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Abstract

Game theory is commonly used to study social behavior in cooperative or competitive situations. One socioeconomic

game, Stag Hunt, involves the trade-off between social and individual benefit by offering the option to hunt a low-payoff

hare alone or a high-payoff stag cooperatively. Stag Hunt encourages the creation of social contracts as a result of the
payoff matrix, which favors cooperation. By playing Stag Hunt with set-strategy computer agents, the social component

is degraded because of the inability of subjects to dynamically affect the outcomes of iterated games, as would be the

case when playing against another subject. However, playing with an adapting agent has the potential to evoke unique
and complex reactions in subjects because of its ability to change its own strategy based on its experience over time,

both within and between games. In the present study, 40 subjects played the iterated Stag Hunt with five agents differing

in strategy: exclusive hare hunting, exclusive stag hunting, random, Win-Stay-Lose-Shift, and adapting. The results indi-
cated that the adapting agent caused subjects to spend more time and effort in each game, exhibiting a more complicated

path to their destination. This suggests that adapting agents exhibit behavior similar to human opponents, evoking more

natural social responses in subjects.
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1 Introduction

On a day-to-day basis, living things utilize cooperation

and competition to reach a desired outcome. Because

of this common dynamic, social behavior in coopera-

tive and competitive situations has become a popular

field of study. The use of games in social behavior

experiments can give insight into the interactive

dynamics between players, as well as their decision-

making processes. Such games can highlight individual

and group differences in a controlled and highly custo-

mizable environment. Game theory provides additional

benefits, as it includes tools to predict behavior and

decision-making by assuming players will attempt to

achieve the most desirable outcome (D. Lee, 2008).

Games are especially useful when considering the topic

of social behavior from a human–computer interaction

(HCI) standpoint. Because games provide a clearly

defined state space and set of rules, they are amenable

to providing a framework for humans to interact

with computers as partners or opponents. The

Prisoner’s Dilemma, Ultimatum Game, Trust Game,

Hawk–Dove, and Stag Hunt are among the most pro-

minent games used to research social behavior in HCI.

In a study conducted by Kiesler, Sproull, and

Waters (1996), the Prisoner’s Dilemma was used to

determine the differences in cooperation between

humans and different types of computer opponents. In

the Prisoner’s Dilemma, two players must decide to

either ‘‘rat out’’ their opponent or to keep quiet, a deci-

sion that affects each player’s ‘‘sentencing,’’ or personal

cost. In these experiments, subjects played against three

types of computer opponents: text-based, electronically

generated speech-based, and electronically generated
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face- and speech-based. The text-based opponent inter-

acted with the human player through text messages,

while the speech-based opponents used computer-

generated audio. The face- and speech-based opponent

was accompanied by a semi-realistic animated human

face synched up to the audio component. The com-

puter opponents were programmed to cooperate in

four out of six trials. While the speech-based and face-

and speech-based computer opponents were largely

unable to garner trust in players (likely stemming from

an uncanny valley effect), the text-based computer

opponent was able to encourage the same rate of coop-

eration in subjects as human opponents. This finding

suggests that human players are able to respond proso-

cially to some forms of computer opponents.

The Ultimatum Game is similar to the Prisoner’s

Dilemma in that they both explore players’ intentions

to cooperate or compete. However, in the Ultimatum

Game, two players must decide how to divide a sum of

money amongst themselves. In an experiment con-

ducted by Rilling, Sanfey, Aronson, Nystrom, and

Cohen (2004), both the Prisoner’s Dilemma and the

Ultimatum Game were used in order to gain insight

into the difference between interactions with a human

or computer partner in terms of ‘‘theory of mind,’’ or

one’s conception of another person’s thoughts and

mental state in a social capacity. In this version of the

Prisoner’s Dilemma, cooperative payoffs were inflated

to encourage cooperation. Results indicated that sub-

jects were more likely to accept unfair behavior from a

computer player rather than a human player (Rilling et

al., 2004). This suggests that human subjects did not

hold their computer opponents to the same social con-

structs they held other humans to, alluding to the issue

of not considering the computer opponents used in

these experiments as socially equal. Similar to the

Ultimatum Game, the Trust Game leaves two players

the task of splitting a resource, with one player ulti-

mately deciding how much each player receives

(Anderhub, Engelmann, & Güth, 2002). In McCabe,

Houser, Ryan, Smith, and Trouard (2001), subjects

played the Trust Game with both human and computer

player conditions. The computer player used a prob-

abilistic model, the choice probabilities of which were

shown to the subjects. Functional MRI (fMRI) results

uncovered neural correlates indicating that the active

brain areas involved varied between the two opponent

types. While both player conditions engaged the pre-

frontal cortex in order to form a mental picture of the

other player’s state of mind, human opponents evoked

higher prefrontal cortex activation and more coopera-

tion attempts in some subjects.

It is important to note that these example experi-

ments using the Prisoner’s Dilemma and the

Ultimatum Game paradigms have utilized either set

strategies or preprogrammed responses in their com-

puter agents. However, an agent with an adaptive

strategy, one that learns in real-time while playing a

game with another, might produce results that not only

engage the human player in a higher capacity, but may

also emulate human players enough to evoke strong

social responses that influence behavior during play.

Along these lines, Asher and colleagues introduced

embodied, neurobiologically plausible models of action

selection and neuromodulation with the ability to

adapt to their opponent’s behavior while playing the

game Hawk–Dove (Asher, Zaldivar, Barton, Brewer, &

Krichmar, 2012; Asher, Zhang, Zaldivar, Lee, &

Krichmar, 2012). These models incorporated the roles

of the dopaminergic and serotonergic neuromodulatory

systems in tracking expected rewards and costs, respec-

tively. Because of their adaptive nature and physical

embodiment, these models evoked interesting, strong,

and complex responses from subjects. The Hawk–Dove

game consisted of a human and a neural agent choos-

ing either to share (Display) or fight (Escalate) for a

valued resource. Whereas an unchallenged escalation

(one subject escalates, the other displays) resulted in

the escalating subject receiving the total value of the

resource, a challenged escalation (where both subjects

escalate) resulted in a costly penalty. If both subjects

displayed, they shared the value of the resource. Thus,

this paradigm optimizes investigation into risk-taking

and cooperative behavior.

In order to study the effects of embodiment, subjects

played Hawk–Dove games against both a simulated

computer agent and an autonomous, physical robot

(Asher, Zaldivar, et al., 2012; Asher, Zhang, et al.,

2012). In both cases, in order to probe the neuromodu-

latory mechanisms that give rise to cooperative and

competitive behaviors, subjects played against a model

with an intact serotonergic system and a lesioned sero-

tonergic system, the latter of which typically made the

agent play more aggressively. To impair the human

player’s serotonergic system, subjects underwent an

acute tryptophan depletion (ATD) procedure, which

temporarily lowered serotonin levels and has been

shown to reduce cooperation in the Prisoner’s Dilemma

game (Wood, Rilling, Sanfey, Bhagwagar, & Rogers,

2006). Subjects adjusted their strategies depending on

the type of agent they played. Subjects exhibited a sig-

nificant shift from a Win–Stay–Lose–Shift (WSLS)

strategy against an intact agent to a Tit-for-Tat (T4T)

strategy against an agent that was more aggressive due

to lesions of its simulated serotonergic system. This

strategy change suggested that subjects were sending a

message to the aggressive agent that they were being

treated unfairly.

In the Asher et al. study, two groups best described

individual subject’s responses. ATD caused some sub-

jects to be more aggressive, but others to be less aggres-

sive, as seen by their probability to escalate a fight.

A similar trend of two polarized subject groups was

observed when considering the effect of physical
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embodiment on game play. This study showed that an

adaptive agent could evoke strong, varied responses in

subjects (Asher, Zhang, et al., 2012). This suggests that

there might be underlying biological or experiential fac-

tors leading to subject-specific tendencies and or phe-

notypes in social situations.

In the present study, we are interested in moving

beyond games that focus on the competition between

players, to explore teamwork and social signaling

among players by using the socioeconomic game known

as the Stag Hunt (Skyrms, 2004). In the game of Stag

Hunt, two players decide whether to hunt a high-payoff

stag cooperatively or a low-payoff hare individually. As

described in detail in Scholz and Whiteman (2010), the

risk in this game is that both players must decide to

hunt the stag in order to catch it. In the case that both

players hunt the stag, both are awarded a high payoff.

However, if only one player decides to hunt the stag

while the other hunts a hare, the player who hunted the

stag gets no payoff and the player who hunted the hare

obtains a small payoff. Thus, success in the Stag Hunt

requires the ability to make a social contract with

another player and form a representation of another’s

intentions.

The Stag Hunt has recently been used to test theory

of mind assumptions, both through modeling and by

human subjects against computer agents (Yoshida,

Seymour, Friston, & Dolan, 2010; Yoshida, Dolan, &

Friston, 2008). In Yoshida and colleagues’ experiment,

subjects played Stag Hunt with a computer agent pos-

sessing one of three levels of sophistication, defined by

the number of levels of reciprocal belief inference used

by the model. Players were not aware of the level of

sophistication used by the agent. Their fMRI results

showed that rostral medial prefrontal cortex, a brain

region consistently identified in psychological tasks

requiring mentalizing, had a specific role in encoding

the uncertainty of the other’s strategy, and that the

dorsolateral prefrontal cortex encoded the depth of

recursion of the strategy being used. Their study

demonstrates that socioeconomic games like the Stag

Hunt and sophisticated computer agents can provide

an excellent environment for investigating the forma-

tion of social contracts, decision-making, and theory of

mind.

A major goal of the present study is to show that an

agent with the ability to adapt to another player’s

gameplay more effectively challenges a subject. In

many HCI games, subjects play against computer

opponents with static strategies, which may not chal-

lenge subjects in a natural way. A simulated agent with

the ability to adapt to its opponent’s behavior has the

potential to evoke more complex and interesting results

in subjects than these set-strategy agents used in the

studies described above. Such an adaptive system may

be a more informative probe for investigating human

behavior under challenging conditions. The use of

adaptive agents provides a controlled way to make sub-

jects believe they are playing against an intelligent

opponent. Moreover, incorporating the adaptive beha-

vior cultivated through subjects into future simulated

agents may lead to HCI systems that interact more

naturally with people.

To move beyond the more simplistic and commonly

used paradigm of game play against agents with set-

strategies, the present study investigated the social and

behavioral effects of an adaptive agent on human sub-

jects within the highly social Stag Hunt game environ-

ment. In order to compare pre-set and adaptive agent

paradigms, human subjects played a computerized ver-

sion of the game with five different strategies: exclusive

hare hunting (EQHare), exclusive stag hunting

(EQStag), random, WSLS, and an adaptive agent. The

adaptive agent was implemented with an Actor–Critic

model that took into account the costs and benefits of

moves. Our results show that such an adaptive agent is

able to evoke a response in subjects that is significantly

different from those produced by set-strategy para-

digms. Subjects spend more time and effort when play-

ing against an adaptive agent, following more complex

paths to their targets. Thus, such adaptive agents have

the potential to be used in social situations as a partner

or opponent akin to another human player, while

allowing for greater control.

2 Methods

2.1 Human participants

Forty subjects (age range: 18–25) were recruited

through an online database maintained by the

Experimental Social Science Laboratory (ESSL) at the

University of California, Irvine (UCI). The subject

database is comprised of currently enrolled undergrad-

uate and graduate students from UCI who have volun-

teered to be contacted for and participate in

socioeconomic experiments within the UCI School of

Social Sciences. In this recruiting database, there is no

screening for race, gender or other background charac-

teristics. Subjects had not previously participated in the

same experiment. The experimental protocol was

approved by the Institutional Review Board at

University of California, Irvine, and informed consent

was obtained from all subjects. Two subjects did not

appear to understand the instructions for the majority

of the experiment; their data were removed before

analysis.

2.2 Computer interface for the Stag Hunt

Subjects played a variant of the Stag Hunt game

against simulated agents, which was similar to the game

used by Yoshida and colleagues (2010). This version of

the Stag Hunt game differed from the traditional

Craig et al. 373

 at UNIV CALIFORNIA IRVINE on September 11, 2013adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


version through the addition of spatial and temporal

components to the game. The spatial component con-

sisted of a game board with tokens, both for the players

and for the stag and hare prey, such that the players

needed to traverse squares on the board in order to

reach and capture their prey. The temporal component

was a byproduct of this game environment, in that it

took a variable amount of time in each game to reach

and capture prey. This non-standard approach was

used in order to provide more measurable differences

in human behavior beyond the record of the action

choices themselves (e.g., reaction time, number of

turns, path on gameboard, etc.). However, the present

version retains the stag and hare equilibriums of the

original version of Stag Hunt.

The computer interface consisted of a 535 grid on

which a stag token, two hare tokens, a subject token,

and an agent token were placed (Figure 1). The two hare

tokens were placed on the middle square of the left and

right columns for every game while the stag, subject,

and agent tokens were randomly placed on a square

residing within the first row, last row, or center column

of the game grid. This precaution ensured that the play-

ers and the stag would not begin a game right next to a

hare. Player tokens were prevented from being initially

placed directly next to or on top of a stag or each other.

Each participant controlled the subject token

through left mouse clicks to adjacent squares on the

grid to hunt either the stag or hare token. Moves were

executed simultaneously between players (i.e., were not

limited to turns), and each subject’s moves took effect

instantaneously. Computer agents moved every 600

ms, which was shown in software testing to create a

reasonable level of difficulty (assessed by near-equal

agent/subject point totals in non-expert players).

Subjects were capable of moving quickly (’200 ms),

but often took more time in deciding moves. In order

to hunt a hare, the subject token needed to occupy the

same square as a hare token (Figure 2). A subject made

a right mouse click on the currently occupied hare

square to catch the hare. In the event that both players

tried to catch a hare at the same time, the player that

made the first click caught the hare. In order to hunt a

stag, the subject and agent tokens needed to occupy

squares adjacent to the stag token vertically,

Figure 1. Screenshot of Stag Hunt game board. The game

board included a 5× 5 grid of spaces upon which the player

(stick figure image), agent (robot image), stag (stag image), and

hare (hare image) tokens resided. The screen included a button

to start the experiment, the subject’s score for the round, the

subject’s overall score for the experiment, the game number

within the round, a 3-second countdown to the start of the

game, and a 10-second counter monitoring the game’s timeout.

At the beginning of each game, the locations for the stag, player,

and agent tokens were randomly placed along either the top

row, bottom row, or middle column at least one square away

from each other. The initial positions of the hares were fixed in

the locations shown above for all games. The player and agent

could move one square at a time towards their goal at the start

of the game, while the targets remain fixed.

Figure 2. Screenshot of hare capture. Players moved towards a

target by performing consecutive left mouse clicks on adjacent

squares until they had arrived at their target. In order to catch a

hare, the player needed to be on top of the hare so that the image

displayed both the player’s and the hare’s tokens. The player then

performed a right mouse click on top of the current square to

catch it. In the case that both players were on a hare square, the

first player to click on the hare caught it. When a player caught a

hare, that player won one point and the current game ended.
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horizontally, or diagonally (Figure 3). A subject made

a right mouse click on the stag square in order to catch

it. It was not sufficient for both players to merely be

next to the stag; they both needed to indicate their

intentions to catch the stag. As soon as a hare or stag

was caught, the game ended. Catching a stag awarded

each player four points, while catching a hare awarded

the successful player one point and the unsuccessful

player zero points (see payoff matrix in Table 1).

During the games, the subjects saw their total scores

for the current round as well as a 10-second countdown

timer that provided a time limit for each game. If a

game lasted over 10 seconds, no payoffs were given. At

the end of each round, the subject was shown their

total scores summed over all rounds already played.

Subjects were not shown the score of the agent in order

to prevent unnecessary competition.

2.3 Agents for the Stag Hunt

For each of the 250 games of the Stag Hunt, the agent

played one of the following five strategies: EQStag,

EQHare, Random, Win–Stay–Lose–Shift (WSLS), and

Adapt. EQStag agents always hunted stags, while

EQHare agents always hunted hares. The Random

agent had an equal probability of hunting a hare or a

stag in each game. The WSLS agent chose either hare or

stag randomly in its first game, switching to the other

target after losing a game and repeating its choice after

winning a game. The Adapt agent began its first game

with no choice preference or strategy, and developed its

strategy through an Actor–Critic model that is described

below. The rounds were presented in random order for

each subject, and all subjects played against every agent

strategy. No significant order effects were found.

During the round in which the subject played against

the Adapt agent, an Actor–Critic model was employed,

which learned the appropriate actions based on the

rewards and penalties acquired during a series of Stag

Hunt games.

The model updated state tables for a Reward Critic,

Cost Critic, and Actor. Each state was designated by:

(1) the player’s distance from hare, (2) the agent’s dis-

tance from hare, (3) the player’s distance from stag, and

(4) the agent’s distance from stag. The distances were

calculated using Euclidean distance and then truncated

to the nearest integer value. Player tokens could be, at

most, five squares from the stag and three from the

nearest hare, to give 225 possible states in each table.

The Reward Critic state table contained a weight

that corresponded to the expected reward at the current

state. Reward was defined as the payoff received at the

end of a game as given by the payoff matrix (Table 1).

Similarly, the Cost Critic state table contained a weight

that corresponded to the expected cost at the current

state. Cost was defined as the perceived loss on a hunt.

For example, if the Agent was hunting a stag and the

human caught a hare, the cost would be 24 (Table 1).

The Actor state table contained two weights for each

state: one for the likelihood to hunt hare and the other

for the likelihood to hunt stag in a given state. The

Adapt agent was naı̈ve for each subject at the begin-

ning of the experiment, meaning that the state tables

were initialized to zero.

After each move made by either player, the Actor–

Critic model state tables were governed by the follow-

ing equations.

The Actor–Critic weights depended on a delta rule

that calculated an error prediction:

d tð Þ= r tð Þ+V s, tð Þ � V s, t � 1)ð Þ ð1Þ

Figure 3. Screenshot of stag capture. In order to catch a stag,

both the player and agent tokens needed to be in squares

adjacent to the stag token, whether horizontally, vertically, or

diagonally adjacent. Both the player and the agent required the

intention of catching a stag. It was not sufficient to simply pass

next to the stag while the other player intended to catch it.

Once both players were adjacent to the stag and had the

intention to catch the stag, the human player performed a right

mouse click on top of the stag in order to catch it. Catching a

stag awarded both players four points each.

Table 1. Payoff matrix of Stag Hunt.

Agent hunts Stag Agent hunts Hare

Player hunts Stag Agent: 4 pts
Player: 4 pts

Agent: 1 pt
Player: 0 pts

Player hunts Hare Agent: 0 pts
Player: 1 pt

First to catch: 1 pt
Other: 0 pts
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where r tð Þ was either the reward or cost at time t,

V s, tð Þ was the Critic’s weight at state s, at time t, and

V s, t � 1ð Þ was the Critic’s weight for the previous time-

step. r tð Þ for the Reward Critic was given as:

rrwd tð Þ=
4; if caught stag at time t

1; if caught hare at time t

0; otherwise

8

<

:

ð2Þ

r tð Þ for the Cost Critic was given as:

rcost tð Þ=

�4; if hunting stag and other player

caught prey at time t

�1; if hunting hare and other player caught

prey at time t

0; otherwise

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð3Þ

The Critic’s state table was updated by:

V s, t+ 1ð Þ=V s, tð Þ+ d(t) ð4Þ

Equations 1–4 were applied after each move to update

the weights in the Reward and Cost Critic state tables.

The Actor’s weights were updated according to

Equations 5, 6, and 7. Equation 5 is given for the con-

dition in which the Adapt agent hunted a hare.

V hare, s, t+ 1)ð Þ=V hare, s, tð Þ+ 1� p hare½ ��d tð Þ

V stag, s, t+ 1)ð Þ=V stag, s, tð Þ � p stag½ ��d(t) ð5Þ

V hare, s, tð Þ was the Actor’s state table value for hunt-

ing a hare in state s at time t. Likewise, V stag, s, tð Þ was
the Actor’s state table value for hunting a stag in state s

at time t. d tð Þ was the delta value from both the Reward

and Cost Critics. Equation 6 is given for the condition

in which the Adapt agent hunted a stag.

V stag, s, t+ 1)ð Þ=V stag, s, tð Þ+ 1� p stag½ ��d tð Þ

V hare, s, t+ 1)ð Þ=V hare, s, tð Þ � p hare½ ��d(t) ð6Þ

Equations 5 and 6 were applied for both the Reward

and Cost Critic. The probability for hunting a hare,

p hare½ �, or stag, p stag½ �, was given by the SoftMax

function:

p hare½ �=
eV (hare, s, t)

eV (hare, s, t) + eV (stag, s, t)

p stag½ �= 1� p½hare� ð7Þ

At each turn, Equation 7 was used to choose the agent’s

prey. The agent would then move one square closer to

the stag, if stag was chosen, or one square closer to the

nearest hare, if a hare was chosen.

2.4 Experimental design

Data for each subject were collected simultaneously on

forty Dell desktop computers in the ESSL, with each

subject separated by privacy boards to prevent distrac-

tion and discussion between subjects. The subjects first

watched a narrated PowerPoint presentation, which

provided a standardized explanation of the purpose

and instructions for the experiment. Subjects were

informed at this time that they would receive both a

baseline compensation for participation as well as an

incentive payment that was dependent on their perfor-

mance in the experiment game play. The subjects next

participated in a training session in which they played

ten games of the Stag Hunt against a random-acting

agent; the results from these ten games did not count

towards the subjects’ final scores. The experimental ses-

sion then consisted of 250 games of Stag Hunt, divided

equally between five rounds. Each subject played the

Stag Hunt game against all five of the computer agents

(as discussed above) in rounds of 50 games, one round

per agent type, with the rounds presented in a random

order for each subject. Subjects were aware of switches

between the agents, but they were not given any infor-

mation on the agent’s strategy. Data for each subject

were saved to text files, which were then compiled using

Netsupport School computer software.

Following completion of the experiment, all subjects

received a US$7 standard payment for experimental

participation as well as compensation based on their

performance at the rate of US$ 0.02 for each point won

during the experimental session. Four points were

awarded for catching a stag, or US$ 0.08, one point for

catching a hare, or US$ 0.02, and zero points for not

catching a target or allowing the 10-second timer to

run out during a game. End of experiment payments

ranged from US$10 to US$21.

3 Results

The Adapt agent demonstrated the ability to adapt to

the subjects’ gameplay by taking into consideration the

subjects’ position with regard to game tokens. An anal-

ysis of the Actor state tables was performed to show

the likelihood to hunt hare based on the distances of

the Adapt agent and the subject from the stag and the

closest hare. The Adapt agent was more likely to hunt

a stag if it was further away from a hare (Figure 4a) or

if the other player was further away from a hare

(Figure 4b). Figures 4(c) and 4(d) show the Adapt

agent was more likely to hunt a stag if either it or the

other player were near a stag. These results show that

the Actor–Critic algorithm was not only sensitive to its

own position on the game board, but was also monitor-

ing the other player’s position.

Subject performance varied depending on the type

of agent played (Figure 5; Table 2). In all cases, the
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agents’ scores were similar to human scores, indicating

that the two opponents were fairly matched. EQStag

was shown to produce significantly higher overall sub-

ject scores than all other agent strategies, followed by

WSLS, which produced significantly higher scores than

the remaining three conditions. These high scores were

due to the subjects gravitating towards cooperation and

the high-payoff equilibrium of hunting stags. Subjects

had the lowest scores against EQHare agents, because

they were forced to compete against their opponents

for low-payoff hares. Playing with Adapt and Random

agents resulted in significantly higher scores than

EQHare and lower scores than EQStag and WSLS;

however, they were not found to be significantly differ-

ent from each other. Successfully hunting hare in all

games would have resulted in a score of 50, while
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Figure 4. Scatter plot of Actor state table data. Data for all subjects were taken from the Actor state tables of the Actor–Critic

models used in the Stag Hunt experiment. (a) shows the probability for the adapting agent to hunt the closest hare from each

possible distance to closest hare target, while (b) shows the probability of the agent to hunt the closest hare from each possible

distance of the subject to the closest hare target. (c) shows the probability for the agent to hunt the stag from each possible distance

to the stag, while (d) shows the probability of the agent to hunt the stag from each possible distance from the subject to the stag.
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Figure 5. Subject scores against agent strategy. For each

boxplot, the central mark is the median, the edges of the box

are the 25th and 75th percentiles, the whiskers extend to the

most extreme data points not considered outliers, and outliers

are plotted individually as ‘+ ’ symbols. The data were not

normally distributed; therefore subject performance against

different agents was compared using Wilcoxon rank-sum tests

(Bonferroni corrected, p< .005 was considered significant). The

graph depicts the subject scores when playing with different

agent strategies: Adapt, EQHare, EQStag, Random, and Win–

Stay–Lose–Shift (WSLS). Scores were averaged over all subjects

during the Stag Hunt experiment (Table 2).

Table 2. p-values for Wilcoxon rank-sum pairwise

comparisons of average subject scores in each condition.

Adapt EQHare EQStag Random WSLS

Adapt < .0001 < .0001 .9090 < .0001
EQHare < .0001 < .0001 < .0001
EQStag < .0001 < .0001
Random < .0001
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successfully hunting stag in all games would have

resulted in a score of 200. Because subjects had scores

higher than 50, yet lower than 200, this implies that

subjects switched between hare and stag hunting

against Adapt and Random agents rather than tending

toward the hare or stag equilibrium. Furthermore, the

wider range of scores when comparing Adapt to

Random suggests that subjects had more difficulty fig-

uring out the Adapt agent’s strategy.

To understand how individual subjects altered their

strategy when playing with different agents, we calcu-

lated the normalized ratios of stag to hare catches for

each subject in each condition (Figure 6). The ratio was

calculated by using the equation,

qstag:hare=(nstag � nhare)=(nstag + nhare) ð8Þ

in which qhare:stag represents the normalized ratio of

stags to hares, nstag represents the total number of stags

caught for that subject over all games in the condition,

and nhare represents the total number of hares caught

for that subject over all games in the condition. Each

ratio falls along a scale between negative one and posi-

tive one, negative one representing EQHare and posi-

tive one representing EQStag. In order to show the

distribution of hunt behavior in subjects, Figure 6

shows how the subject hunted with an EQStag,

Random, WSLS, and Adapt agent. We omitted the his-

togram for EQHare, as it was only possible for either

player to catch a hare when playing with this strategy,

and thus all data points were at negative one. Also, two

subjects were omitted from this analysis for not suc-

cessfully catching any stags or hares in the Adapt and
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Figure 6. Ratio of stag to hare catches for all participants. The ratio of stag to hare catches was calculated by the equation

qhare:stag = (nstag � nhare)=(nstag + nhare), in which qhare:stag is the ratio for a given subject, nstag is the number of stags captured during a

given condition, and nhare is the number of hares captured during a given condition. Values of positive one indicate exclusive stag

hunting (EQStag), while values of negative one indicate exclusive hare hunting (EQHare). The histograms display the ratio data for

(a) EQStag, (b) Random, (c) WSLS, and (d) Adapt agents. Note that the y-axis differs between Adapt/Random and EQStag/WSLS in

order to better observe the shape of the data.
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WSLS conditions. As expected, subjects showed a bias

toward stag hunting when playing against EQStag

(Figure 6a), which suggests that they found a high-

payoff equilibrium. In Figure 6(b), subjects playing a

Random agent had a somewhat normal distribution of

hunting tendencies with the peak being a mixture of

stag and hare hunting. In Figure 6(c), subjects playing

a WSLS agent had a bias toward stag hunting, as was

also seen in EQStag, and was likely a result of the high-

payoff equilibrium. In Figure 6(d), subjects playing the

Adapt agent had a trimodal distribution: (1) those

preferring the cooperative equilibrium, (2) those prefer-

ring the non-cooperative equilibrium, and (3) those

who were equally split between those two extremes.

Table 3 shows each individual subject’s hunting bias

for each condition, as indicated by their normalized

ratios, with darker colors representing stronger biases

toward stag or hare equilibrium. EQHare was again

omitted, because subjects could only capture a hare in

this condition. As shown by the table, many subjects

were biased to stag or hare hunting across different con-

ditions. For example, Subjects 11, 13, 15, 38, 55, and 57

Table 3. Color-coded chart of equilibrium alignment for individual subjects against each agent strategy.

The key shows the ratio, with green colors representing strong stag hunting equilibrium, and red colors representing strong hare hunting equilibrium.

Darker shades represent a stronger bias, and white represents minimal to no bias. The majority of subjects displayed positive/moderate ratios

throughout conditions, and those who displayed strongly negative ratios often remained negative or weakly biased throughout conditions.
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remained strong stag hunters in multiple conditions,

including the Adapt condition. Some subjects showed

hare equilibrium tendencies across multiple conditions

(i.e., Subjects 12, 14, 34, 41). These results suggest that

subjects may have tendencies toward cooperation or

non-cooperation. However, Subjects 36, 37, and 52

tended toward hare hunting in the Adapt condition but

not in other conditions, implying that the Adapt agent

evoked a shift in strategy in some subjects.

Subjects’ paths were analyzed to determine the

directness of their movements by measuring the amount

of deviation from a direct path connecting their first

movement toward their final destination at the end of

the game, referred to as the ‘‘direct path’’. The games

were analyzed over all outcomes (Figure 7a; Table 4),

and also specifically games in which the subject failed

to catch either a stag or a hare (Figure 7b; Table 5).

Failures, in particular, were analyzed, because the path

deviation provided extra information as to why the sub-

ject failed to catch a target; for example, indicating an

attempt to observe the agent, attempting to hunt the

stag while the agent hunted hare, etc. Path deviation

was calculated by finding the length of the direct path

(distance between the first and last moves of each sub-

ject in each game) and subtracting that number from

the subject’s total distance traveled in each game (calcu-

lated by summing the distances between each move).

All comparisons were performed on the average path

deviation ratio for each subject per agent strategy. In

the rank-sum analysis for path deviation over all

games, EQHare showed smaller average deviations

from all other conditions. Adapt showed nearly signifi-

cantly larger deviations from Random and WSLS. No

other comparisons were shown to be significantly dif-

ferent. However, in the rank-sum analysis for losses

(Figure 7b; Table 5), Adapt was found to have signifi-

cantly larger path deviations from all other agent stra-

tegies. These results might indicate that subjects

realized that the adaptive agent’s actions were
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Figure 7. Average path deviation ratio over all subjects for each agent strategy. The boxplots have the same notation as in Figure 5.

The data were not normally distributed; therefore subject performance against different agents was compared using Wilcoxon rank-

sum tests (Bonferroni corrected, p< .005 was considered significant). The length of the direct path to the target was calculated by

measuring the distance between the first and last moves for each game of each subject. That distance was subtracted from the

subject’s total distance traveled in each game calculated by summing the distances between each move. Those differences were used

in the above graphs as the average path deviation for each agent strategy: Adapt, EQHare, EQStag, Random, and Win–Stay–Lose–

Shift (WSLS). (a) The average path deviations over all games and strategies. (b) The average path deviations for only the games in

which the subject did not successfully catch a stag or hare, in other words losing the game (Table 5).

Table 5. p-values for Wilcoxon rank-sum pairwise

comparisons of average subject path deviation ratio in each

condition over game losses.

Adapt EQHare EQStag Random WSLS

Adapt < .0001 < .0001 < .0001 < .0001
EQHare < .0001 .6937 .0001
EQStag < .0001 < .0001
Random < .0001

Table 4. p-values for Wilcoxon rank-sum pairwise

comparisons of average subject path deviation ratio in each

condition over all games.

Adapt EQHare EQStag Random WSLS

Adapt < .0001 .0419 .0054 .0052
EQHare < .0001 < .0001 < .0001
EQStag .4030 .3689
Random .9090
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malleable depending on subject behavior, and therefore

subjects attempted to guide the agent or wait for the

agent to change its target. EQHare and Random were

both shown to have significantly larger path deviations

than WSLS; however, they were not significantly differ-

ent from each other. EQStag had no analyzable loss

data because the only way to lose a game in EQStag

was to time out. All timeout data were removed before

analysis due to excessive skewing.

The path deviation of the Adapt agent was analyzed

in the same way as the human data. Performing the

path deviation analysis on the Adapt agent showed that

the average deviation per game over all subjects is 1.5

units (s= 0:4; compared with the human’s average

path deviation in Adapt, ;1.2). For reference, each of

the other agent types had an average path deviation of

1 (direct path) due to their inability to switch targets

mid-game. In addition to using path deviation to give

insight into the player’s intention, move data in the

Adapt condition were analyzed to see which player

arrived at the stag first. Subjects arrived first at the stag

36% (s= 16%) of the time stags were caught. The

indirect paths and tendency to get to the stag first on

many games, may suggest that subjects were trying to

guide the Adapt agent’s behavior.

To test how quickly subjects were making decisions,

the average time between mouse clicks and the number

of turns taken by the subjects were analyzed (Figure 8;

Tables 6 and 7). Subjects had significantly shorter

delays in the EQHare condition for mouse clicks than

all other conditions, and subjects had significantly lon-

ger delays in the EQStag condition when compared

with the Random condition (Figure 8a; Table 6).

Subjects took nearly significantly longer between mouse

clicks when playing with the Adapt agent compared

with the Random agent, and EQStag had nearly signifi-

cantly slower click times than WSLS. No other com-

parisons were significantly different. EQHare shows the

most dramatic difference with a very short click time,

indicating that in this condition, subjects had a target

and trajectory clearly in mind for each game and made

moves as quickly as possible. The increase in click time

for Adapt might indicate that the subjects invested

more time watching to see what moves the adaptive
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Figure 8. (a) The average time between mouse clicks for subjects during agent strategy: Adapt, EQHare, EQStag, Random, and

Win–Stay–Lose–Shift (WSLS). The data were not normally distributed; therefore subject performance against different agents was

compared using Wilcoxon rank-sum tests (Bonferroni corrected, p< .005 was considered significant). Each mouse click indicated a

desired movement on the game board or action taken to catch a stag or hare target performed by the subject. (b) The average

number of turns taken by subjects during each agent strategy. The number of turns was taken cumulatively for all games in a

particular strategy for each subject. The boxplots have the same notation as in Figure 5.

Table 6. p-values for Wilcoxon rank-sum pairwise

comparisons of average subject mouse click delays in each

condition.

Adapt EQHare EQStag Random WSLS

Adapt < .0001 .3531 .0207 .2127
EQHare < .0001 < .0001 < .0001
EQStag .0009 .0279
Random .2235

Table 7. p-values for Wilcoxon rank-sum pairwise

comparisons of average subject turn counts for each condition.

Adapt EQHare EQStag Random WSLS

Adapt < .0001 .0327 < .0001 .3110
EQHare < .0001 < .0001 < .0001
EQStag < .0001 .0078
Random .0030
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agent would make before the subjects made their move-

ment decisions. Rank-sum tests were also run for the

differences between the average number of turns taken

by subjects over all games in each of the five conditions

(Figure 8b; Table 7). EQHare was found to have signif-

icantly fewer turns taken when compared with all other

conditions, followed by Random, which had signifi-

cantly fewer turns taken than the remaining three con-

ditions. EQStag was found to have nearly significantly

more turns taken than WSLS. Subjects took more turns

playing with the Adapt than with the Random agent.

Both the increased number of turns and high mouse

click delay indicate that the subjects were aware that

the adaptive agent was not acting randomly and may

show that the subjects attempted to guide the agent’s

behavior toward stag hunting to maximize payoffs.

4 Discussion

Economic game theory has had a long, productive his-

tory of predicting and describing human behavior in

cooperative and competitive situations (Maynard

Smith, 1982; Nowak, Page, & Sigmund, 2000; Skyrms,

2001). The theory of games has also been used to illumi-

nate the neural basis of economic and social decision-

making (M.D. Lee, 2008; Rilling & Sanfey, 2011).

However, these studies typically have human subjects

play against opponents with set-strategies and predictable

behavior. By introducing agents with the ability to adapt

to subject variation and the game environment, we were

able to evoke stronger strategic variation in our subjects.

Specifically, subjects played the socioeconomic game

known as the Stag Hunt because of its advantages for

studying cooperation, teamwork, and social signaling

(Skyrms & Pemantle, 2000; Skyrms, 2004). In a Stag

Hunt, subjects must weigh the decision of hunting a

valuable stag, which requires the cooperation of

another player, against hunting a hare, a less valuable

but more easily obtainable prey (i.e., cooperation is

unnecessary). Because it has both a cooperative and

non-cooperative equilibrium, as well as a temporal

aspect (e.g., hunters can change their decision as the

hunt progresses), the Stag Hunt may be a better model

of cooperation and intention than the Prisoner’s

Dilemma, Hawk–Dove, or Ultimatum Game.

The adaptive agent was constructed based on a var-

iant of the Actor–Critic model, which contained one

Critic that learned the expected reward of an action

and another Critic that learned the expected cost of an

action. The model was similar to prior work in which a

computational model of neuromodulation and action

selection was developed based on the assumptions that

dopamine levels were related to the expected reward of

an action, and serotonin levels were related to the

expected cost of an action (Asher, Zaldivar, &

Krichmar, 2010; Zaldivar, Asher, & Krichmar, 2010).

The dopaminergic and serotonergic systems have been

shown to influence the evaluation of rewards and costs

for future decisions respectively, and have a strong

influence on social decision-making (Boureau &

Dayan, 2010; Cools, Nakamura, & Daw, 2010;

Krichmar, 2008).

The main findings of the present study involve the

differences in subject behavior when playing with an

adaptive model, as opposed to preset, predictable com-

puter strategies and purely random strategies. We

found significant differences in scores, deviation from a

direct path to the desired target, delay between move-

ment mouse clicks, and the ratio of stags to hares

caught. It was found that subjects had more variation

and uncertainty in their play with the Adapt agent.

Additionally, close examination of the Adapt agent

revealed that it not only altered play based on its own

position on the game board, but also monitored the

human players’ relative locations on the board. Lastly,

our findings indicate that there may be a divide in the

subject pool that defines two distinct types of reactions

to the adaptive model: those that become highly coop-

erative by primarily hunting stag with other players

and those that become highly uncooperative by primar-

ily hunting hare on their own.

Subjects playing with an adaptive agent may be

investing more time and effort in trying to discover the

agent’s strategy, recognizing that a strategy was, in

fact, being used rather than the agent taking random

actions. As seen in Figure 8(b), subjects took signifi-

cantly more turns when playing with the Adapt agent

than the Random agent. This could indicate either that

players were attempting to influence the agent’s actions

by executing guiding movements toward the desired

target, or that players found it necessary to change

their strategies mid-game, abandoning their first target

to pursue a different target as the agent’s actions

became clearer. In further investigation of the guiding

hypothesis, the data were analyzed to determine which

player arrived at the stag first in the Adapt condition

on average. This was decided by identifying the player

who landed within one square of the stag first. Subjects

arrived first in over 1/3 of the games, indicating that,

on many trials, the subject attempted to show the

Adapt agent cooperative intention. Further support for

the idea of subject observation and strategizing was the

finding that the adaptive agent was shown to cause

somewhat longer delays between mouse clicks than the

random agent (Figure 8a), indicating that subjects

spent a longer time thinking about their moves with the

Adapt agent than with the Random agent. This extra

time was likely used either to estimate the pattern of

the adaptive agent’s moves in order to choose the best

target, or to develop a strategy to guide the adaptive

agent towards the desired target.

Subjects showed greater uncertainty and varied

strategy in play with the adapting agent compared with
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other conditions. In Figure 5, the average scores for

Adapt were significantly different from every other

condition except Random. However, the wider var-

iance of the quartiles in Adapt suggests that some sub-

jects varied their responses, possibly in an attempt to

shape the adaptive agent’s actions. This conclusion is

compatible with the interpretation of the results in

Figure 8, because the extra turns and extra time spent

considering possible outcomes in the Adapt condition

may also be an attempt to influence the adaptive agent.

The path deviation analysis further supports these

claims. Subjects deviated from a straight path more

when playing with the Adapt agent, as opposed to

other agents (Figure 7), providing more evidence that

the Adapt condition may encourage subjects to either

change their strategy mid-game or that they attempted

to use guiding moves to influence the adaptive agent’s

behavior. Again, the significant difference between

Adapt and Random underscores the point that the sub-

jects treated the adaptive agent as if the agent was using

a complex strategy rather than acting randomly. Figure

7(b) shows an even more pronounced difference

between Adapt and the other conditions when compar-

ing only the games in which the subjects did not suc-

cessfully catch their target and were beaten by the

computer. This result is likely found, because in any

condition besides Adapt, when the subject loses a

game, it happens quickly as the agent is simply heading

straight for a hare target. The adaptive agent is not

likely to simply rush to a hare target unless it has been

trained to do so by a frequently uncooperative subject.

In the Adapt condition, the agent is able to ‘‘change

its mind’’ in deciding what target it will pursue mid-

game, meaning that the path to a target for the adaptive

agent is not as clear-cut and may change. This indicates

that more thought on the part of subjects was put into

interpreting the movements of the adaptive agent than

any of the other strategies. The analysis of path devia-

tion conducted for the Adapt agent showed a slightly

higher, but still comparable average value to the aver-

age human path deviation. The Adapt agent’s path

deviation behavior indicates that it was interpreting the

players’ positions on the board and using past payoff

information to determine its best strategy on any given

turn.

When considering the Actor state tables, it becomes

clear that the adaptive agent was in fact able to learn

when to hunt stag and when to hunt hare depending

upon both the agent’s position and the subject’s posi-

tion to either target (Figure 4). The closer the agent

was to the hare or the further the agent was from the

stag, the higher its probability to hunt hare. However,

the adaptive agent also considered the state of the other

player. The closer the human subject was to the hare

and the further the subject was from the stag, the more

likely the adaptive agent would hunt hare. There were

many cases in which the Adapt agent did not

demonstrate a clear strategy and switched its hunting

goal mid-game. For example, when the agent or the

subject was far away from the stag, the probability to

hunt a particular prey was roughly at chance. This

result could be improved upon in future experiments

by allowing the adaptive agent to play more games

with the subject, therefore providing the agent more

time to learn and develop its state tables, or by training

different agents off-line (i.e., playing non-naı̈ve agents).

For the sake of the length of this experiment, however,

the number of games per condition was capped at 50,

the threshold found in simulation at which the agent

began to exhibit strong strategic biases.

The possibility of three distinct groups within the

subject pool is suggested by the stag-to hare-catch ratio

data of the Adapt condition (Figure 6d). About half of

the subjects in the Adapt data form clusters at the

extremes of the distribution, indicating a bias toward

exclusive stag-hunting or exclusive hare-hunting, while

the remainder tended to switch between stag and hare

catching (see peak in the middle of Figure 6d). In con-

trast, the ratio of stag-to-hare catching against Random

agents was somewhat normally distributed with a peak

towards equal stag and hare hunting (Figure 6b). This

implies that playing with the Adapt agent evoked differ-

ent responses in some subjects over others, either

encouraging strong cooperation or strong competition.

For comparison, Figure 6(a) shows the EQStag data

and Figure 6(c) shows the WSLS data. Both EQStag

and WSLS appear to be heavily biased towards

EQStag. In the case of EQStag, stag hunting was obvi-

ously encouraged by the fact that the agent hunted only

stag. In the WSLS condition, if the subject beat the

agent once at catching a hare target, the agent would

attempt to hunt stag in the next game and would con-

tinue stag hunting as long as the subject was also hunt-

ing stags, which subjects playing to maximize their

score should have done as predicted by game theory.

Accompanying these histograms, the equilibrium table

(Table 3) shows each individual subject’s personal bias

in hunting over those four conditions, implying that

many subjects had tendencies to cooperate and compete

in this context, and that some subjects were strongly

influenced to change those biases when playing against

an Adapt agent (e.g., see Subjects 33, 36, 37, and 52 in

Table 3).

The suggestion that two or more types of strategies

can emerge among individuals when playing socioeco-

nomic games is similar to conclusions found in Asher

et al.’s study regarding HCI/HRI in the game of

Hawk–Dove using an adaptive model (Asher, Zhang,

et al., 2012). The conclusions drawn from their ATD

data indicated a division in their subject pool very simi-

lar to the divide found in the current experiment. Their

subjects, when tryptophan-depleted, fell into one of

two groups; either more cooperative or more competi-

tive during games, much like the present study’s
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subjects while playing against the adaptive agent. The

present study is further comparable in that the Reward

and Cost Critics used here resemble the serotonergic/

dopaminergic systems inspiring the model in Asher’s

study.

Variation between individuals in socioeconomic

games may be due to differences in dopamine and sero-

tonin signaling (Bevilacqua & Goldman, 2011; Hyde,

Bogdan, & Hariri, 2011; Loth, Carvalho, & Schumann,

2011). For instance, a variation of an upstream promo-

ter region of the serotonin transporter gene

(5-HTTLPR) has been shown to influence both beha-

vioral measures of social anxiety and amygdala

response to social threats in humans (Caspi, 2003;

Caspi, Hariri, Holmes, Uher, & Moffitt, 2010; Hariri,

2002; Lesch et al., 1996; Young et al., 2007). Subjects

carrying the short allele variant of 5-HTTLPR outper-

form subjects with the long allele in an array of cogni-

tive tasks and show increased social conformity

(Homberg & Lesch, 2011). Polymorphisms in dopami-

nergic genes, including variable number tandem repeat

(VNTR) polymorphisms in DRD4 and DAT1, have

been associated with poor ‘action restraint’ and ‘action

cancellation’ (Congdon, Lesch, & Canli, 2008; Munafò,

Yalcin, Willis-Owen, & Flint, 2008). The prevalence of

such polymorphisms in the human population suggests

that there is an evolutionary advantage for this varia-

bility, such as optimizing competition or cooperation in

different situations. Thus, investigating this variation in

games such as the Stag Hunt may be promising.

Several simulation studies are pertinent to the pres-

ent results. The cooperation aspect of game theory was

also explored in studies such as Valluri (2006), where a

variant of the Prisoner’s Dilemma was used in a simula-

tion with adaptive agents. The Prisoner’s Dilemma was

altered such that cooperation was able to evolve, albeit

against classical game theory predictions, by being iter-

ated and sequential. This means that agents played

games repeatedly against the same opponents, with the

second player knowing the first player’s action before

deciding on their own action rather than both players

making their actions simultaneously. A Q-learning algo-

rithm controlled agents with a similar SoftMax function

as the one used in the current experiment. Because this

version of Prisoner’s Dilemma was able to evoke coop-

eration in its agents, it is comparable to the Stag Hunt.

The link between the sequential iterated Prisoner’s

Dilemma and the Stag Hunt is the ability to see inten-

tionality before making an action. In Valluri (2006), the

ability of the agents to reach cooperation was attributed

to the sequential nature of turns rather than the tradi-

tional simultaneous action selection. In the version of

the Stag Hunt used in the present experiment, players

could see the path of the agent and choose their actions

based on that knowledge. In this way, the present meth-

ods agree with this prior simulation study. In a study by

Calderon (2006) using the Ultimatum Game, a

simulation model of phenotypic plasticity was used in

order to determine the evolution of cooperation in a

population. The results showed that when plasticity was

increased, cooperation was also increased in terms of

the threshold for acceptance and the offer amount.

Agents learned at the end of each game; proposers

increased the amount they offered by one if their offer

was accepted, and decreased their offer by one if it was

rejected in the last game. The same alterations were

made by recipients for their acceptance threshold. The

games played were strictly one-shot, as the agents did

not retain knowledge of whom they had played or what

their previous payoffs were. In the Ultimatum game,

cooperation is contingent on reaching middle ground in

which the proposer and the recipient both agree on the

division of the resource. Calderon found that in his con-

trol group, which did not exhibit plasticity, the relative

fitness was higher than in the group with plasticity

(2006). Although this result appears to be a strike

against adapting agents, Calderon states that the reason

this occurs is that in any case where two individuals

share a behavior, the agent who had that behavior

innately will outperform the adapting agent due to the

adaptive agent’s initial learning cost. This comparison is

very similar to the comparison of the EQStag and

Adapt agents in the present study, as higher scores were

achieved when playing against the EQStag agent. While

the EQStag agent began at cooperative equilibrium,

there was inevitably a large cost accrued in the learning

period needed for the Adapt agent to learn cooperation

and the subject to adapt to the Adapt agent.

The results of the present experiment have brought

up some interesting observations for future study. The

variation in individual subject strategy differences while

playing with the adaptive agent suggests that there may

be phenotypical variation influencing this behavior.

Additionally, the unique response overall to the adap-

tive agent in comparison to set-strategy agents invites

further exploration of the adaptive agent’s ability to

evoke a social response akin to that of playing against

another subject. In a future study, these two observa-

tions will be explored through their neural correlates

to, in the case of the first observation, distinguish a dif-

ference in brain activity between the two equilibrium

players, and in the case of the second observation, show

the difference in response between adaptive agent oppo-

nents and other human opponents. This study will both

qualify and quantify the adaptive agent’s effect on sub-

jects seen in the present experiment.

5 Conclusion

The main goal achieved by the present study was to

show that adaptive agents were in fact able to create a

significantly different response in human subjects than

that of set-strategy agents. Adaptive agents are useful
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for interacting in a game environment due to their

unique ability to evoke complex and interesting results

in human subjects while learning strategies of their own

from both experience and subjects’ behavior. Having

the experiment situated in a game allows for a level of

control and customization that is valuable when con-

ducting experiments of any degree of specificity.

Because of the unavoidable degree of unpredictability

encountered when using exclusively human subjects,

the level of control afforded by the use of an adaptive

agent is also desirable. The secondary goal achieved by

the present study was to create computer agents that

were able to learn in real-time without deliberate feed-

back outside of the game environment and have those

agents mimic human behavior enough for subjects to

learn to trust and cooperate with them in a relatively

short time span. The ability of the adaptive agent to

evoke a more complex reaction in human players war-

rants study into the social effects of human–robot

interaction using robots that are able to better emulate

complex strategies humans would use in a game envi-

ronment. Future research in the field of adaptive agents

may lead to robot or computer interfaces that are more

natural or sociable, providing a smoother transition of

complex technology into everyday life. In addition,

adaptive agents have the potential to add a heightened

degree of realism to HRI, specifically for socially affec-

tive robots (Thomaz & Breazeal, 2008).
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Munafò, M. R., Yalcin, B., Willis-Owen, S. A., & Flint, J.

(2008). Association of the dopamine D4 receptor (DRD4)

gene and approach-related personality traits: Meta-analy-

sis and new data. Biological Psychiatry, 63(2), 197–206.

Nowak, M. A., Page, K. M., & Sigmund, K. (2000). Fairness

versus reason in the ultimatum game. Science, 289(5485),

1773–1775.

Rilling, J. K., & Sanfey, A. G. (2011). The neuroscience of

social decision-making. Annual Review of Psychology,

62(1), 23–48.

Rilling, J. K., Sanfey, A. G., Aronson, J. A., Nystrom, L. E.,

& Cohen, J. D. (2004). The neural correlates of theory of

mind within interpersonal interactions. NeuroImage, 22(4),

1694–1703.

Scholz, J. T., & Whiteman, M. A. (2010). Social capital in

coordination experiments: Risk, trust and position.

Retrieved from http://opensiuc.lib.siu.edu/pn_wp/50/

Skyrms, B. (2001). The Stag Hunt. Presented at the Presiden-

tial Address Pacific Division of the American Philosophi-

cal Association.

Skyrms, B. (2004). The stag hunt and the evolution of social

structure. Cambridge, UK/New York: Cambridge Univer-

sity Press.

Skyrms, B., & Pemantle, R. (2000). A dynamic model of social

network formation. Proceedings of the National Academy

of Sciences, 97(16), 9340–9346.

Thomaz, A. L., & Breazeal, C. (2008). Teachable robots:

Understanding human teaching behavior to build more

effective robot learners. Artificial Intelligence, 172(6-7),

716–737.

Valluri, A. (2006). Learning and Cooperation in Sequential

Games. Adaptive Behavior, 14(3), 195–209.

Wood, R. M., Rilling, J. K., Sanfey, A. G., Bhagwagar, Z., &

Rogers, R. D. (2006). Effects of Tryptophan Depletion on

the Performance of an Iterated Prisoner’s Dilemma Game

in Healthy Adults. Neuropsychopharmacology, 31(5),

1075–1084.

Yoshida, W., Seymour, B., Friston, K. J., & Dolan, R. J.

(2010). Neural Mechanisms of Belief Inference during

Cooperative Games. Journal of Neuroscience, 30(32),

10744–10751.

Yoshida, W., Dolan, R. J., & Friston, K. J. (2008). Game the-

ory of mind. (T. Behrens, Ed.) PLoS Computational Biol-

ogy, 4(12), e1000254.

Young, K. A., Holcomb, L. A., Bonkale, W. L., Hicks, P. B.,

Yazdani, U., & German, D. C. (2007). 5HTTLPR Poly-

morphism and enlargement of the pulvinar: Unlocking the

backdoor to the limbic system. Biological Psychiatry,

61(6), 813–818.

Zaldivar, A., Asher, D., & Krichmar, J. (2010). Simulation of

how neuromodulation influences cooperative behavior.

From Animals to Animats 11, 649–660.

About the Authors

Alexis B Craig received a BS in cognitive science from the University of California, Los Angeles

in 2011 and is currently pursuing her PhD in psychology–cognitive neuroscience at the

University of California, Irvine. Her research interests include cognitive robotics, human–robot

interaction, game theory, and adaptive technology.

Derrik E Asher received a BS in chemical physics from the University of California, San Diego

in 2006, then went on to complete an MS in cognitive neuroscience at the University of

California, Irvine in 2010 for work with computational models of neuromodulation, decision-

making and human–robot interaction (HRI). He is currently working with genetic algorithms to

evolve biologically plausible artificial neural network models that perform sensorimotor integra-

tion and transformations in order to achieve behavioral error minimization.

Nicolas Oros received a BSc, an MSc and a PhD in computer science and artificial intelligence at

the University of Hertfordshire, Hatfield, UK in 2005, 2006, and 2010, respectively. In 2010, he

joined the cognitive anteater robotics laboratory at the University of California, Irvine, as a postdoc-

toral research scholar. His research interests include computational neuroscience, artificial intelli-

gence, swarm intelligence and robotics, artificial life, and evolutionary computation.

Alyssa A Brewer received a BS in biological sciences with departmental honors and an AB in

comparative literature with interdepartmental honors in the humanities in 1996 from Stanford

University. She then completed a dual graduate degree program, receiving her PhD in neu-

roscience in 2005 from Stanford University and her MD in 2007 from Stanford University school

of medicine. Since 2007, Dr Brewer has been an assistant professor in the department of cogni-

tive sciences at the University of California, Irvine. Her research focuses on sensory neu-

roscience, using behavioral, genetic, and high-resolution neuroimaging techniques to investigate

questions ranging from the fundamental organization of human visual cortex, functional plasti-

city in visuomotor regions, and visual changes in dementia, to human–robot social interaction,

decision-making, and the organization of human auditory cortex.

386 Adaptive Behavior 21(5)

 at UNIV CALIFORNIA IRVINE on September 11, 2013adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


Jeffrey L Krichmar received a BS in computer science in 1983 from the University of

Massachusetts at Amherst, an MS in computer science from The George Washington University

in 1991, and a PhD in computational sciences and informatics from George Mason University in

1997. He spent 15 years as a software engineer on projects ranging from the PATRIOT Missile

System at the Raytheon Corporation to air traffic control for the federal systems division of

IBM. In 1997, he became an assistant professor at The Krasnow Institute for Advanced Study at

George Mason University. From 1999 to 2007, he was a senior fellow in theoretical neurobiology

at The Neurosciences Institute. He is currently an associate professor in the department of cogni-

tive sciences and the department of computer science at the University of California, Irvine. His

research interests include neurorobotics, embodied cognition, biologically plausible models of

learning and memory, and the effect of neural architecture on neural function.

Craig et al. 387

 at UNIV CALIFORNIA IRVINE on September 11, 2013adb.sagepub.comDownloaded from 

http://adb.sagepub.com/

