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Abstract

Social Commonsense Reasoning requires un-

derstanding of text, knowledge about social

events and their pragmatic implications, as

well as commonsense reasoning skills. In

this work we propose a novel multi-head

knowledge attention model that encodes semi-

structured commonsense inference rules and

learns to incorporate them in a transformer-

based reasoning cell. We assess the model’s

performance on two tasks that require different

reasoning skills: Abductive Natural Language

Inference and Counterfactual Invariance Pre-

diction as a new task. We show that our

proposed model improves performance over

strong state-of-the-art models (i.e., RoBERTa)

across both reasoning tasks. Notably we are, to

the best of our knowledge, the first to demon-

strate that a model that learns to perform coun-

terfactual reasoning helps predicting the best

explanation in an abductive reasoning task.

We validate the robustness of the model’s rea-

soning capabilities by perturbing the knowl-

edge and provide qualitative analysis on the

model’s knowledge incorporation capabilities.

1 Introduction

Humans are able to understand natural language

text about everyday situations effortlessly, by re-

lying on commonsense knowledge and making

inferences. For example in Figure 1, given two

observations: Dotty was being very grumpy and

She felt much better afterwards – we can come

up with a plausible explanation about what could

have provoked the change in Dotty’s emotion. We

can also construct alternative hypotheses that will

not change Dotty’s emotion. In order to judge the

plausibility of such explanations, we need to have

information about mental states and social norms,

i.e., a form of commonsense knowledge. Such in-

formation includes that calling a close friend, in

Dotty was being very grumpy.
Observation1:

She felt much better afterwards.Observation2 :

Dotty call some close friends to chat. Dotty ate something bad.

Dotty is having a bad day

cause

Dotty feels annoyed

effect

Dotty wants to feel better

wants

Dotty seen as social

seen as

Dotty needed to have

a good time

intent

Dotty feels friendly

effect

Dotty feels sick

Dotty wanted to eat

effect

Dotty wants to eat something else

wants

Dotty seen as pleased Dotty feels relieved

effect

❌✔

✔ ⁉

seen as

motivation

Figure 1: Motivational example: The top and bottom

blue boxes show two observations. The green and red

box contain a plausible and an implausible hypothesis,

respectively. A green line denotes that an event is likely

to follow, the yellow line that an event is somewhat un-

likely to follow, the red line something unlikely.

general, makes people feel happy. This kind of

inference goes beyond the broadly studied textual

entailment task (Bowman et al., 2015) in that i) it re-

quires a specific form of knowledge, namely knowl-

edge about mental states (intent, motivation), social

norms (cause or effect of an event) and behaviour

(emotional reactions), and ii) the awareness that

inferences we can draw on their basis must often

be viewed as plausible explanations, and hence can

be defeasible, rather than being strict inferences.

In this paper, we investigate social commonsense

reasoning in narrative contexts. Specifically, we ad-

dress two different reasoning tasks: language-based

abductive reasoning, and counterfactual invariance

prediction. We introduce the Counterfactual Invari-

ance Prediction task (CIP), which tests the capa-

bility of models to predict whether under the as-

sumption of a counterfactual event, a factual event

remains invariant or not in a narrative context. Fig-

ure 1 illustrates an example: Given a narrative con-

text – “Dotty was being very grumpy” (premise),

“Dotty called some close friends to chat” (hypothe-
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Task Context Answer

αNLI O1: Dotty was being very grumpy.

H1: Dotty ate something bad. H1 or H2

H2: Dotty call some close friends to chat.

O2: She felt much better afterwards.

CIP s1: Bob had to get to work in the morning.

s2: His car battery was struggling to start the car. s3: He called his neighbor for a jump start.

s0
2
: His car won’t start. s3: He called his neighbor for a jump start. [Yes] or [No]

s1: Bill and Teddy were at the bar together.

s2: Bill noticed a pretty girl. s3: He went up to her to flirt.

s0
2
: Bill noticed his mom was there. s3: He went up to her to flirt. [Yes] or [No]

Table 1: Examples from each dataset used in this work. The correct choice in each example is given in bold text.

sis), “She felt much better afterwards.”(conclusion)

– will a counterfactual assumption (alternative hy-

pothesis), e.g., “Dotty ate something bad”, still

lead to same conclusion?

While there has been positive impact of trans-

former-based pretrained language models (LMs)

(Devlin et al., 2019; Liu et al., 2019) on several

downstream NLU tasks including commonsense

reasoning, there is still a performance gap between

machines and humans, especially when the task

involves implicit knowledge (Talmor et al., 2018).

There are two important bottlenecks: (i) obtain-

ing relevant commonsense knowledge and (ii) ef-

fectively incorporating it into state-of-the-art neural

models to improve their reasoning capabilities. In

current research, the standard approach to address

the first bottleneck is to extract knowledge tuples

or paths from large structured knowledge graphs

(KGs) (e.g. ConceptNet, Speer et al. (2017)) us-

ing graph-based methods (Bauer et al., 2018; Paul

and Frank, 2019; Lin et al., 2019). However, in this

work, instead of retrieving and selecting knowledge

from a static KG, we dynamically generate contex-

tually relevant knowledge using COMET (based

on GPT-2) (Bosselut et al., 2019). To address the

second bottleneck, we build on the hypothesis that

models performing such reasoning tasks need to

consider multiple knowledge rules jointly (see Fig.

1). Hence, we introduce a novel multi-head knowl-

edge attention model which learns to focus on mul-

tiple pieces of knowledge at the same time, and is

able to refine the input representation in a recursive

manner, to improve the reasoning capabilities.

An important aspect of using specified knowl-

edge rules is a gain in interpretability. In this work,

we perturb the pieces of knowledge available to

the model to demonstrate its robustness, and we

provide qualitative analysis to offer deeper insight

into the model’s capabilities.

Our contributions are: i) We propose a new multi-

head knowledge attention model that uses struc-

tured knowledge rules to emulate reasoning. ii)

We compare our model with several state-of-the-art

neural architectures for QA tasks and show that it

performs better on two types of reasoning tasks. iii)

We specifically compare our novel knowledge inte-

gration technique to prior integration methods and

show it performs better on the abductive reasoning

task (+2 percentage points). iv) We introduce a

novel counterfactual invariance prediction (CIP)

task, and show a correlation between abduction

and counterfactual reasoning in a narrative context.

v) To analyze the reasoning capabilities of our

model we investigate a) how it performs without

fine-tuning on a pre-trained model, b) how robustly

it behaves when confronted with perturbations and

noise in the knowledge and c) offer qualitative anal-

ysis of the reasoning module.

Our code is made publicly available.1

2 Social Commonsense Reasoning Tasks

We address two social commonsense reasoning

tasks that require different reasoning skills. They

are exemplified in Table 1 and detailed below.

Abdutive Natural Language Inference (αNLI)

Bhagavatula et al. (2020) created a dataset that tests

a model’s ability to choose the best explanation for

an incomplete set of observations. Abduction is a

backward reasoning task. Given a pair of obser-

vations O1 and O2, the αNLI task is to select the

most plausible explanation (hypothesis) H1 or H2.

Counterfactual Invariance Prediction (CIP)

Counterfactual Reasoning (CR) is the mental abil-

1https://github.com/Heidelberg-NLP/

MHKA

https://github.com/Heidelberg-NLP/MHKA
https://github.com/Heidelberg-NLP/MHKA
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Priya bought and broke a new laptop

[ARG0: Priya] [V: bought] and broke

[ARG1: a new laptop]

[ARG0: Priya] bought and [V: broke]

[ARG1: a new laptop]SRL

Priya bought a new laptop Priya broke a new laptop

Priya is seen as

clumsy

Priya feels

upset

COMET2.0

Priya is seen as

rich
Priya feels

happy

As a result

Priya wanted a

new laptop

Priya wanted to

break a laptop

Figure 2: Depicting the steps to extract commonsense

knowledge about social events.

ity to construct alternatives (i.e., counterfactual as-

sumptions) to past events and to reason about their

(hypothetical) implications (Epstude and Roese,

2008; Roese and Morrison, 2009). One of the key

challenges of CR is judging causal invariance, i.e.,

deciding whether a given factual event is invariant

under counterfactual assumptions, or whether it is

not (Peters et al., 2016; Qin et al., 2019).

In this work, we define a new Counterfactual

Invariance Prediction (CIP) task that tests the ca-

pability of models to predict whether under the as-

sumption of a counterfactual event, a (later) factual

event remains invariant or not in a narrative context

(cf. Table 1). This task requires deeper understand-

ing of causal narrative chains and reasoning in for-

ward direction. Qin et al. (2019) proposed a dataset

to encourage models to learn to rewrite stories with

counterfactual reasoning. We automatically collect

counterfactual invariance examples along with non-

invariant examples from their dataset to create a

balanced dataset for our proposed CIP task.

The formal setup is: given the first three consec-

utive sentences from a narrative story s1 (premise),

s2 (initial context), s3 (factual event) and an ad-

ditional sentence s
0

2
that is counterfactual to the

initial context s2, the task is to predict whether s3
is invariant given s1, s

0

2
or not. The train/dev/test

data (cf. Table 3) are balanced with an equal num-

ber of Yes/No answers, hence the random baseline

is 50%. To compute human performance, we gave

100 instances from the test set to expert evaluators.

Human accuracy on the CIP task is at 84.8%.2

3 Semantic & Commonsense Knowledge

This section details the steps we follow to generate

social commonsense knowledge about events men-

tioned in a narrative. See Figure 2 for illustration.

Understanding a narrative text requires the abil-

ity to identify events and to reason about their

2More details about the data are given in the Supplement.

causal effects. Beyond causal relations, they re-

quire the understanding of narrative relations, as in

narrative chains or schemata (Chambers and Juraf-

sky, 2008). This is knowledge about characteristic

script-like event sequences where semantic roles of

consecutive events are referentially bound to roles

of preceding events. While Chambers and Jurafsky

(2008) focused on the induction of schemata using

corpus statistics, we will combine detected events

with deeper commonsense knowledge.

In a first step we apply SRL to extract the ba-

sic structure “who did what to whom, when and

where” from each sentence in the context, using

state-of-the-art SRL (Shi and Lin, 2019). In a

second step, we use commonsense transformer

(COMET2.0,3 Bosselut et al. (2019)) to extract so-

cial commonsense knowledge about the extracted

events. COMET2.0 is trained on the ATOMIC (Sap

et al., 2019) inferential knowledge resource which

consists of 877K everyday events, each character-

ized by nine relation types (xIntent, xNeed, xReact,

etc.) which we call dimensions. These dimensions

connect the event in question with manifold prop-

erties, emotions, as well as other states or events.

In the last processing step we generate, for each

event in each sentence from our datasets, all dimen-

sions defined for it using COMET2.0. For example,

for: Dotty ate something bad we generate (among

others)4 the tuple: hPersonX, xReact, sicki and de-

rive hDotty, feels, sicki by substituting PersonX

with the logical subject, the filler of the role ARG0.

4 A Multi-Head Knowledge Attention

(MHKA) Model for Social Reasoning

In this section we introduce the MHKA model and

discuss some key differences in how MHKA works

for the two different Social Commonsense Reason-

ing tasks. For a model overview see Figure 3.

4.1 Model Architecture

MHKA consists of 3 modules: (a) the Context

Encoding Layer consists of a pre-trained LM, (b)

the Knowledge Encoding Layer consists of stacked

transformer blocks, (c) the Reasoning Cell consists

of transformer blocks with multi-head attention

that allows the model to jointly attend to the input

representation and the encoded knowledge. The

input format for each task is depicted in Table 2.

3COMET2.0 uses GPT-2 as pretrained model.
4More examples are given in the Supplement.
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Task Input Format Output

αNLI [CLS] O1 Hi [SEP] O2 [SEP] H1 or H2

CIP [CLS] s1 s2 s3 [SEP] s1 s
0

2 s3 [SEP] YES or NO

Table 2: Different input and output formats: [CLS] is a

special token used for classification, [SEP] a delimiter.

(a) Context Encoding Layer: For each task,

we concatenate the inputs as a sequence of tokens

xn = (xn1
, .. xnm

), and compute contextualized

representations with a pre-trained LM. We obtain

n different representations for n input options i.e.,

hxn
= encode(xn) = (hn1

, .., hnm
), where for

αNLI n=2 and for CIP n=1. As pre-trained LMs

we consider (i) BERT (Devlin et al., 2019) and (ii)

RoBERTa (Liu et al., 2019).

(b) Knowledge Encoding Layer: As depicted

in Figure 3, the knowledge encoding layer is a

Transformer-Block (Liu et al., 2018; Alt et al.,

2019) as typically used in the decoder part of the

transformer model of Vaswani et al. (2017). The

core idea is that the model repeatedly encodes the

given knowledge input over multiple layers (i.e.,

Transformer blocks), where each layer consists of

masked multi-head self-attention followed by layer

normalization and a feed-forward operation. Sim-

ilar to the context input format, we concatenate

the knowledge inputs as a sequence of tokens kn
= (kn1, .. knw), where kn is the knowledge used

for input option xn. In order to obtain the hidden

knowledge representation we do the following:

hk0n = knWke +Wkp,

hkln = tb(h
k
l�1
n

), 8l 2 [1, L]
(1)

where Wke is the token embedding matrix, Wkp

the position embedding matrix, tb the transformer

block, and L the number of transformer blocks.

(c) Reasoning Cell: The main intuition behind

the reasoning cell is that given the context represen-

tation, the model should learn to emulate reasoning

over the input using the knowledge representation

obtained from the knowledge encoder. The Rea-

soning Cell is another transformer block, where the

model repeatedly performs multi-head attention

over the context and knowledge representations,

and thus can iteratively refine the context represen-

tation. This capability is crucial for allowing the

model to emulate complex reasoning steps through

composition of various knowledge pieces. The

multi-head attention function has three inputs: a

query Q (context representation), key K and value

Multi Self Attention 

Add & Layer Norm

Feed Forward

Add & Layer Norm

Context Input

Linear Classifier

Masked Multi 
Self Attention 

Add & Layer 
Norm

Feed Forward

Add & Layer 
Norm

Structured Knowledge 
Input

Fine-tuning LMs

Positional 

Encoding

(a) Encoding

q vk

(c
) 

R
e

a
s
o

n
in

g
 C

e
ll

(b) Knowledge Encoding

N x

T x

Positional 

Encoding

Figure 3: Overview of our Multi-Headed Knowledge

Attention Model. It consist of three components (a) the

Context Encoding Layer (b) the Knowledge Encoding

Layer, and (c) the Reasoning Cell.

V (both knowledge representation). It relies on

scaled dot-product attention

Q = hxn
+Wxp

axkn = softmax(
QKT

p
dz

)V
(2)

where K = V = hkn , dz the dimensionality of the

input vectors representing the key and value, and

Wxp is the position embedding. We project the

output representations from the reasoning cell into

logit (s) of size n (the number of output values)

using a linear classifier. Finally, we compute the

scores y = max(si) where, i = 1, .., n. For CIP,

where n = 1, we treat a logit score > 0 as predicting

yes, otherwise the answer is no.

4.2 Applying the MHKA model to advanced

Social Commonsense Reasoning Tasks

There are some key differences in how MHKA

solves the two reasoning tasks:

(a) In the abductive αNLI reasoning task, the

model must predict – given incomplete observa-

tions O1 and O2 – which of two hypotheses Hi is

more plausible. For example: O1: Daniel wanted

to buy a toy plane, but he didn’t have any money;

O2: He bought his toy plane, and kept working

so he could buy another; correct Hi: He opened

a lemonade stand. Here, the model needs to link

O2 back to O1 using social inference knowledge

relating to the Hi that best supports one of the

sequences: O1, Hi, O2. In this case, the model
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Task Train Dev Test

αNLI 169654 1532 3059

CIP 12700 1008 1184

Table 3: Dataset Statistics: nb. of instances.

obtains the (encoded) input: O1, Hi, O2, and is

tasked to predict the correct Hi, using available

knowledge rules.5

(b) For Counterfactual Invariance Prediction,

CIP, the model needs to decide whether for given

a context Cs1,s2,s3 , under the assumption of a coun-

terfactual s0
2
, the given s3 remains invariant or not.

I.e., given: Dotty was grumpy. Dotty called close

friends to chat. She felt better afterwards. and the

counterfactual s0
2
: Dotty ate something bad – can it

still be true that Dolly felt better afterwards? Here

our model gets as input the factual (s2) and a coun-

terfactual (s0
2
) context: s1, s2, s3 [SEP], s1, s0

2
, s3

(cf. Table 2) and is tasked to predict whether or not

s3 remains true under the assumption s0
2
. Again,

the model needs to identify relevant knowledge to

substantiate whether s3 prevails given s1 and s0
2
.

Abduction meets Counterfactual Reasoning

Clearly, when learning to judge whether s3 holds

true given both a factual (s1, s2) and counterfactual

(s1, s
0

2
) context, the CIP model learns how different

events can or cannot lead to the very same factual

event in a hypothetical reasoning task. Our intu-

ition is that such a model effectively also acquires

knowledge about what kinds of events can provide

evidence for a given event, as is needed to perform

abduction. Hence, we hypothesize that a model

that has learned to understand and reason about

counterfactual situations can also support abduc-

tive reasoning (i.e., finding the best explanation for

an event). In our experiments, we test this hypoth-

esis, and evaluate the performance of a model on

the αNLI task, that we first train on CIP and then

finetune it on the abductive inference task.

5 Experiments

Tasks and Settings. We apply our model to the

two social reasoning tasks introduced in §2. We

train models for each task using the input settings

stated in Table 2. Data statistics is given in Table 3.

5Relevant knowledge from COMET2.0 here includes: [O1:
Daniel wanted to have money] → [Hi: Daniel wanted to
make money, Daniel then makes money] → [O2: Daniel
needed to have money]. Clearly, Hi is supported by H1: He
opened a lemonade stand. So we can judge that the selected
knowledge (partially) supports H1.

We extract, for each event in each input sentence,

social commonsense reasoning knowledge from

COMET2.0, as detailed in §3. For the extraction

process we use SRL as implemented in AllenNLP

(Gardner et al., 2018).

Hyperparameter Details. In all models the Rea-

soning Cell and the Knowledge Encoder are both in-

stantiated by a Transformer with 4 attention heads

and depth=4. For each task, we select the hyperpa-

rameters that yield best performance on the dev set.

Specifically, we perform a grid search over the hy-

perparameter settings with a learning rate in {1e-5,

2e-5, 5e-6}, a batch size in {4, 8}, and a number of

epochs in {3, 5, 10}. Training is performed using

cross-entropy loss. For evaluation, we measure ac-

curacy. We report performance on the test sets by

averaging results along with the variance obtained

for 5 different seeds. See Supplement for details.

Baselines. We compare our model to the follow-

ing baselines:

(a) OpenAI-GPT (Radford et al., 2018) is a multi-

layer Transformer-Decoder based language model,

trained with an objective to predict the next word.

(b) Transformer Encoder Model has the same ar-

chitecture6 as OpenAI-GPT without pre-training

on large amounts of text.

(c) BERT (Devlin et al., 2019) is a LM trained with

a masked-language modeling (MLM) and next sen-

tence prediction objective, i.e., it is trained to pre-

dict words that are masked from the input.

(d) RoBERTa (Liu et al., 2019) has the same archi-

tecture as BERT, yet without next-sentence predic-

tion objective. RoBERTa-B(ase) and -L(arge) were

trained on more data and optimized carefully.

(e) McQueen (Mitra et al., 2019) proposed ways to

infuse unstructured knowledge into pretrained lan-

guage model (RoBERTa) to address the αNLI task.

Mitra et al. (2019) used original ROCStories Cor-

pus (Mostafazadeh et al., 2016) and Story Cloze

Test that were used in creating αNLI dataset.

(f) L2R2 (Learning to Rank for Reasoning) (Zhu

et al., 2020) proposed to reformulate the αNLI task

as a ranking problem. They use a learning-to-rank

framework that contains a scoring function and a

loss function.

6 Experimental Results

This section describes the experiments and results

of our proposed model in different configurations.

612-layer, 768-hidden, 12-heads
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Model Dev (%) Test (%)

Majority ⇧ 50.8 –

GPT ⇧ 62.7 62.3

BERT -L ⇧ 69.1 68.9

McQueen (Mitra et al., 2019) 86.68 84.18

Concurrent Work

L2R
2 (Zhu et al., 2020) – 86.81

This work

Transformer Enc. w/o LM-Pretraining 52.12 51.25

+ MHKA 54.96 53.91

RoBERTa-B 71.2±0.3 71.13±0.5

RoBERTa-B + MHKA 73.87±0.2 74.17±0.2

RoBERTa-L 85.06±0.7 84.48±0.7

RoBERTa-L + Joint Training 85.58±0.5 84.91±0.7

RoBERTa-L + MHKA 87.44±0.5 87.12±0.5

Human Perf. – 91.4

Table 4: Results on αNLI dataset, ⇧: as in Bhagavatula

et al. (2020), L = Large, B = Base, excluding unpub-

lished leaderboard submissions

Results on αNLI. Our experiment results for

the αNLI task are summarized in Table 4. We

compare performances of the following mod-

els: majority baseline, pre-trained LM base-

lines, and MHKA fine-tuned on RoBERTa-B(ase)/-

L(arge). We observe consistent improvements of

our MHKA method over RoBERTa-B (+3.04 per-

centage points, pp.) and RoBERTa-L (+2.64 pp.)

on αNLI. Since MHKA uses RoBERTa to encode

the input, this gain is mainly attributed to the use

of knowledge and the multi-head knowledge atten-

tion technique. To better understand the impact

of knowledge from pre-trained LMs, we trained a

transformer encoder model without fine-tuning on

a pretrained LM (see Table 4). Clearly, the overall

performance of such a model drops considerably

compared to the SOTA supervised models, but the

improvement of MHKA by +2.84 points suggest

that the impact of knowledge and reasoning ob-

tained through multi-head knowledge attention is

stable and independent from the power of LMs.

Further, we compare our knowledge incorporation

technique with Joint Training: this method uses pre-

trained LMs to jointly encode both task-specific in-

put and the knowledge ([CLS] (K)nowledge [SEP]

(I)nput text). Table 4 shows that Joint Training

yields limited improvement (+0.43 pp.) over the

RoBERTa-L baseline – the intuitive reason being

that the pretrained LMs were never trained on

such structured knowledge.7 However, our MHKA

7They also have a disadvantage when the length of con-
text + knowledge increases, as this causes a bottleneck for
computation on a GPU with limited memory (8-24GB).

Model Input format Dev% Test%

RoBERTa-B s1, [SEP], s02, [SEP], s3 63.29 61.8

s1, s2 [SEP] s1, s02 57.44 58.9

s1, s2, s3 [SEP] s1, s02 64.38 62.8

s1, s2, s3 [SEP] s1, s02 , s3 66.66 67.98±0.5

+ MHKA s1, s2, s3 [SEP] s1, s02 , s3 69.34 69.7±0.6

RoBERTa-L s1, s2, s3 [SEP] s1, s02 , s3 72.4 71.95±0.6

+ MHKA s1, s2, s3 [SEP] s1, s02 , s3 74.4 73.05±0.3

Human Perf. 84.8

Table 5: Results on Counterfactual Invariance Predic-

tion (CIP).

Model Dev Test

RoBERTa-Large-αNLI 76.3 76.8

Transfer Learning 78.00 79.04

Transfer Learning + MHKA 78.6 80.77

Table 6: Impact of Counterfactual Invariance Predic-

tion on αNLI. Training data size for αNLI is 8.5k (5%)

model shows a solid improvement of 2.64 pp. over

the baseline. This suggests the impact of the Multi-

Head Knowledge Attention integration technique.

Low Resource Setting for αNLI. To better un-

derstand the impact of dataset scale on the perfor-

mance of MHKA, and to test its robustness to data

sparsity on αNLI, we investigate low-resource sce-

narios where we only use {1, 2, 5, 10, 100}% of the

training data. Figure 4 shows constant advances

of MHKA over both RoBERTa-Base and -Large.

This result indicates the importance of knowledge

in low-resource settings.

Results on CIP. Table 5 reports the results of

our MHKA model on the CIP task, comparing to

both RoBERTa baselines. As this is a new task,

we also report the results of RoBERTa-Base with

different input formats. We find that providing

the model with the full sequence (s1, s2, s3 [SEP]

s1, s0
2

, s3) gives best performance. By extending

RoBERTa-Base and -Large with our MHKA rea-

soning component, we obtain an improvement of

+1.7 and +1.1 percentage points, respectively.

CIP for Transfer Learning. We now test our

hypothesis, discussed in §4.2, that a model trained

on the CIP task can support the αNLI task. We

first fine-tune two models: RoBERTa-L and the

RoBERTa-L+MHKA model on the CIP task (using

the hyperparameters for the CIP task, Table 5). As

a transfer-learning method, we fine-tune these mod-

els on 5% of the training data for the αNLI task

(using the hyperparameters for αNLI, Table 4) and

report the results in Table 6 as “Transfer Learning”
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Figure 4: Accuracy for αNLI (Low Resource Setting)

Figure 5: (a) Performance of MHKA model with dif-

ferent numbers of Heads and numbers of Layers.

and “Transfer Learning + MHKA”. Table 6 also

reports the results for RoBERTa-L trained on 5% of

the data of αNLI (called RoBERTa-L-αNLI).8 We

obtain a +2.84 pp. improvement over this baseline

by applying the pre-trained CIP model on the αNLI

task, and observe a further +1.73 pp. improvement

(i.e., overall 3.97 points wrt. the baseline) with the

stronger MHKA model. These results confirm our

hypothesis, and show that learning to distinguish

the outcomes of factual and counterfactual events

can help the model to better perform abduction.

Ablation on Reasoning Cell. To give further

insight into the factors for the model’s capacity, we

study the impact of the number of heads and layers

in the reasoning cell. The left part of Figure 5(a)

shows the performance of the MHKA model with

different numbers of heads and layers. Note that

the hidden dimensions of RoBERTa-Large is 1024
which is not divisible by 3, therefore we have 1, 2,

and 4 as our attention heads. We observe that in-

creasing the number of heads and layers improves

the performance of the model. The intuitive ex-

planation is that multiple heads help the model to

focus on multiple knowledge rules and at the same

8The training data size of αNLI is 14x larger than CIP.
Therefore, in order to study the impact of CIP on αNLI, we
made the training data size of CIP and αNLI comparable.
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Relevant

47.30%

Non-

Relevant

32.20% Relevant;

45.40%
Parially

Relevant;

35.30%

Non-

Relevat;

19.30%

Figure 6: Human evaluation of the relevance of Knowl-

edge Rules a) for 100 instances from the αNLI dev set

and b) for the 56 (out of the 100) instances where the

MHKA model predicted the correct hypothesis.

all know- w/o w/o relevant replacing

ledge irrelevant + partially relevant relevant

acc 56.2 57.6 (+1.4) 49.4 (�6.8) 45.05 (�11.2)

# 56 54 (�2) 20 (�36) 18 (�38)

Table 7: row 1: accuracy on 100 random instances from

αNLI devset where the RoBERTa-L baseline fails; row

2: nb. of instances (#) correctly predicted by MHKA.

time multiple layers help the model to recursively

select the relevant knowledge rules.

7 Analysis

Up to now, we have focused on performance analy-

sis with different experimental settings and model

ablations to analyze our model’s capacities. Now,

we turn to leveraging the fact that our model works

with semi-structured knowledge in order to obtain

deeper insight into its inner workings.

7.1 Quantitative Analysis.

Analysis on Knowledge Relevance. We conduct

human evaluation to validate the effectiveness and

relevance of the extracted social commonsense

knowledge rules. We randomly select 100 instances

from the αNLI dev set for which the RoBERTa-

Large Baseline had failed, along with their gold

labels and the extracted knowledge. Table 7 shows

that MHKA correctly predicts 56 instances cor-

rectly. We asked two annotators to mark the knowl-

edge rules that are relevant or partially relevant or

irrelevant for each all 100 instances. The obtained

answers yield that in 20.50% of cases the knowl-

edge rules were relevant, in 47.30% of cases they

were partially relevant (see Figure 6.a). Figure 6.b

depicts the relevance of knowledge rules for in-

stances that are correctly predicted by MHKA. The

inter-annotator agreement had a Fleiss’ κ=0.62.

Analysis of Model’s Robustness. We then test

the robustness of the models’ performance by ma-
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All Removing relevant Removing relation

knowledge relation tuples tuples randomly

87.85 85.4 (�2.45) 86.9 (�0.95)

Table 8: Accuracy on αNLI (dev set)

nipulating the knowledge it receives for these in-

stances in different ways: (a) we remove irrelevant

and (b) relevant knowledge rules, (c) we manually

change randomly selected rules from those that

were found to be relevant by our annotators, and

perturb them with artifacts. E.g., where annota-

tors found that “PersonX’s feelings” is relevant, we

change the sentiment by choosing incorrect possi-

ble values from ATOMIC; for other relation types,

we replace COMET’s generated object with an

antonym “PersonX wanted to be [nice ! mean]”,

etc. We evaluate the effect of the perturbations i)

on all 100 instances, and ii) on the 56 correctly pre-

dicted instances. Results are shown in Table 7. We

see, for (a), a small improvement over the model

results when using all knowledge, whereas for (b)

and (c) an important performance drop occurs. For

the 56 instances that MHKA resolves correctly, for

(b) and (c) we find the same effect, but with a much

more drastic drop in performance for (b) and (c).

This suggests that when the model is provided

with relevant knowledge rules, it is able to utilize

the knowledge well to perform the inference task.

In another test, we remove knowledge rules with

relations which were found most relevant by our

annotators (namely, ‘PersonX’s intent’, ‘PersonX’s

want’, ‘PersonX’s need’, ‘effect on PersonX’, ‘ef-

fect on other’, ‘PersonX feels’) (see Supplement for

details). Table 8 reports the results on dev set.

We observe: (a) when we remove the relevant

relational knowledge rules, the accuracy drops by

2.4 pp. suggesting that the model is benefitting

from the knowledge rules. (b) when we remove

knowledge rules randomly, the accuracy drop is

minimal which shows the robustness of our model.

7.2 Qualitative Analysis.

Finally, we perform a study to better understand

which knowledge rules were “used or incorporated

in the Reasoning Cell” during the inference.

A case study. Figure 7 depicts an example from

the αNLI task where we see the context at the top,

and knowledge rules along with different scores

below. The Human scores are annotated by the

annotators where, 1.0 = Relevant, 0.50 = Partially

Observation1 : Larry went to get some fast food. 
Observation2 : Larry decided he would stop eating fast food. 
Hypothesis1: He ended up getting a shower and smelling bad.(

❌
)  

Hypothesis2 : He gained 20 pounds in one month. (
✔

)

S
im

il
a

ri
ty

 s
c
o

re
H

u
m

a
n

 S
c
o

re

A
tt

e
n

ti
o

n
 s

c
o

re

Figure 7: Comparing relevance scores of knowledge.

relevant, 0.0 = Irrelevant. We also show the normal-

ized attention scores over the structured knowledge

rules9. We also measure a similarity score (using

dot product) between the final representation of the

Reasoning cell and different knowledge rules. In-

tuitively, we expect that relevant knowledge rules

should be incorporated in the final representation

of the Reasoning cell, and therefore, should have

a higher similarity score compared to irrelevant

knowledge rules. Figure 7, illustrates one such ex-

ample where we see that some relevant knowledge

(judged by annotators) – “He gained 20 pounds

in one month hxIntenti He wanted to lose weight”,

and “He would stop eating fast food hxWanti he

wants to lose weight” – are highly attended, and

scored higher in similarity measure compared to

others, indicating that the Reasoning Cell incorpo-

rated these knowledge rules. To study this further,

we randomly selected 10 instances from the αNLI

dev set along with the knowledge rules. We found

for 7 out of 10 instances that the MHKA model

gave higher similarity scores to relevant or partially

relevant knowledge rules than to irrelevant ones.

8 Related Work

Social Commonsense Knowledge Teaching ma-

chines to reason about daily events with common-

sense knowledge has been an important compo-

nent for natural language understanding (McCarthy,

1959; Davis and Marcus, 2015; Storks et al., 2019).

Given the growth of interest among researchers

in commonsense reasoning, a large body of work

has been focused on learning commonsense knowl-

9Note that we do not consider the attention maps as ex-
planations. We assume that attention exhibits an intuitive
interpretation of the model’s inner workings.
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edge representations (Lenat, 1995; Espinosa and

Lieberman, 2005; Speer et al., 2017; Tandon et al.,

2017). In this work, we address social common-

sense reasoning, where knowledge about events

and its implications is crucial. Rashkin et al. (2018)

(Event2Mind) proposed a knowledge resource for

commonsense inference about people’s intentions

and reactions in everyday events. Later, Sap et al.

(2019) (ATOMIC) extended the Event2Mind re-

source with substantially more events, and with

nine dimensions (If-then relation types) per event.

There has also been work on automatically ac-

quiring commonsense knowledge (Li et al., 2016;

Bosselut et al., 2019; Malaviya et al., 2020). Re-

cently, Nasrin Mostafazadeh (2020) introduced a

large-scale dataset (GLUCOSE) capturing ten di-

mensions of causal explanation (implicit common-

sense knowledge) in a narrative context. However,

learning to reason over such event-based semi-

structured knowledge is still a challenging task.

In this work, we propose a model which learns to

imitate reasoning using such structured knowledge.

Commonsense Reasoning (CR): There is a

large body of research on commonsense reasoning

over natural language text (Levesque et al., 2012;

Bowman et al., 2015; Zellers et al., 2019; Trichelair

et al., 2019; Becker et al., 2020). We discuss the

ones most related to our work. Earlier works sought

to utilize rule-based reasoning or hand-crafted fea-

tures (Sun, 1995; Gupta and Hennacy, 2005). With

the increase in size of commonsense knowledge

bases (Suchanek et al., 2007; Speer et al., 2017)

researchers started utilizing them to help models

perform commonsense reasoning (Schüller, 2014;

Liu et al., 2017). Recently, there have been at-

tempts to leverage pre-trained language models

to learn and perform commonsense inference, and

they achieved state-of-the-art results (Radford et al.,

2018; Trinh and Le, 2018; Kocijan et al., 2019; Rad-

ford et al., 2019). Our model takes advantage of

both pre-trained LMs and structured knowledge,

which allows us to inspect the reasoning process.

We also demonstrate that our model shows strong

performance for different, and finely structured

tasks in abductive and counterfactual reasoning.

Structured Commonsense Knowledge in

Neural Systems: Different approaches have been

proposed to extract and integrate external knowl-

edge into neural models for various NLU tasks

such as reading comprehension (RC) (Xu et al.,

2017; Mihaylov and Frank, 2018; Weissenborn

et al., 2018), question answering (QA) (Xu et al.,

2016; Tandon et al., 2018; Wang et al., 2019), etc.

Recently, many works proposed different ways to

extract knowledge from static knowledge graphs

(KGs). Most notable are ones that extract sub-

graphs from KGs using either heuristic methods

(Bauer et al., 2018) or graph-based ranking meth-

ods (Paul and Frank, 2019; Paul et al., 2020),

or else utilize knowledge graph embeddings (Lin

et al., 2019) to rank and select relevant knowledge

triples or paths.

Similar to Bosselut and Choi (2019) and Shwartz

et al. (2020), in this work we generate contextu-

ally relevant knowledge using language models

trained on KGs. With the increase in performance

of transformer-based models there has been a shift

from RNN-based neural models to pre-trained LMs.

Incorporating extracted knowledge using attention

mechanism (single dot product) has become a stan-

dard procedure. However, we propose a multi-head

attention model that can recursively select multiple

generated structured knowledge rules, and also al-

lows inspection by analyzing the used knowledge.

9 Conclusion

In this work, we propose a new multi-head knowl-

edge attention model to incorporate semi-structured

social commonsense knowledge. We show that our

model improves over state-of-the-art LMs on two

complex commonsense inference tasks. Besides

the improvement i) we demonstrate a correlation

between abduction and counterfactual reasoning in

a narrative context, based on the newly proposed

task of counterfactual invariance prediction, which

we apply to support abductive inference. Impor-

tantly, ii) we confirm the reasoning capacity of our

model by perturbing and adding noise to the knowl-

edge, and performing model inspection using man-

ually validated knowledge rules. In future work,

we aim to deeper investigate compositional effects

of inferencing, such as the interaction of socially

grounded and general inferential knowledge.
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