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Social cohesion, structural holes, and a tale of two measures
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In the social sciences, the debate over the structural foundations of social capital has long vacil-
lated between two positions on the relative benefits associated with two types of social structures:
closed structures, rich in third-party relationships, and open structures, rich in structural holes and
brokerage opportunities. In this paper, we engage with this debate by focusing on the measures
typically used for formalising the two conceptions of social capital: clustering and effective size. We
show that these two measures are simply two sides of the same coin, as they can be expressed one in
terms of the other through a simple functional relation. Building on this relation, we then attempt
to reconcile closed and open structures by proposing a new measure, Simmelian brokerage, that
captures opportunities of brokerage between otherwise disconnected cohesive groups of contacts.
Implications of our findings for research on social capital and complex networks are discussed.

PACS numbers: 89.75.Hc, 89.65.Ef, 87.23.Ge, 89.75.-k

Keywords: Social networks, Social capital, Social cohesion, Structural holes, Clustering, Effective size, Sim-

melian brokerage

INTRODUCTION

A fundamental idea in the social sciences is that social
capital originates from social relations. As a result, so-
cial structure has long been seen as playing a crucial role
in sustaining or hindering a wide range of performance-
related outcomes, both at the individual and collective
levels [26, 27, 40–42]. However, while social scientists
tend to agree on the salience of social structure, there is
still controversy over which type of social structure mat-
ters as a source of social capital. Over the years, scholars
have typically advocated two opposite types of structure:
the “closed” and “open” structures. On the one hand,
proponents of the benefits of closed structures draw on
the idea that social cohesion fosters trust [12, 15, 53, 63]
and a sense of belonging [14], sustains cooperative be-
haviour [14, 33] and the enforcement of social norms
[14, 24, 27], and facilitates the creation of a common
culture [45]. On the other, advocates of the benefits of
open structures emphasise the value that actors can ex-
tract from being located near structural holes separating
non-redundant contacts, and thus from acting as brokers
between otherwise disconnected others [7, 9, 10, 42, 60].

This paper aims to draw on the interplay between these
two alternative conceptions of social capital, and engage
with the ongoing debate over the relative benefits as-
sociated with closed and open structures. The relation
between these two types of social structure will be ex-
plored through a comparative analysis of the measures
with which these structures have traditionally been op-
erationalised and formalised: the clustering coefficient

and the effective size of an actor’s local neighbourhood.
In particular, we will show that it is possible to de-
rive a simple mathematical relation between the cluster-
ing coefficient and the effective network size of a node.
The existence of this relation between the two measures,

which have originally and independently been introduced
with the purpose of formalising two different concepts,
supports the idea that social cohesion and structural
holes are no more than the two sides of the same coin.
Both measures can indeed be expressed in terms of num-
ber of links and number of triangles incident upon a node.
The question as to whether social capital stems from

open or closed structures will probably always remain a
matter of debate. There are cases where one is more
interested in the benefits coming from closed structures
[24], and other cases where, conversely, it is more conveni-
ent to exploit the existence of open structures [60]. How-
ever, our work highlights that, to characterise the local
structural properties of a node, it is equally informative
to measure the clustering coefficient or the effective size of
the node’s local neighbourhood. Drawing on this, we will
then use the relation between clustering and effective size
to develop a novel measure for a generative mechanism of
social capital that lies at the interface between closed and
open structures: Simmelian brokerage. Being sensitive to
variations in the position of links across local networks
of the same density, this measure can capture opportun-
ities of brokerage between otherwise disconnected groups
of densely interconnected nodes [19, 34–36, 61, 67]. For
this reason, Simmelian brokerage can be seen as suitable
for formalising structures that lie at the interface between
the closed and open ones [9, 61, 67]: it captures the ex-
tent to which a node’s local network is characterised, on
the one hand, by a combination of structural cleavages
between distinct groups of contacts, and on the other by
a closed cohesive structure within the boundaries of each
group of contacts.
The paper is organised as follows. In Section we in-

troduce the concept of social capital, and offer a gen-
eral overview of the two main theoretical conceptions of
its structural foundations. In Section we review the
definitions of clustering coefficient and network effect-
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ive size. In Section we show that the two measures are
linked through a simple mathematical relation, based on
which, in Section , we introduce our new measure of Sim-
melian brokerage. Finally, in Section we extend the re-
lation between clustering and effective size to the case of
weighted graphs, and sketch out a definition of weighted
Simmelian brokerage. The last Section will summarise
and discuss our main findings.

STRUCTURAL FOUNDATIONS OF SOCIAL

CAPITAL

The premise that seems to underpin most perspectives
on social capital is the idea that investments in social re-
lations yield expected returns in the marketplace, includ-
ing the community, the economic, financial, political, and
labour markets [40, 41]. As argued by Coleman, social
capital can be characterised by two distinct properties:
it ”inheres in the structure of relations between actors
and among actors”, and “like other forms of capital, [it]
is productive, making possible the achievement of cer-
tain ends that in its absence would not be possible” [14,
p.S98].

Social scientists have long agreed on the salience of so-
cial structure as a source of social capital [26, 27, 40–42].
For instance, social structure has been seen as playing a
pivotal role in sustaining individuals’ and organisations’
efforts to create value [24, 33, 44, 54], generate and trans-
fer new knowledge [13, 28, 53, 61, 62], and enhance cre-
ativity [1, 6, 20, 46, 50, 59, 64]. As suggested by a num-
ber of scholars [27, 40], three main explanations can be
offered as to why social structure affects the outcomes
of purposive actions. First, social structure can facilit-
ate or hinder the flow of information, and in so doing
it also impacts on its quality [28, 53, 62, 64]. Second,
social structure can be seen as a source of reward and
punishment due to the effects that social relations have
on the internalisation and enforcement of social norms,
including those against free-riding [25, 33]. Third, social
structure nurtures and promotes the attainment of act-
ors’ trust, reputation, social credentials, status, identity
and recognition through processes of third-party referrals
and reinforcement of interactions [40, 41, 63].
Despite the convergence on the explanatory relevance

of social structure, however, there is still controversy and
debate over the type of social structure that matters as
a source of social capital [2, 4, 9, 23, 40, 41, 54]. Theor-
etical conceptions of the structural foundations of social
capital vacillate between two positions that vary in their
understandings of the benefits associated with two oppos-
ite types of social structure: “closed” and “open” struc-
tures. Arguments in favour of each of these structures
have been inspired by distinct rich traditions in sociolo-
gical theory. Both arguments, however, are conceptually
rooted in Simmel’s seminal theoretical contributions on

the expansion of a dyadic relationship into a three-party
relationship (“Verbindung zu dreien”), and the sociolo-
gical significance of the third element [58]. Simmel ar-
gued that the introduction of a third party fundamentally
changes the social dynamics of a dyadic tie: “The appear-
ance of the third party indicates transition, conciliation,
and abandonment of absolute contrast (although, on oc-
casion, it introduces contrast).” [58, p.145]. Simmel’s
emphasis here is on the two alternative functional roles
the third party can play in the triad: the “non-partisan”
or mediator with the tertius iungens (or “the third who
joins”) orientation on the one hand [46], and the broker
with the tertius gaudens (or “the third who enjoys”) ori-
entation on the other [7].

Closed structures and social cohesion

Proponents of the benefits of closed structures typic-
ally build on Simmel’s [58] tertius iungens logic and Cole-
man’s [14, 15] conception of social capital predicated on
the mechanism of social cohesion [22]. Over the years,
the Simmelian triad has provided the theoretical back-
drop against which scholars have investigated the rela-
tional hypothesis that actors separated by one intermedi-
ary are more likely to become connected with each other
than actors that do not share any common acquaint-
ance [17, 18, 29, 30, 43, 68, 69]. At the macro level of a
social system, the tendency of actors to forge links locally
within groups is conducive toward the creation of cohes-
ive social structures, organised into well-defined tightly
knit communities that are densely connected within but
not across boundaries [21, 37].
One of the most influential theories of social capital,

advocated by Coleman [14], is predicated precisely on
the benefits that actors accrue from being socially em-
bedded within cohesive social structures, rich in third-
party relationships. Among the closure-based sources of
social capital are normative control and deviance avoid-
ance [9, 27, 40, 41]. More generally, network clos-
ure enables the emergence and enforcement of social
norms by encouraging the internalisation of standards
of acceptable behaviour and facilitating the detection
and punishment of defective behaviour [33, 63]. In ad-
dition, it has been documented that being part of a
close-knit group engenders a sense of belonging [14],
fosters trust [12, 15, 53, 63], facilitates the exchange
of fine-grained, complex, tacit, and proprietary informa-
tion [28, 63], enables the creation of a common culture
and the emergence of a shared identity [45], and helps
sustain a high level of cooperation [14, 33].
Despite the benefits associated with social cohesion,

the tendency of individuals to cluster into densely con-
nected communities also bears a two-fold cost: local re-
dundancy and social pressure. On the one hand, the
more an actor’s contacts are connected with each other,



3

the less likely they are to take the actor closer to diverse
sources of knowledge and resources that the actor is not
already able to access [26]. Paucity of connections with
new and non-redundant social circles may create isolation
and eventually degrade social capital. This is the cent-
ral argument of Burt’s [7] seminal contribution on the
benefits associated with occupying brokerage positions
between otherwise disconnected individuals or groups in
a network. On the other hand, above and beyond the re-
dundancy of knowledge and resources, a cohesive struc-
ture can still exert a negative influence on the connected
actors as a result of the social pressure favouring conver-
gent thinking and group consensus. As dense third-party
relationships engender reciprocal behaviour and sustain
high degrees of similarity among the actors, they are con-
ducive toward the maintenance of the status quo rather
than the exploration of novel paths leading to divergent
solutions [20, 59].

Open structures and brokerage

Both types of costs - redundancy and social pressure -
associated with social cohesion have inspired an altern-
ative conception of social capital, typically distilled into
the proposition that there are benefits actors can extract
from participating in open structures that are rich in
cleavages and opportunities of brokerage [7, 9, 10, 42, 60].
At the heart of this conception of social capital lies Sim-
mel’s [58] characterisation of the role of tertius gaudens

in a triad. While the non-partisan tertius iungens aims
“to save the group unity from the danger of splitting
up” [58, p.154], the tertius gaudens wishes to create or
intensify discontinuities in the social structure by forging
or preserving unique ties to disconnected others.
The idea that social capital can originate from broker-

age opportunities associated with structural gaps has
been explored most thoroughly by Burt, who has per-
haps contributed more than any other sociologist in re-
cent decades to examine the structural features and per-
formance implications of brokerage, especially in organ-
isational domains [7–10]. Burt defines a structural hole
as the “separation between non-redundant contacts”, “a
relationship of non-redundancy between two contacts”,
“a buffer” that enables the two contacts to “provide net-
work benefits that are in some degree additive rather
than overlapping” [7, p.18]. Burt further identifies two
sources of the social capital that an actor can mobilise
by acting as the broker between contacts at the opposite
sides of the hole: information benefits and control bene-
fits. On the one hand, information benefits originate from
the fact that, in open structures rich in structural holes,
connections tend to be weak [26] and are likely to link
people with different ideas, interests and perspectives [8].
By gaining exposure to a greater variance and novelty of
information, actors embedded in brokered structures will

be creative and successful in their endeavours [8, 20, 59].
On the other, control benefits are related to the third
party’s ability to gain an advantage by negotiating his or
her relationships with disconnected others and turning
their “forces combined against him into action against
one another.” [58, p. 162]. Preserving and fostering dis-
union between parties thus enable the actor standing near
a structural hole to extract social capital buried in the
hole, by playing the disconnected parties’ demands and
preferences against one another.

The trade-off between closed and open structures

A number of empirical studies have attempted to re-
concile the two positions on social capital, and provide
an integrative account of social cohesion and broker-
age [2, 20, 50, 55, 61, 67]. Even though the routes pursued
to develop a unified conception of social capital vary both
theoretically and methodologically, scholars seem to con-
verge on the idea that the benefits originating from social
structure are contingent on a number of social, structural,
and environmental conditions [2, 20, 50, 55], and that a
suitable combination of the two types of structure can
outperform each individual type in isolation [54, 61, 67].
A substantial body of the literature has examined the

trade-off between social cohesion and brokerage by fo-
cusing on the interplay between social structure and the
attributes of the interacting individuals, and suggesting
that the benefits of either type of structure - closed or
open - are contingent upon such attributes [50, 54, 55].
In this vein, for example, Fleming et al. [20] have empiric-
ally examined the mitigating effects exerted by individu-
als’ attributes on the benefits associated with brokerage.
Their study suggests that, while brokerage between oth-
erwise disconnected collaborators makes all individuals
more likely to create new ideas, at the same time there
are marginal contingent positive effects of social cohesion
on generative creativity when individuals and their col-
laborators bring broad experience, have worked for mul-
tiple organisations, and have connections with external
contacts. Similarly, Perry-Smith [50] has offered evidence
suggesting that connections to contacts with heterogen-
eous background mediate the relationship between weak
ties and creativity, and that there are interaction effects
between centrality and number of outside ties upon cre-
ativity.
Another related line of investigation has suggested that

an appropriate combination of cohesion and brokerage
opportunities can provide individuals with the neces-
sary redundant relationships as well as access to non-
redundant information that facilitate task execution and
enhance performance [9, 51, 54]. In this vein, there have
recently been attempts to address and resolve the trade-
off between closed and open structures by advocating
a conception of social capital that is contingent on the
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microstructural context in which bridging ties are em-
bedded. From this perspective, Tortoriello and Krack-
hardt [61] have argued that brokerage is most beneficial
when the the bridging tie is a Simmelian one, namely
a tie in which the parties involved are reciprocally and
strongly connected to each other as well as reciprocally
and strongly connected to at least one common third
party [34, p. 24]. Because the advantages traditionally
associated with open structures have been found to be
contingent upon the Simmelian nature of the bridging
ties, this study has provided empirical evidence in favour
of an integrative account of social capital, according to
which individuals can extract benefits not simply from
structural holes or a cohesive neighbourhood in isolation,
but from a combination of both structural configurations.

More recent work has proposed a refined contingent
conception of social capital by recasting the trade-off
between closed and open structures in terms of the trade-
off between “channel bandwidth” (i.e., tie strength) and
”network diversity” (i.e., richness in structural holes) [2].
The main argument is that, while structural gaps remain
sources of diverse information, the total amount of use-
ful novel information tends nonetheless to be positively
affected also by how strongly and frequently individuals
interact with one another. Strong relationships, char-
acterised by frequent social interactions, typically found
in cohesive closed structures [7, 26], are likely to sustain
the flow of a large volume of rich non-redundant informa-
tion that, it is claimed, “tends to be more detailed, cover
more topics, and address more complex, interdependent
concepts” [2, p. 94] than the information flowing in a
network rich in weak ties with less frequent interactions.
However, because the strength of ties tends to contract
as the social structure becomes richer in cleavages and
brokerage opportunities, and thus more diverse [7, 26],
then a trade-off exists between network diversity and tie
strength as they produce counterbalancing effects on the
access to novel information. This trade-off is resolved
by regarding the relative benefits of network diversity
and tie strength as contingent on the social settings and
information environments in which individuals interact.
In particular, evidence has suggested that tie strength
(i.e., closed structures) trumps network diversity (i.e.,
open structures) as the topic space becomes broader, in-
formation is frequently updated, and the overlap between
the information possessed by an individual’s contacts be-
comes larger [2].

In this paper, we draw on these recent studies on so-
cial capital, and contribute to the ongoing debate in a
two-fold way. First, we formalise the trade-off between
closed and open structures by proposing a functional re-
lation between the measures with which these two types
of structure have traditionally been operationalised. Un-
like other studies [e.g., 2, 20, 61], we do not carry out
an empirical investigation to test the relative advantages
of different structural configurations. By contrast, we

offer a rigorous and quantitative framework for a better
understanding of the trade-off between two concepts - co-
hesion and structural holes - that have heretofore been
compared to each other primarily, if not exclusively, on
intuitive grounds.

Our second contribution to the debate builds on the
proposed formalisation of the relationship between co-
hesion and structural holes to offer a new measure -
Simmelian brokerage - for detecting the degree to which
an individual’s structural position lies at the interface
between a closed and an open structure. This measure is
inspired by, and is in qualitative agreement with, other
studies that have suggested the idea that social capital
can originate simultaneously from both social cohesion
and structural holes [54, 61, 67]. However, it differs from
previous formalisations in two ways. First, unlike other
studies [67], we do not use clique percolation methods [49]
to uncover an overlapping community structure and con-
struct a group-level measure of group intersection and
multiple membership. Second, unlike other scholars, we
do no rely upon actor-level attributes (e.g., tenure) [54]
or exogenously defined cross-boundary relationships [61]
to detect network heterogeneity and structural gaps in
an individual’s local neighbourhood. By contrast, the
novelty of our measure lies precisely in the fact that it is
defined at the node level and detects directly, based on
the node’s local neighbourhood, the extent to which the
node belongs to multiple groups that are both tightly
knit and disconnected from each other. In this sense,
Simmelian brokerage dovetails with the idea that mul-
tiple group membership enables a node to extract social
capital from its underlying structure by blending social
cohesion with structural holes.

MEASURING SOCIAL COHESION AND

STRUCTURAL HOLES

If social cohesion and structural holes have long rep-
resented two distinct conceptual pillars, each underlying
one of the two opposing conceptions of social capital, they
have also been formalised through two distinct, and inde-
pendently developed, measures: respectively, the cluster-
ing coefficient and the effective size of a node’s local net-
work. While clustering has typically been used for meas-
uring the extent to which a node is socially embedded
within a closed cohesive structure [17, 29, 43, 69], effect-
ive size is a measure for detecting the non-redundancy of
a node’s contacts, and therefore the degree to which the
node’s local neighbourhood is rich in structural holes [7].
The remaining of this Section is organised into two parts.
Section will review the definition of node clustering coef-
ficient, and discuss an alternative measure for cohesion,
node local efficiency. Section will be devoted to the
formalisation of effective size.
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Clustering coefficient and local efficiency

Let us consider an unweighted undirected graph
G(V, L) withN = |V | nodes andK = |L| links, and let us
focus on one of its nodes, node i, with i ∈ {1, 2, . . . , N}.
In order to measure the local cohesion of node i, we define
the subgraph Gi induced in G by the set Ni of the neigh-
bours of i. The node clustering coefficient Ci of node i
can then be defined as [68, 69]:

Ci =

{

K[Gi]
ki(ki − 1)/2

for ki ≥ 2

0 for ki = 0, 1
(1)

where K[Gi] is the number of links in Gi. The node
clustering coefficient Ci indicates the probability that two
neighbours of node i are connected by a link, and is prop-
erly normalised by definition such that 0 ≤ Ci ≤ 1. In
fact, the value of Ci in Equation (1) is the ratio between
the actual number of links K[Gi] in the subgraph in-
duced by the first neighbours of i and their maximum
possible number, that is

(

ki

2

)

= ki(ki − 1)/2. Notice that
K[Gi] is also equal to the actual number of triangles con-
taining node i, while ki(ki − 1)/2 is the number of open
triads centred on i, which corresponds to the maximum
possible number of triangles containing a node i with ki
links. Therefore, the node clustering coefficient Ci in
Equation (1) can be alternatively seen as the proportion
of triads centred in i that close into triangles.

As an example, let us consider the two graphs Ga and
Gb shown in Figure 1. In both graphs, node i, coloured
in yellow, has degree ki = 4, so that the sets N a

i and N b
i

of the neighbours of i contain four nodes each. The four
neighbours of i, labelled as nodes 1, 2, 3, 4, are shown as
red circles, while the links connecting these nodes to i are
shown as dashed lines. The subgraph Ga

i induced in Ga

by the set N a
i of the neighbours of i has four nodes and

three links shown as solid lines. Similarly, the subgraph
Gb

i induced in Gb by the set N b
i contains four nodes and

three links. Therefore, the clustering coefficient of node
i is equal to 1/2 in both cases. In fact, the four nodes
of the induced graphs can be connected to each other
through at most six links. In the figure, only three of
these potential links are present. Hence, Ci = 3/6 =
1/2. Notice that, in general, the subgraph Gi of the
neighbours of node i can be unconnected. For instance,
this happens for the case of graph b) in Figure 1, where
node 4 is isolated in subgraph Gb

i . However, this does
not affect the mathematical definition of the clustering
coefficient Ci. What is instead problematic is a node i
which is itself an isolate in the graph, or has only one
link. In this case, the ratio 2K[Gi]/(ki(ki − 1)) is not
defined. The usual convention, in this case, is to set
Ci = 0 when the degree of i is either zero or one, as
reported in Equation (1).

An important feature of the clustering coefficient of
node i, as defined in Equation (1), is that it only depends
on the number of links in the subgraph Gi, and not on
which pairs of nodes are actually connected through such
links in Gi. Notice, for instance, that both Ga

i and Gb
i in

Figure 1 have three links, but while Ga
i is a line of four

nodes, Gb
i consists of a triangle and an isolated node. For

this reason, here we discuss an alternative measure for the
cohesion of the neighbourhood of a node, the node local
efficiency, that enables the two cases shown in Figure 1
to be clearly differentiated.
In an unweighted undirected graph G(V, L), the node

local efficiency of node i is defined as the efficiency of the
subgraph Gi [38, 39], where the efficiency of a graph is
the average of the inverse of the distances between the
nodes of the graph. Therefore, the node local efficiency,
Ei, of node i can be written as:

Ei = E[Gi] =
1

ki(ki − 1)

∑

ℓ∈Ni

∑

m∈Ni

m 6=ℓ

ǫℓm =

=
1

ki(ki − 1)

∑

ℓ∈Ni

∑

m∈Ni

m 6=ℓ

1

dℓm
(2)

where E[Gi] stands for the efficiency of graph Gi, while
ǫℓm measures the reachability between node ℓ and node
m, and is set equal to the inverse of the distance dℓm
between the two nodes. Notice that distances between
nodes are evaluated on the graph Gi, and not on graph
G. Moreover, the local efficiency is properly normalised
by definition, such that 0 ≤ Ei ≤ 1. Therefore, it takes
values in the same range as the clustering coefficient.
By making use of Equation (2), it is possible to dis-

tinguish between the roles that node i plays in the two
graphs Ga and Gb in Figure 1. If we calculate the dis-
tances between the four neighbours of i in Ga

i , we ob-
tain: d12 = d23 = d34 = 1, d13 = d24 = 2 and d14 = 3.
Hence, we have ǫ12 = ǫ23 = ǫ34 = 1, ǫ13 = ǫ24 = 1/2, and
ǫ14 = 1/3, so that the local efficiency of node i in graph a)
of Figure 1 is Ea

i = 13/18. Conversely, if we consider Gb
i ,

we obtain: d12 = d23 = d13 = 1, d14 = d24 = d34 = ∞.
Thus, we have: ǫ12 = ǫ23 = ǫ13 = 1, ǫ14 = ǫ24 = ǫ34 = 0,
and in this case the local efficiency of node i is Eb

i = 1/2,
which is smaller than Ea

i . Thus, even if node i has the
same clustering coefficient in the two graphs, its local
efficiency is different in the two cases.
The mathematical definition of efficiency we have ad-

opted implies that the efficiency of a graph with a fixed
number of nodes becomes larger as the number of links
increases. And for graphs with the same number of nodes
and the same number of links, the efficiency depends on
where the links are actually located in each graph. In par-
ticular, the efficiency of a chain of three links connecting
four nodes is higher than the efficiency of a triangle com-
bined with an isolated node. The reason for this is that,
in the latter case, the presence of an isolated node affects
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Figure 1. The clustering coefficient of a node, as defined in Ref. [69], measures the cohesiveness of the node’s neighbourhood.
Despite the different configurations of links, the clustering coefficient of node i, measured as the fraction of links among i’s
neighbours over the total possible number of such links, is equal to Ci = 1/2 in both graphs. Conversely, the local efficiency of
node i in graph a) is larger than in graph b).

the overall reachability among nodes in the system: not-
withstanding the presence of a triad of connected nodes,
the isolated node is not reachable from the other ones.

Effective size

The original formalisation of the idea of structural
holes was proposed by Burt for weighted graphs [7].
Therefore, here we will first begin our analysis of meas-
ures for open structures with the most general case of
a directed weighted graph G(V, L,W ). We will then
restrict our focus to the particular case of undirected
unweighted graphs, and return to the general case of
weighted graphs in Section .

Let us indicate as wij ≥ 0 the (i, j) entry of the
weighted asymmetric matrix that describes the directed
weighted graph G(V, L,W ). As argued by Granovetter
[26], the weight of a link between any nodes i and j has
the following meaning: a high (low) value of wij indicates
a large (small) amount of time, emotional intensity, in-
timacy, and reciprocal services that characterise the link
connecting node i to node j. Among the various measures
introduced by Burt to detect and quantify the presence
of structural holes, a key role is played by the effective
size of a node’s local network.

The effective size of node i’s network indicates the ex-
tent to which each of the first neighbours of i is redund-
ant with respect to the other neighbours, and can be ex-
pressed in terms of the two following matrices: the trans-
ition matrix P and the marginal strength matrix M . The
entry piℓ of matrix P measures the proportion of i’s net-
work time and energy invested in the relationship with

node ℓ, and is defined as [7]:

piℓ =
wiℓ + wℓi

∑

m(wim + wmi)
(3)

where wiℓ + wℓi is the sum of the weights of the two
links connecting i to ℓ, while

∑

m(wim+wmi) is the total
strength of node i. This is the sum of the out-strength,
souti =

∑

m wim, and the in-strength, sini =
∑

m wmi, of
i, i.e., the sum of the weights of all the incoming and
outgoing links incident upon i. Notice that by definition
0 ≤ piℓ ≤ 1 ∀i, ℓ, with piℓ = 0 if there is neither a link
from i to ℓ, nor a link from ℓ to i. Also, the transition
matrix P is stochastic:

∑

ℓ piℓ = 1. The entry mjℓ of
the second matrix, the marginal strength matrix M , is
defined as:

mjℓ =
wjℓ + wℓj

maxm(wjm + wmj)
(4)

Again, 0 ≤ mjℓ ≤ 1 ∀j, ℓ, with mjℓ = 0 if there is neither
a link from j to ℓ, nor from ℓ to j. Notice that the two
matrices P and M defined above are non-symmetric.
According to the definition given by Burt, the effective

size Si of node i’s network reads [5, 7]:

Si =
∑

j∈Ni

[

1−
∑

ℓ

piℓmjℓ

]

(5)

where Ni is the set of neighbours of i. Excluding the
case where i is an isolate, for which Si ≡ 0 by definition,
in general 1 ≤ Si ≤ ki ∀i, that is the effective size of
node i’s network ranges from its smallest value equal to
1, when node i belongs to a clique, to a maximum value
equal to the node degree ki, when there are no links (j, ℓ)
connecting any two neighbours j and ℓ within i’s network,
i.e. when i is the centre of a star graph. In general, the
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more redundant the neighbours of i are, the smaller the
value of Si is, and vice versa.
The expressions above largely simplify in the case in

which the graph is undirected and/or unweighted. In
fact, when the graph is undirected, we have: wiℓ =
wℓi ∀i, ℓ. In this case, the entries of the transition matrix
P and of the marginal strength matrix M read, respect-
ively:

piℓ =
wiℓ

∑

m wim
=

wiℓ

souti

(6)

and

mjℓ =
wjℓ

maxm wjm
(7)

Furthermore, if the graph is also unweighted, we have:
wiℓ = aiℓ ∀i, ℓ, where aiℓ is equal to 1 if there is a link
between i and ℓ, and to zero otherwise. This implies that
maxmwjm = maxm ajm = 1 for any node j that is not an
isolated node. Consequently, the entries of the transition
matrix P and of the marginal strength matrix M reduce
to:

piℓ =
aiℓ

∑

m aim
=

aiℓ
ki

(8)

and

mjℓ = ajℓ (9)

In this case, P is the transition probability of a random
walk on the graph [16], while the marginal strength mat-
rix M coincides with the adjacency matrix A.
Let us now consider the following example to illustrate

the meaning of Eq. (5). Figure 2 reports two undirected
unweighted graphs, Ga and Gb, having the same num-
ber of nodes, N = 8, and the same number of links,
K = 13. In both graphs, node i is coloured in yellow and
has ki = 5 links to its neighbours, shown as dashed lines.
The links connecting the neighbours of i are indicated
by solid black lines. By visual inspection it can be easily
noticed that the neighbourhood of i in graph Gb contains
more redundant links than in Ga. Indeed, if we evaluate
the effective size of node i in graph Ga, we find that the
contribution of three out of the five neighbours in i’s net-
work towards the summation in Equation (5) is equal to
1. This is because each of these three nodes in N a

i has no
links to the other neighbours of i, and therefore is non-
redundant. The contribution of each of the other two
remaining neighbours in i’s network towards the summa-
tion in Equation (5) is equal to 1−1/ki. We finally have:
Sa
i = 1+ 1+ 1+ (1− 1/5)+ (1− 1/5) = 3+ 8/5 = 23/5,

which is a number larger than 3, but smaller than the
actual degree ki = 5 of the node. If we calculate the
effective size of node i in graph Gb, we obtain: Sb

i =
(1−1/5)+(1−2/5)+(1−2/5)+(1−2/5)+(1−1/5) = 17/5.
Because of the higher redundancy of the nodes inN b

i , this
value is smaller than the effective size of node i’s network
in graph Ga.

A SIMPLE RELATION BETWEEN CLUSTERING

AND EFFECTIVE SIZE

The two examples outlined in the previous Section
already point to the existence of a relation between the
clustering coefficient and the effective size of a node’s
network in an unweighted graph. In fact, the values of
Ci and Si both depend on the number of triangles con-
taining node i. The larger the number of triangles, i.e.
of closed structures involving node i, the larger the clus-
tering coefficient Ci. Conversely, the smaller the number
of triangles, the larger the number of open structures
that can be exploited by i, and thus the larger the ef-
fective size of node i’s network. Therefore, we expect an
inverse relation between Ci and Si: the larger the cluster-
ing coefficient of a node, the smaller the effective size of
the node’s network. In this Section, we show that there
is indeed an exact and simple relation between the two
measures. Based on this relation, it can then be argued
that it is not necessary to operationalise two distinct con-
cepts (cohesion and structural holes) and use two differ-
ent measures (clustering and effective size) to investigate
two distinct sources of social capital, when one source
can be measured simply in terms of the other. More
specifically, either measure, together with the degree of
the node, is sufficient to quantify both the local cohesion
and the structural holes characterising the node’s local
network.
We first notice that the definition of node clustering

coefficient given in Equation (1) can be expressed in
terms of the adjacency matrix of the graph. In fact,
the number of links K[Gi] in graph Gi can be easily
calculated from the adjacency matrix by observing that
(A3)ij =

∑

ℓ,m aiℓaℓmamj is equal to the number of walks
of length 3 connecting node i to node j. In particular,
by setting i = j, the quantity

∑

ℓ,m aiℓaℓmami denotes
the number of closed walks of length 3 from node i to
itself. This is twice the number of triangles containing
node i. The generic triangle containing node i and the
two nodes l and m is made of the two links connected
to node i, namely (i, ℓ) and (m, i), and of the link (ℓ,m)
that belongs to Gi. Since the link (ℓ,m) appears twice,
namely in the closed walk (i, ℓ,m, i) and in the closed
walk (i,m, ℓ, i), the number of links K[Gi] is given by:

K[Gi] =
1

2

∑

j,m

aijajmami. (10)

Notice that this is the numerator of Equation (1), so that
we can express the local clustering coefficient of node i
as:

Ci =







∑

j,ℓ aijajℓaℓi
ki(ki − 1)

for ki ≥ 2

0 for ki = 0, 1
(11)

Let us now consider the effective size of node i’s net-
work. When the graph is undirected and unweighted,
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Figure 2. The effective size of a node’s network, as defined in Ref. [7], measures the lack of redundancy of the node’s contacts.
The neighbourhood of node i in the first graph is less redundant than the one in the second graph. Consequently, the effective
size, Sa

i = 23/5 = 4.6, of node i in graph Ga is larger than the effective size, Sb

i = 17/5 = 3.4, of node i in graph Gb.

the entries of the transition matrix P and of the marginal
strength matrix M read, respectively, as in Equations (8)
and (9). Consequently, the effective size Si of node i’s
network can be written as:

Si =
∑

j

aij

[

1−
∑

ℓ

piℓmjℓ

]

=

= ki −
∑

j

aij
∑

ℓ

piℓmjℓ =

= ki −
∑

j

∑

ℓ

aij
aiℓ
ki

ajℓ =

= ki −
1

ki

∑

j

∑

ℓ

aijajℓaℓi (12)

If we plug the expression for the clustering coefficient of
node i in Equation (11) into Equation (12), we obtain:

Si = ki − (ki − 1)Ci (13)

This is an exact relation that connects three measures
at the node level: effective size, clustering, and degree.
For instance, we can use the relation to obtain the ef-
fective size of a node’s network by measuring the clus-
tering coefficient of the node. Since for the two graphs
in Figure 2 we have Ca

i = 1/10 and Cb
i = 4/10, by us-

ing Equation 13 we obtain: Sa
i = 5 − 4/10 = 23/5 and

Sb
i = 5 − 16/10 = 17/5, in perfect agreement with the

values obtained by using Definition 5. More generally,
Equation (13) provides a formalisation of the fact that
structural holes and social cohesion are indeed the two
faces of the same coin. The presence of structural holes,
measured by the effective size of a node’s network, de-
pends only on the degree of the node and on the so-
cial cohesion of the node’s local network, as measured by
the node clustering coefficient. Conversely, the clustering
coefficient of a node is uniquely determined by the degree
of the node and by the effective size of its network.

By definition, the effective size of a node’s network can
take values between zero (if the node is an isolate) and the
degree of the node, while the clustering coefficient varies
from zero to one. To make the two quantities compar-
able, we can normalise the definition of effective size. To
this end, we can define the normalised effective size of
node i’s network, S ′

i, dividing the effective size Si by its
maximum possible value ki, namely: S ′

i = Si/ki. If the
node is an isolate, we set S ′

i = 0. When both measures
are normalised in [0, 1], their relation reads:

S ′
i = 1−

ki − 1

ki
Ci (14)

which, for nodes with large degree, is well approximated
by:

S ′
i ≃ 1− Ci (15)

This equation indicates that the clustering coefficient and
the normalised effective size are indeed two complement-
ary measures that can be defined one in terms of the
other. As a result, this relation cautions against using
both measures simultaneously for detecting sources of so-
cial capital. For instance, the inclusion of both clustering
and effective size as covariates in a multivariate regres-
sion model would inevitably entail problems of multicol-
linearity due to the linear relation found between the two
measures.
Drawing on this relation, we can express in terms of

effective size many of the results obtained for the cluster-
ing coefficient in real networks. In particular, it has been
found that in many networks the clustering coefficient of
a node scales with the degree of the node as k−ω, where
0 ≤ ω ≤ 1 [52, 65]. This means that high-degree nodes
tend to have a relatively smaller clustering coefficient
than low-degree nodes. Consequently, in such networks
effective size will increase with k, so that higher-degree
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nodes will exhibit a higher effective size than lower-degree
nodes. The reason for this is precisely the mirror im-
age of the argument typically proposed to explain the
inverse relation between clustering and degree: any two
neighbours of a large-degree node are more likely not
to be directly connected with each other than any two
neighbours of a low-degree node. Moreover, it is possible
to use any model of random networks with a tunable
degree-dependent clustering coefficient [31, 52, 57, 66] to
construct a random network with a fixed distribution of
effective size. In turn, such random network can be used
as a null model to assess the statistical significance of the
correlation, measured at the node level, between effective
size on the one hand, and other structural properties or
performance-related outcomes, on the other.

RECONCILING SOCIAL COHESION AND

STRUCTURAL HOLES: SIMMELIAN

BROKERAGE

As discussed in Section , local efficiency is a generalisa-
tion of the node clustering coefficient, in that it measures
the extent to which the neighbours of node i would reach
each other if i were removed from the network. Unlike
the clustering coefficient, local efficiency allows us to dis-
tinguish between cases where the subgraphs Gi have the
same number of nodes and the same number of links, but
are topologically different, as was the case of the two ex-
amples in Figure 1. In this Section, we show that local
efficiency can be employed effectively to develop a new
measure for brokerage that lies at the interface between
clustering and effective size. Like clustering and effective
size, this measure will be sensitive to structural gaps in
a node’s local network. However, unlike clustering and
effective size, it will also be sensitive to variations in the
position of links across local networks of the same dens-
ity. For this reason, the measure is capable of capturing
brokerage opportunities among otherwise disconnected
socially cohesive groups of nodes.

We begin by observing that, if the local efficiency of
node i is small, then i plays an important role in enabling
and facilitating reachability among its neighbours. In
this case, i acts as a broker among its neighbours, since
the removal of i would disconnect many pairs of nodes
in i’s neighbourhood, or would inevitably deteriorate the
ability of these nodes to reach each other. Conversely,
if the local efficiency of i is large, then the nodes in i’s
neighbourhood would still be able to reach each other
even without the intermediary role of i, and as a result
they would barely be affected by the removal of i. In
this case, i plays a negligible brokerage role. More gen-
erally, the higher the local efficiency of a node, the fewer
the opportunities a node has to act as a broker, and vice
versa. Based on this observation, on the relation in Equa-
tion (13), and on the fact that the clustering coefficient

and the normalised effective size range in the same in-
terval [0, 1], here we introduce the following measure for
local brokerage Bi of node i:

Bi = ki − (ki − 1)Ei (16)

In qualitative agreement with Krackhardt’s [34–36]
idea of Simmelian ties as ties embedded in cliques, we
propose to call this measure Simmelian brokerage. Our
choice is motivated by the fact that the measure is indeed
sensitive to the extent to which a node acts as a broker
between Simmelian ties or, alternatively, between oth-
erwise disconnected groups of densely connected nodes.
This is the case of a node that is a member of differ-
ent cliques, and thus acts as the intermediary between
two or more disconnected sets of Simmelian ties, rich in
third-party relationships [11, 19, 61, 67]. The definition
of Simmelian brokerage is similar to that of effective size,
with the only difference that the clustering coefficient Ci

of node i is replaced by the node local efficiency Ei. Ac-
cording to Equation (16), when the degree of a node is
fixed, an increase in the value of local efficiency corres-
ponds to a decrease in the value of Simmelian brokerage,
and vice versa.
To shed light on the relation between effective size and

Simmelian brokerage, we now discuss a number of ex-
amples of brokerage opportunities in unweighted undir-
ected graphs. Figure 3 shows six graphs, each withN = 9
nodes, but with a different number and configuration of
links. A first inspection of the figure makes it immedi-
ately clear that the central node i, indicated in yellow,
has a different brokerage role in each of the six graphs.
Graph a) is a clique, i.e. a complete graph in which each
node has a link to each of the other nodes. This structure
is characterised by high redundancy – indeed the max-
imum possible redundancy among all the graphs with the
same number of nodes – due to the presence of the max-
imum possible number of links in the graph. In this case,
the local efficiency of node i is equal to Ea

1 = 1.0, and
for Simmelian brokerage we obtain the smallest possible
value, Ba

i = 8 − 7 × 1.0 = 1.0. Such a small value is
consistent with the relatively negligible role that i has in
facilitating reachability among its neighbours: if i were
removed from the graph, not only would its neighbour-
hood remain connected, but each of its contacts would
still have a direct connection with each other. For the
overall network, node i is thus a redundant contact.
Graph b) is a wheel graph, where the neighbours of

node i are arranged in a cycle. As in the case of a clique,
here the neighbourhood of node i remains connected even
when i is removed from the graph, so that i can be con-
sidered somehow redundant. However, while some pairs
of nodes in the induced graph have distance equal to 1,
the majority of pairs of nodes are at distance 2, 3 or 4,
so that the corresponding local efficiency is Eb

i ≃ 0.559
and node i’s Simmelian brokerage is equal to Bb

i ≃ 4.083.
The relatively higher value of i’s Simmelian brokerage in
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Figure 3. The extent to which a node acts as a Simmelian broker depends on the number and configuration of links in its
neighbourhood. The six graphs correspond to six values of Bi, in increasing order: a) 1.0, b) 4.08, c) 5.83 d) 6.46, e) 7.0, f) 8.0.
When the neighbourhood of i is a clique (graph a)), the Simmelian brokerage of i is negligible, and i is practically superfluous.
As soon as the neighbourhood becomes sparser and more structural holes appear, node i acquires higher values of Simmelian
brokerage. In graphs d) and e), node i has the same clustering coefficient (and thus the same effective size), but the value of
Simmelian brokerage of i is higher in e) than in d) because in e) i intermediates among four cohesive groups of nodes, whereas
in d) i intermediates between one group of four loosely connected nodes and three otherwise isolated nodes. Opportunities of
brokerage are maximised in the limiting case of a star graph in which node i intermediates among eight otherwise disconnected
contacts (graph f)).

graph b) than in graph a) reflects the more central role
played by i in b) than in a) in facilitating reachability
among its neighbours. This is also reinforced by the fact
that, when i is removed from the graph, the average dis-
tance among its neighbours increases from ∼ 1.714 (in
graph a)) to ∼ 2.286 (in graph b)).

From a visual inspection, we would also expect the
Simmelian brokerage of node i to increase from graph b)
to graph c) due to an increase in structural gaps between
distinct groups of nodes. In graph c), node i does not
only intermediate between already connected nodes, but
it brokers between different groups of nodes that would
otherwise remain disconnected. In this case, the local
efficiency of i is Ec

i ≃ 0.309 and, as expected, the corres-
ponding Simmelian brokerage of i is higher than in graph
b), and is equal to Bc

i ≃ 5.83.

Graphs d) and e) have the same number of links K =
4, but with a different configuration. Interestingly, the
effective size of node i’s network in the two graphs is
the same, (Si = 7.0), since in both graphs the clustering

coefficient of i is equal to Ci = 1/7. However, a removal
of i causes a more significant damage in graph e) than in
graph d), since the intermediary role of i is more crucial
in e) than in d). Moreover, in graph e) node i is affiliated
with four distinct cohesive groups of connected contacts,
whereas in graph d) node i intermediates between three
isolated contacts and one loosely connected group. In
this sense, in graph e) node i spans more structural holes
between Simmelian ties than in graph d). Our measure of
Simmelian brokerage does indeed capture this difference.
In fact, if we removed i from graph d), then 10 out of 28
pairs among i’s neighbours (namely all pairs involving
the five nodes in the group) would still remain reachable.
In this case, the value of Simmelian brokerage of i is
Bd
i ≃ 6.46. Conversely, the removal of i in e) would

produce a more serious damage to the network, since only
4 pairs of neighbours of i over 28 would remain reachable.
In this case, the value of Simmelian brokerage is equal to
Be
i = 7.0.

Finally, graph f) is a star, so that by removing node
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i no pair of its neighbours would remain reachable any
longer. In this limiting case, the value of local efficiency
of node i is equal to zero, and the one of Simmelian
brokerage, as well as of effective size, is equal to the node
degree, namely Bf

i = 8.0. In general, if two nodes have
the same local efficiency, the one having the higher degree
has a higher Simmelian brokerage. This is due to the fact
that the removal of a high-degree node could potentially
leave a higher number of pairs of nodes disconnected, and
could therefore cause a more substantial damage to the
network than the removal of a node characterised by a
relatively low degree.

WEIGHTED GRAPHS: EFFECTIVE STRENGTH

AND WEIGHTED SIMMELIAN BROKERAGE

In this Section, we briefly discuss how the measures
of effective size and Simmelian brokerage can be intu-
itively extended to the case of weighted graphs. First,
we notice that, in the more general case of undirected
weighted graphs, the importance of node i can be meas-
ured through its total strength si =

∑

j wij , in addition
to the degree ki. Consequently, it is reasonable to ex-
tend the measure of effective size to weighed graphs by
defining the effective strength of a node as follows:

Sw
i =

∑

j

wij

[

1−
∑

ℓ

piℓmjℓ

]

=

= si −
∑

j

∑

ℓ

wijpiℓmjℓ (17)

Like effective size for unweighted graphs, effective
strength measures the extent to which the neighbourhood
of a node in a weighted graph is redundant. However,
unlike effective size, it properly takes into account the
weights of links, and thus captures variations in the in-
vestment (e.g., time, energy) that a node i makes in each
of its neighbours. Since the quantity in square brackets
in Equation (17) is multiplied by wij , then a neighbour
j of node i’s for which wij is relatively small has little
impact on the effective strength of i. Conversely, if wij

is relatively large, then node j can substantially influ-
ence the effective strength of i. It is easy to verify that,
if the graph is unweighted and undirected, the effective
strength in Equation (17) reduces to the effective size, as
defined in Equation (5).
In principle, starting from Equation (17), it should be

possible to derive an exact relation between the effect-
ive strength and the weighted clustering coefficient of a
node, as we did in Section for the unweighted case, and
to extend to weighted graphs the measure of Simmelian
brokerage proposed in Equation (16). However, while the
definition of clustering coefficient in unweighted graphs
reported in Equation (1) is widely accepted and undis-
puted, there exist more than one manner to define the

clustering coefficient of a node in a weighted graph [48].
Indeed, different measures for the weighted clustering
coefficient have been proposed in the literature. Among
those, the following four are the most popular ones:

Cw
i = CB

i =
1

si(ki − 1)

∑

j,ℓ

wij + wiℓ

2
aijajℓaℓi

Cw
i = CO

i =
2
∑

j,ℓ(wijwjℓwℓi)
1/3

ki(ki − 1)

Cw
i = CZ

i =

∑

j 6=i

∑

j 6=ℓ,ℓ 6=i(wijwjℓwℓi)

(
∑

j 6=i wij)2 −
∑

j 6=i w
2

ij

Cw
i = CH

i =

∑

j,ℓ wijwjℓwℓi

max(w)
∑

j,ℓ wijwℓi

which have been respectively defined by Barrat et al. [3],
Onnela et al. [47], Zhang and Horvath [70] and Holme
et al. [32]. Notice that all these measures are essentially
based on the same idea: the clustering of node i is meas-
ured by means of the sum of the weights of the closed
triads incident on i. Nevertheless, each measure differs
from the others in the choice of the weight assigned to
each triad and in the normalisation introduced to guar-
antee that Cw

i takes values in [0, 1]. A discussion of the
different definitions of the weighted clustering coefficient
is beyond the scope of the present paper (the authors
of Ref. [56] have carried out a thorough analysis of these
measures and a comparison of their properties). In a sim-
ilar way as in the case of unweighted graphs, for which
the relation between effective size, clustering and degree
of a node is given by Equation (14), for each of the four
definitions of weighted clustering it is possible to find a
corresponding functional relation to obtain the effective
strength of a node if one knows the value of its weighted
clustering coefficient. In general, if we assume that this
functional relation is mediated not only by the degree ki
of node i but also by the node strength si, we can write:

Sw
i = F (ki, si, C

w
i ) (18)

where the form of F (ki, si, C
w
i ) depends only on the

chosen definition of clustering coefficient. Following the
same logic described in Section , we notice that each ver-
sion of the weighted clustering coefficient induces a differ-
ent definition of weighted Simmelian brokerage Bw

i . As
we did for the case of unweighted graphs, where the Sim-
melian brokerage of a node was obtained by substituting
Ei for Ci in Equation (13), we define the weighted Sim-
melian brokerage of node i induced by a given definition
of weighted clustering as follows:

Bw
i = F (ki, si, E

w
i ) (19)



12

where Ew
i is the local efficiency of node i in the weighted

graph, which is measured considering the weighted dis-
tances dwjℓ instead of the topological distances djℓ. In
other words, for a given formulation of weighted clus-
tering, the Simmelian brokerage of a node is obtained
by replacing the weighted clustering coefficient Cw

i with
the local efficiency Ew

i in the function F (ki, si, C
w
i ) that

relates effective strength to the weighted clustering coef-
ficient.

CONCLUSIONS

Graphs are an invaluable mathematical tool for ex-
amining the topology and evolution of social structures,
and graph measures have contributed to the operation-
alisation and formalisation of fundamental sociological
concepts as well as to the development of social theor-
ies. Among these measures, clustering and effective size
have played a pivotal role in the debate that, over the
last few decades, has been concerned with the types of
social structures that matter as sources of social capital
[2, 4, 9, 20, 23, 40, 41, 54, 61]. In this paper, our contribu-
tion to this debate began by reviewing the two measures,
clustering and effective size, typically associated with two
opposing types of social structure, the closed and open
structure respectively. We then clarified the relationship
between these two measures, and found that they are in-
deed connected through a simple mathematical relation.
While so far the two measures have been related to each
other primarily at a conceptual level and on intuitive
grounds [7], in this paper we provided a formal frame-
work in which one measure can be expressed in terms of
the other.
The study of formal relations between different graph

measures can help unveil the intimate connections
between already existing, and apparently unrelated, so-
ciological concepts and, at times, even lead to the de-
velopment of new concepts and measures. This indeed
describes the trajectory that brought us from a more
thorough understanding of the relation between closed
and open structures to the proposal of a new measure
that captures a topological configuration at the interface
between the two types of structure. The idea was to
identify brokerage positions in which a node can inter-
mediate between otherwise disconnected cohesive groups
of contacts [67]. In such cases, the node’s local network
can be seen as both open and closed: open in that it is
rich in structural holes separating distinct groups of con-
tacts; and closed in that it is at the same time rich in
third-party relationships within each of the groups with
which the node is affiliated.
In qualitative agreement with the organisational lit-

erature on Simmelian ties [19, 34–36, 61], we proposed
to call Simmelian brokerage the new measure for detect-
ing such structural positions. Simmelian brokerage helps

differentiate between brokerage positions of nodes with
the same degree and the same local clustering coefficient,
but with a different configuration of links in their local
neighbourhoods. In those cases, effective size would also
remain unchanged as, all else being equal, it is not sens-
itive to variations in the positions of links. However,
brokerage opportunities are likely to differ when, simply
by reshuffling the same number of links across a node’s
local neighbourhood, there is a variation in the number
of socially cohesive groups with which the node is affili-
ated. Simmelian brokerage, unlike effective size, is sens-
itive precisely to these variations in group affiliation that
result from a change in the position of links.

Our findings can nourish the theoretical debate over
the relative salience of closed and open structures for so-
cial capital, and will inform further research on the gen-
erative mechanisms of social capital. On the one hand,
empirical tests of the relative benefits of closed and open
structures will now find in our proposed relation between
clustering and effective size a sound argument safeguard-
ing against problems of multicollinearity, typically arising
as a result of the simultaneous inclusion of both meas-
ures as explanatory variables in multivariate regression
models. On the other, future research on the relative
benefits of cohesive and brokered networks will benefit
from the application of Simmelian brokerage to a num-
ber of empirical domains. In this sense, our study will
help reconcile the apparently opposing results that vari-
ous strands of literature have uncovered on the structural
foundations of social capital [1, 2, 20, 23, 33, 42, 53].

Simmelian brokerage, as a new topological measure of
network structure, can also spur a wealth of research
broadly concerned with the topology and dynamics of
complex networks. For the sake of simplicity, in this pa-
per we have restricted our focus primarily to the case
of unweighted networks. However, as was sketched out
in Section , the relation between clustering coefficient
and effective size can easily be generalised to the case
of weighted graphs, which will in turn enable Simmelian
brokerage to be also extended to weighted graphs.

More generally, the main implication of our study for
research on complex networked systems lies in the change
of perspective entailed by our emphasis on structural
cleavages, as opposed to ties, that we borrowed from the
burgeoning network literature in the social sciences. In
this sense, our study may suggest a number of possible
and previously neglected ways in which, simply by de-
flecting attention from the presence to the absence of a
tie, new insights can be gained on the organisation, func-
tioning and dynamics of a variety of systems.
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