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Abstract Punishment of free-riders is generally viewed as an important factor in promoting
cooperation. But since it is often costly to sanction exploiters, the emergence of such a be-
havior and its stability raise interesting problems. Players who do not contribute to the sanc-
tions, but profit from the increased level of cooperation caused by them, act as “second-order
exploiters” and threaten the joint enterprise. In this paper, we review the role of voluntary
participation in establishing and upholding cooperation with or without punishment. In par-
ticular, we deal with two distinct forms of punishment, namely peer punishment and pool
punishment, and compare their stability and their efficiency. The emergence and upkeep
of collaborative undertakings can strongly depend on whether participation is voluntary or
mandatory. The possibility to opt out of a joint enterprise often helps in curbing exploiters
and boosting pro-social behavior.
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Introduction

A few years ago, game theorist Andrew Colman quipped that “we seem to have replaced
the problem of explaining cooperation with that of explaining altruistic punishment” [20].
In this paper, we analyze mechanisms of punishment which are neither problematic nor
altruistic.

A considerable amount of theoretical and experimental work, often sailing under the
banner of “strong reciprocity”, deals with the impact of costly punishment on the wide-
spread human propensity to engage in collective action and contribute to joint efforts and
common goods (see, e.g., [9, 15, 26, 29, 30, 32, 40, 55–58, 74, 75, 92, 107], cf. [96] for a
review). Our paper surveys one particular approach to this multi-faceted issue, namely the
option to turn away from the joint enterprise.

Before expanding on this topic, we would like to emphasize that the punishment of free-
riders is not the only mechanism to promote cooperation. For instance, population structure
(which could be provided by kinship or neighborhood) and repeated interactions assuredly
play an essential role. Moreover, in many experimental and theoretical investigations, a par-
ticularly challenging scenario is assumed, namely that the collective enterprise is undertaken
by a random sample of anonymous individuals. In many, if not most, real-life interactions,
this is evidently not the case; and as soon as we allow for reputation effects and for non-
random assortment in an open market for reliable partners, a large part of the problem of
explaining cooperation disappears (see, e.g., [12, 55, 56, 73, 82, 83, 98]).

This being said, it seems all the more remarkable that many players engaged in experi-
mental “public good games” are willing to pay substantial costs in order to impose fines on
free-riders. The threat of punishment greatly increases the average level of pro-social contri-
butions. But since everyone profits from an increase of the public good, those who contribute
to the sanctions are providing another common good, whereas those who do not punish de-
fectors are engaged in another form of free-riding, and may be viewed as “second-order
exploiters”.

From the viewpoint of evolutionary game theory, the punishment of exploiters raises
interesting questions. In particular, how can such a trait emerge, and how can it be stably
sustained? Evolutionary game theory is based on the assumption that successful strategies
are copied preferentially, by genetic transmission, in the context of natural selection, or
by social learning in cultural evolution (see, for instance, the textbooks by Weibull [105],
Hofbauer and Sigmund [61], Nowak [85], Sandholm [93], and Sigmund [97]). How can
strategies which are costly and provide benefits to others spread in the population?

The standard explanation offered by proponents of “strong reciprocity” is based on group
selection, cf. [10, 41]. If one assumes that populations consist of separate demes, with only a
limited exchange of strategies between them, then groups of pro-social punishers fare better
than groups of defectors and can successfully replace them. This approach has certainly an
inherent plausibility. In particular, since warring and raiding seems to take up a remarkably
large place in the history and prehistory of our species (cf. [18, 44, 65, 71]), group extinction
may well have been frequent enough to explain the evolution of human propensities for in-
group favoritism, parochial solidarity, and even self-sacrifice for the benefit of the own tribe
or nation. There is, admittedly, a vast amount of cooperation which is not related to war-like
activities. But the welfare-promoting effects of such peaceful cooperation can indirectly
provide an essential advantage for the competition between groups, for instance, by leading
to a larger group size [69].

Is group selection a necessary mechanism for the maintenance of pro-social punish-
ment directed against exploiters? And how can pro-social punishers get established within
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a group? In this paper, we discuss a mechanism based on individual selection. It exploits
the fact that in many joint enterprises, participation is voluntary rather than compulsory. It
will be shown that this strongly favors the emergence of coercion. Such a result may at first
almost appear as paradoxical, but it fits well with a tradition of thought pithily resumed in
Hardin’s maxim “mutual coercion, mutually agreed upon” [45], and which traces its roots
back to social philosophers as diverse as Aristotle and Rousseau (see, e.g., [5, 6, 87, 100]).
The present paper reviews and analyzes a collection of results on the effects of optional
participation on contributing to joint enterprises, on the evolution of pro-social punishment
and on the emergence of sanctioning institutions. This topic was first addressed in [34] and
further pursued in [8, 13, 23, 28, 50, 51, 76, 94, 99, 104].

The study of the role of “policing” in promoting cooperation is by no means restricted
to economics and social sciences. Indeed, it is a topic of fundamental importance in several
of the “major transitions” which punctuated biological evolution, see [77]. Such transitions
have led, for instance, to the cooperation of different types of molecules, to the regulation
of meiotic division, to the symbiosis of proto-cells, to the emergence of multicellular organ-
isms, and to the division of labor in social insects. It is clear that all transitions leading to
higher-order units of selection are based on cooperation and thus face a basic threat from
free-riders. A large number of theoretical approaches have addressed this issue, see, e.g.,
[33, 36, 37, 89]. But in our review, we concentrate on human collaboration. In this case,
it is likely that many of the relevant types of behavior have been shaped by cultural rather
than natural selection, or by gene-culture co-evolution, see e.g., [17] or [90]. The tools of
evolutionary game theory are equally suited in each case: they are based on the assump-
tion that more successful strategies are more likely to be copied. While we interpret our
model in terms of cultural evolution based on social learning, we emphasize the parallels
with individual-based natural selection. We show that coercion and social control of col-
laborative efforts can emerge spontaneously, if self-interested players can choose between
engaging in a social contract or abstaining. Thus our model does not rely on a top-down
approach, or require prescriptions handed down from higher authorities. On the contrary, it
offers a bottom-up approach towards the emergence of sanctioning institutions.

In human societies, there exists a graduation of mechanisms of punishment, all the way
from the anarchy of a laissez-faire regime up to vigilantism or strict governmental control.
So far, most experiments on public goods with punishment have focused on one mechanism,
namely peer punishment: after after the joint enterprise, individuals can impose fines on
others, at a cost to themselves. The problems are obvious. In a world consisting mostly of
defectors, a minority of pro-social peer-punishers bears heavy costs, and seems unlikely to
be selectively favored. Conversely, in a world of cooperators, both peer-punishers and non-
punishers fare equally well (since no one needs to be punished), and hence neutral drift can
randomly affect their frequencies, so that the threat of punishment can dwindle to the point
where defectors may invade with impunity and take over.

The very first experiment on public goods games with punishment, by Yamagishi [107],
considered a different mechanism for imposing sanctions. The (anonymous) players have
to decide whether or not to contribute a certain amount to a “punishment pool” before ac-
tually contributing to the public good game. The size of the punishment pool determines
the size of the fine imposed on those who contribute least to the public good game. In [99],
it is argued that this can be viewed as a step towards an institutionalized mechanism for
imposing sanctions on exploiters. In particular, pool punishment is closely related to the
self-financed contract enforcement games in Ostrom’s “Governing the Commons” [87], and
a “punishment fund” can be viewed as a rudimentary institution to uphold the common
interest. Many small-scale societies use this principle, for instance, by hiring an enforcer.
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When settlers pay a sheriff to keep law and order, we get an inkling of how pool punishment
works. In “Governing the Commons,” a series of real-life examples of self-financed contract
enforcement are minutely described. They concern the provisioning and the appropriation of
common resources, for instance, irrigation systems, inshore fisheries or mountain meadows,
the proverbial “Commons,” and discuss successful examples as well as failures.

At first glance, the emergence of pool punishment seems to run into similar obstacles
as that of peer punishment, and its stability in a cooperative population is even less likely,
since pool-punishers have always to contribute more than the non-punishers. However, if
punishers can engage in the so-called “second-order punishment” by also punishing those
who do not contribute to the sanctions, the tables are turned. We shall see that pool-punishers
can establish a solid hegemony while peer-punishers cannot. Indeed, if all players cooperate,
then peer-punishers cannot be distinguished from non-punishers. By contrast, pool punishers
must declare themselves beforehand. Those who do not contribute to the punishment pool
are just as visible as those who do not contribute to the joint enterprise. Hence, they can be
punished just as well. Thus pool punishment leads more easily to an efficient second-order
punishment regime, and hence to more stability.

The main aim of our paper is to show by mathematical models based on social learning
that the voluntary participation in pro-social enterprises often promotes more cooperation
than compulsory participation does. We analyze this for three scenarios: without punish-
ment, with peer punishment and with pool punishment. Moreover, we distinguish whether
punishment is also directed at those who do not contribute to the sanctions (second-order
punishment) or not. But first, we describe the evolutionary dynamics of social learning in a
general setup. Indeed, a secondary aim of this paper is to illustrate the usefulness of a simple
approximation, the so-called strong imitation limit.

Evolutionary Dynamics of Social Learning

There are many ways to model social learning. The simplest is to assume that successful
strategies are more likely to be imitated. We could, for instance, assume that from time to
time, each player adopts the strategy of a player i chosen (within the whole population)
with a probability which is an increasing function of that player’s payoff Pi , for instance of
the form B + sPi , where B is interpreted as a “baseline fitness” (the same for all) and the
parameter s ≥ 0 measures the effect of the payoff on the probability to be imitated. Thus s

measures the importance of the game: if s = 0, a strategy’s success does not make it more or
less likely to get copied. This approach, which is based on the Moran process in population
genetics, was used in some of the earliest applications of social learning to evolutionary
game theory, cf. [85].

We will use a different method, the so-called “pairwise comparison” approach. We as-
sume that two players i and j are randomly chosen. Player i adopts the strategy of player
j with probability pi→j , which is an increasing function of the payoff difference Pj − Pi .
Similarly, with probability pj→i , player j adopts the strategy of player i. A popular choice
for the imitation probability pi→j is (see [7, 78, 101])

pi→j = 1

1 + exp[s(Pi − Pj )] , (1)

where the “imitation strength” s ≥ 0 measures how strictly the players are basing their
decisions on payoff comparisons. In particular, for s = 0 or for Pj = Pi , a coin toss de-
cides whether i imitates j . Small values of s correspond to a regime we call “weak imita-
tion.” In this case, imitation is basically random, but more successful players are imitated
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slightly more often. For s → +∞, “strong imitation,” more successful players are always
imitated. Clearly, the homogeneous populations correspond to absorbing states of this sto-
chastic process: once such a state is reached, imitation cannot produce any change.

We shall additionally assume that with a certain probability μ > 0 (the so-called explo-
ration rate), a player switches randomly to another strategy without imitating another player.
The resulting Markov chain has a stationary distribution which, if the population size M is
large (realistic values would be M = 100 or M = 1000), requires considerable efforts to
compute numerically. In addition to individual-based computer simulations, we shall con-
sider two limiting cases which allow an analytic treatment.

We treat the so-called “adiabatic” case which corresponds to letting the exploration rate
μ tend to 0. In that case, if in a homogeneous population a single dissident arises, then
its fate in the imitation process (no matter whether elimination or fixation) will be settled
before the next exploratory step occurs. In this case, we only have to consider two strategies:
the resident and the invader. The stationary distribution can be described by an embedded
Markov chain on the pure states [38].

More precisely, let us assume that there are d strategies 1, . . . , d . By Xk we denote
the number of players using strategy k (with

∑
Xk = M). The homogeneous population

with Xk = M will be denoted by Allk . With probability μ/(d − 1), a “dissident” individual
switches from k to l �= k. Let us denote by ρkl the probability that imitation leads to the fix-
ation of the dissident’s strategy l. This fixation probability can be computed by the formulas
known from the theory of birth–death processes, see [64, 80, 103] or [85]:

ρkl = 1

1 + ∑M−1
q=1

∏q

Xl=1
Tl→k(Xl )

Tk→l (Xl )

. (2)

In our case, the probability that one out of Xl players with strategy l is chosen as a focal
player and imitates one of the k-players (whose number is M − Xl) is given by

Tl→k(Xl) = Xl

M

M − Xl

M
pl→k. (3)

A major advantage of using the imitation probability equation (1) is that the fixation proba-
bility ρkl simplifies to

ρkl = 1

1 + ∑M−1
q=1 exp

[
s
∑q

Xl=1(Pk − Pl)
] , (4)

where Pl and Pk in general depend on Xl and Xk .
In the adiabatic case, the probability of a transition from Allk to Alll is given by

μρkl/(d − 1). If the d × d transition matrix is mixing, it has a unique normalized left eigen-
vector to the eigenvalue 1, and this is the stationary distribution which describes the percent-
age of time (in the long run) spent by the population in the vicinity of the homogeneous state
Allk . In [38], it is shown that the stationary distribution of the full system converges, when
μ → 0, to the stationary distribution of this “embedded” Markov chain on the homogeneous
states, with the transition probabilities from Allk to Alll given by ρkl/(d − 1) for k �= l.
A time scale separation argument shows that this is a good approximation if μ � M−2, as
long as the game does not favor a stable coexistence of two strategies (a condition which
will always be satisfied in the models considered here). For more details, we refer to [38]
and [2]. We shall consider in particular the strong imitation limit, s → +∞. From (4) we
see that ρkl is zero whenever Pk > Pl for some value of Xk . If we always have Pk ≤ Pl ,
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the fixation probability of strategy l is given by 1/m, where m is the smallest value of Xl

for which Pk < Pl (and equal to M if there is no such value, so that the dynamics is only
determined by stochastic drift). For a dissident who has a payoff advantage for all Xl , i.e.,
from its initial invasion until its fixation, we obtain m = 1. Such a dissident will take over
the population with probability 1; if, conversely, the dissident always fares exactly as well
as the resident, for all values of Xl , then the fixation probability is 1/M .

The other limiting case we shall analyze is that of an infinitely large population size
M → +∞. If we consider the strategies of types i with frequencies xi and payoff values
Pi , then ẋi = xi

∑
j xj tanh[s(Pi − Pj )/2] (see, e.g., [103]). In the case of weak imitation (s

very small), we obtain, up to a change in velocity, the well known replicator equation (cf.
[53, 54, 102] and [61])

ẋi = xi

(

Pi −
∑

j

xjPj

)

. (5)

Up to a rescaling of time, this is also obtained (for any value of s) for the previously men-
tioned Moran model. In the case of strong imitation (s very large), the pairwise imitation
dynamics leads to the “imitate the better” dynamics [61], which is given by

ẋi = xi

∑

j

xj sgn[Pi − Pj ] = xi

( ∑

Pi>Pj

xj −
∑

Pi<Pj

xj

)

. (6)

The Optional Public Good Game

An frequently used model for the “public goods game” considers groups of N ≥ 2 anony-
mous individuals. Each player can decide whether or not to contribute a given amount c > 0
to the common pool. This amount will be multiplied by a factor r > 1 and then divided
among all N participants, irrespective of their contribution to the public good. If Nc denotes
the number of contributors, the payoff for a non-contributor is

rc
Nc

N
, (7)

and that for a contributor

rc
Nc

N
− c. (8)

Thus contributors receive a return rc/N from their own contribution. As long as r < N , this
is less than c and thus raises a social dilemma: players who want to maximize their payoff
should not contribute.

In this paper, we shall consider the so-called “others-only” variant (see, for instance,
[107] and [23]), unless specified otherwise. In this variant, a player’s contribution c is mul-
tiplied by a factor r > 1 and then divided among the N − 1 other players. Thus a contributor
receives no return from his or her own investment. If Nc is the number of contributors, the
payoff for a non-contributor is

rc
Nc

N − 1
, (9)

whereas a contributor obtains

rc
Nc − 1

N − 1
− c. (10)
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Clearly, if all players cooperate, they obtain (r − 1)c each. But contributors face the tempta-
tion to become non-contributors: this would improve their payoff by the amount c irrespec-
tive of the size N of the group. If all do this, however, their payoff will be 0. Hence, this
game always reveals a social dilemma. This holds whenever r > 1, and in particular also
applies for r ≥ N .

Let us assume that the game is not compulsory (cf. [47, 48]). Some of the N players faced
with the possibility of a joint enterprise may decide to abstain. We assume that they can use
their time to engage in some other activity which yields an average payoff σ independently
of what the other players are doing. The option to abstain from the game is of interest only
if this payoff σ is larger than the payoff 0 obtained if no one contributes. Conversely, if it
is larger than the payoff (r − 1)c obtained in a group consisting entirely of contributors, the
public goods game loses all interest. Hence we shall always assume the inequality

0 < σ < (r − 1)c. (11)

It means that participating in the joint enterprise pays off if most players contribute, and
fails if most defect (i.e., do not contribute). Moreover, we shall assume that there will be no
public goods game if only one individual is willing to engage in the collaborative enterprise,
whether as contributor or as defector. Accordingly, a solitary would-be-participant receives
a payoff σ just like all the other non-participants.

In the following, we shall always assume that the population is of a given constant size M .
It consists of X players who participate and contribute, Y defectors (who participate but do
not contribute), and Z non-participants. By abuse of notation, we denote contributors as
X-players, defectors as Y -players, etc.

Let us first consider the compulsory case, meaning that no Z-players are admitted. In a
population consisting of X contributors and M − X defectors, from time to time N players
are sampled (without replacement). A focal X-player will have N − 1 co-players, of whom
k are contributors. Hence, this player will obtain as expected payoff

PX =
N−1∑

k=0

(
X−1

k

)(
M−X

N−1−k

)

(
M−1
N−1

)

(

cr
k

N − 1
− c

)

. (12)

The formula for the expected value of the hyper-geometric distribution yields the average
payoff

PX = cr
X − 1

M − 1
− c. (13)

Similarly, defectors obtain on average

PY =
N−1∑

k=0

(
X

k

)(
M−1−X

N−1−k

)

(
M−1
N−1

) rc
k

N − 1
= rc

X

M − 1
. (14)

Now let us turn to the optional case, and assume that Z players in the population are non-
participants. The probability to be the only one, in a sample of N players, who is willing to
participate is

(
Z

N−1

)

(
M−1
N−1

) = ZN−1

(M − 1)N−1
, (15)

where we use the notation Zk := Z(Z − 1) · · · (Z − k + 1).
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It follows that the average payoff for defectors is

PY = ZN−1

(M − 1)N−1
σ +

(

1 − ZN−1

(M − 1)N−1

)

rc
M − Z − Y

M − Z − 1
, (16)

and that for contributors

PX = ZN−1

(M − 1)N−1
σ +

(

1 − ZN−1

(M − 1)N−1

)

c

(

r
M − Z − Y − 1

M − Z − 1
− 1

)

. (17)

Clearly, we have PZ = σ . It is easy to see that the three strategies form a Rock–Paper–
Scissors cycle. Indeed, in the absence of Z-players, defectors do always better than contrib-
utors (PY > PX). In the absence of contributors (i.e., if X = 0) non-participants fare better
than defectors, since PZ ≥ PY (with equality holding if and only if Y = 1). In the absence of
defectors (i.e., if Y = 0), contributors fare better than non-participants since PZ ≤ PX , with
equality if and only if X = 1.

Numerical simulations show that if players use social learning to update their strategies,
the three strategies X, Y and Z supersede each other in a cyclic fashion. Figure 1(a) shows
a typical time-plot. As mentioned in the previous section, analytical results can be obtained
for two limiting cases.

Strong imitation limit: For small exploration rates, the embedded Markov chain describ-
ing the transitions between AllX, AllY and AllZ is given by

⎛

⎜
⎝

1 − 1
2 ρXY − 1

2ρXZ
1
2ρXY

1
2ρXZ

1
2ρYX 1 − 1

2ρYX − 1
2ρYZ

1
2 ρYZ

1
2ρZX

1
2ρZY 1 − 1

2ρZX − 1
2ρZY

⎞

⎟
⎠ . (18)

The left eigenvector to the eigenvalue 1 is given by the transpose of
⎛

⎝
ρYXρZX + ρYZρZX + ρZY ρYX

ρXY ρZY + ρXZρZY + ρZXρXY

ρXZρYZ + ρXY ρYZ + ρYXρXZ

⎞

⎠ . (19)

Its normalization gives the stationary distribution, which can be evaluated numerically as a
function of the imitation strength s, based on (4). In the limiting case of strong imitation,
(4) yields ρXY = ρYZ = 0 and ρZX = 1/2, since in a population of X- and Z-players only,
there is exactly one state (namely X = 1) with PX = PZ . Thus the transition matrix between
AllX, AllY and AllZ is given by

⎛

⎜
⎝

1
2

1
2 0

0 1
2

1
2

1
4 0 3

4

⎞

⎟
⎠ . (20)

The stationary distribution is given by ( 1
4 , 1

4 , 1
2 ).

Infinite population limit: In this case (i.e., if M → ∞), the defectors’ payoff is

Py = zN−1σ + (
1 − zN−1

)
rc

1 − y − z

1 − z
(21)

and that of cooperators is

Px = zN−1σ + (
1 − zN−1

)
c

(

r
x

1 − z
− 1

)

, (22)
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Fig. 1 Individual-based simulations of the evolution of the frequencies of strategies in a population of
size M . (a) In the absence of punishment, contributors, defectors and non-participants supersede each other
in a Rock–Paper–Scissors cycle. (b) If peer-punishers are introduced, they dominate for long time intervals.
Sometimes their regime collapses, but is quickly re-established. In this simulation, second-order punishment
was not available. (c) If second-order punishment is available, the dynamics is not greatly affected. (d) If
pool-punishment is used instead of peer-punishment, the pool-punishers cannot maintain themselves in the
absence of second-order punishment. (e) But if second-order punishment is introduced, they stably domi-
nate the population. Parameters: M = 100, N = 8, r = 3, σ = 0.5, γ = β = G = B = 0.2, μ = 10−4 and
s = 100000

with x, y, z as the relative frequencies of the three types (i.e., as the limits of X/M, etc.,
for M → ∞). The dynamics is given by Fig. 2(b). The limiting case s → +∞, i.e., the
“imitate-the-better”-dynamics (6), is specified by the rank ordering of the payoff values. If
y

x
< c(r−1)−σ

c+σ
, this ordering is Pz < Px < Py . In the region c(r−1)−σ

c+σ
<

y

x
< rc−σ

σ
, the rank

ordering is Px < Pz < Py , and for rc−σ
σ

<
y

x
it is Px < Py < Pz. There is no rest point in the

interior of the state space S3. The orbits are homoclinic, converging to z = 1 for t → +∞
and t → −∞ (see Fig. 2(a)). The case of weak selection (s very small) reduces to the
replicator dynamics (5), see Fig. 2(c). In each case, there exists no fixed point in the interior
of the state space, and all orbits converge to the point z = 1, for both t → +∞ and t → −∞.
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Fig. 2 Dynamics of social learning in optional public goods games in the deterministic limit of an infi-
nitely large population. The simplex S3 marks the phase space spanned by the three strategies cooperator,
X, defector, Y , and non-participant, Z. The boundary of S3 represents a heteroclinic cycle, reflecting the
Rock–Scissors–Paper type cyclic dominance of Z → X → Y → Z. (a) In the limit of strong imitation,
s → ∞, strategies of better performing individuals are always adopted (imitate-the-better dynamics). The
interior of S3 is filled with homoclinic orbits originating in the homogeneous state AllZ. (b) Dynamics gen-
erated by the microscopic imitation process of (1) for arbitrary s (here, we used s = 20). The noise introduced
by imperfect imitation smoothes the trajectories and eliminates the non-differentiable points along the trajec-
tories in (a). In the limit of weak imitation, s → 0, the traditional replicator dynamics is recovered, see (c).
A similar situation is shown in (d), except that we assume that part of the cooperative contributions to the
public good returns to the investor, see (7) and (8). As a result a neutrally stable fixed point appears, which is
surrounded by closed periodic orbits. Parameters: N = 8, r = 3, σ = 0.5

In [47, 48], the replicator dynamics is analyzed for the case that the public good game is not
of the “others only” type, but with payoffs given by (7) and (8). It looks just the same for
r ≤ 2 (cf. Fig. 2(c)). But if 2 < r < N , there exists a fixed point in the interior, which is
surrounded by closed orbits (cf. Fig. 2(d)). We note that in this case, if the frequency z of
non-participants is large, some of the groups engaging in the public goods game will be
so small that the game is no longer a social dilemma. Indeed, in that case every X-player
obtains a return which is larger than the own contribution c. This is the reason why we
concentrate, in the following, on the “others only” variant based on the payoffs (9) and (10).
This variant is more challenging because the social dilemma always holds.

Peer Punishment

Let us now assume that W players in the population engage in peer punishment. After the
public goods game, each peer-punisher imposes a fine β on each defector in his or her
sample, at a cost γ . Thus if there are Ny defectors and Nw peer-punishers in the group, then
each defector pays a total fine Nwβ , and each punisher incurs a cost Nyγ . In addition, there
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are X contributors (who participate in the public goods game, but do not punish) and Z

non-participants. Since the X-players benefit from the increased contribution level caused
by the W -players, they can be viewed as second-order exploiters.

If the population consists of cooperators, defectors, peer-punishers and non-participants
(i.e., if M = X + Y + Z + W ), then the average payoff for punishers is

PW = PX − (N − 1)Y

M − 1
γ, (23)

where PX is given by (17). The defectors’ payoff is given by the expression in (16), reduced
by

(N − 1)W

M − 1
β. (24)

Computer simulations show that if (11) holds, and if the exploration rate is relatively
small, then after an initial phase of oscillations of Rock–Paper–Scissors type, the population
is dominated for long time-intervals by punishers. Eventually, such a W -population can be
subverted by X-players (who are not punished, but do not punish either), which in turn
leads rapidly to a population dominated first by defectors, and then by non-participants.
The follow-up phase of cycling eventually leads to a punisher-based regime again, etc. (see
Fig. 1(b)). In order to analyze this behavior, we turn to the limiting cases.

Strong imitation limit: In this case, the transition matrix for large s is

⎛

⎜
⎜
⎜
⎝

2
3 − 1

3M
1
3 0 1

3M

0 2
3

1
3 0

1
6 0 2

3
1
6

1
3M

0 0 1 − 1
3M

⎞

⎟
⎟
⎟
⎠

. (25)

If the population consists only of X- and W -players, both types do equally well: this leads to
the 1/M-terms in the matrix. Conversely, X- or W -players do better than Z-players, except
if Z = M − 1. Thus ρZX = ρZW = 1/2, and this explains the 1/6-terms.

It is easy to see that the Markov chain (25) has a unique stationary distribution, given by

1

M + 8
(2,2,2,M + 2). (26)

This means that W -players prevail in the long run. For instance, if the population size is
M = 100, then for almost 95% of the time, the population is dominated by peer-punishers.

If participation in the joint enterprise is compulsory, i.e., if the Z-option is not available,
the transitions between the three homogeneous states AllX, AllY and AllW are given by the
matrix

⎛

⎝

1
2 − 1

2M
1
2

1
2M

0 1 0
1

2M
0 1 − 1

2M

⎞

⎠ (27)

and the stationary distribution is (0,1,0). Free-riders take over.
Infinite population limit: In the limiting case of an infinitely large population, the previ-

ous payoff expressions yield

Px = zN−1σ + (
1 − zN−1

)
(

rc
x + w

1 − z
− c

)

, (28)
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Py = zN−1σ + (
1 − zN−1

)
rc

x + w

1 − z
− (N − 1)wβ, (29)

and

Pw = Px − (N − 1)yγ (30)

with Px given by (28).
There is no rest point for the dynamics in the interior of the state space (i.e., for

x, y, z,w > 0), since Pw < Px for y > 0. Hence all orbits converge to the boundary. Clearly,
peer-punishers dominate non-participants, and peer-punishers and defectors form a bi-stable
system if c < (N − 1)β (this condition is independent of γ ). The states with y = z = 0 (i.e.,
when only peer-punishers and contributors are present) all correspond to rest points of the
dynamics, and it can easily be shown that those with

w >
c

(N − 1)β
(31)

are Nash-equilibria, see [51]. Depending on the initial condition, orbits converge either to
such a cooperative equilibrium (which is stable, but not Lyapunov stable) or to the unstable
state consisting only of non-participants. We note that Fowler [34] has obtained the same
dynamics for a different, but related model.

Second-Order Peer Punishment

Let us now assume that peer-punishers engage in second-order punishment: thus they im-
pose fines β on the X-players too, at a cost γ to themselves.

If M = X +Y +Z +W , the average payoff PX for contributors is given by (17), reduced
by the average fine

(N − 1)W

M − 1
β

(

1 − (M − Y − 2)N−2

(M − 2)N−2

)

(32)

and the peer-punishers’ payoff by (17), reduced by the average cost

(N − 1)X

M − 1
γ

(

1 − (M − Y − 2)N−2

(M − 2)N−2

)

(33)

for meting out punishment. The term (1 − ...) corresponds to having at least one defector in
the sample (otherwise a punisher cannot be aware that some contributors do not punish).

Computer simulations with small exploration rates μ display a behavior which hardly
differs from the case without second-order punishment (Fig. 1(c)).

Strong imitation limit: Indeed, it is easy to see that the behavior on the edges of the state
space (where two of the four types are absent) is exactly as in the case without second-
order punishment. Second order defectors cannot be noticed by peer-punishers if there are
no defectors in the population. It follows that the adiabatic limit is also the same.

Infinite population limit: In the case of an infinitely large population, second-order peer
punishment leads to Pz = σ ,

Px = zN−1σ + (
1 − zN−1

)
(

rc
x + w

1 − z
− c

)

− (N − 1)wβ
(
1 − (1 − y)N−2

)
, (34)

Py = zN−1σ + (
1 − zN−1

)
rc

x + w

1 − z
− (N − 1)wβ, (35)
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Fig. 3 Replicator dynamics for (a) the optional Public Goods game with peer-punishment and (b) the op-
tional Public Goods game with pool punishment. In both cases, we allow for second-order punishment. Pa-
rameters for (a) are chosen such that an unstable fixed point exists in the interior of the state space: N = 5,
r = 3, β = γ = 0.7, σ = 1. The states on the edge y = z = 0 are fixed points, of which a segment including
w = 1 consists of Nash equilibria. For (b), the parameter values are N = 8, r = 3, B = G = 0.3, σ = 0.5

and

Pw = zN−1σ +(
1−zN−1

)
(

rc
x + w

1 − z
−c

)

−(N −1)yγ −(N −1)xγ
(
1−(1−y)N−2

)
. (36)

In contrast to the case without second-order punishment, there can exist a fixed point with all
four strategies present for certain parameter values (for instance, if γ = β = 0.7, c = σ = 1,
r = 3 and N = 5). This fixed point is unstable, however, and the orbits converge either to a
mixture of W and X, or to a homogeneous Z-population (Fig. 3(a)).

Pool Punishment

Let us now assume that peer-punishers are replaced by pool-punishers. Thus we assume that
V of the M players engage in pool punishment (with M = X+Y +Z +V ). This means that
when Nv of them find themselves in a sample, they participate in the public good game, and
not only contribute c to the common pool, but additionally pay an extra fee G towards the
punishment pool. Moreover, we assume that the fine of each exploiter will be proportional
to the number of punishers, and hence of the form NvB . (Since we are speaking of expected
values, we may interpret NvB as the average size of the fine, and argue that if there are twice
as many controls a free rider is twice as likely to get caught.)

First, we neglect the possibility of second-order punishment (i.e., punishment of non-
punishers). The payoff for non-participants and for contributors is therefore unaffected, and
given by σ resp. (17). The payoff for pool-punishers satisfies

PV = ZN−1

(M − 1)N−1
σ +

(

1 − ZN−1

(M − 1)N−1

)[

c

(

r
M − Z − Y − 1

M − Z − 1
− 1

)

− G

]

. (37)

Indeed, punishers only pay a fee into the punishment pool if another player is willing to
participate in the joint enterprise. The payoff for defectors is

PY = ZN−1

(M − 1)N−1
σ +

(

1 − ZN−1

(M − 1)N−1

)(

cr
M − Z − Y

M − Z − 1

)

− B(N − 1)V

M − 1
. (38)
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We note that the punishment term is not multiplied by the probability (1 − · · · ) that the
public goods game takes place. Indeed, if there is at least one punisher among the N − 1
co-players in the sample, the game will actually be played.

Instead of Condition (11), we now assume the stronger condition

c(r − 1) − G > σ, (39)

which means that a population of pool-punishers does better than the non-participants. Com-
puter simulations show that for a large set of parameter values, the four homogeneous states
supersede each other in succession (Fig. 1(e)). We now turn to the two limiting cases.

Strong imitation limit: If the exploration rate is very small, we obtain for the strong
imitation case the following transition matrix between the states AllX,AllY , AllZ and AllV :

⎛

⎜
⎜
⎜
⎝

2
3

1
3 0 0

0 2
3

1
3 0

1
6 0 2

3
1
6

1
3 0 0 2

3

⎞

⎟
⎟
⎟
⎠

. (40)

The unique stationary distribution is given by 1
7 (2,2,2,1). This corresponds to two Rock–

Paper–Scissors cycles, one from AllY to AllZ to AllX and back to AllY again, the other
(four-membered) from AllY to AllZ to AllV to AllX and back to AllY . (If pool-punishers
cannot invade, i.e., if (39) does not hold, then the corresponding argument leads to the sta-
tionary state 1

5 (2,2,1,0)). We note that if the game is compulsory, i.e., if we eliminate the
Z-strategy, the transition matrix between AllX, AllY and AllV is given by

⎛

⎝

1
2

1
2 0

0 1 0
1
2 0 1

2

⎞

⎠ . (41)

The stationary distribution is (0,1,0), and thus defectors prevail.
Infinite population limit: In the limiting case of an infinitely large population, the values

of the expected payoffs are given by Pz = σ , Px as in (22), and

Pv = zN−1σ + (
1 − zN−1

)
[

c

(

r
x + v

1 − z
− 1

)

− G

]

, (42)

Py = zN−1σ + (
1 − zN−1

)
cr

x + v

1 − z
− B(N − 1)v. (43)

The inequality Pv < Px implies that there exists no interior rest point. In addition to the
Rock–Paper–Scissors cycle on the face v = 0 (no punishment), there is another cycle leading
from z = 1 (no participation) to v = 1 (all peer-punishers) to x = 1 (all contribute, but do not
punish) to y = 1 (all defect) and back to z = 1 again, provided (39) holds. (If not, the non-
participants dominate punishers.) The competition between pool-punishers and defectors
(i.e., with x = z = 0) is bistable if and only if

c + G < (N − 1)B. (44)

If the game is compulsory (i.e., if z = 0), then defectors always win. If the game is optional,
all interior states converge to z = 1 for both t → +∞ and t → −∞. The limiting cases
of the replicator dynamics or the “imitate the better” dynamics lead to essentially the same
behavior.
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Second-Order Pool Punishment

In contrast to the peer punishment case, pool punishment is strongly affected if second-order
punishment is available. Indeed, let us now assume that the second-order exploiters, i.e., the
X-players, are also punished by the pool-punishers. Thus their payoff is given by

PX = ZN−1

(M − 1)N−1
σ +

(

1− ZN−1

(M − 1)N−1

)

c

(

r
M − Z − Y − 1

M − Z − 1
−1

)

− B(N − 1)V

M − 1
(45)

and, in the infinite population limit, by

Px = zN−1σ + (
1 − zN−1

)
c

(

r
x + v

1 − z
− 1

)

− B(N − 1)v. (46)

The other payoff values remain unchanged.
In this case, computer simulations show that for a large set of parameter values, an initial

phase exhibiting Rock–Paper–Scissors cycles is followed by a regime dominated by the
pool-punishers (see Fig. 1(e)). This regime is considerably more stable than the cooperative
regime established by peer-punishers. This can also be verified in the adiabatic limit.

Strong imitation limit: If pool-punishers can invade non-participants, i.e., if (39) holds,
the transition matrix between the states AllX, AllY , AllZ and AllV is given by

⎛

⎜
⎜
⎜
⎝

2
3

1
3 0 0

0 2
3

1
3 0

1
6 0 2

3
1
6

0 0 0 1

⎞

⎟
⎟
⎟
⎠

. (47)

The unique stationary distribution is (0,0,0,1), which means that the population is domi-
nated by punishers. It is easy to see that in the compulsory case (i.e., no Z), defectors win.

Infinite population limit: If the game is compulsory (i.e., on the face z = 0), the dynamics
leads either to v = 1 or y = 1. This last state can be invaded if participation is optional. Since
Px < Py in the interior of the state space, all orbits converge to the face x = 0, and hence
either to v = 1 or z = 1, depending on the initial state (see Fig. 3(b)).

The Competition of Pool- and Peer-Punishers

We finally analyze the competition of peer and pool punishment, see [99]. Numerical simu-
lations of populations containing all five strategies X, Y , Z, V and W show that for a large
set of parameter values satisfying (39), the outcome is settled by the availability of second-
order punishment. If this option is not available, then pool-punishers lose and peer-punishers
prevail in the long run. With second order punishment, it is just the reverse (see Fig. 4(c)–
(d)). We assume that in the case of second-order punishment, pool-punishers punish peer-
punishers, since these do not contribute to the punishment pool. It seems less plausible that
peer-punishers will punish pool-punishers, since these always contribute to the sanctions,
and we shall accordingly not assume it here. However, we stress that this assumption does
not really matter. As we shall presently see, this outcome is also reflected in the limit of
small exploration rates and strong imitation.
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Fig. 4 Stochastic dynamics in finite population of size M of peer punishment and pool punishment in op-
tional and compulsory public goods games with and without second order punishment, as a function of the
imitation strength s. In the limit s → 0, imitation is random, which results in equal average frequencies of
all available strategies. For larger s, selection acts on the payoff differences between the different strategic
types. The stochastic dynamics inevitably leads to absorbing homogeneous populations, where selection can
no longer act. This is prevented by introducing random explorations with a small probability μ. (a) Compul-
sory public goods games with pool punishment. Because of second-order punishment both AllY and AllV are
attracting states but for larger s, cooperation is doomed in the long run, because it is virtually impossible for
a population to escape from the state of mutual defection, AllY . (b) Optional public goods games with pool
punishment. Optional participation provides an escape hatch out of AllY and provides recurrent opportunities
to establish sanctioning institutions. For sufficiently large s, second order punishment stabilizes AllV and the
sanctioning institutions prevail. Without second order punishment, cooperation persists at intermediate levels,
on average, as a result of the cyclic dominance of Z → X → Y → Z as well as of Z → V → X → Y → Z;
but pool punishers do worst. (c) Competition of peer-punishers and pool-punishers in optional public goods
games without second order punishment and (d) with second order punishment. The chosen parameters ap-
ply to situations where punishment is not very efficient. Hence defectors can dominate for noisy settings with
intermediate s. For stronger imitation, peer punishment clearly dominates in the absence of second order pun-
ishment, whereas pool punishers win if second order punishment is allowed. Parameters: M = 100, N = 8,
r = 3, σ = 0.5, γ = β = G = B = 0.2, μ = 10−6
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Strong imitation limit: In this case, the transition matrix between AllX, AllY , AllZ, AllV
and AllW without second order punishment is

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

3
4 − 1

4M
1
4 0 0 1

4M

0 3
4

1
4 0 0

1
8 0 5

8
1
8

1
8

1
4 0 0 1

2
1
4

1
4M

0 0 0 1 − 1
4M

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (48)

The unique stationary distribution is 1
3M+23 (6,6,4,1,3M +6). This means that the majority

consists of peer-punishers. In the case with second order punishment, the matrix is

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

3
4

1
4 0 0 0

0 3
4

1
4 0 0

1
8 0 5

8
1
8

1
8

0 0 0 1 0
1

4M
0 0 0 1 − 1

4M

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (49)

The unique stationary distribution is (0,0,0,1,0), which indicates that pool-punishers pre-
vail. Again, if the game is compulsory (i.e., if there are no Z-players), the transition matrix
between AllX, AllY , AllV and AllW is given by

⎛

⎜
⎜
⎜
⎝

2
3 − 1

3M
1
3 0 1

3M

0 1 0 0
1
3 0 2

3 0
1

3M
0 0 1 − 1

3M

⎞

⎟
⎟
⎟
⎠

, (50)

if there is second-order punishment. If there is no second-order punishment, the third row has
to be replaced by ( 1

3 ,0, 1
3 , 1

3 ). In both cases, the unique stationary distribution is (0,1,0,0),
so that free-riders prevail.

Discussion

Several of the “major transitions” in evolution entail the cooperation of units of selection
(be they replicating molecules, genes, protocells, cells or organisms) in order to form higher
units of selection. Free riders, in these different contexts, could, for instance, be outlaw
genes which subvert the “fair draw” of Mendelian segregation, or cancer cells threatening
the organism, or egg-laying workers in an ant colony. The suppression of free-riding is a
common issue in such collaborative enterprises. This is frequently provided by mechanisms
which can be viewed as punishment, or policing. To mention only a small sample of the
relevant literature, we refer to Clutton-Brock and Parker [21] on punishment in animals,
Ratnieks et al. [89] on policing in social insects, to Goto et al. [42] and Jander and Herre
[63] on selective abortion in pollinator mechanisms, to Kiers et al. [66] on sanctions in
soy beans, to Bshary and Grutter [14] on punishment of cleaner fish, to Leigh [72] on the
repression of outlaw genes in meiosis, and for a general perspective, to Frank [36, 37].

We note that the model presented in Frank [35] is intimately related to the idea of pool
punishment. Indeed, both approaches consider two costly traits (one for the contribution to
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the common good, and the other for the repression of free-riding). In both cases, a part of the
contribution is allocated towards preventing exploitation. In one case, exploitation is directly
suppressed, and in the other case fines are imposed on exploiters. It is only this second case
which corresponds to the common idea of punishment as a conditional mechanism which
works as a threat. To explain the difference with an example: in some towns (such as Paris),
automatic doors make it virtually impossible to use the metro without a valid ticket. In other
towns (such as Vienna), everyone can board the underground train, but if one is caught
without a ticket by a controlling officer, one has to pay a heavy fine. Frank’s “suppres-
sion of competition” corresponds to the Paris system: some mechanism makes free-riding
impossible, or at least very difficult. For instance, the eggs laid by rebellious ant-workers
are eaten by “policing” workers. But the egg-laying workers themselves are not injured or
ostracized. The “punishment pool” corresponds to the Viennese system: free-riders bear ad-
ditional costs. Both ways (via automatic doors or via controlling officers) require expensive
preparations. If we want to pursue the analogy, we can imagine that “peer punishment”
occurs when subway passengers attack their free-riding fellow-passengers (which is also a
conditional mechanism, but a rare event, to the best of our knowledge).

Human cooperation is based in a large measure on markets for reliable partners. In par-
ticular, it is often possible to opt out of a relationship that is not satisfactory. There is a
considerable body of evidence that cooperation can be enhanced if participation in a joint
enterprise is voluntary (see, e.g., [1, 4, 16, 43, 46–49, 52, 62, 67, 79, 86, 95]). In the present
paper, we have investigated the interplay of voluntary participation and costly punishment.
We have reviewed a series of papers making the (at first sight almost paradoxical) point that
enforcement works less well if participation is compulsory. Most of these papers have been
based on models of peer punishment: after each round, players can decide whether they in-
flict sanctions on the defectors. In [99], this is compared with a different model, based on
so-called pool punishment: with this form of punishment, players commit themselves, even
before the public goods interaction begins, to impose sanctions on exploiters.

A “punishment fund” can be viewed as a rudimentary institution to uphold the common
interest. It is easily implemented in lab games. Actually, this was the first form of punishment
used in experimental public goods games, see [107]. It seems likely that many small-scale
societies use this principle, for instance, by agreeing to contribute towards hiring an enforcer.
In [87] or [88], many examples of self-financed contract enforcement are described: they
concern the provisioning and the appropriation of common resources, for instance, high
mountain meadows (the proverbial “Commons”), irrigation systems, or inshore fisheries.
For a survey of peer punishment in a small scale society, we refer to [106].

Obviously, paying for the upkeep of a police force is quite different from personally tak-
ing a hand at law-enforcement. The psychological differences are considerable. Peer pun-
ishment may be viewed as an outcome of the instinct for revenge. A player who has been
exploited retaliates by harming the exploiter, even if it entails costs. It can be emotionally
a most rewarding experience, and, in fact, seems intimately linked to reward-centers in the
deeper part of our brain (see, e.g., [91] or [24]). If a small child bangs against a door-post, it
may feel the urge to kick it. Pool punishment is more cool-headed: it is based on foresight
rather than on anger, and likely to be correlated with activities in the frontal lobes of the
brain, which are usually associated with rational decisions. In this sense, pool punishment is
more detached than peer punishment. The commitment to punish is made before it is known
against whom it will be directed. It is impersonal. In contrast, peer punishment seems a di-
rect manifestation of the urge to defend one’s own personal interests. It may be significant,
in this context, that the first police force in ancient Athens, an early manifestation of a pun-
ishment pool, consisted of slaves, i.e., individuals who (in the eyes of their contemporaries)
had no own interests to defend.
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It is almost unavoidable that a sanctioning institution views non-contribution as a grave
form of defection, and thus should turn to second-order punishment. It should moreover
strive to suppress peer-punishment and to ensure a monopoly. We see pool punishment as a
transitory mechanism, at an early stage of the evolution of a government. It seems plausible
that different types of joint enterprises within a society would eventually use the same polic-
ing forces, or syndics, or law-courts, and thus converge to a form of local government. But
this need not always be the case. Examples from [87] show that the local enforcement of ir-
rigation rules in Spain or the Philippines remained, to a large extent, independent of the state
authorities. Moreover, it can spectacularly break down if top–down rules are superimposed.

Compared with peer punishment, pool punishment has a serious disadvantage: it entails
fixed costs even if every one in the population cooperates. Peer punishment, in that case, is
cost-free. Many of the early experiments on public goods with peer punishment ended after
a few rounds, and while punishment invariably raised the propensity to cooperate, it entailed
costs. The overall income was therefore often less than in the absence of punishment, see,
e.g., [31] and [25]. But as shown in [39], if the number of rounds is sufficiently large, coop-
eration becomes so common that peer punishment hardly ever occurs; and then, the overall
income is higher than in the absence of punishment. Pool punishment is less efficient than
peer punishment, in this regard, since the costs of pool punishment arise even if there are
no exploiters to be punished (just as the upkeep of a constabulary causes costs even if no
crimes occur).

On the other hand, pool punishment seems less likely to be perverted by “anti-social”
or “perverse” punishment directed at the contributors, cf. [19, 59, 84]. In [27], it is shown
that if players can vote, before the public good interaction, whether the subsequent peer
punishment should be applied to defectors only, or could be used without restrictions, then
anti-social punishment becomes very rare. This seems to indicate that when players set up a
punishment pool, they would direct it only against free-riders.

Moreover, peer punishment is ill-suited to second-order punishment. It has often been
noted that second-order peer punishment could be subverted by third order exploiters etc.
For sufficiently high m, mth order punishment is unlikely to ever be used, and hence can be
subverted by (m − 1)-order free riders, so that the whole mechanism ultimately unravels.
Pool punishment, as shown by our models, is much more conducive to second-order punish-
ment. The contribution to the punishment pool can be viewed as a costly signal, and hence
cannot easily be faked. The claim that peer punishment does rarely extend to second-order
punishment has also been supported empirically by Kiyonari et al. [68] (for a dissenting
opinion, see [3]). It is sometimes asserted that the harsh punishment meted out to strike-
breakers is an example of second-order punishment, but we contend that from the workers’
perspective, the joint undertaking is not the firm, but the strike, and hence punishment of
strike-breakers would rank as a first-order punishment. Moreover, a strike often involves
trade-unions, and there (just as with guilds, and other forms of self-governing institutions),
pool punishment is more likely to apply.

It is probable that many real-life defectors are opportunistic, and therefore would switch
to cooperation if the threat of punishment looms large. In this paper, we have not consid-
ered opportunistic strategies, in order to make our models more easily comparable with the
bulk of work on punishment on laboratory games, which usually occur under conditions of
anonymity. But there is no doubt that opportunism is a very important factor. Players who
see that others, in their group, are building up a punishment funds, ought to be strongly
motivated to avoid punishment by contributing both to the public good and, if need be, to
the punishment pool. Players who incline to contingent cooperation are encouraged to col-
laborate if they see others committing themselves to monitor contributions and to enforce
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them. By contrast, in the peer punishment case, would-be exploiters are not able to gage
the risks which they face. This is an immediate consequence of our anonymity assumption.
Exploiters may be interacting with a phalanx of punishers, but will only notice this when it
is too late. With peer-punishment, an opportunistic switch to cooperation can only happen if
players know beforehand that there are punishers in their group. This requires that players
are not anonymous, but have a reputation. Such reputation effects have been studied in [22,
49, 60, 98].

A further topic of great interest is graduated punishment, see, e.g., [87] and [106] and, for
a theoretical treatment, [81] or [57]. Another highly plausible assumption, which we have
not pursued here, is that punishment is contingent upon the number of punishers. Essentially,
peer-punishers ought to make sure that they will share the cost with a sufficiently large set
of other punishers. This has been modeled by Boyd, Gintis and Bowles [11] in the context
of a repeated game. Punishers signal in a first stage their intent to punish defectors, and
punish if enough others are signaling, too. If there are increasing returns to scale, and if
defectors contribute in subsequent rounds after having been punished, punishment can be
stably maintained.

Among other approaches to the emergence of institutions, we refer in particular to [70],
where the “dilemma of endogenous institution formation” is discussed. A solution modeled
on the Kyoto protocol is analyzed theoretically and experimentally. It differs from our ap-
proach in several respects. In particular, only members of the sanctioning institution can be
punished. The “institution formation” relies on a complex process of quorum-sensing. In a
first stage, players have to indicate their willingness to participate. In the second stage, they
can ratify their intention to join, or not: and the institution is implemented if and only if all
who indicated their willingness actually did ratify their intention. Players unwilling to join
the punishment pool can free-ride with impunity on the (non-excludable) public good. This
model describes well how modern states create sanctioning mechanisms, but it seems too
sophisticated to apply to simple small-scale societies.

In the experimental game described in [43], players are given, between rounds, the op-
portunity to choose between a public goods game with and a public goods game without
punishment. Significantly, the majority first tends to opt for the treatment without punish-
ment, but then, after a few rounds, convert to the treatment with punishment. This exper-
iment used peer punishment. It would be interesting to repeat it for pool punishment, and
even more to allow both forms of punishment to compete: according to the model presented
in this paper, the opportunity to mete out second-order punishment should decisively affect
the outcome.

Our model shows that by simply imitating what succeeds, individuals can spontaneously
adopt a self-governing institution to monitor contributions and sanction free riders. It needs
no higher authority and no great feats of planning: trial and error and the imitation of suc-
cessful examples can do the job.
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