follows. We describe
in Section 2 the experimental study design and tools includ-
ing the data collection process. We summarize in Section 3
the obtained mobility and content similarity related results,
in addition to the derivation of empirical models with
discussion and analysis. We then present in Section 4 a
practical framework for designing e
ective D2D data sharing
strategies, in addition to the architecture, implementation,
and evaluation of a social-aware mobile solution for dynamic
D2Ddata sharing usingAndroid devices. Finally, conclusions
are drawn in Section 5.

2. Experimental Study: Design

Our experimental study design consists of two independent
and complementary phases: amobility-related data collection
phase and a content similarity data collection phase.

2.1.Mobility-RelatedData Collection. Mobility-related data is
collected using our own crowdsourcing mobile application
called Context Aware Resource Management App, or CARMA
for short (see Figure 1 for snapshots of the graphical user
interface). CARMA runs in the background on Android
smartphones and collects seamlessly device location and
neighbor discovery information and then uploads the data
points periodically to a database at a remote server.

�is database contains two tables: Data and Neighbors.
�e information stored in the Data table is as follows: time
stamp (msec), device ID, number of bytes sent and received,
battery percentage, latitude, longitude, accuracy, and location
provider. As for the Neighbors table, the data stored includes
the following: time stamp (msec), device ID, discovered
device name and MAC address, latitude, longitude, and
accuracy.

�e aim of this experimental study is to collect data
in a con�ned and controlled environment, with a pool of
participants having di
erent pairwise contact frequencies;
the scale of the study is similar to [19], yet the dynamics
of the environment are di
erent. Data collection was done
in two stages on the 60.9 acre campus of the American
University of Beirut (AUB): the �rst stage during the 2015
spring semester and the second stage during the 2015 summer
semester. �e �rst stage started on March 9, 2015, and
ended on May 20, 2015, for a duration of 11 weeks with
37 mobile user participants. Data collection frequency for
both neighbor discovery and location information were set
to 10 minutes, resulting in 21,289 Neighbors table entries
and 354,528 Data table entries stored in our database. �e
second stage started on June 11, 2015, and ended on July 6,
2015, for a duration of approximately 4 weeks with 13 mobile
user participants. Neighbor discovery interval was set to one
minute, while location information was logged every two
minutes. Consequently, 34,920 Neighbors table entries and
326,539 Data table entries were stored in the database. In Sec-
tion 3, we will use this collected data to derive empirically the
cumulative distribution function (CDF) of various mobility-
relatedmetrics that include number of pairwise contacts with
respect to day and time interval aggregated over all device
pairs, in addition to contact and inter-contact durations.

2.2. Content Similarity Data Collection. Due to privacy
limitations, it was not possible to activate the tracking of



4 Wireless Communications and Mobile Computing

Table 1: CARMA data collection settings during spring and summer stages.

Settings Spring Summer

Area AUB campus AUB campus

Trace duration (days) 77 25

Location data collection frequency 10 minutes 2 minutes

Neighbor discovery frequency 10 minutes 1 minute

Data points upload frequency 1 hour 1 hour

Number of participants recruited 37 13

Number of points in data table 21,289 34,920

Number of points in neighbors table 354,528 326,539

Number of participants correlated with survey 8 4

users’ stored content and download activity on their devices
using the CARMA mobile application. To deal with this
constraint, we designed and deployed an online survey to
collect relevant content similarity data from mobile users
including a subset who participated in the mobility-related
data collection experiment. �e survey has 28 questions
that focus on users’ interests and content stored on their
smartphones, downloaded or shared, as well as on social
network activity.

�e survey questions were divided into �ve groups, each
centered around a certain aspect that relates to D2D data
sharing. �e �rst group of questions focused on the type
of �les stored on the user devices, as well as on the user
interests in the �ve categories of �les mentioned. �e second
group inquired about the users’ sources of media �les. �e
third group concentrated on the number of �les stored and
streamed on the users’ devices. �e fourth group served to
assess the users’ willingness to download and share their
�les via direct D2D data sharing. �e �nal group captured
the users’ social activity regarding four social networks:
Facebook, Instagram, Twitter, and LinkedIn. Using the data
collected, content similarity level between any two users
can be calculated. To correlate the survey’s results with the
mobility and contact data analysis, participants were asked to
include their names along with their responses. We received
31 responses in total for the survey, including 12 who included
their names and participated in the mobility-related data
collection experiments.

Table 1 summarizes key parameters related to the exper-
imental study for both stages. In the data collection stage
during the summer, we decreased the location data collection
frequency and the neighbor discovery frequency since the
duration of the summer term is shorter than the spring
term and the number of participants is relatively lower. �is
facilitated the collection of enough data to generate reliable
models and helped capture user mobility at a faster rate.

As in [19, 20], even though the data collected is of
relatively limited size and focused on a hot spot geographical
area, it provides important insights as dynamic and e
ective
D2D data sharing is expected to be more feasible in closed
communities with low mobility and high level of trust; in
addition, it can lead to useful observations on how to scale
up to wider geographical regions with larger density of
mobile users. Having existing similar published experimental

studies does not diminish the value of our experimental
work as every study focuses on di
erent goals and has its
own speci�cities due to the variations in the environment
and users’ mobility patterns. �e outcomes of these various
studies provide real traces that can be valuable to other
researchers for evaluation purposes.

3. Experimental Study: Results and Analysis

In this section, we present a summary of the obtained
results from the two stages (spring semester experiment
and summer semester experiment) of data collection using
CARMA; we use this data to derive several empirical models
for mobility-related metrics that would be useful for future
studies and enhancements related to D2D communications.
Moreover, we analyze the user survey results and social
network relations to correlate content similarity and social
links with mobility and contact data in the context of D2D
data sharing between mobile users in a given geographical
area.

3.1. Mobility-Related Parameters

3.1.1. Number of Contacts. �e number of contacts between
two devices is a key measure to determine whether D2D data
sharing is likely between them. �e CDF of the normalized
number of contacts per day and that of the normalized
number of contacts per time interval are derived empirically
using the collected data. �e empirical aggregated CDF for
the normalized number of contacts per day, aswell as per time
interval, are shown in Figures 2 and 3 to follow a Gamma
distribution with an acceptable accuracy level. �e Gamma
distribution is given by the following:

� (�) = Γ (�, �/�)Γ (�) for � > 0, (1)

where � is the shape parameter, � the scale parameter, and

Γ(�) = ∫∞0 ��−1�−�� the incomplete Gamma function. �e

Gamma distribution parameters for the data collected from
both semesters are presented in Table 2.

Referring to Figure 2, 80% of the number of contacts
recorded are less than 61 contacts per day during the sample
results from the spring data collection stage, and less than
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Figure 2: Selected empirical aggregated CDF for the normalized
number of contacts per day for (a) Monday in spring (b) Tuesday
in summer.

2,118 contacts per day during the summer data collection
stage. �e disparity in scale between these two numbers
is due to the di
erent neighbor discovery data collection
frequencies between spring and summer stages (set to 10
minutes in the spring compared to 1 minute in the summer).
Referring to Figure 3, 80%of the number of contacts recorded
are less than 15 every four hours during the spring, and
less than 125 every four hours during the summer, provided
that these four-hour time intervals fall during workdays. We
notice that the distribution of the number of contacts is
steeper in the summer in comparison with the spring. �is
means that, during the spring, the number of contacts is
well distributed within the ranges 1 to 61 per day or 1 to 15
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Figure 3: Selected empirical aggregated CDF for the normalized
number of contacts per time interval for (a) 10:00 to 14:00 in spring
and (b) 6:00 to 10:00 in summer.

per time interval. On the other hand, during the summer,
the number of contacts is distributed unevenly with values
having mostly small or large values and with few values
being in the middle of the ranges (1 to 2118 contacts per
day and 1 to 125 contacts) per time interval. �ese results
demonstrate the notable variability in users’ group behavior
during di
erent time periods (spring versus summer) even
with a homogenous group of users in the same geographical
area.

Additionally, we investigate how the number of users in
a study a
ects the statistics of the total number of contacts.
�us, we arbitrarily select di
erent sets of users of size
ranging from 5 to 25. We start with a set of 5 users and then
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Table 2: Gamma distribution parameters for the number of contacts CDF.

Spring Summer

per day per time interval per day per time interval

Shape (�) 0.45 0.52 0.32 0.41

Scale (�) 103.12 21.57 2889.52 144.68

% �t 90% 90% 76% 88%
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Figure 4: (a) Total and (b) average number of contacts in function of di
erent sets of users with respect to day.
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Figure 5: (a) Total and (b) average number of contacts in function of di
erent sets of users with respect to time interval.

incrementally increase by 5 additional users up to 25. �e
total and average number of contacts with respect to day and
time interval are plotted in Figures 4 and 5. As expected,
the larger the set of users, the higher the number of contacts
obtained, yet the relation is not necessarily linear. In addition,

the average number of contacts per user is dependent on the
selected set of users.

We also calculate the pairwise number of contacts,
de�ned as the number of contacts between a speci�c user pair,
for both semesters (see Figure 6). We obtain an average of 155
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Figure 6: Pairwise number of contacts in log-scale for (a) spring and (b) summer.

�ursdays

contact duration

Lognormal

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u

m
u

la
ti

ve
 p

ro
b

ab
il

it
y

100 150 200 25050

Contact Duration (minutes)

(a)

�ursdays

contact duration

lognormal

20 40 60 80 100 120 140 160 180 2000

Contact Duration (minutes)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u

m
u

la
ti

ve
 p

ro
b

ab
il

it
y

(b)

Figure 7: Pairwise aggregate CDF of contact duration with respect to day for (a) spring and (b) summer.

contacts per pair, with a minimum of 1 contact per pair and a
maximumof 1867 contacts per pair during the spring. During
this semester, the following �ve pairs show an exceptionally
high number of contacts: (5; 29), (12; 17), (12; 19), (17; 19),
and (21; 23). As for the summer, the maximum pairwise
number of contacts is 1965, theminimum is 2, and the average
is 265. �ree pairs show an exceptionally high number of
contacts: (3; 34), (38; 39), and (39; 40). For example, user
device 3, which participated in both data collection phases,
is shown to have consistently a high number of contacts with
its neighbors. �us, device 3 can be considered as a reliable
source for D2D data sharing use cases and, thus, can be
labeled as reliable collaborator and provided with incentives

to help o	oad network tra�c; it can be also targeted for
mobile caching services.

3.1.2. Contact Duration. �e pairwise contact duration CDF
aggregated over all users is studied with respect to day and
time (see Figures 7 and 8). In both cases, the CDF is shown
to follow accurately a lognormal distribution:

� (� | �, �) = 1�√2� ∫
�

0

�−(ln(�)−�)2/2�2
� �, (2)

where � and � are the location and scale parameters,
respectively. �e obtained empirical parameter values for
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Figure 8: Pairwise aggregate CDF of contact duration with respect to time interval for (a) spring and (b) summer.

Table 3: Lognormal distribution parameters for pair-wise contact duration CDF.

Spring Summer

per day per time interval per day per time interval

� 3.91 1.88 1.21 1.16

� 0.77 1.37 0.93 1.17

% �t 95% 95% 80% 90%

selected time windows during spring and summer stages are
summarized in Table 3.

For example, results show that 80% of the pairwise
contact duration values recorded are less than 125minutes per
the selected day during the spring and less than 20 minutes
during the summer. On the other hand, 80% of the pairwise
contact duration values recorded are less than eight minutes
per the selected four-hour interval during the spring and less
than 12 minutes during the summer. �e contact duration
is a critical factor in D2D data sharing applications as it
determines the time needed to download a given content
(or parts of it) as a function of the communications bit rate
quality between the cooperating devices.

3.1.3. Inter-Contact Duration. We have also analyzed the
inter-contact duration statistics per day and time interval.�e
inter-contact duration is de�ned as the time period between
two contact events for given a pair of users; that is, it captures
the time during which the users are not in proximity with
respect to each other. For example, results show that, during
the spring, 479 inter-contacts occurred during the whole
trace, with a minimum duration of 10 minutes, a maximum
duration of approximately 58 days, and an average duration
of approximately 26 hours. However, during the summer,
1111 inter-contacts occurred during the whole trace, with a
minimum duration of 1 minute, a maximum duration of

approximately 5 days, and an average duration of around 46
minutes. Note that the minimum durations are determined
by the neighbor discovery frequency parameter which was
set to 10 minutes and 1 minute during the spring and summer
data collection stages, respectively (see Table 1).

3.2. Content-Related Parameters. �econtent similarity anal-
ysis is solely based on the survey responses. Based on the 31
responses received, statistics show that the majority of the
responders store about four to six media �les per day on
their hand-held devices.�e �les they store are distributed to
include all seven categories considered (personal documents,
public documents, personal images, public images, personal
videos, public videos, and music) with high percentages.
Even though personal �les occupy the majority of �les stored
by the participants, public media �les also occupy a high
percentage of user storage with the most popular �le type
being images, followed bymusic. Table 4 presents a summary
of the survey results relating to users’ interests. When asked
about their source of music, responders mostly use online
sharing (download) websites such as Rapidgator, rather than
streaming websites. However, the majority of responders
prefer streaming videos rather than downloading and storing
themon their devices. In general,most responders stream less
than 10 music and/or video �les per week. As for the total
number of music �les stored on their devices, the majority
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Table 4: User interest survey results.

Category Popular Genres Percentage

Documents

Lectures and course material 58.06%

Articles of interest 51.61%

Technical documents 45.16%

Images Photos from the internet (e.g., 9 gag, reddit) 67.74%

Videos
Short humor clips/stand-up comedy 58.06%

Music Videos 25.81%

Music

Blues and Jazz/Classical 48.39%

Rock/R&B/Rap/Hip-Hop 45.16%

Arabic music 41.94%

Movies

Comedy 80.65%

Action 54.84%

Science Fiction/Fantasy/Paranormal 48.39%

of our responders have less than 50 �les; the same applies to
document and video �les. As for image �les, the majority of
the responders (83.9%) have more than 300 �les stored on
their devices.

Furthermore, when asked about D2D data sharing,
responders indicated that they are willing to share and/or
download all �le categories over direct D2D links, that is,
documents, images, videos, and music, with music (90.32%)
and videos (87.1%) being the most popular choices. As for
incentives to share �les with neighboring devices using D2D
links, 61.3% were favorable without any incentives and 96.8%
were favorable when incentives are o
ered.�emost popular
incentives were extra 3G/4G cellular data quota (90.3%),
followed by free call minutes for each �le exchanged (58.1%)
and credits for online shopping (54.9%).

For the content similarity analysis, two parts of the survey
are relevant: the one related to user interest and the one
related to the device content. A weight is calculated for each
part by taking the number of common answers between any
two participants divided by the corresponding total number
of questions as follows:

�1 (�, �) = # common answers of users � & �
total # user interest related questions

,

�2 (�, �) = # common answers of users � & �
total # device content related questions

.
(3)

�e �nal content similarity weight is then calculated as the
average between these two weights as follows:

� (�, �) = �1 (�, �) + �2 (�, �)2 . (4)

�ese have been only calculated for the responders who
participated in the CARMA data collection phase during the
spring semester. Responses are available for eight CARMA
participants, since the rest did not include their names in
their survey responses. �e ID of these participants are{4, 10, 12, 17, 19, 27, 29, 30}.

�e similarity matrix S of the content similarity between
the spring participants’ devices is calculated according to (4)
as follows:

S

=

[[[[[[[[[[[[[[[[[
[

1 0.558 0.678 0.602 0.703 0.609 0.435 0.533
0.558 1 0.644 0.526 0.661 0.686 0.484 0.637
0.678 0.644 1 0.57 0.713 0.772 0.57 0.585
0.602 0.526 0.57 1 0.484 0.543 0.529 0.501
0.703 0.661 0.713 0.484 1 0.713 0.484 0.568
0.609 0.686 0.772 0.543 0.713 1 0.509 0.703
0.435 0.484 0.57 0.529 0.484 0.509 1 0.425
0.533 0.637 0.585 0.501 0.568 0.703 0.425 1

]]]]]]]]]]]]]]]]]
]

. (5)

3.3. Social Network Relationships. �e social relationship
strength is analyzed using the survey participants’ Facebook
friends lists. In order to correlate mobility and content simi-
larity results with participants’ social network relationships,
the number of mutual friends is considered to assess the
strength level between any two participants. �e number of
mutual Facebook friends between participants is presented
in the matrix Mspr for the eight spring semester participants
who also �lled the user survey.�e number of mutual friends
compared to oneself is set to zero to simplify the graph
construction.

Mspr =

[[[[[[[[[[[[[[[[[
[

0 0 0 11 11 0 0 0
0 0 0 9 2 14 7 9
0 0 0 0 0 0 0 0
11 9 0 0 16 1 0 0
11 2 0 16 0 1 0 0
0 14 0 1 1 0 7 19
0 7 0 0 0 7 0 7
0 9 0 0 0 19 7 0

]]]]]]]]]]]]]]]]]
]

. (6)
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Figure 9:Multilayered graph representing the pairwise social network relationship strength (a), content similarity (b), andnumber of contacts
(c) during the spring semester.

3.4. Correlation between Mobility Parameters, Content Simi-
larity, and Social Network Links. In this section, the social
relationship strength, the content similarity, and the number
of pairwise contacts are correlated to identify favorable
quanti�able conditions for successful D2D �le sharing. �e
correlation between mobility, content, and social networks
is done only for the spring semester, with results being
summarized using graphs in Figure 9. Note that the thicker
the edges connecting any two vertices, the higher the layer-
respective measure. Looking at this �gure, for each user pair
one can roughly determine whether they have the potential
to successfully share �les via D2D links. When the edges
connecting a pair of users are thickest on the three levels
simultaneously, a D2D link has the highest chance of being
successful while keeping in mind the constraints pertaining
to the contact and inter-contact durations.

�e aggregation of the three layers is visualized in
Figure 10; the thicker the edges connecting any two ver-
tices, the higher the correlation between the pairwise social
relationship strength, content similarity, and number of
contacts. Dotted edges indicate a correlation that allows
only opportunistic or limited D2D data sharing, due to the
low pairwise number of contacts. For example, according to
Figure 10, pairs (4; 17), (4; 19), (27; 29), and (27; 30) have the
highest chance of success in D2D data sharing as they meet
the various conditions needed for successful cooperation. It is
interesting to note that several edges are correlated across the
three layers which re�ects the potential for direct D2D data
sharing mobile applications in practice.

30 29

27
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1712
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4

Figure 10: Aggregation of social network relationship strength,
content similarity, and number of contacts during the spring
semester based on the level of correlation.

4. Social-Aware D2D Data
Sharing Mobile Solution

In this section, we use the insights derived from the mobil-
ity and content similarity experimental measurements and
models from Section 3 in order to shed light on the design
of practical D2D data sharing strategies. Even though our
experimental study was con�ned to a limited geographical
area, it does provide important information for similar hot
spot scenarios and can serve as a best case for larger scale
scenarios where mobile users are more spread geographically
with high mobility and belong to diverse communities.
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Table 5: Conditions for designing e�cient and reliable D2D data sharing mobile solutions.

Case Result

Low ��	 AND Low ��	 Users are unreliable pair for D2D cooperation

High ��	 AND High ��	 D2D cooperation likely to be successful, with large content size and low delay

Low ��	 AND High ��	 D2D cooperation likely to be successful, with medium content size and low delay

High ��	 AND Low ��	 AND High ID�	 D2D cooperation can be successful, but with limited content size and high delay

High ��	 AND Low ��	 AND Low ID�	 D2D cooperation can be successful, but with limited content size and low delay

4.1. Practical Design Considerations. �e following is a sum-
mary of key factors to design practical D2D data sharing
strategies:

(1) Social network relationship between users is a pre-
requisite enabler for D2D data sharing, as its strength
is an indicator of the users’ level of trustworthiness
with respect to each other; for example, see [14, 15, 27].
�e importance of using social network relationship
as a trust level indicator is that it can be implemented
seamlessly within D2D data sharing mobile solutions
without the need for direct user intervention or
dedicated server authentication. Mobile applications
can extract and aggregate this information using
existing social media APIs.

(2) For a user to download a data �le over a direct
D2D connection, the content of interest should be
available in one of its neighboring devices. �is
requires running service and peer discovery proce-
dures to identify devices that are willing to cooperate
and within radio range from the requesting device;
this will be followed by content discovery phase to
check if any of the trusted devices has the content
locally cached. �e user survey results presented in
Section 3.2 demonstrated that users in hub locations
(such as university campus and factory facility) do
indeed have common interests when it comes to types
of content stored on their devices; yet, the survey also
con�rmed the need to provide attractive incentives
for users to accept to participate.

(3) In addition to trust, incentives, and content availabil-
ity, D2D data sharing success depends on the number
and duration of contacts between a pair of users over
time and space. Let��	 represent the pairwise number
of contacts, ��	 the pairwise contact duration, and
ID�	 the pairwise inter-contact duration over a given
period of time where � and � are device indices. �e
�ve cases in Table 5 summarize a set of conditions
for designing decision making strategies in D2D data
sharing mobile solutions.

�e experimental measurements and derived empirical
models in Section 3 can be utilized for multiple purposes.
First, they can be used to derive theoretical performance
results quantifying the probability of successful content
sharing overD2D links in a given hub location as a function of
parameters such as content size, content availability probabil-
ity, and content download delay target; themodels are generic
and parameterized which allows for customization to various

network scenarios. Second, they can be used to develop
e
ective mobile application solutions for direct D2D data
sharing based on historical mobility and content similarity
data. It is important to note that initiating service and device
discovery functions and setting up connections with nearby
devices to request content are time and resource consuming
functions which can deplete energy and overload devices.
�erefore, these activities need to be initiated only when the
probability of successful D2D data sharing is high enough;
this success probability is a function of various parameters
that can be monitored through a sliding window over time,
such as ��	, ��	, and ID�	. Finally, D2D data sharing can
be highly e
ective even if di
erent parts of the same data
content are downloaded from di
erent peer devices as long
as they are aggregated properly and the total cumulative
download delay meets any end user target constraints. In
the following section, we demonstrate how such ideas can
be realized in practice using our own developed mobile
application solution.

4.2. Mobile Solution: Design and Implementation. We have
developed and implemented a social-awareD2D data sharing
mobile solution for Android smartphones based on the
architecture in Figure 11. �e application is divided into the
following �ve inter-connectedmodules that include back-end
components and an interactive user interface.

4.2.1. Authentication Service. �is module is responsible
for authenticating the device by connecting the mobile
application to the user’s social networking pro�le which
includes list of friends or contacts; we used Facebook in
our implementation, without loss of generality. �is process
starts by the user providing her/his Facebook credentials
which are then authenticated with a Facebook server. If
valid, the Facebook server will return a unique identi�er
for the user’s pro�le along with the user’s friends list. �e
user’s friends list is then saved in a local database while the
user’s ID and D2D wireless link MAC address are saved in a
remote global database; the wireless link can be either WiFi-
Direct or Bluetooth as both provide the needed discovery
and connectivity features to facilitate stable direct D2D
connections. In our implementation, we used Bluetooth.

4.2.2. Database Service. �is module is responsible for a
background task whose job is to synchronize a global
database of �les and devices whenever feasible; for instance,
whenever the device connects to the Internet. �e database
contains only the meta-data about the �les that are being
shared by the devices. More precisely, for each �le that is
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Figure 11: D2D data sharing mobile solution architecture.

shared by some mobile device, we maintain the following
information: the �le’s unique signature (md5 hash), �le
size, user-friendly �le name, and a list of device identi-
�ers that have the �le available for sharing; we assume
the device identi�er is the MAC address of its WiFi-
Direct or Bluetooth interface. In addition, the database is
used to map between Facebook user identi�ers and device
MAC addresses. �e database contains a tuple (MAC ADD,
FB UID) for each device with aWiFi-Direct/Bluetooth inter-
face having MAC ADD as a MAC address and authenticated
with a Facebook pro�le having FB UID as identi�er.

4.2.3. Discovery Service. �is module is intermittently
launched in the background, at predetermined intervals, to
discover nearby devices. �e device discovery mechanism is
implemented as a standard Bluetooth discovery procedure.
A list containing the MAC addresses of discovered devices is
sent to the File Server Service module.

4.2.4. File Server Service. �is module runs periodically in
the background and can operate in two modes: either as
a �le server or as a fetcher. By default, this module is in
the �le server mode waiting for incoming requests from
other devices. �is is implemented using a standard TCP �le
transfer procedure; the device listens on a speci�c TCP port
for incoming �le transfer requests. A request is composed
of two parameters: the unique signature of the requested
�le along with a byte o
set; the byte o
set is needed to
allow a device to download di
erent parts of the content
frommultiple devices.Whenever such request is received, the
device �le server will begin sending the requested �le a�er
skipping to the speci�ed o
set.

In the �le fetcher mode, this module keeps a lookout for
�les that are requested by the user. Whenever a new list of
nearby devices is received from the device discovery module

and the device is not actively transmitting a �le, the �le fetcher
module checkswhether it can obtain one of the �les requested
by the user by the following:

(i) Filtering the list of discovered devices and keeping
only those that meet a set of conditions, for example,
as discussed in Section 4.1 and Table 5

(ii) Fetching the list of requested �les and cross-matching
it to the list of �ltered discovered devices to check
whether any of the selected devices has a �le of
interest.

If such a device is found, a Bluetooth connection request
is sent to the device. If the connection is successfully estab-
lished, the �le fetcher service connects to the �le server
running on the other device and the �le transfer process
begins (see Figure 12 for interaction �owchart). When a �le
is fully fetched, it will be removed from the list of requested
�les and the WiFi-Direct connection will be terminated.
Otherwise, if the transfer was interrupted for any reason, the
current download progress (number of bytes downloaded so
far) is saved in a local database so that download may resume
when the opportunity presents itself again.

4.2.5. Front-End Graphical User Interface. Figures 13 and
14 present snapshots from the user interface of the mobile
application demonstrating di
erent features. Figure 13(a)
shows the list of �les that the user would like to download
with a symbol indicating the size and location of each �le;
Figure 13(b) shows the list of Facebook friends; Figure 14(a)
shows the list of nearby discovered WiFi-Direct devices;
and Figure 14(b) demonstrates initiation of a download
process for the �le “Wonders of Nature.mp4” starting at
position 91.5MB from a user nearby who belongs to the
friends list. We ran several test cases using our developed
application and were able to demonstrate the validity of
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Figure 12: Device-to-device interaction �owchart including both discovery and �le fetching services.

(a) (b)

Figure 13: (a) List of �les; (b) list of Facebook friends.

social-aware D2D data sharing with a given �le downloaded
to completeness frommultiple devices over a window of time.
Our implementation �ts under the scope of the general area
of delay tolerant networks whereby content download allows
for a certain level of delay to bene�t from D2D connectivity
and reduce overhead on existing wireless infrastructure.

4.3. Mobile Solution: Case Study Validation. In order to
validate the functionality of the developed mobile solution,
we present in this section an example scenario using six
Android smartphones to download a 5000KB �le; all devices
are running the mobile application based on the architecture
explained in Section 4.2. Five devices serve as potential



14 Wireless Communications and Mobile Computing

(a) (b)

Figure 14: (a) List of discovered devices; (b) �le transfer in progress.
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Figure 15: Example social-aware D2D data sharing case study using Android smartphones.

collaborators for D2D data sharing and are positioned
equidistantly along a hallway while in �le server mode (see
description of File Server Service in Figure 11). �e sixth
device is serving as a data requester (�le fetch mode) and is
moving along the hallway and, thus, crossing the radio range
boundaries of the �ve devices sequentially. Figure 15 presents
real measurement results showing the download progress
versus time. In this scenario, it is assumed that all �ve devices
have the content available but only devices 1, 3, and 5 have
a trusted social network relation with the requesting device.
As the mobile solution is social-aware, devices 2 and 4 were
excluded from the cooperation; that is, they will �ltered out
a�er being discovered by the requesting device.

Figure 15 demonstrates how the download process pro-
gresses as the requesting device moves along the hallway;
around 1000KB were downloaded from device 1, next

3500KB downloaded from device 3, and last 500KB down-
loaded fromdevice 5.�e �gure also quanti�es the time spent
by the device to perform device discovery and connection
setup before it can proceed with D2D data transfer; this
time is shown to be around �ve seconds on average and it
adds to the total delay overhead of D2D mobile solutions
in practice. �e total time needed to download the content
ended up to be around 125 seconds. We conducted similar
experiments for other con�gurations and parameters, and the
obtained results provided coherent insights and validated the
robustness and e
ectiveness of our implementation under
practical operational constraints.

5. Conclusion

In this work, we addressed several aspects related to the
practical design and implementation of direct D2D data
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sharing mobile solutions without relying on intelligence or
coordination from any existing radio access network. We
performed an experimental study using our own developed
crowdsourcing Android application CARMA in order to
collect data and derive empirical models for several user
mobility and contact parameters. To this end, we managed
two data collection stages, the �rst including 37 mobile
user participants over a period of 11 weeks and the second
including 13mobile user participants over a period of 4weeks.
Our focus was on use cases with bounded geographical
location (university campus) and homogenous community
(university students). We also designed and managed a
user survey a�er obtaining the needed IRB (Institutional
Research Board) approval in order to collect data related to
content stored on users’ mobile devices and their willingness
to participate in D2D data sharing applications. �en, we
collected data on the social network relationships among
the users and presented a set of conditions necessary for
successful D2D �le sharing based on joint consideration and
correlation of mobility parameters (e.g., number of contacts
and contact duration per time period), content similarity
level, and social network relationship strength. Finally, we
presented an architecture, implementation, and validation of
a mobile solution for social-aware D2D data sharing using
Android mobile application with several back-end module
and a friendly user interface.

Even though the conclusions derived in the course of our
work are speci�c to a university environment, they provide
valuable insights that can guide the development of D2D data
sharing solutions. �e research outcomes illustrate clearly
the dynamic nature of inter-user interactions whether in
terms of contact and mobility, social connectivity, or mobile
content. �ey also shed light on the temporal variability of
all these factors (e.g., by comparing summer versus spring
or comparing di
erent days within the week) even by a
homogenous group of users in a bounded geographical area,
which somehowmimics a best case scenario when compared
to dynamic variations over the scale of a city or country.
Regarding the number of participants in our crowdsourcing
experiments, it is similar to other interesting studies reported
in the literature, for example, [19, 20]. Finally, all the collected
data traces will be added as supplementary material with this
paper to be openly accessible by the research community, as
they can be utilized as inputs for evaluating the performance
of new proposed D2D related enhancement techniques. In
addition, the data traces can be used by researchers interested
in predictive analytics using big data techniques, whereby
devices or some centralized intelligence unit can predict
future performance based on historical data in order to
optimize the D2D o	oading experience.
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