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Abstract

Social buffering, the phenomenon by which the presence of a familiar individual reduces or even 

eliminates stress- and fear-induced responses exists in different animal species, and has been 

examined in the context of the mother-infant relationship in addition to adults. Although it is a 

well-known effect, the biological mechanisms, which underlie it, as well as its developmental 

impact are not well understood. Here we provide a review of evidence of social and maternal 

buffering of stress reactivity in nonhuman primates, and some data from our group suggesting that 

when the mother-infant relationship is disrupted maternal buffering is impaired. This evidence 

underscores the critical role that maternal care plays for proper regulation and development of 

emotional and stress responses of primate infants. Disruptions of the parent-infant bond constitute 

early adverse experiences associated with increased risk for psychopathology. We will focus on 

infant maltreatment, a devastating experience not only for humans, but for nonhuman primates as 

well. Taking advantage of this naturalistic animal model of adverse maternal caregiving we have 

shown that competent maternal care is critical for the development of healthy attachment, social 

behavior and emotional and stress regulation, as well as of neural circuits underlying these 

functions.
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Stress, the Hypothalamic-Pituitary-Adrenal (HPA) Axis and Early 

Experiences

Animal models of early adverse experience, primarily involving disruption of the mother-

infant relationship, have played a critical role in understanding how early social experiences 

“get under the skin” and change developmental trajectories through the identification of 

biological mechanisms by which the mother regulates brain, behavioral, and physiological 

development of the infant. Recently identified biological mechanisms go beyond the effects 

of stress hormones and stress-induced inflammation, and include alterations in the gut 

microbiome that lead to neurotransmitter changes in the infant’s brain (Borre et al., 2014; 

Cryan & Dinan, 2012), as well as epigenetic modifications that translate experiences into 

molecular changes in DNA that can be transmitted from one generation to another 

(Champagne, 2008; Roth et al., 2009; Weaver et al., 2004). In this paper we will focus on an 

additional regulatory mechanism of maternal care on infant development: maternal buffering 

of stress and fear responses. We will first describe the HPA stress response and its 

development, as well as the control of the stress and fear response by the central nervous 

system. From there we will review our current understanding of social buffering, both peer 

and maternal, in nonhuman primates. We will conclude with a review of the impact that 

disruptions of the mother-infant relationship have on neurodevelopment of the stress and 

fear response.

The presence of a sensitive and responsive caregiver serves as a potent external regulator of 

the infant’s physiology, buffering its fear and stress responses early in life through sensory, 

nutritional, motor and thermal pathways (Hofer, 1984; Howell & Sanchez, 2011; Kuhn et 

al., 1991; Raineki, Lucion, & Weinberg, 2014; Rincón-Cortés & Sullivan, 2014). Thus, 

maternal behaviors could potentially control the maturational rates of emotion and stress 

self-regulatory strategies and the underlying brain circuits in the offspring. This ability of 

early experience and the environment to modulate development may have evolutionary roots 

in which early experiences and environments program physiological and brain development 

to support behaviors, cognitive, and biological processes that help the offspring (and future 

generations) adapt to that particular environment. However, the early critical or sensitive 

periods of increased neuroplasticity that serve as windows of opportunity for adaptation to 

the environment may also serve as windows of vulnerability.

Much of the literature examining the biological mechanisms linking early adversity 

(including mother-infant relationship disruption) and developmental psychopathology has 

focused on the HPA axis because it is activated in response to early stressful experiences 

(Heim, Ehlert, & Hellhammer, 2000; Sánchez et al., 2005) and can cause long-term 

neurobiological changes via genomic mechanisms (Barr et al., 2003; Kinnally et al., 2011). 

Stressful stimuli activate stressor-specific pathways that converge onto and activate neurons 

in the hypothalamic paraventricular nucleus (PVN) triggering the release of corticotropin-

releasing factor (CRF) into the anterior pituitary that in turn releases adrenocorticotropic 

hormone (ACTH) into the systemic blood circulation. ACTH provokes the synthesis and 

release of glucocorticoids (GCs: cortisol in primates), which are highly catabolic steroid 

hormones. Limbic regions such as the amygdala and hippocampus, as well as the 
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ventromedial prefrontal cortex (vmPFC), regulate HPA axis activity through indirect 

projections to the PVN, and they also express glucocorticoid receptors (GR), mediating GC 

negative feedback (Herman et al., 2003; Herman, Ostrander, Mueller, & Figueiredo, 2005; 

Ulrich-Lai & Herman, 2009). Stressors, including mother-infant relationship disruption, 

activate the HPA axis and associated brain areas, including the cortico-limbic structures 

mentioned above (vmPFC, amygdala, hippocampus). Other neurobiological systems, such as 

the sympathetic nervous system, are also activated during threatening situations. Chronic 

stress or traumatic experiences early in life can impact the way these stress-response systems 

mature, leading to extreme emotional and stress reactivity and other psychopathologies. 

Much of the evidence supporting a role for variations in maternal care in stress response 

function comes from studies in rodent and nonhuman primate animal models, making it 

essential to understand how the stress response matures in these species across development.

A stress hyporesponsive period (SHRP) has been reported in rodent pups during which the 

HPA axis is less responsive to stress, with an inability to mount a corticosterone (GC 

produced by the adrenal cortex in rodents) response to stressors that can effectively activate 

the axis at later ages (Gunnar & Vazquez, 2006; Sanchez, Ladd, & Plotsky, 2001). Given the 

wide effects of GCs on homeostasis and gene expression, the role of the SHRP is thought to 

be to keep GC levels low to avoid massive effects on normative brain growth and 

development (Sapolsky & Meaney, 1986). Although the SHRP involves an immature HPA 

axis, there is also strong evidence that the dam’s presence plays a major role in maintaining 

low GC levels during the SHRP, and that she also regulates the development of the pup 

HPA axis and fear systems during the transition out of the SHRP (Moriceau & Sullivan, 

2006; Stanton, Wallstrom, & Levine, 1987; Stanton, Gutierrez, & Levine, 1988). In humans 

and nonhuman primates, although there is also some evidence of an early period of relative 

stress hyporesponsivity, it is (1) primarily dependent on the buffering effect of maternal (or 

paternal) presence and not on the immaturity of the HPA axis (unlike the rodent SHRP), (2) 

highly dependent on quality of parental care and (3) may extend through childhood (Gunnar 

& Fisher, 2006; Hostinar, Sullivan, & Gunnar, 2014; McCormack, Newman, Higley, 

Maestripieri, & Sanchez, 2009). Although the underlying mechanisms of this period of 

stress hyporesponsivity are different for rodents and primates, the evidence from both 

models supports the hypothesis that GC levels need to be tightly regulated during brain 

development to facilitate typical maturation.

The development of the HPA axis in nonhuman primates follows a similar pattern as that 

observed in humans, making them ideal model organisms when attempting to investigate 

complex sequelae related to stress physiology. The presence of a basal HPA diurnal rhythm 

has been reported in infant rhesus monkeys, but it still appears to be immature at 5 months 

of age (comparable to 18–24 months in humans (Raper, Bachevalier, Wallen, & Sanchez, 

2013). By the juvenile stage (starting around 12 months, comparable to 4 years in humans) 

rhesus monkeys show an adult-like diurnal pattern of cortisol secretion (Barrett et al., 2009; 

Raper et al., 2014; Sánchez et al., 2005). Although there is no solid evidence of a true SHRP 

in rhesus monkeys, socially familiar cues, specifically the presence of a nurturing mother, do 

buffer the HPA axis stress responses in infant rhesus macaques (McCormack et al., 2009; 

Sanchez, 2006). Thus, as described for humans above, nonhuman primate mothers also 

function as external regulators of infant HPA axis activity, serving as strong social buffers 
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that prevent stress-induced activations to potential threats. This highlights the importance of 

early social experiences, in particular the role of nurturing caregiving, on the development of 

the HPA axis across different mammalian species, as well as the utility of animal models to 

study the role of adverse caregiving on the etiology of early life stress-induced 

developmental psychopathology.

Multiple neural pathways transmit information about specific types of threat to the 

mammalian PVN (Herman et al., 2003; Herman et al., 2005; Ulrich-Lai & Herman, 2009). 

Psychological and emotional stressors are evaluated and transmitted by brain regions 

including cortico-limbic structures such as the vmPFC, amygdala, and hippocampus, as 

described above. These regions change drastically, and over relatively long periods of time, 

during both pre- and postnatal development in mammals, which is thought to make them 

particularly sensitive and vulnerable to early social experiences (Andersen, 2003). Recent 

research has elucidated a critical role of the development of vmPFC-amygdala circuits for 

proper development of the HPA axis and emotional regulation. Lesion studies represent a 

successful approach when attempting to describe the complex relationships that exist 

between these highly interconnected structures during development. Recent studies by our 

group have shown that when the amygdala is lesioned around 2 weeks of age both HPA axis 

reactivity and basal function are altered. Lesions of the amygdala during this neonatal period 

are associated with heightened –not blunted- basal and stress-induced HPA axis reactivity 

during infancy and the juvenile period (Raper et al., 2013; Raper et al., 2013; Raper, Wilson, 

Sanchez, Machado, & Bachevalier, 2013; Raper et al., 2014), despite a well established role 

of the amygdala in stimulating the HPA axis in adult animals, supported by adult lesions of 

the amygdala resulting in blunted HPA axis reactivity (Kalin, Shelton, & Davidson, 2004; 

Machado & Bachevalier, 2008), without effects on basal HPA axis activity (Kalin et al., 

2004; Machado & Bachevalier, 2008; Norman & Spies, 1981; Sapolsky, Zola-Morgan, & 

Squire, 1991). These findings suggest that the influence of the amygdala on the HPA axis 

may change across development, and may have seemingly paradoxical roles, inhibiting HPA 

axis activity in primates early in development, and then switching later into a stimulatory 

role on cortisol release. Interestingly, adult and neonatal lesions of these limbic circuits 

result in similar alterations in emotional reactivity,(Kalin et al., 2004; Machado & 

Bachevalier, 2008; Machado et al., 2008; Machado, Kazama, & Bachevalier, 2009; Raper et 

al., 2013; Raper, Wilson et al., 2013), which combined with the differential effects of lesion 

timing on the HPA axis described above highlights the need for further experiments to 

determine the underlying brain-behavior relationships.

Social Buffering of Stress Responses in Nonhuman Primate Species

As defined above, social buffering is the phenomenon in which the presence of another 

animal, or group of animals, can reduce or even eliminate the HPA activation of another 

individual when exposed to stressful stimuli (Levine, Johnson, & Gonzalez, 1985). This 

phenomenon has been observed in several species, including humans and non-human 

animals, and has been reported during development in the context of the mother-infant 

relationship, as well as in familiar adults.
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The first descriptions of social buffering in nonhuman primates were reported in studies 

examining mother-reared and surrogate-reared infants. Hill, McCormack, & Mason (1973) 

examined the HPA axis response of surrogate-reared rhesus monkeys when exposed to 

novelty, and reported that the HPA response was significantly lower when the infant was in 

the presence of their surrogate mother compared to when alone. Mendoza, Smotherman, 

Miner, Kaplan, & Levine (1978) also examined the HPA responses of mother-reared and 

surrogate-reared squirrel monkey infants in response to separation and reunion with the 

mother/surrogate. All infants demonstrated heightened levels of plasma cortisol in response 

to the separation from the mother, and all infants demonstrated a return to baseline cortisol 

levels when reunited with their mothers/surrogates. These findings indicate that infants not 

only developed an attachment to their mother-figure, but that both mothers and surrogate 

mothers helped dampen the infant stress response at reunion.

Following the comparison studies on the bonds between monkey infants and their mothers/

surrogates, research began to focus specifically on the HPA axis response of squirrel 

monkey (a New World primate species) infants under a variety of stressful situations, and 

the ability of the mother to buffer the stress response. Many of these landmark studies were 

conducted by Seymour Levine. In one of the first studies, Coe, Mendoza, Smotherman, & 

Levine, (1978) examined the plasma cortisol levels of infant squirrel monkeys under 4 

conditions: 1) baseline, 2) 30 minutes after a brief separation and reunion from the mother, 

3) 30 minutes after the infant was removed from the social group and housed alone in a 

cage, and 4) 30 minutes after the mother was removed from the group, while the infant 

remained in the group. Infants did not demonstrate an elevation in cortisol levels after the 

brief separation and reunion from the mother, suggesting that the resumption of contact with 

the mother eliminated an HPA axis reaction to the brief separation. Compared to baseline 

cortisol values, infants showed a significant increase in cortisol levels when they were 

separated from the group, as well as when the mother was separated from the group (and the 

infant was left in the social group). However, infant cortisol levels were not as high 

following maternal separation when they remained in the group, suggesting that the social 

group may have buffered the stress response of the infant while the mother was removed. 

Additional support for a social buffering effect on infant HPA reactivity was later reported 

(Coe, Wiener, & Levine, 1983; Wiener, Johnson, & Levine, 1987), such that squirrel 

monkey infants showed a lower HPA axis response to maternal separation when the infant 

remained in the social group compared to being removed from the social group. In another 

study, Levine, Wiener, & Coe (1993) demonstrated that not only physical contact, but even 

olfactory and auditory cues from the mother were able to reduce the HPA axis response of a 

separated squirrel monkey infant compared to complete isolation from the mother. 

Altogether these studies suggest that squirrel monkey infants can use social companions to 

buffer their HPA stress response in response to challenges (e.g. the face of novelty stress), 

with direct contact with mother having the strongest ability to buffering effect on the HPA 

axis stress activations (Levine, 2000).

Additional studies conducted on the rhesus monkey mother-infant relationship confirmed 

findings reported in squirrel monkeys. Gonzalez, Gunnar, & Levine (1981) examined both 

mother and infant HPA axis responses to several separation conditions, including being 

removed from the social group but housed together, and being removed and housed 
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separately. The cortisol levels of the infants when separated with the mother were 

moderately low compared to when housed during complete separation. In addition, the 

infants also appeared to dampen the stress response of the mothers, suggesting that social 

buffering can be bi-directional between mothers and infants during stressful situations. 

Additional studies in rhesus macaques further validated the finding that in the presence of 

the mother, rhesus infants showed small to no elevations in cortisol when exposed to novelty 

(Gunnar, Gonzalez, & Levine, 1980; Levine et al., 1985).

Several studies further manipulated the degree of maternal presence when exposing rhesus 

infants to novelty to determine what specific maternal cues were necessary to elicit social 

buffering. Levine et al. (1985) reported that infant cortisol was buffered when the infant was 

removed from the social group while in contact with the mother, even if they were just in 

visual contact. Interestingly, the behavioral profile was very different, in that the infants 

were more likely to vocalize toward the mother when she was only accessible visually. 

Bayart, Hayashi, Faull, Barchas, & Levine (1990) also reported that infants who had visual 

and auditory access to their mother during a separation from their social group showed 

lower cortisol responses compared to those that were in complete isolation, although the 

behavioral profiles were more reactive than during the alone condition. They also reported 

increased 3-methoxy-4-hydroxyphenylglycol (MHPG), a norepinephrine metabolite, levels 

in the complete isolation condition compared to separation in the presence of the mother. 

Levine et al. (1985) suggested that the inverse relationship that is observed between 

behavioral reactivity and physiological reactivity when rhesus infants are isolated in the 

presence of the mother may be explained as a coping mechanism. Specifically, the 

vocalizations may serve as a coping strategy to the stressful situation, allowing for reduction 

of physiological arousal in the infant, in addition to serving as solicitations for aid.

Finally, several studies have examined the extent to which the social group can help buffer 

infants’ HPA axis response in the face of a stressor. Coe, Wiener, Rosenberg, & Levine, 

(1985) examined the response of rhesus infants during two forms of separation: infant 

removal from the mother and the social group, or mother removal from the social group 

while the infant remained in the group. They found that when the infants remained in the 

social group while their mother was removed, their cortisol reactivity was blunted in 

comparison to when they themselves were removed from the group, suggesting that the 

social group acted as a social buffer by helping reduce the infant stress response to the 

mother being removed from the group. It is also possible that the first form of separation 

(maternal and group) combined with exposure to novelty more strongly activated the HPA 

response than just removing the mother from the social group (i.e. no exposure to a novel 

environment). Further experiments that systematically address the effect of each condition 

would need to be conducted to clarify this point.

More recently Winslow, Noble, Lyons, Sterk, & Insel (2003) examined the effect that social 

partners have on buffering the stress response of 3 year old rhesus macaques who were 

either mother-reared or peer-reared during the first year of life. Social partners were able to 

buffer the stress response of the mother-reared animals, but the same degree of buffering 

was not observed in the nursery-reared animals, suggesting long-term impact of the mother-

infant relationship on the ability of primates to benefit from social buffering effects.
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Taken together, these results suggest that, during normative development, separation from 

the social group does not strongly activate the HPA axis of monkey infants when the infants 

are left in contact with the mother. When the infant is exposed to the stress of group 

separation, and allowed visual, auditory, or olfactory access to the mother, behavioral 

reactivity increases, yet cortisol levels are maintained at approximately baseline levels. 

Finally, when the mother is removed from the infant, but the infant remains in the social 

group, its HPA axis is not activated as strongly as when the infant is removed from the 

group alone, suggesting that familiar conspecifics may also act as social buffers. These 

results collectively suggest that the mother, and in some cases other animals, play an 

important role in reducing arousal in infants (Gunnar et al., 1980). It appears that physical 

contact with the mother helps reduce both the physiological and the behavioral responses to 

stressful stimuli in infants (Gunnar et al., 1980). According to Levine (2000) the mother is 

the primary source of security for an infant, and by being able to maintain proximity to her 

in the face of uncertainty, the infant is able to use her to control its arousal level.

Social buffering has also been examined in adult animals. The first studies were conducted 

in squirrel monkeys, and found that the presence of several group members had the strongest 

effect at reducing the stress response in the face of a stressor. When adult male squirrel 

monkeys were placed in a novel environment with visual access to a snake, they showed 

increased levels of cortisol when tested alone or with a partner; however, when tested with 

their group, they did not show cortisol elevations (Coe, Franklin, Smith, & Levine, 1982; 

Vogt, Coe, & Levine, 1981). Likewise when adult male squirrel monkeys were exposed to 

fear conditioning (light-shock pairing), their cortisol levels were elevated when tested alone, 

while cortisol elevations were attenuated when tested with a social partner, and returned to 

baseline when several social partners were present (Stanton, Patterson, & Levine, 1985). 

These results suggest that the presence of several social partners is most effective for 

reducing the HPA axis activation of adult squirrel monkeys when exposed to a stressor.

Social buffering has also been reported in marmosets, another New World primate species. 

Smith, McGreer-Whitworth, & French (1998) found that marmosets placed in a novel 

environment exhibited lower levels of urinary cortisol when exposed with their heterosexual 

pair mate compared to when tested alone. Rukstalis & French (2005) examined whether or 

not the vocalizations of a pair mate would have an effect on an isolated adult marmoset’s 

HPA response. Adult marmosets who were separated from their group, and who heard the 

vocalizations of their pair mate throughout the separation, had significantly lower levels of 

urinary cortisol compared to when tested alone or when tested with the sounds of an 

unfamiliar animal. This demonstrated the effect referred to as “vocal buffering”.

Social buffering has also been reported in adult macaques. Gust, Gordon, Brodie, & 

McClure (1994) examined the cortisol and immunological response of adult female rhesus 

monkeys exposed to a 96 hour separation from their social group. Compared to baseline 

values, the immunological response to the separation was significantly reduced when the 

separated animals had a social companion with them, compared to being alone. However, 

the presence of another animal did not buffer the cortisol responses of the separated animals. 

In a more naturalistic design, Young, Majolo, Heistermann, Schulke, & Ostner (2014) 

examined the role that social support had on the stress response of wild male Barbary 
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macaques. The researchers evaluated levels of fecal cortisol in these animals during 2 

stressful events: when exposed to low temperatures, and when exposed to group aggression. 

They found that the animals who had stronger social ties had lower levels of fecal cortisol 

compared to those with weaker social bonds. This suggests that even when faced with 

naturalistic stressors, social buffering is a powerful phenomenon that influences HPA axis 

responses.

Taken together, these findings suggest that the presence of social partners can also attenuate 

the stress response of adult nonhuman primates when exposed to different stressor types. 

However, it appears that there are species-specific differences in whether or not one animal 

can have such an effect, or whether it takes several known social partners. Galvao-Coelho, 

Silva, & De Sousa (2012) further suggested that there are sex differences in the effect that 

one or more social members have to buffer the stress response of adult animals.

Social Buffering Following Disruption of the Mother-Infant Relationship

For primates the mother-infant relationship is arguably the most salient early experience. 

This has been demonstrated by the strong link between disruption of this relationship and 

poor behavioral and physiological outcomes in the infant. The effects of this form of early 

adversity are thought to be due in part to a disruption in the mother’s ability to buffer her 

infant’s stress response, as described previously. This could thus lead to exposure to 

elevated levels of cortisol and alterations in HPA function. This is supported by studies in 

several nonhuman primate species and models of mother-infant relationship disruption, 

discussed below.

Disruption of the mother-infant relationship results in alterations in HPA axis function, 

including the ability of familiar conspecifics to buffer the stress response, i.e. social 

buffering. One very potent, albeit severe, method of disrupting the mother-infant 

relationship is to prevent the formation of that bond/relationship as in the case of nursery-

rearing infant monkeys. This manipulation causes a broad range of behavioral and HPA axis 

alterations, including altered circadian cortisol rhythms (Boyce, Champoux, Suomi, & 

Gunnar, 1995), increased basal HPA function (Higley, Suomi, & Linnoila, 1992), and 

decreased basal HPA function (Clarke, 1993) (for review, see Sanchez et al., 2001). In 

contrast to mother-reared infant rhesus monkeys, who are able to use familiar conspecifics 

to buffer their responses to stress (Coe et al., 1978; Levine, 2000; Mendoza et al., 1978; 

Wiener et al., 1987), nursery-reared animals do not show this effect and show alterations in 

salient social behaviors including excessive allogrooming and intermale mounting (Winslow 

et al., 2003). As mentioned above, Harry Harlow’s group also investigated the cortisol 

responses of surrogate- and mother-reared infants to a stressor during separation from the 

attachment figure (i.e. the surrogate or the mother). They demonstrated that mother-reared 

infants showed similar pretest cortisol levels and cortisol reactivity prior to a separation 

period as compared to the surrogate-reared group while the surrogate was present; however 

after separation, while neither the surrogate- or mother-reared animals showed differences in 

cortisol increases between pretest and posttest measures, mother-reared animals showed 

increased pretest –baseline- cortisol levels (Meyer, Novak, Bowman, & Harlow, 1975). The 

authors further explained that this effect was driven by an order-effect in the mother-reared 
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infants in which the second infant to be tested each day had elevated pretest cortisol levels 

(Meyer et al., 1975). The results of this study suggest alterations in the surrogate-reared 

animals’ ability to use social information to modulate their stress physiology. All of this 

evidence combined suggests that the species typical mother-infant relationship plays a 

unique role in modulating the infant’s ability to use other conspecifics to buffer their stress 

response, and that replacing the mother with a cloth surrogate, although this has been shown 

to represent an attachment relationship, is not enough to normalize this aspect of HPA axis 

function. Further evidence of this effect comes from a recent study that reported elevated 

levels of cortisol accumulated in hair (a measure of chronic GC exposure) that were related 

to anxious behavior in animals raised in a nursery with access to same age peers, suggesting 

that peers are not able to buffer stress and emotional reactivity like mothers do (Dettmer, 

Novak, Suomi, & Meyer, 2012).

Maternal separation is another experimental manipulation of the mother-infant relationship 

that has been used to investigate the role of the mother in modulating the developing HPA 

axis. As described above, both New and Old World nonhuman primates, including rhesus 

monkeys, squirrel monkeys (Samiri sciureus), and common marmosets (Callithrix jacchus) 

have been studied using variations of this paradigm. In rhesus monkeys, short maternal 

separations result in infants’ increased activity, frequency of vocalizations, and HPA axis 

activations (Bayart et al., 1990; Harlow, Harlow, & Suomi, 1971). Repeated maternal 

separation in infancy leads to increased cortisol reactivity and flattened diurnal rhythms in 

females later in life, during the juvenile period (Sánchez et al., 2005). These effects, though, 

are dependent on the timing of the separation as demonstrated by elegant work by Lyons and 

colleagues. There is an interesting body of literature supporting “stress inoculation” effects, 

the concept that certain types of stress at specific times during development actually increase 

resilience when the individual faces challenges later in life. Most of the evidence for this 

phenomenon in nonhuman primates comes from studies of squirrel monkeys exposed to 

mild intermittent stress consisting of separation from the mother and social group at 

developmentally distinct times during developmental (i.e. weaning, when they are no longer 

dependent on their mothers). This stress exposure appears to be protective, allowing the 

animal to better adapt to environmental challenges later in life (Lyons & Parker, 2007; 

Lyons, Parker, & Schatzberg, 2010; Parker, Buckmaster, Schatzberg, & Lyons, 2004). In 

these animals there is also evidence that the HPA stress response is better calibrated to 

handle challenges, as demonstrated by reduced basal levels of stress hormones while 

mounting comparable neuroendocrine responses to moderate stressors as compared to 

unexposed animals (Parker, Buckmaster, Lindley, Schatzberg, & Lyons, 2012). In this 

model, the distribution of the glucocorticoid receptor (GR) in the brain was also changed as 

a result of stress exposure (Patel, Katz, Karssen, & Lyons, 2008). The GR has also been 

implicated in models of care disruption using marmosets (a biparental primate species) 

separated from their parents daily between days 2 and 28 of life. These repeated separations 

resulted in reductions in GR mRNA in the hippocampus in adolescent marmosets (Dettling, 

Feldon, & Pryce, 2002a; Dettling, Feldon, & Pryce, 2002b). Altogether, these GR effects 

suggest that maternal (or parental) presence at certain points in development can lead to 

specific cellular changes that may be partly responsible for the ability of the mother to 

modulate the HPA stress response.
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The variable foraging demand (VFD) model contrasts with the models described above in 

that it is an ethologically valid model of early life adversity that exploits the species typical 

behavior of foraging for food. Leonard Rosenblum and colleagues first developed this model 

in bonnet macaques (Macaca radiata), which consists of variable and unpredictable food 

availability (e.g. periods of intense foraging alternated with periods of free access to food) 

(Rosenblum & Paully, 1984). This manipulation results in disruption of the early mother-

infant relationship by altering maternal behavior (i.e. reducing the amount of time spent 

responding to infant solicitations for care) (Rosenblum & Paully, 1984). Infants exposed to 

the high foraging demand condition showed physiological hyper-responsiveness to stressful 

stimuli, as well as elevated levels of CRF in cerebrospinal fluid (CSF), but reduced levels of 

cortisol as compared to those raised under low foraging demand (Coplan et al., 2001; 

Coplan et al., 1996). Just as the models described above that involved more invasive 

manipulations of maternal care, the more ecologically and ethologically valid VFD model 

points to similar alterations in the HPA stress response associated with changes in mother-

infant interactions that may be related to the mechanisms involved in social buffering of the 

stress response.

Another ethologically valid model of mother-infant relationship disruption is naturally 

occurring infant maltreatment in nonhuman primates. Infant maltreatment is not a uniquely 

human phenomenon, but has also been reported in both wild and captive populations of 

nonhuman primate species, including macaques, baboons, and marmosets (Brent, Koban, & 

Ramirez, 2002; Johnson, Kamilaris, Calogero, Gold, & Chrousos, 1996; Maestripieri & 

Carroll, 1998; Troisi, D'Amato, Fuccillo, & Scucchi, 1982). Our group has studied this 

phenomenon in rhesus monkeys and defines maltreatment as an adverse early experience 

that includes two comorbid types of maternal behavior that both result in overt signs of 

infant distress (vocalizations, tantrums, etc.): (1) physical abuse consisting of aberrant 

violent behaviors exhibited toward the infant causing pain and distress (drags, crushes, sits 

on, or roughly grooms the infant), typically occurring during the first 2–3 months of life, and 

(2) high rates of infant rejection beginning early in life, consisting of pushing the infant 

away when it solicits maternal contact (Maestripieri & Carroll, 1998; McCormack, Sanchez, 

Bardi, & Maestripieri, 2006). Several alterations in the HPA axis have been associated with 

this disruption in species typical mother-infant behavior, including increases in both basal 

and stress levels of cortisol, and blunted ACTH responses to a CRF pharmacological 

challenge, reflecting down regulation of CRF receptors in the pituitary as a consequence of 

chronic CRF overactivity by the hypothalamic PVN, which further supports stress-induced 

activation of central components of the HPA axis –i.e. the “H”ypothalamus and the 

“P”ituitary- (Koch, McCormack, Sanchez, & Maestripieri, 2014; Sanchez, 2006; Sanchez et 

al., 2010). Altogether these findings suggest that maltreatment is a stressful experience that 

results in elevated activity of the HPA axis, likely including overproduction of hypothalamic 

CRF which leads to pituitary down regulation of CRF receptors.

This early infant maltreatment experience is more complicated than just being stressful for 

the infants. Additional findings from our lab suggest that the ability of the mother to buffer 

the infant’s stress reactivity is also impaired in maltreating mothers, which deepens the 

developmental impact of this poor caregiving experience. Figure 1 shows an impaired ability 
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of the mother’s presence to buffer stress-induced cortisol increases in maltreated infants 

(t(18)=−1.936, p=0.034, one-tailed). In that study, mother-infant pairs (10 control, 10 

maltreated) were exposed together to a novel stress test when the infant was 2 months old 

(see (McCormack et al., 2006) for a description of the selection of subjects and 

characterization of early maternal care). A baseline blood sample was collected from both 

mother and infant, and another blood sample was collected 30 min following exposure to the 

novel cage and room (post-stress, 30 min) for measures of plasma cortisol concentrations by 

radioimmunoassay (RIA; Diagnostic Systems Lab commercial kit, Webster, TX). Infants’ 

plasma cortisol concentrations (in µg/dl) are plotted in reference to the average stress-

induced cortisol levels reached when infants are exposed to a novel stress test alone (without 

the mother) at similar ages. Thus, while the presence of a sensitive/responsive caregiver 

(control/competent, mother) prevents stress-induced cortisol elevations in the infant, the 

presence of maltreating mothers did not buffer the stress responses in their offspring. Of 

course, one possibility is that this is due to maltreating mothers exhibiting negative 

behaviors towards the infants during testing. However, analysis of mother-infant interactions 

from the video-recorded sessions did not show any significant differences in the behaviors 

exchanged during the test in comparison to control mother-infant pairs. We also examined 

whether higher stress responses in the maltreating mothers could account for the elevated 

cortisol responses of their infants, but did not find significant differences between control 

and maltreating mothers (both groups showed significant cortisol elevations in response to 

the novelty test: t(18)=−1.58, n.s.). No correlations were found between the stress-induced 

cortisol increases in moms and infants, either (r(18)=0.26, n.s.).

Long-term Impact of Maternal Care on Development of Emotional and 

Stress Regulation Brain Circuits

Although some of the adverse caregiving experiences and stress activations described above 

are limited to the infant period, their long-term impact can be significant. For example, in 

the infant maltreatment model recent neuroimaging studies have begun to map the long-term 

consequences for structural brain development. Among other ongoing studies, our group has 

reported associations between elevated basal cortisol levels in maltreated infant macaques at 

1 month of age, when abuse rates were highest, and reduced white matter integrity in tracts 

important for behavioral and emotional regulation, visual processing, somatosensory, and 

motor integration during adolescence (Howell et al., 2013). But this is just one example, and 

we will review below evidence of long-term impact of maternal care on the development of 

neurocircuits involved in stress and emotion regulation.

Adverse caregiving experiences such as those reviewed above happen at a time of rapid 

neurodevelopmental changes, creating windows of high plasticity in which early experiences 

are encoded (Andersen, 2003; Knudsen, 2004; Rice & Barone, 2000). The developmental 

trajectories and sensitive periods are regionally dependent, with cortical maturation 

happening first in low order sensory cortices (such as visual and somatosensory processing 

areas), followed by the association cortices that integrate those sensory inputs (e.g. temporal 

and prefrontal areas) (Giedd, 2004; Giedd & Rapoport, 2010; Gogtay et al., 2004; Shaw et 

al., 2008). This literature suggests that brain regions with extended development (PFC, 
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association cortices, amygdala, hippocampus) are particularly sensitive and vulnerable to 

early experiences, especially maternal care. Studies in humans (Bremner et al., 1997; De 

Bellis et al., 1999; De Bellis, Keshavan et al., 1999; De Bellis, 2005; Drevets, 2008; Teicher 

et al., 2003; Tottenham & Sheridan, 2010) and animal models (Arabadzisz et al., 2010; Bale 

et al., 2010; Coplan et al., 1998; Coplan et al., 2001; Coplan et al., 2010; Coplan et al., 1996; 

Howell et al., 2014; Jackowski et al., 2011; Law et al., 2009; Law, Pei, Feldon, Pryce, & 

Harrison, 2009; Mathew et al., 2003; O’Connor & Cameron, 2006; Pryce et al., 2005; 

Sanchez et al., 2001; Spinelli et al., 2009) have provided compelling evidence that the link 

between adverse caregiving and problems with emotional and stress regulation is, indeed, 

greatly due to alterations in the typical development of these cortico-limbic circuits. As an 

example, recent neuroimaging studies by our group in the nonhuman primate model of 

infant maltreatment demonstrated an association between abuse rates received by infant 

rhesus monkeys and bigger amygdala volumes and emotional reactivity during adolescence 

(Howell et al., 2014). These findings parallel some long-term effects in maltreated humans, 

including structural differences in amygdala, orbitofrontal cortex, anterior cingulate cortex 

among other regions (Dannlowski et al., 2012; McCrory, De Brito, & Viding, 2012; Teicher, 

Anderson, Ohashi, & Polcari, 2014).

The plasticity of PFC-amygdala circuits in infants and their sensitivity to early maternal care 

may have an adaptive role. A main goal of the infant brain is to bond to the caregiver at any 

cost. Elegant rodent studies (reviewed in another paper in this issue by Regina Sullivan and 

colleagues), have mapped some of the neurobiological mechanisms underlying the 

regulation of maternal behaviors on the pup’s brain development (Eghbal-Ahmadi, Avishai-

Eliner, Hatalski, & Baram, 1999; Howell & Sanchez, 2011; Korosi & Baram, 2009; Sanchez 

et al., 2001). Examples of these mechanisms include the regulation of the pup’s physiology 

through effects of milk on the gastrointestinal tract, stimulation of sensory pathways by the 

mother that regulate the development of PFC-amygdala circuits and recent work 

demonstrating that the presence of the mother increases cortical synchronization in pups 

(Sarro, Wilson, & Sullivan, 2014). Seminal work by Sullivan and collegues has also 

characterized the neurobiological systems that allow rat pups to attach to the dam (Moriceau 

& Sullivan, 2005; Sullivan & Lasley, 2010) and that are particularly vulnerable to poor 

maternal care (Rincón-Cortés & Sullivan, 2014). These studies have shown that the 

mammalian infant brain is wired to form and maintain strong bonds with the mother, though 

may use different sensory systems in different species (e.g. olfactory, in rats). Their initial 

studies showed that pups use a different learning circuit (brainstem noradrenergic) than 

adults, which helps them quickly learn a robust preference for their mother, while at the 

same time fear/avoidance brain circuits are “off”. These results explain why the strong bond 

with the mother is preserved even when she is physically abusive, as shown in humans 

(Helfer, Kempe, & Krugman, 1999), nonhuman primates (Harlow & Harlow, 1965; Sanchez 

et al., 2010), and even dogs (Fisher, 1955). Once the pups start exploring the environment, 

that fear/avoidance learning system is turned “on” to keep them away from danger and the 

attachment/approach automatic system becomes less automatic and more regulated (Rincón-

Cortés & Sullivan, 2014). Similar behavioral switches towards increased fear are present in 

primates when they start exploring the environment (e.g. around 7–9 months in humans 

when we start walking; (Sroufe, 1977)). The parallel developmental switches in approach/
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avoidance strategies across rodent and primate species seem supported by developmental 

switches reported in the amygdala’s role regulating fear and stress responses, as well as in 

its connectivity with the PFC both in humans (Gee et al., 2013) and nonhuman primates 

(Raper et al., 2014). Although the emerging evidence is compelling, we need to better 

understand the tempo and role of these normative developmental switches before we can 

map the impact of poor caregiving.

Conclusions and Future Directions

The evidence for social buffering of primate stress and emotional responses, particularly 

from the presence of a responsive mother, is quite compelling. We are just beginning to 

understand the underlying neurobiology of this phenomenon. Using nonhuman primate 

models, we have identified critical brain circuits (i.e. prefrontal-limbic circuits) and 

developmental periods during which the formation of strong mother-infant bonds seems to 

be particularly important for proper development of stress and emotional regulation. 

Prefrontal-limbic circuits are sensitive to adversity early in life (Howell et al., 2013; Howell 

et al., 2014; Jackowski et al., 2011) and have been implicated in poor health outcomes 

associated with adverse early experience (Howell et al., 2014). Recent investigations into the 

impact of early life adversity in human children have been guided by and are consistent with 

these findings from animal models, reporting alterations in both PFC and limbic brain 

regions (Ansell et al., 2012; Dannlowski et al., 2012; Frodl et al., 2012; Pechtel & Pizzagalli 

2011; Wang et al., 2014). Given the worldwide prevalence (Kessler et al., 2010) and 

negative social and economic impact of early adversity (Saul et al., 2014), particularly of 

parent-infant relationship disruption, it is critical to further elucidate its neurobiological 

underpinnings, and the biological processes that translate the mother’s presence into infant’s 

physiological and behavioral regulatory responses so that tractable targets for prevention and 

intervention can be identified. Further nonhuman primate work is needed to dissect the 

critical biological pathways of maternal communication (olfactory, visual, tactile, auditory 

signals) and how they provoke neural, behavioral, and physiological changes in their infants. 

This will explain the relationships suggested by human work. We will also need to consider 

other developmental periods such as adolescence. By utilizing nonhuman primate models 

we have the opportunity to parse out the neurobiological and physiological mechanisms of 

social buffering during development, which would help provide the basis for efficacious 

treatments and preventative strategies in humans.
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Figure 1. 
Impaired ability of the mother’s presence to buffer stress-induced cortisol increases in 

maltreated infants. Mother-infant pairs were exposed together to a novel stress test when the 

infant was 2 months old. A baseline (0 min) blood sample was collected from both mother 

and infant, and another blood sample was collected 30 min following exposure to the novel 

cage and room (post-test, 30 min). Infants’ plasma cortisol concentrations (µg/dl) are plotted 

in comparison to the average stress-induced cortisol levels reached when the infants were 

exposed to a novel stress test alone (without the mother). * Significant difference between 

the stress-induced increase in cortisol (delta: stress-baseline) of control and maltreated 

infants (t(18)=−1.936, p=0.034, one-tailed).
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