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Abstract— In this paper we present a novel robot navigation
approach based on the so-called Social Force Model (SFM).
First, we construct a graph map with a set of destinations
that completely describe the navigation environment. Second,
we propose a robot navigation algorithm, called social-aware
navigation, which is mainly driven by the social-forces centered
at the robot. Third, we use a MCMC Metropolis-Hastings
algorithm in order to learn the parameters values of the method.
Finally, the validation of the model is accomplished throughout
an extensive set of simulations and real-life experiments.

I. INTRODUCTION

Nowadays, robots are expected to interact naturally in typ-

ically human environments. Therefore, urban robots require

some basic tools in order to safely being deployed in social

environments and accepted by people.

In this paper, we propose a novel robot social navigation

for both indoor and outdoor environments. In order to model

the social interactions, we use the Social Force Model (SFM)

introduced by Helbing [1]. Specifically, this work presents a

powerful scheme for robot’s human-aware navigation based

on the social-forces concept. Moreover, we introduce a new

metric, inspired in the classical definition of mechanical

work: the social work. This metric serves to evaluate the

navigation performance in a social manner.

Robot navigation is a mature field of robotics; there exist

many works that demonstrate that robots are able to navigate

in challenging environments [2]. However, more social-

interactive approaches are required. Our work is greatly

based on Potential Field methods [3], [4] as they keep a

great synergy with the social force model, but focusing on

the social acceptance. An alternative approach to the SFM,

from the learning point of view [5], [6], shed light into the

human motion modeling problem.

More recent publications, like [7] deal with urban environ-

ments and complex environments, but they consider persons

as obstacles while [8] plans a robot navigation in highly

crowded environments.

Because a mobile robot must be able to avoid obstacles

in the environment where it is working, many different

algorithms for obstacle avoidance have been developed.

Often, dynamic obstacles are handled only in a locally

reactive manner, as static (non-moving). Some works that do

account for vehicle kinetics include the Curvature Velocity

Method [9] or the Dynamic Window Approach [10]. Other

algorithms consider obstacles moving over time [11], [12].
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Fig. 1. Social Robot Navigation: Dabo robot navigating in the Barcelona
Robot Lab.

Finally, several approaches consider both vehicle dynamics

and dynamic obstacles [13], [14]. While all of these algo-

rithms may be used to generate varying degrees of safe and

effective obstacle avoidance, none of them explicitly account

for the pre-established social conventions that people use

when moving around each other.

A number of methods have been developed to allow

robots to navigate around people in specific, typically non-

generalizable tasks. Some of these tasks include standing

in line [15]; tending toward the right side of a hallway,

particularly when passing people [16]; and approaching peo-

ple to join conversational groups [17]. Museum tour guide

robots are often given the capability to detect and attempt to

handle people who are blocking their paths [2], [18], [19].

Some researchers have begun researching how a robot might

adapt its speed when traveling besides a person, but they

have obtained mixed results, even in controlled laboratory

settings [20].

Safety and reliability are key factors to the successful

introduction of robots into human environments. In most

studies, safety is assured by preventing humans from ap-

proaching the robots. But said methods are rendered inef-

fective whenever the robot is designated to directly assist a

human individual. In [21], the notion of safety is studied in

detail with respect to all relevant aspects of Human-Robot

Interaction.

In the present paper, a novel robot social navigation

approach based on the so-called social-forces model is in-

troduced, [1]. A model capable of navigating in crowded

environments in an acceptable social way is presented.

In the remainder of the paper we start by introducing the

theory of the social force model. Section III describes briefly

the destination map and the global planner used. Section IV



presents robot’s social-aware navigation, the learning of its

parameter and a novel metric to evaluate the social work.

Results and conclusions are presented in sections V and VI,

respectively.

II. SOCIAL-FORCE MODEL

In order to achieve a model capable of represent the

interactions between a pedestrian and a robot, we were

inspired by works of Helbing [1] and Zanlungo [22]. Their

main contribution is the idea that changes in behavior can

be explained in terms of social fields or forces.

Formally, this approach treats each pedestrian pi with mass

mi as a particle abiding the laws of Newtonian mechanics:
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where (x, y) is person’s position, (vx, vy) is his/her velocity

and (ax, yx) is the acceleration.

Formally, the social forces model assumes that a pedestrian

pi with mass mi tries to move at a certain desired speed v0i in

a desired direction ei, i.e., with desired velocity v0i = v0i ei.
The desired velocity’s direction is given by a vector pointing

from the present position of the person ri to the next subgoal

gi, where the speed is the one at which the human feels more

comfortable to walk.

Hence, the basic equation of motion for a pedestrian is

given by a social force term:

d vi(t)
dt

mi = Fi(t) (2)

and describes the movements of the pedestrian pi over time.

For the sake of simplicity, we will value mi as the unity for

all the persons considered.

A person wants to keep his/her desired velocity through

the steering force, f goal
i , but is also influenced by others

pedestrians pj , f int
i,j , by obstacles, f int

i,o and, in the present

study we model the robot interaction f int
i,r . The resulting

force Fi governs the trajectory described by the target pi.

Fi = f goal
i + F int

i (3)

Below, the description of each component of Fi is pre-

sented. Assuming that pedestrian tries to adapt his or her

velocity within a relaxation time k−1
i , f goal

i is given by:

f goal
i = ki( v0i − vi) (4)

The relaxation time is the interval of time needed to reach

the desired velocity and the desired direction.

Furthermore, repulsive effects from the influences of other

people, obstacles and robot in the environment are described

by an interaction force F int
i . This force prevents humans

from walking along their intended direction, moreover, it

is modeled as a summation of forces either introduced by

 

Fig. 2. Diagram of the social forces corresponding to the person pi.
The blue arrow represents the force aiming to a destination and the orange
arrows represent each of the different kinds of interaction forces: person-
person, object-person and robot-person. The summation of all the forces is
represented as the black arrow Fi.

people pi, by static obstacles in the environment o or the

robot r. A diagram of the social forces corresponding to the

person pi is plotted in Fig. 2.

Fint
i =

∑

j∈P

f int
i,j +

∑

o∈O

f int
i,o + f int

i,r (5)

where, P is the set of people moving in the environment

where the human interacts and O is the set of obstacles.

These forces are modeled as:

finti,q = Aqe
(dq−di,q)/Bq

di,q

di,q
(6)

here q ∈ P ∪ O ∪ {r} is either a person, an object of the

environment or the robot. Aq and Bq denote respectively the

strength and range of interaction force, dq is the sum of the

radii of a pedestrian and an entity and di,q ≡ ri − rq . In

order to calculate the Euclidean distance between pi and the

entity q, humans and objects are assumed to be of circular

shape with radii ri and rq . The parameters Aq, Bq, dq are

defined depending on the nature of the object (person, robot

or obstacle).

Given the limited field of view of humans, influences

might not be isotropic. This is formally expressed by scaling

the interaction forces with an anisotropic factor depending

on ϕp,q between vi and di,q

w(ϕi,q) =

(

λ+ (1− λ)
1 + cos(ϕi,q)

2

)

(7)

where λ defines the strength of the anisotropic factor,

cos(ϕi,q) = −ni,q · er (8)

The term ni,q is the normalized vector pointing from q to

person pi which describes the direction of the force.

All these forces are used to define robot’s motion, and

furthermore, we combine the people tracker with the pedes-

trian dynamics model to obtain more realistic human motion

predictions.

We consider three kinds of interaction forces: person-

person, person-obstacle and person-robot. The first and the

second interactions has been studied in previous papers



Fig. 3. Map of the Barcelona Robot Lab. Red dots are the set of
destinations that describe the navigation environment.

like [1], [22], [23]. The person-robot interaction parameters

{Arp, Brp, λrp, drp} were obtained in [24], specifically for

our robotic platform.

III. GLOBAL MAP

In this section we propose how to structure the environ-

ment in order to build a useful map for a social robotic

navigation. To this end, and using the Barcelona Robot lab

(although it is generalizable to any other environment), we

have obtained manually a set of destinations that completely

describe the navigation environment. We consider the follow-

ing hypothesis: a set of destinations, similar to those goals

explained in Sec. II, may be sufficient to describe a global

planning in urban environments.

Other classical navigation works like [3] and [4] proposed

a similar navigation environment described by attractors. Our

approach is not novel in this aspect, however, once obtained

a set of these destinations in a urban environment, we will

be ready to make use of the social forces to make the

robot navigate in a social way, which is one of the main

contributions of the present paper.

The implementation of the global planning is a straight-

forward approach using a search algorithm (in our work we

use an A∗ implementation) to solve the shortest path from

one point of the scene to another (map depicted in Fig. 3).

IV. SOCIAL-AWARE NAVIGATION

Previously, we described a general social interaction model

based on social-forces (Sec. II). In this section, we will

provide the formulation to build an unified navigation frame-

work using the following idea: the robot is considered as

a social agent moving naturally in human environments

accordingly to the Social-Force Model, and thus, aiming

to a destination and reacting to obstacles and people. Fur-

thermore, we believe that a more humanized navigation,

in the sense that the robot responds to the SFM, will

highly increase the acceptance over pedestrians, due to the

similarities between the robot behavior and the expected

behavior of another pedestrians.

To this end, we propose a novel approach to the robot

navigation issue, called social-aware navigation, understood

as an instantaneous reaction to sensory information, driven

by the social-forces centered at the robot. More precisely,

we aim to obtain a short-term goal-driven robot navigation

ruled by the SFM.

Thereby, it is mandatory to clearly formulate all the

social-forces (Sec. II) intervening in the social-aware naviga-

tion approach. The following equations are straightforward

derivations of the eqs. 3-7. The robot destination is computed

in the global planning and the force that drives the robot

towards it:

f goal
r,dest = kr( v0r − vr) (9)

Once the robot reaches the destination subgoal, the next

destination calculated in the global planner becomes the new

destination subgoal. The interaction forces due to the pedes-

trians are the repulsive forces that each person generates to

the robot, and they are defined as follows:

F per
r =

∑

j∈P

f int
r,j (10)

where the forces f int
r,j represent the interaction between the

pedestrian j and the robot:

f int
r,j = Arpe

(drp−dr,j)/Brpw(ϕr,j , λrp) (11)

which is the formulation of the spherical force (Eq. 6)

using the parameters {Apr, Bpr, λpr, dpr}. These parameters

correspond to the person-to-robot interaction, and in general

are dependent of the robotic platform used.

Correspondingly, the interaction between robot and obsta-

cles is modeled as:

F obs
r =

∑

o∈O

f int
r,o (12)

where f int
r,o is obtained following

f int
r,o = Aroe

(dro−dr,o)/Brow(ϕr,o, λro) (13)

using the specific parameters {Aro, Bro, λro, dro} corre-

sponding to the interaction person-obstacle.

Similarly as presented in section II, repulsive effects

from the influences of other people and obstacles in the

environment are described by an interaction force which is

a sum of forces either introduced by people or by static

obstacles in the environment.

The combination of the forces described above, which

include goal and interacting forces, describes the resultant

force governing the robot movement:
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Fig. 4. Robot’s Social Forces: Forces applied to the robot while
accompanies a person.

Fr = α f goal
r,dest + γ F per

r + δ F obs
r (14)

Once calculated the resultant social-force, the robot be-

haves consequently to these external stimuli and propagates

its state according to this force value.

Additional constraints are taken into account. All those

robot propagations which result in a collision with an obsta-

cle, are forbidden. Current robot maximum velocity is also a

constraint and it depends on the robot navigation state, which

is a function of the proximity of persons:

v =











vsafety if
dr,p

w(ϕr,p)
≤ µsafety

vcruise if µsafety <
dr,p

w(ϕr,p)
≤ µsocial

vfree otherwise

(15)

The vsafety is the maximum velocity the robot can achieve

when at least one person is inside its inner safety zone.

We have proposed a social distance to define this region

as dr,pw(ϕr,p), similarly as described in Sec. II, as a metric

of the relative distance between the robot and a pedestrian

and an asymmetric factor deforming the distance measure

w(ϕr,p). This condition also corresponds to the inner robot

navigation state. On the other hand, vcruise is the cruise

velocity when someone is inside its social safety zone and

vfree is the maximum robot velocity when there are no

people inside its safety zone. The navigation states associated

to this configurations are the social robot navigation and

the free robot navigation, correspondingly. These velocities

guarantee that the robotic platform is able to stop according

to the resulting forces, before collision occurs.

The most interesting part of the system so far, resides in

the fact that the approach proposed is able to navigate near

moving persons (dynamic environments) and succesfully

reach its goal. The following section discusses the procedure

to obtain the value of the parameters {α, γ, δ}.

A. Parameter Learning

The computation of the weights of the system parameters,

defined as θ = {α, γ, δ}, is a mandatory step, prior to the

deployment in real environments in a successful and safe

way. To this end, we require an initial estimation to learn

the magnitude of the θ parameters.

Algorithm 1 MCMC-MH Learning

1: Initialize θ(0)

2: for i = 0 to N − 1 do

3: Sample u ∼ U[0,1]

4: Sample θ∗ ∼ q(θ∗|θ(i))

5: if u < A(θ(i), θ∗) = min{1, (W (θ∗)+ǫ)−1

(W (θi)+ǫ)−1 } then

6: θ(i+1) = θ∗

7: else

8: θ(i+1) = θ(i)

9: end if

10: end for

In this case, we will propose a cost function that takes

into account the social-forces intervening during the robot

navigation. As stated before, we aim to obtain a social robot

model capable of dealing with navigation issues in a more

human-oriented manner. Consequently, we make use of a

variation of the classical definition of work applied to social-

forces, similarly to the social work proposed in [25]. The

amount of social work corresponding to a time step ∆t at

time t:

W (t, θ) = Wr(t, θ) +
∑

i∈P

Wi,r(t, θ) (16)

which represent the social work generated. It consists of the

total work done by the robot Wr(t, θ) = Fr∆sr and the

summation of the work done by each person i in the scene,

enforced by the robot Wi,r(t, θ) = f int
i,r ∆si.

Although the initial conditions can be identically copied

throughout all simulations, given the interactive nature of

the approach, the parameters θ alter the outcome W (θ) =
∑

t W (t, θ) of each experiment (random variable). That is

the main reason for considering as an appropriate method for

estimating the navigation parameters stochastic optimization.

Monte Carlo methods are especially useful for simulating

phenomena with significant uncertainty in inputs and systems

with a large number of coupled degrees of freedom. More

concretely, we have implemented a Markov Chain Monte

Carlo Metropolis-Hastings (MCMC-MH) algorithm to find

the best set of θ, implementing the Alg. 1.

The term q(θ∗|θ(i)), appearing in the algorithm descrip-

tion, represents a Gaussian sampling for each parameter,

centered at θ(i) and a determined variance for each of the

variables, which are independent. For stability reasons, ǫ is a

small value that guarantees no singularities in the algorithm,

specially when the social work calculated may be zero.

Then, we obtain the best θ̂ parameters as follows:

θ̂ = argmin
θ

{

EP (θ){
∑

t

W (t, θ)}

}

(17)

Note that the outcome of the simulations is averaged using

the expectation EP (θ){}.



Fig. 5. Simulation experiment: Simulation environment to obtain the θ

parameters. A reduced urban environment and a set of virtual dynamical
persons are used. The outcome of each simulations depends on its inner
parameters, and thus we required a great number of them.

V. EXPERIMENTS

A. Robot and environment description

In order to conduct all the experiments and to test the

approach presented, we have used two twin mobile service

robots developed for the URUS project [7], called Tibi and

Dabo, designed to work in urban pedestrian areas and interact

with people.

They are based on a two-wheeled Segway RMP200 differ-

ential platform equipped with two Hokuyo UTM-30LX 2D

laser range sensors used to detect obstacles and people.

The experimental area where the experiments are con-

ducted is the BRL (Barcelona Robot Lab), an outdoor urban

environments located at the North Campus of the Universitat

Politècnica de Catalunya (UPC). The BRL (map in Fig. 3)

is a large section of the campus that was outfitted as an

experimental area, covering over 10.000m2, Some pictures

of the BRL can be seen in Fig. 6-Top, as well as pedestrians

during the robot navigation.

B. Parameter Learning using simulation

The synthetic scenario used during the simulation step is

depicted in Fig. 5, as a simplification of a urban environment.

The studied environment consists of static obstacles and mul-

tiple people modeled as dynamical obstacles following the

SFM, quite similar to a real urban dynamical environment.

The results of the MCMC-MH optimization, explained

above in Sec. IV-A, are obtained after more than a thousand

simulations. The outcome of each experiment was dependent

on the parameters θ, since the system reacts to the behavior

of the robot navigation and vice versa. After following the

optimization method proposed, we have obtained the values

of θ equal to {α = 1.0, γ = 3.18, δ = 0.20}, which

will be the system parameters that we will use in real

experimentation.

C. Real experiments

Real experimentation was carried out in a urban environ-

ment, the Barcelona Robot Lab, which was described above.

The parameters were obtained using simulation learning, as

Fig. 6. Real experiments. Top: some pictures of the social-aware
navigating in the BRL. Bottom: their corresponding sensor information and
relevant information in the robot GUI.
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Fig. 7. Experiments results. Average and standard deviation of the
social work while performing real experiments. Green bars correspond to
the social-aware approach and yellow bars correspond to the tele-operated
approach, as a comparison to the proposed method.

stated in the previous section, and during all experiments,

those social-aware parameters remained unchanged.

A single experiment consisted in a query of the desired

goal to the social-aware navigation and the outcome of the

robot navigation corresponds to the path executed in a urban

environment with multiple pedestrians and static obstacles.

The set of experiments were carried out during a lapse

of time equal to two hours, sum in total 20 queries to

reach destinations within the BRL (see map in Fig. 3). Al-

most all navigations commands resulted in goal successfully

achieved, except for some problems experimented in narrow

passages, were oscillatory problems were detected. In Fig. 6

are depicted some shots of the robot navigating in the BRL,

on the top row, and their corresponding sensor information

and relevant information in the robot GUI, appearing in the

bottom row of the figure.

In order to validate the model in real experiments, we

have compared our approach with respect to a tele-operated

robot by an expert controller. This experiment was performed

under the same conditions as the social-aware navigation: a

goal is provided, but instead of an autonomous solution to

the navigation, we sought an expert controller to solve the

navigation problem, while reaching its goal and dealing with

any pedestrian or obstacle on the robot’s path.

We have evaluated the performance of both approaches



using the social work metric proposed in Eq. 16 for the

parameter learning. As can be seen in Fig. 7, we have drawn

the average and the variance values of the robot’s social

work, the persons social work enforced by the robot and

the total social work of the overall approach. However, the

results of the social work were only taken into account if the

robot navigation state was social robot navigation or inner

robot navigation, that is, if there was at least one person

within the social-navigation region, which represent the most

interesting cases of study for human interaction purposes.

The social-aware generated less amount of social work

both in the robot and the persons surrounding the robot. The

comparison of the persons social work for both approaches

is similar, both approaches generate a reduced and maybe

unavoidable amount of social work. The trivial solution of

”escaping” is not an option: this behavior would not solve the

interaction with other persons. Accordingly, we evaluate the

social work carried out by the robot. In this case, the com-

parison between our approach and the tele-operated is quite

significant, the social-aware approach outperforms the tele-

operated approach and its variance is also greatly smaller,

which represents more ability to cope more consistently with

different situations requiring less social work.

For further information, check the videos of the

experimental results and all code in the project web

http://www.iri.upc.edu/groups/lrobots/social_aware_

navigation/ecmr2013.php

VI. CONCLUSIONS AND FUTURE WORK

We have presented a novel robot navigation approach

based on the so called Social-Forces Model.

The validation of the model has been demonstrated

throughout an extensive set of simulations and real-life

experiments in a urban area. In contrast to other existing

approaches, our method can handle realistic situations, such

as dealing with large environments with obstacles and highly

crowded scenes. For that reason, this work can be applied to

certain specific real robot applications, for instance, guiding

tourists or accompanying professional visitors.

In future work, we aim to obtain more sophisticated

robot behavior, for instance, solving the oscillatory problems

observed and in general making the robot-aware navigation

much more robust.
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