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SOCIAL CHOICE SCORING FUNCTIONS* 

H. P. YOUNGt 

Abstract. Let a committee of voters be considering a finite set A = {al, a2, , am} of alter- 
natives for election. Each voter is assumed to rank the alternatives according to his preferences in a 
strict linear order. A social choice function is a rule which, to every finite committee of voters with 
specified preference orders, assigns a nonempty subset of A, interpreted as the set of "winners". A 
social choice function is consistent if, whenever two disjoint committees meeting separately choose 
the same winner(s), then the committees meeting jointly choose precisely these winner(s). The function 
is symmetric if it does not depend on the names of the various voters and the various alternatives. 
It is shown that every symmetric, consistent social choice function is obtained (except for ties) in the 
following way: there is a sequence sI, S2, * * , Sm of m real numbers such that if every voter gives score 
si to his ith most preferred alternative, then the alternative with highest score (summed over all voters) 
is the winner. 

1. Introduction. A collective decision process may be described in the 
following terms. A group of individuals-a committee or electorate, for example- 
is presented with a number of alternatives (motions, or candidates) and the com- 
mittee members (called voters) are to decide collectively which alternatives are 
best. It is assumed that, by debate, natural predisposition, and so forth, each 
voter arrives at some ordering of the alternatives in accordance with his prefer- 
ences. For the present discussion we shall assume that each such preference order 
p is a linear order, i.e., a complete, irreflexive, transitive relation on the set of 
alternatives A = {a1, a2, * , am}. We shall represent p by a column vector 

ail\ 

P= ai2 1 

aim, 

where the top alternative is most preferred. A given assignment of preference 
orders to the voters from a finite set V will be called a preference profile for V. 
A social choicefunction of order m is then a function that assignes to every prefer- 
ence profile a nonempty subset of the m-set, A, called a choice set. This notion is 
to be distinguished from a social preference function, which associates with each 
profile a complete (weak) social ordering of the alternatives. 

When there are only two alternatives to choose from, the method of simple 
majority rule seems to be the most natural and commonly used social choice 
function. But for three or more alternatives there is no completely natural ex- 
tension of simple majority rule, as was pointed out nearly two centuries ago by 
the Marquis de Condorcet [3]. As a result, a great variety of rules are used in 
practice for group decision making when three or more alternatives are involved. 
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These include the following methods: plurality, Borda, Condorcet, sequential 
voting (as in the U.S. House of Representatives), exhaustive voting, and double 
election, to name but a few. For a discussion of some of these methods see Black 
[2]. 

What is needed is an axiomatic framework for comparing the merits of these 
various methods. This type of study was begun by Arrow [1], who identified a 
set of conditions that permit only dictatorship when three or more alternatives 
are involved. This result (and later refinements of it) tell us much about what 
cannot be done, but leaves open the problem of defining what can be done. In 
the case of social choice functions on two alternatives, some additional results 
have been obtained, notably by May [5], who characterized simple majority rule 
by a very pleasing set of axioms, and by Fishburn [4], who characterized the so- 
called representative systems. In [4], Fishburn also investigates extensively other 
aspects of social choice functions, but in general he does not consider the effects 
of varying the size of the electorate, which will be one of our chief interests. 

The object of this paper is to study two natural conditions on social choice 
functions, and to describe precisely the family of all functions satisfying these 
two conditions. 

To agree on notation, let N, the set of nonnegative integers, constitute names 
for the voters, and let Y denote the set of m! distinct preference orders on the 
alternative set A. A is assumed to be fixed throughout this paper. For any finite 
V c i, a profile is simply a function from V to Y, and a social choice function 
(abbreviated SCF) is a function from the set X of all profiles to the family of non- 
empty subsets of A. A social choice function is said to be anonymous if it depends 
only on the number of voters associated with each preference order. We can 
represent the domain of an anonymous SCF by Nm!, i.e., the set of all m!-tuples 
with nonnegative integer coordinates, indexed by Y, where for any x E Nm! and 
peY , xp represents the number of voters having preference order p. The zero 
vector in Nm! represents the case of no voters the empty society. 

Let Sm be the group of permutations of the index set {1, 2, , m}. Each 
a E Sm induces permutations (which we also denote by a) of the alternatives, and 
hence of the profiles, in the natural way. We say that a SCF f is neutral if f o a 
= a o f for all a e Sm. Iff is both anonymous and neutral, it is said to be sym- 
metric. Symmetry simply means that the various voters and the various alter- 
natives are treated equally, i.e., without bias. This seems to be a very natural 
requirement for most group decision situations. 

Iff is a symmetric SCF with domain Nm! (indexed by Y) then the permutation 
of coordinates of Nm! induced by a can be conveniently represented by a per- 
mutation matrix M., and we have 

(1) f (M,(x)) = c(f (x)) for all x E Nml. 

Notice that if f is symmetric and x is a fixed point of M, . then by (1), f(x) 
must be fixed by all powers of a, and hence may be multiple-valued. 

Suppose that each of two individuals, 1 and 2, would choose ai over all 
other alternatives if the choice were made by him alone. The Pareto principle 
then asserts that ai should be the unique choice of the group consisting of in- 
dividuals 1 and 2 together. We may extend this notion by requiring that, if A' is 
the choice of a voter group V', and A" is the choice set of another voter group 
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V" disjoint from V', and if A' n A" # 0, then the group V' U V" should choose 
precisely the alternatives in A' n A". Indeed, in the opinion of both groups, any 
alternative in A' n A" is at least as "good" as any other alternative, while any 
alternative not in A' n A" is not as "good" as any alternative in A' n A", in 
the opinion of at least one of the groups. Any SCF with the above property 
will be called consistent. (This notion was originally introduced in [8].) Indepen- 
dently, a similar notion for social preference functions has been considered by 
Smith [7]. 

If f is anonymous, then the consistency condition can be expressed very 
simply as follows: for all x', x" E Nm, 

(2) f (x' + x") = f (x') n f (x") whenever f (x') n f(x") # 0. 

2. Scoring functions. One of the most commonly used social choice functions 
is the so-called plurality function, in which each voter casts one vote for his most 
preferred alternative, and the alternative(s) with the largest total number of votes 
constitute the choice set. We may think of this procedure as assigning a score of 
1 to each voter's most preferred alternative, a score of 0 to the others, and selecting 
the alternative(s) with highest total score, summed over all voters. 

A second well-known SCF is the Borda function, which is defined for m 
alternatives as follows: let each voter assign score m - 1 to his most preferred 
alternative, score m - 2 to his second most preferred alternative, and in general 
score m - i to his ith most preferred alternative. Then the alternative(s) with 
highest total score define the choice set for the Borda function. 

These two SCF's are examples of the following general class. Given m alter- 
natives and a profile, assign a score of si (si a real number) to each voter's ith 
most preferred alternative, and let the choice set consist of the alternative(s) with 
highest total score. Any SCF obtained in this way will be called a simple scoring 
function, and denoted by fs, where s is the m-vector (s1, S2' , sm). s is called a 
scoring vector. 

Formally, we may define fS on the domain lm! (in fact, on Rm!) as follows. 
Given peg-, let Ep be the m x m permutation matrix with "1" in the (i,j)th 
position if and only if ai is jth most preferred in the preference order p. For every 
x E Rm!, define D(x) = Epc xpEp and let Di(x) denote the ith row of D(x). Then 
fS is defined by 

ai E f s(x) if and only if Di(x) * s > Dj(x) * s for all j, 1 < j < m. 

Except that we make no requirement that a scoring vector satisfy s, > S2 
>... > sm, our definition of a simple scoring function is a special case of Fish- 
burn's notion of a summation function [4]. 

The trivial SCF is that f such that f(x) = A for all profiles x. The trivial 
function can be represented by the simple scoring function f(O, ? ). 

If f and g are SCF's such that f(x) c g(x) for all profiles x, we say that f is 
a refinement of g and writef < g. (f < g if f < g andf : g.) For any anonymous 
SCF g and scoring vector s E fRm, f s o g, the composition off with g, is defined by 

ai efs g(x) if and only if ai E g(x) and Di(x) s > Dj(x) s, 

whenever aj E g(x). 
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The meaning of fS o g is that the function fs is used to resolve ties produced 
by g. Applying (3) recursively, we define a (composite) scoring function of order m 
to be any SCF g of the formfsof' - o .s.. ofs' oc > 1 where s , s2 , ?e Rm 
The expression fSx o fsx o . . . osf s is called a composition series for g of length a. 

The principal aim of this paper will be to establish the following result: a 
social choice function is symmetric and consistent if and only if it is a scoring 
function (simple or composite) 

3. Extension of domain. Let f be symmetric and consistent. We now show 
how to extend f in a natural way from the domain Nm! to (Qm!, where Q is the set 
of all rationals. In other words, we shall extend f to profiles having fractional and 
negative numbers of voters. 

Let e e Nm! be the vector with "1" in every component. By symmetry, 
f (ne) = A for all n E RN. Now define f (x - ne) = f (x) for each n E RN. This is well- 
defined, because if x' - n'e = x - ne, then without loss of generality, n' _ n and 
f (x' - n'e) = f (x') = f (x) n f ((n' - n)e) = f (x) = f (x - ne). This extends f to 
Zm! (where Z is the set of all integers) and it is the unique extension of f to Zm! 
that is symmetric and consistent on Zm!. For any positive integer n, and x E Zm!, 
consistency implies that f (nx) = f (x), that is, f is homogeneous. Now for each 
positive integer n define f(x/n) = f(x). This is well-defined, because if x/n = x'ln', 
then f(x/n) = f (x) = f(n'x) = f (nx') = f(x') = f (x'/n'). This extends f to m!, 
and it is the unique such extension that is symmetric and consistent on .m! 

Can a symmetric, consistent f be further extended to Rm! so as to be sym- 
metric and consistent? In ? 5 we will show that this can be done, but not neces- 
sarily uniquely. For example, the scoring functionsf(v 2 a1) andf(1' 0, 0)f f (3 a 
are symmetric and consistent on the domain R 3!, and equal on Q3!, but not every- 
where equal on R 3!. To guarantee uniqueness of the real extension, we need, in 
addition to symmetry and consistency, the following "continuity" concept. An 
anonymous f is said to be continuous if, whenever f(x) = {ai}, then for any profile 
y there is a sufficiently large integer n such that f(y + nx) = {ai} for all n' ? n. 
Thus, continuity is a kind of "domination by large numbers" principle. It means 
that if a certain committee chooses a unique winner ai (using f), then given any 
second committee disjoint from the first, we can replicate the first committee a 
sufficient number of times so that it will overwhelm the second committee in a 
combined vote and yield the unique winner {ai} 

The SCF f(1'0'0) is continuous, while f (0 1O) o f(100) is not. To see the latter, 
let x be the profile defined by xp = 1 if 

al a3 

P = a3 or a2 

a2 al 

and xp = 0 otherwise. Then f((0 1O) o f (1'00)(x) = {a3} . But if y is the profile 
representing a single voter with preference 

(a), 
\a3' 

a2 
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then f(OO) lof(1'0'0)(nx + y) = {a1} for all ne FN, hence the function is not 
continuous. 

4. Convexity. Let f be a symmetric and consistent SCF. We may assume 
that the domain of f is Gm!. For each i? 1 < i ? m, let Ri = {xeQlm!: aief(x)}. 
For any x, y e Ri, and rational 2 such that 0 < 2 < 1, we have ai e f(2x) and 
aief((1 - A)x),sobyconsistencyai ef(x + (1 - 2)y),thatis,2x + (1 - 2)yeR . 

In general, we say that a set S c DR' is Q-convex if S c Q' and for all x, y E S, 
and all rational 2, 0 < A < 1, we have Ax + (1 - 2)ye S. Thus, each Ri is Q- 
convex, and in fact is a Q-convex cone, since x E Ri implies Ax E Ri for all rational 
2 > 0. To characterize all symmetric and consistent f, we shall need several facts 
about convex and 0-convex sets. 

For S c DR", let cvx S denote the convex hull of S, aff S the affine hull of S, 
and 3 the closure of S. If S c W c DR", where W is a flat (affine set), let intw S 
denote the interior of S relative to W, and ri S = intaff s S the relative interior of S. 
The dimension of S, dim S, is the dimension of aff S. We shall use the following 
well-known facts: if C is convex, then C and ri C are convex and ri C = ri C, 
ri C = C. 

LEMMA 1. C C 1' is Q-convex if and only if C = uQ n cvx c. 
Proof. If C = ?I n cvx C then clearly C is 0-convex. 
Conversely, if C is Q-convex, then certainly C c an n cvx C. Assume for 

the moment that C is a 0-convex cone containing the origin. For any 

q e (Qn n cvx c) 

such that q = 0, 

k 

(4) q E Z q where ql,q2, * * * qke C and ii > ? ej R. 

Assume that among all expressions (4) for a that k is smallest. and we shall 
show that )i E Q, 1 < i < k. Letting 20 = -1, q? = q, we can rewrite (4) as 

k 

(5) E iq1 = 0. 
i=O 

If, say, 2j 0 Q, then considering DR as a vector space over the field Q, let 
{ 1, - , , 241, 1 _ 1, be a basis for {20, , ,4 Ak (renumbering the 2's if 
necessary), where 2j = EZl b 2j , bijeQ ?, 0 < i < k, and bij = 1, bij = 0, 0 ? i 
_ i ? j ? 1. Then (5) implies 

I k 

E E bijqi) j = 0, j=O i=O 
so by independence, 

k 

E bilq' = 0, 
i=O 
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and since bo1 = 0, 
k 

(6) bilq = 0. 
i = 1 

Let A' be the greatest real scalar such that )i = b-jj _ O, 1 < i < k. 
Then q = i= (Ai-Abi1)qi yields a shorter expression for q, a contradiction. 
Hence i E- Q for 1 ? i < k, and so q E C by 0-convexity. Thus C = Q' n cvx c 
if C is a 0-convex cone containing the origin. If C c Q' is 0-convex, consider 
the 0-convex cone K = {A(1, x):) _ O, i E ?1, x EC} c (an+ 1. Then 

cvx C = {xe D-R:(1,x)ecvxK}. 

Hence if xe Q( n cvx C, then (1, x)Q on+ n cvx K = K, so xe C. Thus C = Qf 

ncvx C in any case. El 
LEMMA 2. If C c Q' is 0-convex, then C is convex. 
Proof. If x E cvx C, then x = i qi for some finite collection ql, q2,***, 

qkeC and ii6 > 0, >jQL k= 1. For each i, 1< i <k- 1,let {Rin} be a 
sequence of rationals converging to 4j, such that 0 ? -n < i, and let in = 1 

-i Z ik . Then eQk E k _ Oand ,k 1 = 1 for every n,soxn = ,kliqi EC, 
by 0-convexity. Since xn converges to x, x e C. Thus C c cvx C c C so 
C = cvx C, the latter of which is convex. [ 

LEMMA 3. If C = Uk= Si_ where C c Rn is convex and k is finite, then for 
some i, dim C = dim Si. 

Proof. By induction on k. If k = 1 the result is trivial. For k > 1, let 
H1 = affS1 c affC = H. If riC c H1 then C c H1 so H1 = H and dimC 
- dim Sl. Otherwise, choose xo E ri C - H1, and E > 0 so that 

C' = {yeH: ly - xo <E} = C - H1. 

Then C' is convex, dim C' = dim H = dim C and C' = Uk=2 (Si n C), so by the 
induction hypothesis there is an i, 2 < i < k, such that 

dim C = dim C' = dim (s n c') ? dim Si ? dim C. 

Hence dim Si = dim C. [1 
5. The main theorem. 
THEOREM 1. (i) A social choice function is symmetric and consistent if and 

only if it is a scoring function. 
(ii) A social choice function is symmetric, consistent and continuous if and 

only if it is a simple scoring function. 
Proof. The "if" parts are left to the reader. To prove the converses, let f be 

symmetric and consistent; we may take the domain of f to be Gm!. We show 
first that, where D is the function defined in ? 2, 

(7) f(x) = A for all x in R = {xe QlGm!:D(x) = 0}. 

If (7) is false, then m ? 2 and without loss of generality 

(8) f (x?) = {a1, a2, * * * , ar} for some r < m and xo E R. 
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Then yt = xo + Ej=2 M(jm)(x0) e R, and by consistency, f(yt) = {a1}. (If r = 1, 
let yt = xo.) For each i, let Ri = {xeR:aief(x)}. Then Ri is a 0-convex cone 
and Ri is convex. Moreover, Um1 R =R, and M.(RK) = Ra(i, 1 < i ? m, so by 
Lemma 3 and the symmetry of f, intR Ri = 0 for 1 ? i ? m. Suppose that 
intAR1 n intjRR2 0. Then choose xi c Qm! n int-R, n intRR2a f 
z(i) = 2yl + (1 - 2)xl for each rational 2, 0 < 2 < 1. For all sufficiently small 
such 2, 

z(A) e um n intR R1 n intR2 = Um! n intA cvx R n intR cvx R2 
- (m! n intA cvx R n intk cvxR2 c R1 nR2 

the latter by Lemma 1. Hence {a1, a2} ef(z()). But f(z(X))=f(y) A 
- {a1}, by consistency. This contradiction and the symmetry of f imply 
intR Ri n intR 1j = 0 for all i = j. Now the separation theorem for convex sets 
implies that for each i = j there exists a modulus-one vector uUj e R such that 

(9) u x > 0 for all xeRi, u1 x < 0 for all xeR . 

For i > j, choose uj = -uji, so (9) holds for all i = j. Let Si = {x e R: ui x 
>0, all i}. Then 0 : intRRi _-intRSi={xeR:u'-x>0,all j:i}RK 
-U j 1 Ri c Ri, hence R = intR R. = intR Si = Si, that is, 
(10) Ri ={xeR:uii-x _ 0,allj = i}. 

Since m > 2 R, has some face of dimension dim R - 1. Hence for some 
j # i, dim (Ri n R1) = dim R - 1, and by symmetry this holds for all i : j. 
Hence ui' is the unique modulus-one vector satisfying (9), so 

(1 1) M<r(u ij)= ua(i)a(i) 

for all permutations a. 
Assume now that m > 3, and let V = aff(R1 n R2). Choose xo cintZK3, 

and let y = xo + M(12)(xo). Then y e intk R3 and u12 y = M(12)(u12 _ y) = u21 y 
= -u12 y, so ye V- (R1 AR2). Hence R1 nR2 has a (dimR - 2)-dimen- 
sional face of form R1 n R2 n Rk. By symmetry, we may assume k= 3. Then 
u12 , u23, u1 are all in R and orthogonal to R1 nR2 n R3, so they are dependent: 

(12) 2u12 + ,'u23 + 2,"u31 = 0, 

2, 2', 2" are not all zero. 
u12 , u23 , u31 cannot all be equal because if they were, then (11) would imply 

that uj - +u12 for all i 1 j, whence there could be at most two distinct regions 
Ri, contrary to the assumption that m ? 3. Let a = (1 2 3); then there is an 
index pe-Y such that the restrictions u12, u23, a3' of u12, u23, u31 to the co- 
ordinates p, c(p), a2(p) are not all equal. Since these restrictions are also de- 
pendent, they lie in a 2-dimensional plane through the origin, and they are 
permuted in a 3-cycle by the corresponding restriction of M, (which is just a 
rotation of R3 = {(xp, X'J(p), X,2(p))} having axis (1, 1, 1)). Hence U12, j23 U31 are 
distinct and 1u12 + u23 + a31 = 0. Since 2iu12 + 'au23 + 2"i'3l = 0, the fact i'i's 
are distinct implies 2 = 2' = 2" # 0. Hence 

(13) u 12 + u23 + U31 = o 
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By (11), the vector u12 is invariant under all permutations M:, where a 
fixes 1 and 2. Hence u12 has the same value sij for all preference orders p in which 
al is ranked ith, a2 is ranked jth. Let gij be the set of all such p. Also, put sii = 0. 
Then ui' =-uji and (13) imply 

(14) sij =-sji and sij + Sik + Ski = 

for all distinct i, j, k. 
For any xER = {x E m!: D(x) = O}, we have, by (14), 

U *2X Sij E Xp (Sim Sjm) L Xp 1 _ i,j <m p e2?ij 1 _ i,j _m pC-gij 

E Sim(i E XP ) 1 <i<m 1_;_m peR9jj 

- E m ( Z Z Xp) =0. 1 < j _m 1 _<i _m peNgi 

Z SimDli(X)- Z SjmD2j(X) = 
1_i_m 1 <j_m 

But u12 e R and u12 u12 > 0, so this is a contradiction. Thus (7) is true. (Note 
that in case m = 1 or m = 2, (7) is obvious.) 

If D(x) = D(x'), then x - x' E R, so f(x) = f(x') nf f(x - x') = f(x') n A 
= f(x'). Thus, f(x) depends only on D(x). By definition, the image of D consists 
of all rational, linear combinations of m x m permutation matrices. By the 
Birkhoff-von Neumann theorem, this is precisely the space 9 of all rational 
m x m matrices with constant row and column sums. Henceforth we shall regard 
9 as the effective domain of f. 

Since the trivial function is a simple scoring function, we may assume that f 
is nontrivial. Redefine R = 9, Ri = {D e -9:ai ef(D)}, then apply the argument of 
(8(1 1) to find separating vectors (m x m matrices) uWj in 9 satisfying uWj =-u 
and relations (9), (10), (11). (We now interpret M, as acting on matrices D e 9 
by interchanging rows in the manner prescribed by a.) If s = (sl, S 2 , Sm) is 
the ith row of uWj, then since M(iJ)(u1j) = uj =- uI, it must be that the jth row 
of uij is - s, and all other rows are zero. Therefore ui'j D ? 0 if and only Di s 
> Dj * s, and by symmetry this holds for all i 1 j. Hence, by (9), ai E f(D) implies 
D,.s?_ Dj * s for all j : i; in other words,f < f s. 

Iff = fS, we are done. Otherwise, suppose inductively that f < fSa s fs l 
o * o fS = g for real m-vectors s1 2, , S s. Without loss of generality, let 
D? E 9 be such that 

(15) f(DW) = {al, a2, * * *, ak} C {al, a2, * * , aj} = g(D ), 

where k < I < m. If k > 2, letD' = Do + Z=2M(Jl)(D0), and if k = 1, let D1 = Do, 
in either case a, is the unique winner under f(D'), while a,, a2 are tied for first 
underg(D').ChooseanyD2suchthatg(D2) = {a2};thenforalln > 0,g(D2 + nD') 
= {a2}. Since f < g, f(D2 + nD') = {a2}, for all n > 0, while f(D') = {al}. 
Hence f could not be continuous (i.e., f continuous implies f = fS, proving (ii)). 

To complete the proof of (i), let us concentrate on alternatives a, and a2. 
Define R' = {D E 9: D, sl = D2*sl > Di's' for ] > 3, and D, * si = D2*si for 
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? 2}. Further, let R' = {DeR':aief(D)}, where i = 1,2. For all DeR', 
f(D) c g(D) = {al, a2}, hence R' = R'1 U R'2 and R' = R' U R'2. Note that 
R' = {De9:D1 sl = D2 s' > D' sl for j > 3, and D1 s = D2 si for i _ 2} 
-D De 9: {al, a2} g(D)}. Then, just as in (8)-(11), (but with R' instead of R) 
we show that K'1, R2 have nonempty, disjoint interiors relative to aff K', and 
M( 2)(K'I)= K'2. Hence there is an m x m matrix u E affR' of form 

tl t2 ... tm 

U = t 1- t2 ***-tm 

such that R, = {De R': D1 t _ D2 t}. 
For any D, a, ef(D) implies a1 e g(D). If {a1} i g(D), then without loss of 

generality {al, a2} a g(D), hence D E R'1 and D1 t > D2 t. Similarly we have 
D- t> Di' t for all j such that a e g(D). Hence a1 eft o g(D). If g(D) = al}, 
then trivially a1 eft o g(D). By symmetry, it follows from the above thatf S ft o g 

=ft0fS fsI-l0 ... ofS'. Moreover, ue R' implies t -s = 0 for 1 ? B _ oc, and 
we may always choose t so that Itl = ti=1 t = 0. Therefore the construction 
must terminate in at most m - 1 steps with the conclusion that f(D) = fSY o fSY - 1 

o ... o fSi(D) for some m-vectors s1, ... , s7 such that lsll = 0 and s* sp = 0, 
1 ? =c # , y, and for all D E 9. El 

Notice that every scoring function actually defines not just a choice set, but 
in a natural way it weakly orders the whole set of alternatives. Thus, by requiring 
a social choice function to be symmetric and consistent, we force it in effect to be 
a social preference function. 

Since every scoring function of order m is defined, symmetric and consistent 
on Rml we have the following. 

COROLLARY 1. Every symmetric, consistent SCF has a symmetric, consistent 
real extension. 

COROLLARY 2. Every symmetric, consistent, continuous SCF has a unique con- 
sistent, continuous real extension, and this extension is symmetric. 

Proof. If f is symmetric, consistent and continuous, then f(x) = fs(x) for all 
x E Gm! and some s E lRm. Let g be a consistent, continuous real extension of fS, 
and let Ri = {x E Rm: ai efs(x)}, Ti = {x E Rm: ai E g(x)}. Now Ri is closed, con- 
vex, and intRm! R, 0, so Ri is the closure of its rational points. Thus 

Ri = (Ri n Qm!) = (Ti n Q!) a Ti. 
In particular, intRm! Ti # 0; so Ti convex implies (Ti nf m!) = Ti, whence Ri = T7 
andfs = g. E 

6. Rational equivalence. It is possible for two different composition series 
g = fsat 0 fSol ... o fs' and h = f 'ofth il o fp to represent the same social 
choice function in the sense that g(x) = h(x) for all x E Nm!. In this event we in 
fact must have g(x) = h(x) for all x E Gm! (see ? 3), and we say that g is rationally 
equivalent to h, written g - h. If moreover g(x) = h(x) for all x E Rm!, then g is 
equivalent to h, and we write g h. A subcomposition series of g is a composition 
series obtained by deleting some nonempty subset of the terms fsI, 1 ? /B < ?, 
leaving the others in the given order. (The deletion of all fS" can be considered to 
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result in the trivial function.) g is rationally irreducible if g is not trivial and g , g' 
is false for every subcomposition series g' of g. g is irreducible if g t g' is false for 
every such g'. In this section we shall exhibit necessary and sufficient conditions 
that any two (rationally) irreducible composition series be (rationally) equivalent. 

We shall take the domain of all scoring functions to be 9, the set of all real 
m x m matrices with constant row and column sums (9 denotes the set of all 
rational such matrices). 

First we note that, if e represents the m-vector with "1" in every component, 
then for any s E Rm and i, i e DR, i > 0, we have fS fis+ I". In particular, we 
may assume, without loss of generality in the results that follow, that in any 
composition series the so, 1 < , < a, are chosen so that lsfl= s- = 0. We 
shall also assume that m > 2, since for m = 1 all SCF's are trivial. 

With g and h as above, define UO = VO = Qm, and for all y, 1 < y ? a, let 

Uy = {xe m:s' x = 0, 1 < ? _ y,}, 

V1 = {xeQ m:t5 x = 0,1 ?< < 5? . 

U 7 and V. are subspaces of Om, i.e., they are Q-subspaces. For any Q-subspace 
U C Om, let U* denote its orthogonal complement in Om and let U be the real 
closure of U, i.e., the real subspace of Rm spanned by U. (U)* = (U*) is its ortho- 
gonal complement. 

For each x E Rm, let [x] = {Ax :A > 0, i E R} denote the positive ray through 
x. With these definitions we can state the following result. 

THEOREM 2. Two rationally irreducible composition series 
g =fsaofs le ... fSi 

and 

h = ftl 0f tl3-l0 ... o tl 

are rationally equivalent if and only if cx = and for 1 ? y < c, 

(16) U7= V7 
(17) s e[t7] + V*_ 

(18) tPe[s ] + U>1. 

Proof. Let gY, 1 ? y < a, denote the subcomposition series fs ofsy 1 

... ofSi, and similarly define h7. Suppose that cx = /B and (18) holds; we shall 
show by induction on y that then (16) and (17) hold and gY - h7, hence in particular 
that g - h. 

If y = 1, then t' = Xs' for some i > 0; hence also sl E [tl] and g' = fs 
ftl = h'. 

Assume then that 

(19) h", U7 = V. and s7e[t7] + V>71 
for all y < 6, and we shall prove these statements for y = 6. If ai E g'(D), then 
Di. sb> Dj s' for all j such that {ai, a} c g-l(D). Now {ai,aj} c g-l(D) 
implies (Di - Dj) sy = O for ? y < 6 - 1, hence Di-Dj E U. 1. Since t = &s 
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+ u for some , > 0 and u e U_ 1 , (Di - Dj) .t = X(Di - Dj). s + 0 > 0. Thus 
Di tb > Dj tb whenever {ai, aj} gb- l(D) = h-l(D) by induction, so ai h'(D). 

Conversely, if ais h'(D), a similar argument shows that ai e g(D). Thus 
gOD) = h'(D). Finally, 

U= {xeU6-1:sx = o} 

(20) = {x e V_ 1:(Xt6 + u) x = O} 

- {xeV.1:t -x = 0} = V., since, > 0andueU _ = V7 

proving the "if " part of the theorem. 
To prove the "only if" part, suppose ga - hp, where ga and hp are rationally 

irreducible. Without loss of generality, a ? /B. First, we shall show by induction 
on y, 0 ? y ? ,B, that (16)-(18) are valid. For y = 0, (16) holds and (17), (18) are 
vacuous. Suppose then that U, = V, for y < 3. 

Suppose also that V. = V-1. For any D e q, {ai, aj} c h-l(D) implies 
Di * ty = Di *tY for 1 < y ? 3 - 1, that is, Di - D e V.1 = V.. But then D *t 
= D t , so {ai. aj} hC(D). It follows that h- '(D) c hO(D) for all D, and since 
h6 is a refinement of h6-1, h(D) = h` (D), so h is reducible, a contradiction. 
Therefore V. 5 V- 1, so t6 x $ 0 for some x e V.1, and t V 17 . Likewise, 
s6 a- =V-1. 

Hence s6, t6 have nontrivial projections s- and t onto V_ . If s- is not a 
positive multiple of UV, then {x e V 1 x > 0 and s` x < 0} is nonempty and 
open, and hence meets V. 1. Let x e V.-1 such that U x > 0 and s- x < 0. 
Form the m x m matrix D such that D1 = -= = = x and 

Dm = ( xi) e - (m - l)x. 

Then D e 9. 

Now x e V. = U -1 and sy = tY = 0 for all y implies 

(21) D sy = D-ty < T < , 

while 

(22) Di t = x t" > 0, 1 < i < m-1, 

and 

(23) Dmt' = -(i-l)x.tt <0 (since m ? 2). 

By (21), g6 '(D) = h- '(D) = A, and so (22), (23) imply 

O(D) c tha o,a2,thrnam-1d 

On the other hand, 
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and 

(25) Dm s' = -(m - l)x s > 0, 

so that g'(D) = {am}. Since h(D) c h'(D) and g(D) c g'(D), we have h(D) $ g(D), 
a contradiction. 

Hence s- = XtV for some A > 0 and so s6 E [t6] + 1. Since U.-1 = V6 1 
we also have U*1 = V , whence t e [s6] + U*-,. Furthermore, just as in 
(20) we find that U. = V.. Thus (16)-(18) hold for y = , hence by induction for 
all y, 1 y < / </. 

If a < /, then since h is irreducible, V,, - V,,+1 , 0 and there is an x E V, 
- V,+1 such that t'+ x < 0. Define De9 such that Di =x, 1 < i < m- 1, 
and Dm = (Z71 xi) e - (m - I)x. Since x c Va = Ua, g(D) = ga(D) = A, while 
h(D) C h+ l(D) = {am} $ A. This contradiction shows that a = /, and the 
theorem is proved. [ 

We say that a scoring function f so' fS - 1 0 ... 0 fSl is rational if s1, s2, 
s E Q . 

COROLLARY 1. Two rationally irreducible, rational scoringfunctionsfs'o ... O fsi 
and f tf o f 0' 1 o * * * o f tl are rationally equivalent if and only if a = / and for all 
y,1 _ y _ a, 

v-i 
(26) sY = by ty + b6t6, where b1,b2, , by e(and by > 0, 

a = 1 

and 
v-i 

(27) ty = c,sy + , c6s , wherec1,c2, C , c- eQand cy > 0. 
a = 1 

Proof. Under our hypotheses the whole proof of Theorem 2 may be carried 
out in Om rather than Rm. Hence, in particular, V* becomes the Q-subspace 
generated by tl, t2, , ty and U* the Q-subspace generated by sl, s2 , sY. So 
(26) and (27) are the same in this case as (17) and (18). [ 

A similar argument, replacing Q!m by Hm yields the following. 
COROLLARY 2. Two irreducible scoring functions fso fsI ... fS1 and 

ftl 0 ft1o * 
I 

* o f t are equivalent if and only if at = and for all , 1 ? y ? a, 

(28) sY = byty +E b/t6, where b1, b2, , by E R and by > 0. 
a = 1 

y - 1 

(29) ty = cysy + E 6s whereC 1, C2,** , cE R and c. > 0. 
a = 1 

Example 1. Consider the scoring function 
g = f(5,-4,- 1,o) 0 f(3,/2,-2,- 1 -/2) 

Then 

U1 = {X = (Xl,X2,X3,X4)eQ4:3x, - 2X3 - X4 = Oandx2 - X4 =O 
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so that 

U* = {b(3,0, -2, -1) + c(0, 1,0, -1):b,ceD-}. 

Hence the family of rationally irreducible scoring functions which are rationally 
equivalent to g are precisely those of form ft2 ftl, where 

t2e{a(5, -4, -1,0) + b(3,0, -2, -1) + c(0, 1,0, -1):a,b,ceD-,a > 0}, 

ti c- d(3, /2 ,- 2 ,- I- ,/2): d cR, d > 0}. 

The family of irreducible scoring functions equivalent to the above g are 
those of form 

fa(5,-4,- 1,0)+b(3,,A2,-2,-1-X/2) O fc(3,,g2,-2,-1-,/2), 

where a, b, c E- R and a, c > 0. 

7. The Borda function. We say that a SCFf has the cancellation property if, 
whenever x is a profile such that the number of voters preferring ai to aj equals 
the number preferring aj to a, for all pairs ai = aj, then f(x) = A. Any profile 
of this type will be called balanced. We say that a SCF is faithful if the choice set 
for a single individual is the singleton set consisting of that individual's most 
preferred alternative. In other words, a SCF is faithful if "socially most preferred" 
and "individually most preferred" have the same meaning when society consists 
of a single individual. 

The Borda function of order m is the simple scoring function fs defined by 
s = (m, m - 1, 2, 2,1). Clearly, any m-vector s for which s1 > s2 and si - Si+I 
= +1- Si+2 for 1 < i < m - 2 defines the same function. 

THEOREM 3. For any fixed number m of alternatives, there is one and only one 
social choice function that is neutral, consistent, faithful, and has the cancellation 
property-namely, Borda's function. 

Proof. The Borda function clearly has the given properties. Conversely, let 
f have these properties. As shown in [8, Lemma 5], any SCF that is consistent 
and has the cancellation property is anonymous. Hence f is symmetric and con- 
sistent, so it is representable by a scoring function on the domain lm!, say 
f(X)= fs o fs" o ... o fs I(x) for all x e Qm!. We shall show that for every /B 
1 < /B< (X, 

(30) se - s = s - s+2' 1? i < m-2. 

Fix i, 1 < i < m - 2. Define x E ?m! such that xp = 1 for 

(a, \/am 

a2 am- 1 

ap \a 
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and xp 0 otherwise. Define y e Qm! such that yp = 1 for 

al am a, am 

a2 aml a2 aml 

ai + 2 ai - 1 ai + 3 

. ai ai + 2 ai+1 

P = . , ~~a' _ I , ai ai + 2, 

* * ~~~~~~ai+3 ai 

am-l a2 am-l a2 

am al am a, 

and yp = 0 otherwise. 
Then x and y are balanced, so f (x) = f (y) = A. Hence for 1 < ,B ? a, we 

must have 

Di(x)*s= Di+ (x)sl= Di+2(X) S' 

or 

(31) s + S- = S1 + s = s+2 + Sm- i- 1 

Also, 

Di(y) p S= Di+1(y)sp, 1 ? , ? <a, 

that is, 

se + s+2 + 2s# = 2s+1 + SmI mi-1 + Smi+l 

or 

(St S l+ 1) + (Sm-i - Sm-i+ 1) = (St+ 1 - Se+2) + (Sm_i_ 1 -i), 

and the latter combined with (31) gives (30). 
Since f is faithful, we must have sl > s'. Combined with (30) this implies 

that f s is the Borda function. But (30) also implies that 's = X%s' + Yu# for ap- 
propriate X' and y# e R, hence f s - f 0 ... of "-If [ 
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