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Abstract—By analogy with internet of things (IoT), internet of
vehicles (IoV) which enables ubiquitous information exchange
and content sharing among vehicles with little or no human
intervention is a key enabler for the intelligent transportation
industry. In this paper, we study how to combine both the
physical and social layer information for realizing rapid content
dissemination in device-to-device vehicle-to-vehicle (D2D-V2V)
based IoV networks. In the physical layer, headway distance of
vehicles is modeled as a Wiener process, and the connection
probability of D2D-V2V links is estimated by employing the
Kolmogorov equation. In the social layer, the social relation-
ship tightness that represents content selection similarities is
obtained by Bayesian nonparametric learning based on real-
world social big data, which are collected from the largest Chi-
nese microblogging service Sina Weibo and the largest Chinese
video-sharing site Youku. Then, a price-rising based iterative
matching algorithm is proposed to solve the formulated joint
peer discovery, power control, and channel selection problem
under various quality of service (QoS) requirements. Finally,
numerical results demonstrate the effectiveness and superiority
of the proposed algorithm from the perspectives of weighted sum
rate and matching satisfaction gains.

Index Terms—internet of things, internet of vehicles, D2D-V2V,
content dissemination, social big data, matching theory, Youku,
Sina Weibo.

I. INTRODUCTION

A. Background and Motivation

W ITH the evolutionary growth of internet of things (IoT),

it is estimated that almost 50 billion devices will be

interconnected by 2020, and the generated data traffic will

grow by another 1000 times [1], [2]. As a typical example

of IoT, internet of vehicles (IoV) which supports ubiquitous
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information exchange and content sharing among vehicles

with little or no human intervention is a key enabler for the

intelligent transportation industry. It provides unprecedented

opportunities and capability for vehicle vendors and service

providers to develop new applications with multimedia-rich

contents such as route planning, collision warning, online

games, traffic monitoring, and so on. However, IoV also raises

new challenges to vehicle-to-vehicle (V2V) communication

technologies. The gap between the rapidly growing demands

of data rate and the limited network bandwidth has become

ever prominent.

There are two major V2V solutions, i.e., the ad-hoc-

based IEEE 802.11p standard and infrastructure-based cel-

lular technologies such as long term evolution (LTE) [3].

On one hand, the IEEE 802.11p adopts the legacy carrier

sense multiple access with collision avoidance (CSMA/CA)

mechanism for access control, which is originally designed

for wireless local area network type communications and is

not optimized for fast moving vehicles. It is difficult to realize

reliable service delivery and coordinated resource allocation

in ad-hoc fashioned V2V communications due to the lack of

centralized intelligence. On the other hand, LTE-based V2V

solution poses a heavy burden on the capacity and delay

constrained backhaul links, and may even worsen the cell

overload problem. Hence, new V2V technologies which can

leverage widespread cellular infrastructures and underutilized

frequency spectrums are urgently required.

Device-to-device (D2D) communication, which allows di-

rect data transmission over proximate peer-to-peer links with

the assistance of centralized infrastructures, has emerged as

a promising candidate for future IoV networks. D2D-V2V

(D2D-V2V) communication can significantly reduce trans-

mission latency and improve spectrum efficiency due to the

proximity gain, hop gain, and reusing gain [4]. In particularly,

effective vehicle-to-infrastructure (V2I) data offloading can be

achieved through D2D links. For an instance, multiple vehic-

ular users heading toward the same direction usually request

very similar contents such as road and traffic information,

which have to be transmitted by the base station through

multiple repeated transmissions. In comparison, D2D-V2V

allows direct content sharing or pushing among vehicles with

similar interests without going through the base station.

However, the successful implementation of D2D-V2V based

content dissemination remains nontrivial. First of all, the

diverse content preferences of vehicular users have to be

taken into consideration during the D2D-V2V peer discovery

process in order to realize effective content dissemination and
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achieve high content matching satisfactions. In this paper,

we use social relationship tightness to reflect the content

selection similarities of different vehicular users. Secondly, the

fast mobility features of vehicles make the D2D-V2V links

highly dynamic and unreliable. A critical challenge is how to

explore long-lasting and reliable D2D-V2V connections for

effective content dissemination. Last but not least, co-channel

interference caused by cellular spectrum reusing must be

well managed to optimize system performance while meeting

quality of service (QoS) requirements. Combining the above

three aspects, it is intuitive to combine both social and physical

layer information for optimizing D2D-V2V based content

dissemination.

B. State of the Art

Two major bottlenecks of implementing D2D communica-

tions are limited frequency spectrum and constrained battery

capacity. Hence, conventional studies mainly aim at optimizing

either spectrum efficiency or energy efficiency. Spectrum-

efficient resource allocation problems have been investigated

in various application scenarios such as relay-aided D2D

networks [5], mobile content delivery [6], and mobile social

networks [7], etc. For energy-efficient resource allocation

design, matching theory and game theory have been widely

employed to optimize power control [8], [9]. Energy harvest-

ing technologies such as simultaneous wireless information

and power transfer (SWIPT) were utilized to improve energy

efficiency by exploring external energy sources [10]. The

tradeoff between energy efficiency and spectrum efficiency of

D2D communications was analyzed in [11], [12].

For D2D-V2V based IoV networks, performance analysis

in terms of outage probability and spectrum efficiency was

performed in [13], [14]. Given the latency and reliability

constraints, cluster-based and separate resource block sharing

and power allocation algorithms for D2D-V2V communica-

tions were proposed in [15] and [4], respectively. In [3], the

authors proposed a greedy-based resource allocation algorithm

to minimize the end-to-end delay by exploring both D2D and

IEEE 802.11p. A D2D-V2V framework which consists of

vehicle grouping, channel selection, and power allocation was

proposed in [16]. In [17], two distributed resource allocation

schemes were proposed for D2D-based safety-critical vehicu-

lar network with unlicensed band access. A matrix game based

resource sharing approach was proposed in [18] to optimize

geodistributed cloudlet resource management and allocation

in D2D-based vehicular networks. In [19], the authors in-

vestigated the user-priority-based power control problem by

optimizing individual channel rates with the consideration

of cross-tier interference and electromagnetic interference in

D2D-assisted IoV network. These works mainly focus on the

physical layer information, and the utilization of social layer

information has not been well investigated.

There exist some works on V2I data offloading by in-

tegrating IoV networks with social layer information [20]–

[24]. In vehicular social applications such as “Road Speak”

[20], “Road Sense” [21], and “Social Drive” [22], etc., social

connections among users are employed to recommend chat

groups with similar interests, and to share real-time road

traffic, road conditions, and driving experience. In [23], the

authors presented an review of social IoV networks, and

proposed a communication message structure based on SAE

J2735. A social-aware friend recommendation system named

Verse was proposed in [24], which is based on keywords of

interests and requires no Internet connection. A cooperative

delay-tolerant content dissemination strategy was proposed

in [25] for vehicular networks with the aim of minimizing

cellular traffic load. Both Wi-Fi based V2I and ac-hoc based

V2V communications were employed to offload a significant

portion of cellular data traffic. In [26], the authors investigated

energy-efficient multimedia data dissemination problem in

a vehicular cloud environment by formulating a stochastic

reward nets-based coalition game, in which a demand- and

supply-based payoff mechanism was proposed for each vehicle

in the game.

However, most of the above works were developed based on

IEEE 802.11 serial standards, and the specific characteristics

of D2D-V2V communications have been largely neglected.

D2D-based content delivery problem with parked vehicles

was studied in [27]. The authors presented detailed intro-

duction about interest sending, content distribution, and con-

tent replacement. By analogy with the concept of biologic

swarms, a swarm-based social-aware IoV framework was

proposed in [28]. The authors presented typical application

scenarios of social vehicle swarms, and identified several key

technologies including D2D, mobile edge computing, deep

reinforcement learning, and privacy preserving data mining.

In [29], the authors proposed a D2D-based vehicular social

network architecture named VeShare by exploring data-control

plane separation. The control plane determines social network

association and resource allocation, while the data plane is

only responsible for data collection and transmission. In [30],

a heterogeneous offloading framework was designed to deliver

delay-tolerant smart grid data in a store-carry-forward fashion

by exploring vehicle-assisted D2D networks. A dynamic mode

selection and resource allocation algorithm was developed to

optimize the total average delivery ratio while guaranteeing the

smart grid user fairness. Different from these works, real-world

social big data is not incorporated in [27]–[30], and the joint

optimization of peer discovery, power control, and channel

selection involved in D2D-V2V based content dissemination

has not been well investigated.

C. Contribution

The major contributions of this paper are summarized as

follows.

• We propose a social big data-based content dissemination

approach for offloading V2I data traffic through D2D-

V2V links. We combine both the physical and social

layer information in IoV networks for the optimization

of content dissemination. In the physical layer, the head-

way distance of vehicles traveling in the same direction

is modeled as a Wiener process, and the connection

probability of D2D-V2V links is estimated by exploring

the Kolmogorov equation. In the social layer, the social
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relationship tightness in terms of content selection sim-

ilarity is obtained by Bayesian nonparametric learning

(BNL) based on real-world social big data, which are

collected from the largest Chinese microblogging service

Sina Weibo and the largest Chinese video-sharing site

Youku.

• We formulate a joint peer discovery, power control, and

channel selection problem for the optimization of content

dissemination. The objective is to maximize the D2D-

V2V sum rate which is weighted by social relationship

tightness and connection probability. Since the formulated

joint optimization problem involves a three-dimensional

matching among vehicular content providers, content

consumers, and cellular spectrum resources, it is NP-hard

due to the combinatorial nature. To provide a tractable

solution, spectrum resources and content consumers are

combined to reduce matching dimensionality. We mod-

el the preference of a content provider over a com-

bined resource-consumer unit as the maximum achievable

weighted rate, which can be obtained by solving a power

control problem under QoS constraints of both cellular

and D2D-V2V links. Then, a price rising strategy is

proposed to resolve the contention when multiple content

providers prefer to be matched with the same spectrum

resource or content consumer.

• We analyze the proposed algorithm from the perspectives

of stability, convergence, optimality, and computational

complexity. The proposed algorithm is compared with

exhaustive and random matching algorithms from the per-

spectives of weighted sum rate and matching satisfaction

under different scenarios. Numerical results demonstrate

that significant performance gains can be achieved by

incorporating social big data into vehicular content dis-

semination.

The remaining parts of this paper are organized as fol-

lows. Section II presents the system model of both physical

and social layers. The formulation of content dissemination

problem is provided in section III. Section IV describes the

preference modeling and the proposed price-rising based three-

dimensional iterative matching algorithm. Simulation results

and relative discussions are presented in section V. Section VI

concludes the paper and identifies future research directions.

II. SYSTEM MODEL

Fig. 1 shows the D2D-V2V based IoV network, which

consists of one base station, multiple cellular user equipments

(CUEs) and potential D2D-V2V pairs. CUEs which include

both vehicles and smart phones can communicate with the

base station by using orthogonal spectrum resource blocks

(RBs). In this paper, we assume that the mode selection

process is already finished, and there exist some D2D-V2V

based vehicular transmitters (content providers) and receivers

(content consumers), which are denoted as V-TXs and V-RXs,

respectively. We focus on how to match V-TXs and V-RXs,

allocate transmission power, and select RB to maximize the

transmission rate, which involves the joint optimization of peer

discovery, power control, and channel selection.

Fig. 1: The physical layer and social layer models of D2D-

V2V based IoV networks.

A V-TX and a V-RX are allowed to form a D2D-V2V pair

for content dissemination if and only if certain physical and

social layer requirements are satisfied. In the physical layer, the

establishment of a D2D-V2V link depends on the connection

probability due to the dynamic and unreliable connections

caused by high mobility of vehicles [4], [14]. In the social

layer, the preferences of contents are reflected by vehicular

users’ behaviors in social networks, from which real-world

social big data can be obtained to estimate the content selection

similarities between V-TXs and V-RXs in terms of social re-

lationship tightness. In general, it is intuitive to allow vehicles

with good channel conditions, long-lasting connections, and

similar content preferences to form D2D-V2V pairs. Hence,

both the physical and social layer information should be

utilized to optimize content dissemination. In this section, the

physical layer models including channel model and connection

probability estimation are described firstly in subsection II-A,

and then the social relationship tightness between vehicles is

quantified in subsection II-B.

A. Physical Layer Model

In this subsection, we introduce the channel model and

connection probability estimation.

1) Channel Model: We consider the uplink spectrum

sharing scenario where each D2D-V2V pair can reuse

at most one uplink orthogonal RB allocated to a CUE

for data transmission. We assume that there exist M V-

TXs and M V-RXs in the IoV network, which are de-

noted by the sets VT = {V T
1 , V T

2 , · · · , V T
i , · · · , V T

M}
and VR = {V R

1 , V R
2 , · · · , V R

j , · · · , V R
M}, respectively. The

K RBs and the corresponding CUEs are denoted by

the sets C = {C1, C2, · · · , Ck, · · · , CK}, and CV =
{CV

1 , CV
2 , · · · , CV

k , · · · , CV
K}, respectively. Owing to spec-

trum reusing, V-TXs cause co-channel interference to the

base station, and V-RXs receive co-channel interference from

CUEs.

It is extremely difficult to estimate real-time channel state

information (CSI) due to the fast channel variations caused

by vehicle mobility. Previous works have demonstrated that

the mere consideration of large-scale fading effects such as
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pathloss results in little performance degradation [4], [13],

[14]. Hence, we only consider the free space propagation

pathloss and ignore the small-scale fading effects.

Assuming that V-TX V T
i and V-RX V R

j form a D2D-V2V

pair Vij by reusing the RB Ck allocated to CUE CV
k , the

spectrum efficiency (defined as bits/Hz/s) performances of

D2D-V2V pair Vij and CUE CV
k are given by

rVij ,k = log2

(

1 +
PVij ,kd

−αv

ij

Pkd
−αcv

kj +N0

)

, (1)

rk,i = log2

(

1 +
Pkd

−αc

k

PVij ,kd
−αvc

iB +N0

)

, (2)

where PVij ,k and Pk are the transmission power of V T
i and

CV
k , respectively. dij and dk denote the transmission distance

of the D2D-V2V link and the cellular link, respectively. dkj
denotes the transmission distance between CUE CV

k and V-RX

V R
j , while diB is the transmission distance between V-TX V T

i

and the base station. We use different pathloss components for

cellular and D2D-V2V links. That is, the pathloss exponents

corresponding to the cellular link, the D2D-V2V link, the

interfering link from CUEs to V-RXs, and the interfering link

from V-TXs to the base station are represented as αc, αv , αcv ,

αvc, respectively. N0 is the one-sided power spectral density

of additive white Gaussian noise (AWGN).

2) Connection Probability Estimation: The mobility pattern

of vehicles and the connection probability estimation have

been intensively studied in previous works [24], [31]. We

adopt the method proposed in [24] to predict the connection

probability between two vehicles. The approach is briefly

introduced here, and more details can be found in [24] and

the references therein.

Taking D2D-V2V pair Vij as an example, the mean and

variance of velocities corresponding to V T
i and V R

j are

denoted as vi, σ2
i and vj , σ2

j , respectively. The D2D-V2V

communication range is assumed to be L. The headway

distance from V T
i to V R

j after time t is denoted as H(t),
e.g., H(t) > 0 represents that V-TX V T

i is ahead of V-RX

V R
j , and H(t) ≤ 0 otherwise. The initial value of H(t) is set

as h0.

The connection time is evaluated by the mean first passage

time T , which is a random variable depending on initial

headway distance and velocity differences. T is given by

T = {min t | H(t) = h0,−L < H(x) < L, 0 ≤ x ≤ t}. (3)

In order to evaluate T , the headway distance H(t) is modeled

as a Wiener process. The drift and variance are denoted as

µ = vi − vj and σ2 = σ2
i + σ2

j , respectively. The increment

of H(t) within the infinitesimal interval ∆t follows a normal

distribution, which is given by

∆H(t) = H(t+∆t)−H(t) = µ∆t+ σW, (4)

where W obeys the normal distribution with mean zero and

variance ∆t, i.e., W ∼ N (0,∆t). Since time evolution of the

probability density function (PDF) of a particle’s velocity in

Winer Process can be described by the Kolmogorov equation,

we have

∂p(τ | h0, t)

∂t
= −µ

∂p(τ | h0, t)

∂τ
+

1

2
σ2 ∂2

∂τ2
p(τ | h0, t), (5)

where −L ≤ τ ≤ L, and p(τ | h0, t) is the PDF of H(t)
conditioned on H(0) = h0. Define δ(.) as the Dirac delta

function, the initial and boundary conditions are given by

p(τ | h0, 0) = δ(h0), (6)

p(−L | h0, t) = p(L | h0, t) = 0, t > 0. (7)

By combing (5) ∼ (7), p(τ | h0, t) is obtained as

p(τ|h0, t)=
1√

2πσ2t

∞
∑

y=−∞

[

exp

{

4yµL

σ2
−[(τ − h0)−4yL−µt]2

2σ2t

}

−exp
{

2µL(1−2y)
σ2

−[(τ−h0)−2L(1−2y)−µt]2
2σ2t

}]

.

(8)

The cumulative distribution function (CDF) of the connection

time T can be derived based on (3),

Fij(t) = Pr{T ≤ t} = 1−
∫ L

−L

p(τ | h0, t)dτ, (9)

which is defined as the probability that V T
i and V R

j are

connected within duration t.
The evaluation of vehicle connection time depends on initial

headway distance and velocity difference, which in essence

are closely related to key mobility features including vehicle

density, velocity and traffic dynamic. For example, considering

the traffic jam scenario with ultra-high vehicle density, the

velocity difference between two vehicles that are stuck in the

middle of a long queue tends to be decrease. This effect can be

well captured in simulations by adjusting mean and variance

values of vehicle velocities, which results in longer connection

time and larger probability of establishing more long-lasting

and reliable D2D-V2V connections. Hence, the impacts of

vehicle density, velocity, and traffic dynamic on numerical

results are reflected through connection probability, and the

solution derived in this work can be applied for numerous

IoV application scenarios.

B. Social Layer Model

In the social layer, we employ BNL to obtain the social

relationship tightness in terms of content selection similarity

by exploring social big data obtained from Sina Weibo and

Youku, which are real-world data corresponding to IoV users.

Actually, since the content preferences of IoV users gener-

ally change slowly compared to channel variations, it is not

necessary to collect and process social big data in real time,

which is both time consuming and costly. Hence, the social big

data can be collected and analyzed in an off-line manner, e.g.,

even when an IoV user is not in a vehicle. Although this work

only involves social big data from Sina Weibo and Youku, it

also sheds lights into future works which incorporate multi-

dimensional big data from a large number of mobile Internet

applications for finer granularity analysis.
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Fig. 2: The BNL-based social relationship estimation by

exploring real-world social big data from Sina Weibo and

Youku.

1) Data Collection and Preprocessing: We have crawled

the Sina Weibo site and retrieved billions of tweets from one

thousand active users within a time span of two years. It is

interesting to note that Sina Weibo users frequently share their

preferred video clips on their microblogs via a short URL,

which links to the video entry on Youku. The features of

each video in Youku can be extracted from the profile page

through Youku’s API, which contains video title, category,

view numbers (popularity), interest tags, and related videos.

Upon collecting the huge volume of data, data preprocessing

is performed to improve the data quality. We apply data

cleaning to remove noise and resolve inconsistencies. For

an instance, Weibo users with too little information on their

public profiles should be filtered out to avoid confusion [32].

Video tags from Youku have to be augmented with semantic

knowledge to solve the challenges raised by tag ambiguity

and heterogeneity [33]. Afterwards, important features relat-

ed to content preference in terms of demographic attribute

(gender, marital status, education level, career, hobby, etc.),

text attribute (topic distribution, word contextual semantics),

network attribute (social connections), and temporal attribute

(daily/weekly/monthly activity distribution) are extracted to

form the dataset.

2) Social Relationship Estimation: Due to the huge dimen-

sionality and high complexity of user content preferences,

parametric learning approaches with a fixed parameter space

are not suitable. Hence, we adopt a nonparametric and unsu-

pervised learning scheme, i.e., BNL, in which the complexity

of the model is allowed to grow and the accuracy of the

estimation will be improved as the size of observed data

becomes larger [34]. BNL places a prior distribution on an

infinite dimensional parameter space to avoid overfitting or

underfitting of the data, and estimates the posterior distribution

directly by invoking only a finite subset of available parame-

ters.

Denoting the set of users as U = {1, · · · , U}, for any

user u∈U , we assume that S observation sets which contain

the probability of selecting similar contents can be obtained

from the dataset. The set of observation sets is defined as

S = {1, · · · , S}. For any observation set s∈S , the probability

of selecting similar contents for user u is denoted as psu,

which is a random variable with a PDF Psu(psu) over the

space Θ=[0, 1]. Dirichlet process, which is a flexible and non-

parametric prior over an infinite dimensional parameter space

in BNL model, is employed to model the prior information

of the probability distribution [35]. For any observation set

s ∈ S , we perform Nsu observations, which are denoted as

Nsu = {p1su, p2su, · · · , pNsu
su }. Based on Nsu, the PDF of the

next observation pNsu+1
su is calculated as

Psu(p
Nsu+1
su ∈ε|p1su, p2su, · · ·,pNsu

su )=
1

ς+Nsu

(ςA(ε)+

Nsu
∑

n=1

ϖpn
su
(ε)).

(10)

ε is a measurable partition of Θ. A and ς are the base distri-

bution and concentration parameter of the Dirichlet process,

respectively. Since A and ς are unknown, Psu(p
Nsu+1
su ∈ ε |

p1su, p
2
su, · · · , pNsu

su ) can be calculated as

Psu(p
Nsu+1
su ∈ε|p1su, p2su, · · · , pNsu

su ) =

∑Nsu

n=1
ϖpn

su
(ε)

Nsu

, (11)

where ϖpn
su

is the point mass at pnsu. ϖpn
su
(ε) = 1 when

pnsu ∈ ε, and ϖpn
su
(ε) = 0, otherwise.

The estimation accuracy can be further improved by incor-

porating new observations from the subset Q ∈ S . Denoting

Qsu=Q\{Q∩s} as the observation sets in Q excluding Q∩s,

the PDF of the next observation pNsu+1
su can be calculated by

combining both s and Qsu as

PQ
su = ϱsP̃su(ε) +

∑

z∈Qsu

ϱzP̃zu(ε). (12)

ϱs and ϱz are the weights corresponding to the contribution

of s and z (z∈Qsu), respectively. Due to the unbiased nature

of each observation set, we have Pu = PQ
su, where Pu repre-

sents the PDF corresponding to the probability distribution of

selecting similar contents for user u.

3) Social Relationship Tightness: For V-TX V T
i and V-RX

V R
j , the social relationship tightness is calculated as

δij = (corr(pi, pj) + 1)/2. (13)

We have pi ∼ Pi(p) and pj ∼ Pj(p), where Pi and Pj are

the estimated correlative PDFs based on (12). δij varies from

0 to 1, i.e., δij ∈ [0, 1].
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C. Physical and Social Layer Requirements

The physical and social layer requirements for D2D-V2V

link establishment are defined in terms of connection proba-

bility and social relationship tightness. V-TX V T
i and V-RX

V R
j are allowed to form a D2D-V2V pair Vij if and only

if both the connection probability and the social relationship

tightness are no less than some predefined thresholds, which

are denoted as η and δ, respectively. We define Γ(x | x0) as an

indicator function of x such that Γ(x | x0) = 1 if x ≥ x0, and

otherwise, Γ(x | x0) = 0. We denote ρij as the physical-social

score of Vij ,which is calculated as

ρij = Γ[Fij(t) | η]Γ(δij | δ)Fij(t)δij . (14)

ρij varies from 0 to 1, i.e., ρij ∈ [0, 1]. ρij = 0 represents

that V-TX V T
i and V-RX V R

j cannot form a D2D-V2V link.

III. PROBLEM FORMULATION

In order to achieve effective content dissemination, both

physical and social layer information are utilized to char-

acterize the impacts of connection probability and social

relationship tightness on the transmission rate. Hence, the

objective function is defined as a weighted transmission rate,

i.e., the transmission rate is weighted by the physical-social

score. The optimization of the weighted transmission rate

requires solving a joint peer discovery, power control, and

channel selection problem, which involves a three-dimensional

matching among V-TXs, V-RXs, and RBs. Thus, a three-

dimensional M × M × K matrix O = {Oi,j,k} is utilized

to denote the set of peer discovery and channel selection

strategies, in which Oi,j,k∈{0, 1} is a binary variable. Oi,j,k=1
represents that V-TX V T

i and V-RX V R
j form a D2D-V2V

pair Vij by reusing RB Ck. The transmission power variable

is defined as PVij ,k. The joint peer discovery, power control,

and channel selection problem is formulated as

max
{O,PVij,k

}

K
∑

k=1

M
∑

j=1

M
∑

i=1

Oi,j,kρijrVij ,k

s.t. C1 : Oi,j,k ∈ {0, 1}, ∀V T
i ∈ VT , V

R
j ∈ VR, Ck ∈ C,

C2 :
∑

V R
j

∈VR,Ck∈C

Oi,j,k ≤ 1, ∀V T
i ∈ VT ,

∑

V T
i

∈VT ,Ck∈C

Oi,j,k ≤ 1,∀V R
j ∈ VR,

∑

V T
i

∈VT ,V R
j

∈VR

Oi,j,k ≤ 1, ∀Ck ∈ C,

C3 : 0 ≤ PVij ,k ≤ Pmax, ∀V T
i ∈ VT , V

R
j ∈ VR, Ck ∈ C,

C4 : rVij ,k ≥ rmin, ∀V T
i ∈ VT , V

R
j ∈ VR, Ck ∈ C,

C5 : rk,i ≥ rmin, ∀V T
i ∈ VT , V

R
j ∈ VR, Ck ∈ C. (15)

Constraints C1 and C2 ensure that each V-TX can be paired

with at most one V-RX and vice versa, while each RB can

be reused by at most one D2D-V2V pair and vice versa. C3
specifies the transmission power constraint. C4 and C5 ensure

that the QoS requirements of both D2D-V2V links and cellular

links should be guaranteed simultaneously.

IV. A PRICE-RISING BASED ITERATIVE MATCHING

ALGORITHM

In this section, a price-rising based iterative matching al-

gorithm is proposed to solve the joint optimization problem

formulated in (15). Firstly, we introduce how to reduce match-

ing dimensionality and how to establish preference lists based

on the weighted transmission rate. Then, the details of the

proposed price-rising based iterative matching algorithm is

presented. Finally, we analyze the theoretical properties and

discuss the relevant implementation details.

A. Matching Dimensionality Reduction and Preference Estab-

lishment

The problem (15) is NP-hard due to the combinatorial

nature. To provide a tractable solution, matching dimension-

ality is reduced to simplify the original three-dimensional

matching problem. We combine one V-RX and one RB to

form a V-RX-RB (VR) combination. Since there are M V-

RXs and K RBs, the set of M×K VR combinations is

denoted as VR={V Rjk}j=M,k=K
j=1,k=1

. Hence, we transform the

original three-dimensional matching into a two-dimensional

matching which involves M V-TXs on one side and M×K VR

combinations on the other side. The two-dimensional matching

is defined as follows.

Definition 1: A matching Ψ is a one-to-one correspondence

VT ∪ VR → VT ∪ VR ∪ {∅}, and Ψ(i) = V Rjk represents

that V-TX V T
i is matched with the combination V Rjk.

When Ψ(i) = V Rjk, for ∀V T
i
′ ∈ VT , Ψ(i

′

) = {VR \
{V Rjk}} ∪ {∅}. The matching Ψ is stable when there exists

no V-TX-VR pair consisting of V T
i and V Rjk that are not

paired with each other but prefer each other to be their partner

under matching Ψ, i.e., blocking pair.

In the two-dimensional matching, M V-TXs and MK VRs

are paired with each other based on the preference lists. The

preference of V-TX V T
i towards VR combination V Rjk is

modeled as the maximum achievable weighted transmission

rate under the matching Oi,j,k = 1, which can be obtained by

solving the following power control problem:

max
{PVij,k

}
ρijrVij ,k

s.t. C1 : 0 ≤ PVij ,k ≤ Pmax,

C2 : rVij ,k ≥ rmin,

C3 : rk,i ≥ rmin. (16)

The above problem can be easily solved by using standard

convex optimization. After obtaining the preference of V T
i

towards any V Rjk ∈ VR, the preference list of V T
i is estab-

lished by sorting all of VR combinations in a descending order

according to the achievable maximum weighted transmission

rates.

B. Price-Rising based Iterative Matching

After obtaining the preference lists of V-TXs, a price-rising

based iterative matching algorithm is proposed to match V-

TXs, V-RXs and RBs. The price rising strategy is employed

to resolve the contention when multiple V-TXs prefer to be
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matched with the same V-RX or RB. The proposed algorithm

is briefly described as follows.

In the initial step, each VR combination is assigned with

a virtual price to reflect its matching cost for V-TXs. The

initial value of the virtual price is set as zero. We de-

note PR={PR1, · · · , PRj , · · · , PRM}, ∀V R
j ∈ VR and

PC={PC1, · · · , PCk, · · · , PCK}, ∀Ck ∈ C as the price sets

of V-RXs and RBs, respectively. Then, PV={PV jk}j=M,k=K
j=1,k=1

is denoted as the set of prices corresponding to VR combina-

tions, where PVjk is the sum of V-RX V R
j ’s price PRj and

RB Ck’s price PCk.

In each iteration, V-TXs that have not been matched with

any VR combination propose to their most preferred VR

combination in updated preference lists based on their payoffs,

which is calculated as the difference between the achievable

maximum weighted rate and the current matching cost of

the VR combination. A stable matching is formed if any V-

RX or RB receives request from only one V-TX. Otherwise,

contention arises when more than one V-TX send requests to

the same V-RX or RB. Let B denote the set of V-RXs and RBs

that receive multiple requests. Then, the V-RXs or RBs in B
can raise their virtual prices with a step of e, which depends

on the minimum value of the differences between any two

neighboring preferences. Accordingly, V-TXs that compete for

the same V-RX or RB have to update their preference lists

based on the current virtual prices of VR combinations. The

price rising process terminates when there remains only one

V-TX.

In the final step, the algorithm ends when either all of the

V-TXs have been matched if M ≤ K, or all of the RBs have

been matched if K ≤ M .

C. Property Analysis and Implementation

The following properties of the proposed algorithm can be

easily proved according to [36], [37]. In particularly, the proof

of convergence is very similar to the proof of Theorem 1 in

[38] (page 20, Appendix B). Interested readers can refer to it

and references therein for more details.

Theorem 1: The proposed price-rising based iterative

matching algorithm converges to a stale matching within finite

iterations.

Theorem 2: The content dissemination matching Ψ is weak

Pareto optimal for V-TXs.

In preference establishment process, the computational com-

plexity for each V-TX to acquire the preferences is O(MK),
and to establish the preference list is O(MK log(MK)).
Furthermore, the computational complexity of the proposed

algorithm is O(MNl) when M ≥ K and O(KMNl) when

K ≥ M , where MNl is the required iterations of the price

rising process [39].

Our work complies with the future hierarchical comput-

ing architecture, in which both centralized and network-edge

intelligence can be combined to support applications with

diverse QoS requirements. Some delay-tolerant tasks with

high computing demands such as social relationship estimation

can be processed by the centralized computing infrastructure,

while delay-sensitive tasks such as connection probability

TABLE I: Simulation Parameters.

Simulation Parameter Value

Cell radius 500 m

Length and width of road segment 100 m, 10m

Distance from the base station to the road segment 100 m

Max D2D-V2V transmission distance L 100 m

Pathloss exponent αc, αv , αcv , αvc 3, 3.5, 4, 3

Max V-TX transmission power Pmax 500 mW

Cellular transmission power Pk 200 mW

Noise power N0 -110 dBm

Number of V-TXs and V-RXs M 1 ∼ 6

Number of RBs and CUEs K 1 ∼ 6

Vehicle speed ≤ 50km/h

QoS requirement rmin 0.5 bit/s/Hz
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Fig. 3: Weighted sum rate of D2D-V2V pairs versus number

of matching iterations ((δ = 0.5, η = 0.5)).

estimation can be executed locally without going through the

delay-prone backhaul links.

V. SIMULATION RESULTS
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Fig. 4: The weighted sum rate performance of D2D-V2V pairs:

(a) weighted sum rate versus different numbers of V-TXs and

RBs; (b) weighted sum rate versus different numbers of V-

TXs. (δ = 0.5, η = 0.5)

In this section, the proposed algorithm is compared with ex-

haustive and random matching algorithms, which are utilized

as the upper and lower performance bounds, respectively. The
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Fig. 5: The matching satisfaction of V-RXs versus different

satisfaction thresholds.

exhaustive matching algorithm searches through all of possible

combinations to find the optimum solution. We consider one

unidirectional lane of a road segment, in which two lanes

with bidirectional vehicular traffic exist. Table I presents the

simulation parameters [14], [16].

Fig. 3 shows the convergence performance of the proposed

algorithm. The numbers of V-TXs, V-RXs and RBs have an

obvious impact on the convergence speed, i.e., more iterations

are required when K and M increase. Nevertheless, the

proposed algorithm converges in only a few iterations and

approaches the exhaustive matching algorithm. For instance,

given K = 6, the proposed algorithm takes 3 and 6 iterations

to converge when M = 3 and M = 6, respectively.

Fig. 4 (a) shows the weighted sum rate of V2V pairs with

different numbers of V-TXs and RBs. It is observed that the

sum rate performance increases along with the numbers of

both V-TXs and RBs. When the number of RBs is fixed,

adding more D2D-V2V pairs can contribute to higher sum

rate performance due to proximity gain and spectrum reusing

gain. On the other hand, since more D2D-V2V links can

be supported by increasing the number of RBs, the overall

network can benefit from diversity gain by exploring D2D-

V2V links with longer connection time and higher preference

similarity. Fig. 4 (b) compares the proposed algorithm with

both the upper and lower performance bounds. It is observed

that the performance achieved by the proposed algorithm is

approximate to the optimum performance and significantly

outperforms that of the random matching algorithm. For in-

stance, the proposed algorithm can achieve up to 93.76% of the

optimal performance and outperforms the random performance

by 77.32%, when M = 6, K = 6.

Fig. 5 shows the matching satisfaction of V-RXs, which is

defined as the CDF of the physical-social score. The impacts

of physical-social score on V-RX satisfaction are evaluated

by varying the thresholds of connection probability and social

relationship tightness. It is observed that the satisfaction per-

formance increases along with the thresholds. This is due to

the fact that physical-social score is dramatically improved by

allowing V-TXs and V-RXs with longer connection time and

stronger social relationship tightness to form D2D-V2V pairs.
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Fig. 6: The relationship between weighted sum rate of D2D-

V2V pairs and the weighted average rate per D2D-V2V pair

(N=6, K=6).
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Fig. 7: Percentage of connected vehicles versus the threshold

of connection probability η (N=6, K=6).

Fig. 6 shows the relationship between the weighted sum

rate and the weighted average rate per D2D-V2V pair. The

threshold of social relationship tightness δ is set as 0.7, and

M = K = 6. When the threshold of connection probability

η increases, the weighted average rate per D2D-V2V pair is

improved at the expenses of the weighted sum rate. The reason

is shown in Fig. 7, which demonstrates that percentage of

connected vehicles decreases significantly as η increases. The

weighted average rate gain is not enough to compensate for

the sum rate loss caused by lower percentage of connection.

VI. CONCLUSION

In this paper, we investigated the content dissemination

problem in D2D-V2V based IoV networks. Both the physical

and social layer information in terms of connection probability

and social relationship tightness were employed to solve the

formulated joint peer discovery, power control, and channel

selection problem. In particularly, we modeled the headway

distance of vehicles as a Wiener process and estimated the con-

nection probability of V2V pairs by exploiting Kolmogorov

equation. The social relationship tightness was measured by
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employing BNL based on the real-word social big data col-

lected from Sina Weibo and Youku. Then, a price-rising based

iterative matching algorithm was proposed to maximize the

sum rate of D2D-V2V pairs weighted by physical-social scores

under the QoS constraints of both cellular and D2D-V2V links.

The proposed algorithm was compared with two heuristic

algorithms, and its effectiveness and superiority in improving

sum rate and content satisfaction were validated through

numerical results. In the future, we will consider the multi-

hop D2D-V2V scenarios and study the joint optimization of

content caching and dissemination.
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