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Abstract
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coefficients) but not closely connected (they have low average path
lengths), and vice versa. One implication is that the introduction
of new communication technology makes a network closely connected
but not cliquish. We relate our model and results to the “strength of
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1 Introduction

The relevance of social networks in the context of economic interactions is
increasingly acknowledged.1 Numerous empirical works have shown that dif-
ferent networks have different structures, where the structures of networks
are evaluated by various measures.2 Three well-known and well-used mea-
sures of network structures are clustering coefficient, average path length, and
degree distribution, which represent a network’s cliquishness, connectedness,
and heterogeneity (of the numbers of neighbors), respectively. This paper
focuses on the former two measures, asking the following question: Why do
some networks have high clustering coefficient and/or average path length,
while others do not?3 The model in this paper provides a possible answer to
this question, which gives economic insights about network structures. For
example, we explain why the “e-mail network,” in which a link represents an
incidence of an email exchange, has a lower clustering coefficient and a lower
average path length (Ebel et al., 2002) than the “coauthorship network,” in
which a link represents an incidence of coauthorship between two economics
scholars (Goyal et al., 2006).4 Also, our model can predict how the intro-
duction of new communication technology, such as the Internet, changes the
structure of a network.

To answer our motivating question, we construct a model in which we
suppose agents are endowed with their own multi-dimensional characteris-
tics. We show that, when agents need many similar characteristics in order
to be linked with each other, the stable network is cliquish but not closely
connected, under certain regulatory conditions. On the other hand, when
it is enough for agents to share a small number of similar characteristics in
order to be linked, the stable network is closely connected but not cliquish.
We relate our model and results to the “strength of weak ties hypothesis” of
Granovetter (1973), the “similarity scale” of Tversky (1977), and the “com-
munication externality” of Rosenblat and Mobius (2004).

A variety of models have been developed to illuminate why different net-
works have different structures. One of the standard assumptions often used
in the economics literature is that people are partitioned into several groups,

1See Goyal (2005) and Jackson (2008a), among others.
2For references on these empirical works, see, for eaxmple, Goyal (2005) and Jackson

(2008a).
3We also show that our model accommodates a wide range of observed degree distri-

butions in the data.
4Ebel et al. (2002) finds that the “e-mail network” has a clustering coefficient of 0.34

and the average path length of 5.0, while Goyal et al. (2006) finds that the “coauthorship
network” has a clustering coefficient of 0.16 and the average path length of 9.5.
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and the relationships within a group cost less than the relationships across
groups (See Currarini et al. (2009) and Jackson and Rogers (2005)). Such
a modeling assumption leads to so-called “small world” property obsered
in real networks, namely, high clustering coefficient and low average path
length. While partitioning of agents implies that an agent belongs to exactly
one group, in reality an agent belongs to multiple groups, or more generally,
agents might be associated with a level or degree of tastes or attitudes. For
example, one might be a student of a graduate school in economics while he
likes listening to soft rock.

In modeling situations where agents have multiple aspects of character-
istics, or where they belong to multiple groups, it is necessary for agents to
have ways to integrate and evaluate the information about the relationships
in different dimensions or groups. For example, is it the case that one can
make friends with another when either the affiliations or the tastes matches?
Or is it the case that both the affiliations and tastes have to match? Naturally,
different criteria would be relevant in different networks, depending on what
types of relationships we deem as “links.” Furthermore, different networks
may have different numbers of “relevant dimensions,” as the dimensions that
matter might be different across different societies. Some dimension, say re-
ligion, might matter a lot in some networks, but much less in others. Even
without such cultural issues, it might be the case that the development of
communication technology enables us to interact with each other based on
new types of interests beyond geographic constraints, which would increase
the number of relevant dimensions.

In light of this motivation, this paper models agents’ characteristics, or
types, as points in a multi-dimensional type space, and analyzes how the net-
work structure depends on the notion of distance on the type space. Each
coordinate indicates some aspect of agents’ characteristics, such as jobs, lo-
cations, tastes, and so forth. Distance in the type space, which we call social
distance, represents the level or amount of obstacles to their relations, so
agents form links with others who are nearby.5 We consider a class of no-
tions of distance, k’th norms, in which the distance between two points in the
type space is the k’th smallest distance among m dimension-wise distances
between them, where m denotes the number of dimensions of the type space.6

This class of distances is sufficiently tractable to obtain a closed-form solu-
tion, yet is complex enough that we can gain relevant economic intuition, for

5Akerlof (1997) uses the notion of social distance, too.
6Tversky (1977) claims that when similarity relationships are formulated on a multiple

dimensional space, they often violate the triangle inequality. Note that our k’th norm
with k < m does not satisfy the triangle inequality. We will make this point clear in what
follows.
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example by implementing comparative statics. We first introduce a model
based on the benefit and cost of link formation. Our assumptions here are
that the benefit of a link is decreasing in the distance between two agents
involved, and the cost is increasing linearly with respect to degrees. That is,
agents obtain higher benefits from linking to a closer agent in the type space,
while they need to pay a fixed cost to maintain a link.7 We show that in
a unique pairwise stable network each agent has a cutoff on the distance to
her neighbors, above which she does not have an incentive to form links.8,9

Conversely, for any network generated by a cutoff rule, there exists a pair of
benefit and linear cost functions such that the network is a unique pairwise
stable one. Based on these results, we then analyze the cutoff rule model, in
which agents form links if the distance between them is no more than some
exogenously given cutoff value. As an approximation of a large network, we
focus on the limit of the network as the number of nodes goes to infinity and
then the cutoff value goes to zero. It is shown that the limiting values of the
clustering coefficient and average path length vary as we vary the value of k
and/or m.10 We also show that a wide range of degree distribution can be
obtained by varying the distribution of agents over the type space.

We also consider the case of nonlinear cost functions. We show that
a pairwise stable network that is generated by the cutoff rule model always
exists, and a strongly stable network always exists and is unique under certain
circumstances.11

Although in our model the heterogeneity of agents matters in terms of
social distance between agents, there is another way to describe heterogene-
ity. Fujii and Kamada (2010) introduce a network formation model in which

7For example, Selfhout et al. (2009) empirically show that people are likely to be
connected if their preferences for music are similar to each other. Although in practice
it is sometimes beneficial for people to have links with someone who has very different
characteristics, we abstract away from this possibility in this paper.

8A pairwise stability requires that no pair of agents would want to form or sever a link
between them, with the rest of the network structure fixed.

9We do not explicitly model the process by which the pairwise stable network is reached.
This is because our focus is not on the details of agents’ strategic interactions, but on the
question of why different networks have different structures.

10Watts et al. (2002) consider a model with stochastic link formation. In their model,
two agents form a link with a probability that depends, in particular, on the distance
between them. Each agents is associated with a vector of characteristics, and the distance
measurement corresponds to the case of k = 1 in our model. They show that, for plausible
range of parameters, networks are “searchable,” meaning, in essense, that the average path
length of the networks are low. This result is analogous to the part 2 of our Corollary 3
which states that the average path length is increasing in k.

11The notion of strong stability is introduced in Jackson and van den Nouweland (2005).
It corresponds to the notion of “core” in cooperative game theory.
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each agent has her own intrinsic “sociability,” and two agents form a link if
the benefit from the link formation exceeds some (exogenously given) link-
formation cost, where the benefit is nondecreasing in their sociabilities.12

Their model and ours provide complementary approaches to network forma-
tion. Indeed, by introducing social distance in their model, or by introducing
sociability in our model, we could have a more realistic formation model of
social networks. In this paper we do not analyze such a hybrid model in
order to highlight the role that social distance plays in network formation.

One of the related themes in the literature is “homophily” in networks.13

This theme is closely related to our paper since, in our model, social distance
describes the similarity between people’s characteristics. Although the liter-
ature on homophily focuses on similarity in terms of one dimension (e.g. eth-
nicity), our model deals with multiple dimensions. Johnson and Gilles (2000)
analyze a related model in which links are formed based on costs that de-
pend on geographical distances between agents. However, they consider only
one dimensional spatial model, hence cannot capture the multi-dimensional
relationships among agents which could naturally arise in the forementioned
example of graduate school and testes for music.14

The paper is organized as follows. In Section 2, we introduce terminology
of networks and the notion of social distance. In Section 3, we present a
model of network formation based on the benefit and cost of link formation.
In this section, the cost function is assumed to be linear with respect to the
degree. It is shown that analyzing the cutoff rule model is enough to under-
stand this model of benefits and costs. In Section 4, the main section, we
analyze the cutoff rule model. Clustering coefficients, average path length,
and degree distribution are studied. In Section 5, we first discuss the case
of nonlinear cost functions, to which the application of the cutoff rule model
is not straightforward. Then, we discuss the relationship of our model with
the literature, first with the “strength of weak ties hypothesis” proposed by
Granovetter (1973, 1995), second with the “similarity scale” proposed by

12Their model is a special case of the model proposed by Caldarelli et al. (2002). For a
sociability model that takes sociability as a strategic choice variable, see Golub and Livne
(2010).

13Homophily is a well-observed socio-psychological tendency of people to interact with
others similar to oneself. To address this issue, Currarini et al. (2009) use search theoretic
network formation model and fit their model to empirical data. Also, Jackson (2008b)
formalizes a dynamic model that exhibits homophily and sees its implications on network
structures.

14The literature on “latent space” tries to “embed” agents in given network data to
multi-dimensional spaces. Although it also deals with multi-dimensional spaces, as will
become clear, its approach differs from ours since it restricts attention only to Euclidean
distance. See, for example, Hoff, et al (2002).
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Tversky (1977), and finally with the notion of the “communication exter-
nality” introduced by Rosenblat and Mobius (2004). Finally we discuss an
extension of the cutoff rule model to the case of stochastic link formations.
All the proofs are relegated to the Appendix.

2 Definitions

2.1 Terminology

N = {1, 2, ..., n} is a finite set of nodes (or, agents). A network g is a set of
links between agents in N . A link between agents i and j is denoted ij. We
say ij ∈ g if and only if there exists a link between agents i and j. Let G(N)
denote the set of all the possible networks defined on the set of agents, N .
We focus only on non-directed networks, hence require ij = ji. We suppose
ii 6∈ g for all i ∈ N by convention.

Agent i’s neighbors are j ∈ N with ij ∈ g. Formally, the set of i’s
neighbors in g, denoted by Ni(g), is defined as: Ni(g) = {j ∈ N |ij ∈ g}.
Agent i’s degree, qi(g), is the number of i’s neighbors, i.e. qi(g) = ]Ni(g).15,16

A path between nodes i and j is a sequence of links (i1i2, i2i3, ..., iK−1iK)
such that i1 = i, iK = j, and ik 6= ik′ for all k 6= k′. The path length between
i and j, PLij(g), is the length of the shortest path between i and j. If there
exists no path between i and j, then the path length between i and j is
infinite by convention. The average path length, APL(g), is the average of
PLij(g)’s over all ij’s that have finite path lengths.17

The clustering coefficient, Cl(g), is the average of the probability that a
given node’s two neighbors are connected to each other. This measure repre-
sents the cliquishness of a network. Formally, first define agent i’s clustering,
Cli(g), as follows:

Cli(g) =
]{jk ∈ g|k 6= j, j ∈ Ni(g), k ∈ Ni(g)}

]{jk|k 6= j, j ∈ Ni(g), k ∈ Ni(g)}
,

if the denominator is nonzero, and Cli(g) = 0 otherwise. The denominator

in the above expression is qi(g)(qi(g)−1)
2

, the number of possible pairs between
i’s neighbors. The numerator is the number of links actually formed among
such pairs. The clustering coefficient of a network g is given by Cl(g) =

15Thus, the cardinality of g is ]g = 1
2

∑
i∈N qi(g) because ij = ji for all i, j ∈ N .

16The convention is to denote a degree by d rather than q, but we reserve this notation
for the later use when we deal with distances.

17Thus, strictly speaking, APL is defined only for nonempty networks, g 6= ∅.
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1
n

∑
i∈N Cli(g).18

We will suppress each measure’s dependence on g when there is no risk
of confusion.

2.2 Type Space and Social Distances

Each agent is assumed to be located on a point in X = [0, 1]m, which we
call type space. Every agent belongs to the type space: Denote by xi =
(xi1, ..., xim) ∈ X the point, or type, associated with agent i ∈ N .

We assume that xi’s are independently and identically distributed ac-
cording to a distribution with a strictly positive and absolutely continuous
probability density function f over X. To simplify the analysis, we will as-
sume that f is the uniform distribution except in Subsection 4.4, where it
turns out that any of our results does not rely on this assumption.

As mentioned in the Introduction, we will consider various notions of
distance (or social distance in other words) in the type space X. Specifically,
define a class of social distances, which we call the k’th norm:

Definition 1. For every pair of agents i and j in the type space, the k ’th
norm, d(k) : N × N → R+, measures the distance between them as follows:

d(k)(i, j) = |xil − xjl| such that

]{h : |xih−xjh| ≤ |xil−xjl|} ≥ k and ]{h : |xih−xjh| ≥ |xil−xjl|} ≥ m−k+1.

Note that this definition boils down to

d(k)(i, j) = |xil − xjl| s.t. ]{h : |xih − xjh| < |xil − xjl|} = k − 1

if there is no tie in dimension-wise distances.
To grasp the idea of the definition, suppose, for example, that two agents

i and j are located on the type space X with m = 4. Their locations are
xi = (0.3, 0.2, 0.4, 0.6) and xj = (0.7, 0.7, 0.7, 0.7). Then dimension-wise
distances are (0.4, 0.5, 0.3, 0.1). If we use 1’st norm, then d(1)(i, j) = 0.1; if
we use 2’nd norm, then d(2)(i, j) = 0.3, and so forth.

18There is another concept of clustering coefficient, overall clustering, that does not aver-
age over agents’ clusterings but over pairs of neighbors: Cl(g) =

P

i ]{jk∈g|j∈Ni(g),k∈Ni(g)}
P

i ]{jk|j∈Ni(g),k∈Ni(g)} .
Clustering coefficient in this paper gives more weights to the clusterings of low-degree nodes
than does the overall clustering. The results in this paper do not hinge on the specific
choice of the concept of clustering coefficient. Precisely, both concepts give exactly the
same set of results in our model.
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Considering the situation where agents use social distances when they
evaluate the values of relationships with others, the interpretation of the
notion of the k’th norm is that if k is large, agents care about many aspects
of others’ types, while if k is small, then they care about very few aspects of
other’s types.19,20

It would be desirable to have a much more complex notion of social dis-
tance (such as a weighted average of the k’th norms over all k’s), but the
simple class of distance that we suppose is tractable and yet is enough to ob-
tain relevant economic intuition, for example because it is easy to implement
comparative statics. We note that the most important property that drives
our results in what follows is the violation of the triangle inequality. We will
make this point clearer in the analyis that follows.

We will occasionally restrict our attention to the following special cases
of interest, which correspond to k = m and k = 1, respectively: the Max
norm, dmax(i, j) = max1≤h≤m{|xih − xjh|} and the Min norm, dmin(i, j) =
min1≤h≤m{|xih−xjh|}. We sometimes use the notation d(i, j), omitting “(k),”
“max,” or “min,” when there is no risk of confusion.

3 The Model and a Preliminary Result

3.1 The Model

An agent’s payoff is composed of the benefit and cost associated with his
neighbors,

ui(g) =

 ∑
j∈Ni(g)

b(d(i, j))

 − c(qi), (1)

19Marmaros and Sacerdote (2006) claim that geographic proximity and race are more
important determinants of social interaction than are common interests, majors, and fam-
ily background. Although our treatment of different dimensions in the type space is
symmetric, this symmetry assumption is not crucial to the main results. That is, even if
the importance of each dimension differs, our main results remain unchanged: The lengths
of different dimensions of the type space can be different.

20One implicit assumption that we employ throughout this paper is that all agents use
the same measure of social distance to evaluate the relationships with others. It would
be more natural to consider the situation where different agents use different measures,
but we abstract away from this possibility because our primary objective is to understand
why different networks have different structures, and assuming heterogeneous meaures is
enough to obtain a meaningful results. Also, it is not obvious what different cutoff levels we
should set for agents with different measures, so the results associated with heterogenous
measures would have inevitable arbitrariness. On the other hand, it might be possible
that considering heterogeneous measures gives us new insights. We leave this possibility
for future research.
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where b(·) > 0 is a weakly decreasing, left-continuous function and c(·) is
a strictly increasing function. Interpretation is that b(d(i, j)) denotes the
benefit that i obtains from link ij when the distance between i and j is
d(i, j), and c(qi) denotes the cost that i pays to maintain his qi links.21 Let
∆c(q) = c(q + 1) − c(q) denote the marginal cost of adding one more link.
Cost functions are assumed to be homogeneous across all the agents, and are
either linear (i.e. ∆c(q) is constant), concave (i.e. ∆c(q) is decreasing), or
convex (i.e. ∆c(q) is increasing).22

We introduce two notions that characterize special classes of networks:

Definition 2. A network g is said to be efficient if ∀g′ ∈ G(N),
∑

i∈N ui(g) ≥∑
i∈N ui(g

′) holds.

Definition 3. A network g is pairwise stable if
∀ij ∈ g, ui(g) ≥ ui(g − ij) and uj(g) ≥ uj(g − ij), and
∀ij 6∈ g, ui(g) ≤ ui(g + ij) =⇒ uj(g) > uj(g + ij).23

Pairwise stability is the notion that is proposed by Jackson and Wolinsky
(1996). In a pairwise stable network, no two agents can mutually weakly
(resp. strictly) benefit from adding (resp. deleting) a link between them.
We employ this concept to analyze the situation in which each link is formed
based on the players’ mutual agreement.

In this section, we consider how agents form links in a pairwise stable
network. In particular, we will show that a pairwise stable network can be
characterized by a class of simple decision rules, or cutoff rules. Under such
a rule, agents have their own cutoff social distances, above which they do not
form links and below which they form links:

Definition 4. g is generated by a cutoff rule with (d̂1, d̂2, ..., d̂n) ∈ Rn
+ if

ij ∈ g ⇐⇒ d(i, j) ≤ min{d̂i, d̂j}.

We call the above (d̂1, d̂2, ..., d̂n) a cutoff value profile. Note that, given g, a
cutoff value profile is not unique in general. For example, if (d̂1(g), d̂2(g), ..., d̂n(g))
is a cutoff value profile for g and d̂i ≥ d̂j for all j ∈ N , then (d̂1(g), d̂2(g), .., d̂i(g)+

ε, .., d̂n(g)) is also a cutoff value profile where ε > 0. We say that a cutoff
value profile is homogeneous if for all i, j ∈ N , d̂i = d̂j. Otherwise we say it
is heterogeneous.

21Our specification supposes that cost does not depend on the indentity of neighbors.
This is without loss of generality so long as the cost is the sum of two terms: the term that
is increasing in the number of neighbors and the term that is increasing in the distance.

22Note that the concavity (resp. convexity) in our notation corresponds to the strict
concavity (resp. strict convexity) in usual conventions. We choose this wording just to
ease the exposition.

23By convention, we use “g + ij” for g ∪ {ij} and “g − ij” for g\{ij}.
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3.2 A Preliminary Result: Linear Cost Functions

In general, a pairwise stable network may be neither unique nor efficient.24

Moreover, a cutoff value profile does not necessarily exist for a pairwise stable
network, i.e. a pairwise stable network may not be generated by a cutoff
rule.25

The next proposition states that a model with linear cost functions in
which we concentrate on pairwise stable networks and the cutoff rule model
with a homogeneous cutoff value profile are equivalent, in the sense made
clear in the following:

Proposition 1.

1. Suppose that the cost function is linear, i.e. c(q) = c0 + c1q for some
constants c0 and c1 > 0. Then, a pairwise stable network g exists, and
it is unique and efficient. Furthermore, g is generated by a cutoff rule
with a homogeneous cutoff value profile.

2. Conversely, for any network g that is generated by a curoff rule with
a homogeneous cutoff value profile, there exists a benefit function b(·)
and linear cost fuction c(·) such that g is a unique pairwise stable and
efficient network with respect to the pair (b, c).

Proof Idea. For Part 1, the proof is constructive. As the marginal cost of
any additional link formation is constant, in a pairwise stable network link
ij exists if and only if b(d(i, j)) is no less than that marginal cost. It is
straightforward to see that this type of network is unique, and also that we
can use the distance that equates the benefit and the marginal cost as a cutoff
value. As the marginal cost is homogeneous and constant, this cutoff value
must be homogeneous across agents. Efficiency is also straightforward from
the assumption of constant marginal cost. For Part 2, we simply construct
a (b, c) pair such that agents would want to form a link with others if and
only if they are within the cutoff distance. Uniqueness and efficiency follows
directly from Part 1. See Appendix A.1 for details.

Thus, in short, we are justified in working with the simpler cutoff rule
model instead of working with potentially very complicated benefit-cost fun-
tions. Note that the proposition deals with only linear cost functions. The
case with nonlinear cost funcitons is discussed in Subsection 5.4, in which

24See Jackson (2005) for discussions on this issue.
25See Subsection 5.4 for an example of a pariwise stable network in which there is no

cutoff value profile.
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we show that our main results roughly carry over even in such a setting.
Note also that the result is independent of the choice of the notion of social
distance (the choice of k and m).26

In the next section, we analyze the cutoff rule model in detail when the
number of agents goes to infinity and the cutoff values go to zero. Proposition
1 justifies the results in Propositions 2, 3, and 4 in that section, if we consider
situations where the benefit from forming links when the distance is very
short decreases fast, and/or the marginal cost of forming an additional link
is large.27 In particular, we could directly use these results if we wanted to
fit the model to data on real networks to estimate parameters, without a
reference to specific benefit and cost functions, provided that we know that
the cost function is linear.28

4 Main Section: Cutoff Rule Model

In this section, we present the cutoff rule model and analyze how and why
different notions of social distances result in different network structures,
characterized by clustering coefficient and average path length. Further-
more, we show that a wide range of degree distributions can be obtained by
adjusting the agents’ distribution over the type space, without changing the
results about clustering coefficient and average path length.

As we have shown in the previous section, the cutoff rule model presented
here can be interpreted as the model in which agents have benefit and cost
functions as in equation (1). The simplicity of the cutoff rule model enables
us to obtain results that are expositionally neat and hence appeal to our
intuition.

4.1 The Cutoff Rule Model

Each agent i is associated with her own cutoff value, denoted by d̂i. The link
between i and j is formed if and only if the distance between them is no more
than both i’s cutoff value and j’s. Formally, ij ∈ g ⇐⇒ d(i, j) ≤ min{d̂i, d̂j}.
In this section, we assume that the cutoff values are common to all the agents.
Let the common value be d̂. That is, ∀i ∈ N, d̂i = d̂.

26This independence is also true when we analyze the case of nonlinear cost funcitons
in Subsection 5.4.

27These situations correspond to taking the limit of d̂ → 0. To see this point, see the
proof of Part 2 of Proposition 1.

28Again, note that we discuss nonlinear cost functions in Subsection 5.4.
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4.2 Clustering Coefficient

In this subsection, we will analyze how the clustering coefficient depends
on the property of the social distance in consideration. We focus on the
clustering coefficient in the limit as n tends to infinity and then d̂ tends to
zero. Formally, we consider the value of Cl∗, defined as follows:

Cl∗ = lim
d̂→0

Cld̂ where Cl(g)
n→∞−→ Cld̂ almost surely.29

Note that the strong law of large numbers ensures that the limit is unique
almost surely. Notice the order of the limit. If the order were reversed, this
value would be trivially zero for any value of k. For, if we let d̂ tend to zero
with some fixed n, the set of i’s neighbors would eventually become empty
for any i ∈ N almost surely. Recalling that i’s clustering is zero when i has
no more than two neighbors, we would conclude that limd̂→0 Cl(g) = 0, hence
limn→∞[limd̂→0 Cl(g)] = 0.

We will sometimes use the notation Cl∗(k,m) instead of Cl∗, to make it
clear that this value depends on the social distance in consideration.

We can solve for this limit clustering for every pair of k and m.

Proposition 2. For each m and k ≤ m,

Cl∗(k,m) =

(
m
k

)−1 (
3

4

)k

.

Proof Idea. To understand the intuition, consider the case of m = 2 and
k = 1. A typical agent i in the interior of the type space has three classes of
neighbors: those who are close to i only with respect to the first dimension,
those of only second dimension, and those of both dimensions. As the cutoff
goes to zero, the probabilities that agent j being the first, second, and third
class, given that he is a neighbor of i, converge to 1/2, 1/2, and 0, respectively.
Thus the probability that two of i’s neighbors chosen randomly are of the
same class converges to 1/2. The probability that the two first class neighbors
being connected to each other is the probability that two points in a unit
interval have a distance no more than 0.5, which is 3/4. Hence, in this case,
the clustering coefficient converges to 1/2 · 3/4 = 3/8. See Appendix A.2 for
details.

To understand the formula given in the above proposition, consider the
extreme cases: the Max norm and the Min norm.

29We could have results for Cld̂ for fixed d̂ > 0, but we consider the only limit value to
make the exposition neat and highlight the effects of social distance on network structures.
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Corollary 1. If 1 < m < 9, Cl∗(m,m) > Cl∗(1,m) holds. That is, Cl∗ is
higher with the Max norm than with the Min norm.

The proof follows straightforwardly from Proposition 2, and is relegated
to Appendix A.2.

If m < 9 holds then the clustering coefficient is higher if social distances
are measured by the Max norm (k = m) than by the Min norm (k = 1). The
intuition is that, under the Max norm, the triangle inequality provides an
upper bound of the distances between i’s neighbors. Therefore, i’s neighbors
are relatively closely located to each other. For the Min norm, however, this
is not the case because the triangle inequality is not satisfied: two agents
being neighbors of a common agent does not provide an upper bound of
their distance, so it is possible that i’s neighbors are quite far away from
each other.

The second corollary of Proposition 2 is the following comparative statics:

Corollary 2.

1. Cl∗(k,m) is decreasing in m.

2. Cl∗(k,m) is nonincreasing in k when k is small, reaches its minimum
at k =

⌊
4
7
(m + 1)

⌋
(provided such k is no more than m), and is non-

decreasing when k is large where
⌊
·
⌋

denotes the Gaussian.

Again, the proof is straightforward from Proposition 2, and is relegated
to Appendix A.2. We note that in part 2 of this corollary, “nonincreasing”
and “nondecreasing” can be replaced with “decreasing” and “increasing,”
respectively, except at a possible indifference at the minimum.

According to the first part of Corollary 2, if the number of dimensions of
the type space becomes large with fixed k, then the resulting network becomes
less cliquish.30 Thus, for example, the introduction of new communication
technology, which would increase the number of relevant dimensions, makes
a network less cliquish. The second part states that, with fixed m, there is
a nonmonotonic relationship between the clustering coefficient and k. A bit
more specifically, networks are more cliquish either when agents care about
very few aspects of others, or when they care about many aspects of others,

30A similar argument is informally discussed in Chwe (2000). He considers the case of
the Max norm in our terminology, and claims that “lower dimension networks have higher
transitivity.”
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given that the number of relevant dimensions are not too few.31,32

This explains why the “e-mail network” of Ebel et al. (2002) has a lower
clustering coefficient than the “coauthorship network” of Goyal et al. (2006):
The incidence of e-mail exchanges does not require many similar aspects
between the sender of the email and the receiver, while coauthoring needs
many similar interests.

4.3 Average Path Length

In this subsection, we solve for the average path length for each k. As in the
previous subsection, we focus on the limit value APL∗, formally defined by:

APL∗ = lim
d̂→0

APLd̂ where APL(g)
n→∞−→ APLd̂ almost surely.

Again, the order of the limit is important. If it were reversed, then it would
not be well-defined, as APL(g) is defined as the average of finite path lengths,
while as the cutoff goes to zero with a fixed number of agents, all the pairs
of agents have the path length ∞ almost surely. We also use APL∗(k,m) as
before.

The following proposition gives the formula of APL∗ for the k’th norm
with k < m.

Proposition 3. Take any k and m such that k < m. Then, APL∗(k,m)
is

⌊
m

m−k

⌋
+ 1 if m

m−k
is not an integer and m

m−k
if it is, where

⌊
·
⌋

is the
Gaussian.

31Assuming that the relevant k is not too small, this result seems to be consistent with
the empirical result given by Rapoport and Horvath (1961). Rapoport and Horvath (1961)
analyze the survey data collected at a junior high school in Ann Arbor area shortly after
the beggining of the 1960-1961 school year. In the survey, students are asked to list 10
friends from the first to the tenth. Based on the data, they generate a network with links
of the l’th and the (l +1)’th friends, for various values of l. They find that θ, a parameter
similar to clusteirng coefficient, decreases with respect to l. Roughly speaking, θ is defined
by the fraction of the overlap of the sets of neighbors of two connected agents (The
formal definition can be found in Rapoport (1953). It can be shown that θ is monotone
in clustering coefficient in (appropriately defined) large networks). Assuming, although
arguably, that an agent’s closer friends share more aspects that are similar to hers than
far friends do, this result is consistent with our result that Cl∗ is increasing in k for values
of k close to m.

32As we have explained, the “decreasing” part is quite intuitive. The “increasing” part

is due to the “combination” term:
(

m
k

)−1

. When m is large and k(< m) is close to m, the

change from k to k +1 makes the number of possible combinations of dimensions at which
two neighbors of agent i are close to each other significantly lower. Thus the probability
of i’s two neighbors being connected with each other rises as we move from k to k + 1.
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Proof Idea. To understand the intuition, consider the case of m = 5 and
k = 3, and suppose for a moment (only in this paragraph) that we are dealing
with continuum of agents. Almost surely, a pair of agents i and j satisfies
dmin(i, j) > 0. Let xi = (0.3, 0.3, 0.3, 0.3, 0.3) and xj = (0.7, 0.7, 0.7, 0.7, 0.7).
Letting x1 = (0.7, 0.7, 0.3, 0.3, 0.3), x2 = (0.7, 0.7, 0.7, 0.7, 0.3), we construct
a path: (xix1, x1x2, x2xj). In each link, the first 5 − 3 elements change from
0.3 to 0.7. This change ends in

⌊
5/(5−3)

⌋
+1 steps. The proof is a bit more

involved since we deal with a finite number of agents. See Appendix A.3 for
details.

To understand the proposition, consider the following corollary:

Corollary 3. Take any k and m such that k < m. Then,

1. APL∗(k,m) is decreasing in m.

2. APL∗(k,m) is increasing in k.

The proof is straightforward from the formula given in Proposition 3,
hence is omitted. The average path length in a network, in the limit, tends
to be small if the type space is rich (if m is large), and/or if agents do not care
about many aspects of the others (if k is small). Thus, the introduction of
new communication technology, which would increase the number of relevant
dimensions, makes a newtork closely connected. Also, a network is closely
connected if it is enough for people to have a small number of similar aspects
for them to be connected. Also, this explains why the “e-mail network” of
Ebel et al. (2002) has a lower average path length than the “coauthorship
network” of Goyal et al. (2006): The incidence of e-mail exchanges does
not require many similar aspects between the sender of the email and the
receiver, while coauthoring needs many similar interests.

The result is intuitive: If the number of dimensions at which agents must
have similar characteristics to form a link is small relative to the richness
of the type space, then each agent has neighbors who have many aspects of
characteristics that are different from his ones. Thus, it is easy to have access
to agents with very different characteristics through the network.

Proposition 3 rules out the case of the Max norm, where k is exactly
equal to m. The next proposition concerns this case.

Proposition 4. APL∗(m,m) = ∞ .

Proof Idea. Generically two randomly chosen points in the type space have
a strictly positive dimension-wise distance for each dimension. Since under
the Max norm two agents are linked with each other only if they are within
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the cutoff distance with respect to all dimensions, the path length between
any randomly chosen agents (generically) goes to infinity as the cutoff goes
to zero. See Appendix A.4 for details.

Here, we see a striking difference between the k’th norm with k < m and
the Max norm with k = m. With any k < m, the average path length takes
some finite value in the limit as the cutoff goes to zero. But with k = m, the
average path length goes to infinity. Furthermore, the result in Proposition 4
is true also in the case of Euclidian norm, d(i, j) = [

∑m
k=1(xik−xjk)

2]
1
2 . Notice

that the triangle inequality is satisfied by the Max norm (and Euclidian
norm), but not by the k’th norm with k < m. Social distances with the
triangle inequality describe situations where an agent’s neighbors cannot be
very far away from each other, which suggests that in such cases path lengths
in networks tend to be large.

Propositions 2, 3, and 4 constitute our main results in this paper: The
structures of networks, measured by clustering coefficient and average path
length, vary with the social distance in consideration. By exploiting the
results in Corollaries 2 and 3, one can provide an interpretation for a variety
of networks, and fit our model to data by adjusting the parameters in the
model, such as k and/or m.

Except for under the Max norm, our model has the “small world” prop-
erty, i.e. networks have smaller average path lengths compared with lattice
networks and larger clustering coefficients compared with randomly gener-
ated networks.33,34 This is a well-observed property in a variety of networks
in reality and has been much studied in the literature. This property is gen-
erated in the existing literature by, for example, “rewiring” process (Watts
and Strogatz, 1998), hub nodes (Barabasi and Albert 1999), or partitioning
of agents into several groups (Jackson and Rogers 2005). Our model gives
an alternative explanation for the “small world” property, which depends on
the multi-dimensionality of the type space.

4.4 Degree Distribution

So far we have assumed that agents are uniformly distributed over the type
space X. But a network generated by such a model has the degree distribu-

33Precisely, the average path length in a large lattice network is very large if the expected
degree is moderate. In a random network in which the probability of link formation
between any pair of nodes is p, the clustering coefficient is p. But if the network is large
and the expected degree is moderate, p needs to be very small, which results in a very low
clustering coefficient.

34In Subsection 5.5 we consider models in which networks with the “small world” prop-
erty arise even under the Max norm.

16



tion that converges in distribution to a degenerate point mass distribution,
contradicting the empirical evidence about degree distributions.35 As men-
tioned earlier, however, our results do not rely on the assumption of the
uniform distribution. In this subsection, we state this claim formally, and
further show that by appropriately changing the distribution over the type
space, we can generate a wide range of degree distributions.

Proposition 5. For any strictly positive and absolutely continuous probabil-
ity density function f over X, Cl∗ and APL∗ in Propositions 2, 3, and 4
remain the same.

Proof Idea. If the distribution over the type space is strictly positive and ab-
solutely continuous over X, we can show that f restricted to the d̂-neighborhood
(with respect to any norms) of any agent is close to the uniform distribution
as d̂ → 0. The continuity of the clustering coefficient with respect to the
distributions of nodes implies the Cl result. The APL result is straightfor-
ward since the proofs of Propsoitions 3 and 4 do not depend on any specific
assumptions on the distribution of nodes as long as it is strictly positive. See
Appendix A.5 for details.

Now, we know that the results we have so far are robust to changes in
the distribution over X, as long as the distribution is strictly positive and
absolutely continuous. The next proposition shows that a wide range of
degree distributions can be attained in the model. Before stating the result,
we need a piece of notation:

Definition 5. The relative degree of agent i, denoted pi, is

pi =
qi

maxj∈N qj

∈ [0, 1].

Thus, the relative degree of agent i is the ratio of his degree to the max-
imum of the degrees of all the agents. Again, we consider the limit of pi as
n goes to infinity and d̂ goes to zero:

p∗i = lim
d̂→0

pd̂
i where pi

n→∞−→ pd̂
i almost surely.

We refer to the minimum of the relative degrees as the “minimum relative
degree.”

The next proposition shows that a wide range of relative degree distribu-
tions can be obtained by appropriately changing the distribution over X.

35See Barabasi (2002), among others.
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Proposition 6. For any distribution of limit relative degrees with minimum
relative degree greater than m−k

m
, there exists a distribution f that generates

it.

Proof Idea. The simplest way to construct an appropriate distribution over
the type space is to deal with the marginal distribution over an arbitrary
chosen single dimension, while keeping the marginal distributions on other
dimensions uniform. See Appendix A.6 for details.

The condition on the minimum relative degee says that if the degree
distribution is “not too diverse,” our model can generate that distribution.
We note that the condition can be vacuously satisfied for the Max norm,
unless the minimum relative degree is exactly equal to zero. Non-degenerate
degree distributions are often found empirically. In particular, the scale-
free distribution have found extensively in the literature.36 Although many
models have been proposed that explain these phenomena, Proposition 6
provides another explanation for them: An agent has high (resp. low) degree
if he has many (resp. a few) friends who have similar types to his one.

5 Discussions

In thise section, We relate our model to the “strength of weak ties hypothe-
sis” of Granovetter (1973), the “similarity scale” of Tversky (1977), and the
“communication externality” of Rosenblat and Mobius (2004).

We also discuss two extensions of our model. In one extension, we consider
the possibility that cost functions are nonlinear. Although there might exist
multiple pairwise stable networks and a homogeneous cutoff value profile
might not exist in this context, we show that analogous results to our main
results can be obtained by replacing pairwise stability and a homogeneous
cutoff value profile with a stronger notion of strong stability (Jackson and van
den Nouweland, 2005) and a heterogeneous cutoff value profile, respectively.

In another extension, we consider the possibility that the link formation
is stochastic. In this context, as in Watts and Strogatz (1998), a small
stochatsic component is enough to make the average path length significantly
low while keeping the clusetering coefficient almost unchanged.

36The scale-free distribution, which was originally discovered by Pareto (1896), is ob-
served in a variety of networks. Pareto (1896) finds that wealth distribution in Italy had
the scale-free feature. Note that the scale-free distribution is often found as a property of
the tail of degree distributions, so our condition on the minimum relative degree does not
contradict the scale-free distribution observed in the data.
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5.1 Information Diffusions and the “Strength of Weak
Ties Hypothesis”

Granovetter (1973,1995) observes that “weak ties” bring more useful infor-
mation than “strong ties”, where the strength of the relationships is measured
by frequency of interactions. He also discusses that strong ties typically tend
to be informationally redundant because relationships tend to be transitive
(e.g. a friend of one’s friend is also his friend) in such cases. On the other
hand, weak ties bring new information, since the relationships tend not to be
transitive. In our model, link formations with the k’th norm with small k is
closely related to that of weak ties, because with small k, for two agents to be
linked with each other, they need not share many similarities. This suggests
that varying parameters of social distance in our model has an implication
for information dissemination.

To formalize this idea, consider the following stylized model of information
dissemination. At period 0, some agent i ∈ X is randomly selected and
obtains a piece of information, which has value δT for j if j ∈ N knows it
at period T > 0 for the first time, where 0 < δ < 1. At each period, each
agent h meets with his neighbor h′ ∈ Nh(g) with probability p(D(h, h′)) and
passes the information to her, where D(h, h′) is the number of dimensions in
which the dimension-wise distance between h and h′ is no more than d̂.37 We
assume that p(·) is strictly increasing, to capture the idea that if h and h′

have many similar characteristics (ex. sharing a workplace or having similar
tastes for music), they communicate often. Note that as n goes to ∞ and d̂
goes to 0, the fraction of linked pairs that have D = k approaches 1 for almost
sure events for any given k. So (with a slight abuse of notation) we simply
let D = k and assume that p is strictly increasing in k. This implies that
for P = {p′|p′ = p(k) for some k}, p−1(p′) for p′ ∈ P is strictly increasing.
Hence, we expect that the network is generated with high k if the probability
of meeting (frequency of intereaction) of linked agents is high, that is, ties
are strong.

Now, the (ex ante) value of the information in the limit as n goes to
infinity and d̂ goes to zero is simply δAPL∗

almost surely, since agent h can
communicate with some agent in any open subset of the set of points within
distance d̂ from h, if n is sufficiently large. Recalling from Corollary 3 that
APL∗ is increasing in k, we have that the value of the information is decreas-
ing in k.

Since we have concluded that k is increasing in p (the frequency of in-

37For simplicity, we assume that the informational is conveyed truthfully when informa-
tion transmission occurs.
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tereaction), we can conclude that the value of the information is decreasing
in p, that is, when ties are strong, the information is less valuable. Con-
versely, when ties are weak, the information is more valuable. Therefore, the
“strength of weak ties” results.

5.2 The k’th Norm and Similarity Scale

In this subsection, we discuss the relationship between the k’th norm and
the “similarity scale,” defined in Tversky (1977). Tversky (1977) derives
a representation of the “similarity scale” that satisfies several assumptions.
The similarity between agent i and agent j is measured by the relation-
ship between their profiles of characteristics, I and J , respectively. For
example, we may have I = {student, conservative, New York} and J =
{student, progressive, London}. The representation of the similarity scale,
denoted s(i, j), is as follows:

s(i, j) = θf(I ∩ J) − αf(I \ J) − βf(J \ I),

where θ, α, β ≥ 0. For simplicity, let us assume that f(A) = ]A. In or-
der to accommodate this function to our model with type space, let I =
{xi1 . . . , xim} and J = {xj1 . . . , xjm}, and say that xil ∼ xjl if and only if

xil−xjl ≤ d̂, where d̂ > 0. Notice that this binary relation ∼ does not satisfy
transitivity. We let I ∩ J = {xil|xil ∼ xjl}, I \ J = {xil|xil 6∼ xjl}, and
J \ I = {xjl|xil 6∼ xjl}.

Then, with the notation D(i, j), which is defined as the number of “com-
mon dimensions” (see Subsection 5.1 for the definition), we have:

s(i, j) = θf(I ∩ J) − αf(I\J) − βf(J\I)

= θD(i, j) − (α + β)(m − D(i, j))

= (θ + α + β)D(i, j) − (α + β)m.

This implies that, i and j’s similarity is no less than some threshold value ŝ
if and only if

D(i, j) ≥ ŝ + (α + β)m

θ + α + β
.

But this is equivalent to saying that i and j are within distance d̂ under the
k’th norm where k =

⌊
(ŝ + (α + β)m)/(θ + α + β)

⌋
and

⌊
·
⌋

is the Gaussian.
That is, similarity, as measured in the sense of Tversky (1977), being no less
than some threshold implies link formation under the k’th norm in our model.
It would be easy to see that the converse holds, too. That is, link formation
under the k’th norm in our model implies that similarity, as measured in the
sense of Tversky (1977), is no less than some threshold.
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5.3 Implication for Social Welfare: the Communica-
tion Externality

In this subsection, we analyze the implication of our model for social welfare,
following a procedure similar to the one in Rosenblat and Mobius (2004,
hereafter RM). Following RM, we define the communication externality in
network g, denoted by CE(g), as follows:

CE(g) = T (g) − v(g) + w(g).

The three terms represent the communication externality that results
from agents’ link formations. Concisely, T (g) denotes the benefit of trans-
mitted ideas from other agents, v(g) is the cost generated by the difference
in the preferences of agents, denoted by ∆E, and w(g) is the benefit of (in-
formal) institutions serving the needs of specific groups. All of these terms
are nonnegative. We explain each of the three terms below. Detailed discus-
sion is available in RM. In what follows, we assume that network g is a limit
network with n → ∞ and d̂ → 0.

Transmission of ideas: T (g) is the benefit of transmitted ideas from other
agents. Some examples of these welfare-improving ideas are innovative tech-
nologies or information about job opportunities. Seminal empirical studies
are Rogers (1995) and Granovetter (1995), respectively. Following the dis-
cussion in the previous subsection, let us assume that T (g) is decreasing in
APL∗.38

Corollary 3 tells us that APL∗ is increasing in k and decreasing in m.
Hence we conclude that T (g) is decreasing in k and increasing in m.

Cost of differences: v(g) denotes the cost generated by the difference in
the preferences of agents, ∆E. v(g) is increasing in ∆E. For example, more
diverse preferences for political policies (hereafter “political types”) make
collective decision making more difficult.39 To formulate ∆E, we assume,
as in RM, that agents are partly influenced by the neighbor’s preferences.40

For simplicity, suppose that a specific one of m axes of the type space, say
axis 1, describes the political type. Let µ denote the mean of the marginal

38RM assume T (g) to be inversely proportional to the degree of individual separation,
which is defined in their model. They note that the degree of individual separation is
closely related to average path length of the network.

39Alesina, Baqir and Easterly (1999) show that the heterogeneity of preferences can
reduce the provision of public goods in a community. Alesina and la Ferrara (2000) show
that social capital is lower in more heterogeneous communities.

40Our formulation of ∆E and I(g) is somewhat different from that of RM. In RM’s
model, agents are partitioned into two groups, although in this paper the notion of group
is not explicitly modeled.
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distribution of agents’ types with respect to axis 1, i.e. µ = E[xi1].
Agent i’s “ex post political type” in network g, x̃i1(g), is assumed to be

composed of his original (“ex ante”) political type and his neighbors’ ex ante
political types:

x̃i1(g) =
xi1 + β ·

∑
j∈Ni(g) xj1

1 + β · qi(g)
,

where β > 0 represents the degree of social influence. Assume that ∆E is
equal to the almost sure limit of the mean distance between randomly chosen
two agents’ ex post political types as n goes to infinity and then d̂ goes to
zero.41 That is,

∆E = lim
d̂→0

lim
n→a.s.∞

1

n

∑
i∈N

|x̃i1(g) − µ|.

In Appendix A.10, we show that ∆E is decreasing in m and increasing in
k. The intuition behind this result is that an agent has more chances to
form links with agents who are dissimilar in the political type if the type
space is rich (if m is large), and/or if the agents do not care about many
aspects of the others (if k is small). Under such circumstances, the diversity
of agents’ ex post political types is small and hence the network incurs small
cost generated by the differece in agents’ preferences.

Informal institutions: w(g) represents the benefit of informal institutions.
As classical works such as Coleman (1988) observes, a community with high
network closure, i.e. Cl, can support cooperative behaviors well. That is, in
such a network neighbors can monitor each other and avoid “free riders” by
“community enforcement.”42 From another perspective, Chwe (2000) shows
that a network with high Cl facilitates collective actions.43 Hence, we assume
that w(g) is decreasing in Cl.

The above decomposition of the communication externality enable us to
obtain insights into social welfare. For example, suppose that the type space
becomes rich, i.e. m is increased with k being constant, because of advance in
communication technology or because of the creation of a new interest group.
We can predict three possible external effects on the welfare: First, since this
implies smaller APL, we predict a positive effect from transmissions of ideas
through the network (higher T (g)). Second, a larger m makes neighbors’ po-
litical preferences less diverse. Hence, the cost of producing public goods and

41This definition is analogous to the one for ∆E in RM.
42Balmaceda and Escobar (2010) formalize this logic and show that cooperation can be

sustained in a network with high clustering.
43In his model, a network with high Cl tends to generate common knowledge among

agents so that they can participate in risky collective actions. For more comprehensive
discussion on this subject, see Chwe (2001).
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of accumulating social capital becomes small (smaller v(g)). Third, Corollary
2 shows that a larger m results in a smaller Cl. This makes collective actions
of the community harder, so the benefit from informal institutions becomes
smaller (smaller w(g)).

Hence, the effect of changes in m on the communication externality is not
straightforward: It depends on the relative importance of each component,
that is, the benefit of transmitted ideas, the cost generated by the difference
in preferences, and the benefit of informal institutions. Analogously, it is
easy to see that the effet of changes in k is also ambiguous.44

5.4 Nonlinear Cost Functions

5.4.1 Nonlinear Cost Functions and Strong Stability

Generally, pairwise stability does not determine a unique network structure.
Moreover, a pairwise stable network is not necessarily generated by a cutoff
rule. For example, consider the networks depicted in Figure 1.

First, consider the composition of nodes in Figure 1(a): There are four
nodes, 1, 2, 3, and 4 located in the type space X = [0, 1]2, with x1 = (0.9, 0.1),
x2 = (0.8, 0.95), x3 = (0.1, 0.25), and x4 = (0.15, 0.8). We consider the
case with k = m = 2. Calculating the distances, we get d(1, 2) = 0.85,
d(1, 3) = 0.8, d(1, 4) = 0.75, d(2, 3) = 0.7, d(2, 4) = 0.65, and d(3, 4) = 0.55.
Suppose that b(d) = 1

d
, c(0) = 0, c(1) = 2, c(2) = 2.2, and c(3) = 2.3.

Notice that the cost function c is concave. In this case, there are three types
of pairwise stable network structures, depicted in (a-1), (a-2), and (a-3),
respectively. The network in (a-1) is pairwise stable because the cost to form
the first link, i.e. ∆c(0), is so high that no one wants to form a link. The
network in (a-2) is pairwise stable because, again, the cost for the node 4
to form the first link is very high that he does not want to form a link even
though each of the other three nodes have incentive to form a link with him.
There are three other networks of this type, in each of which one agent has
degree 0 and other three agents have degree 2. The network in (a-3) is also
pairwise stable because the fact that the marginal cost of forming a third
link, ∆c(2) is very low implies that the marginal benefit of deleting a third
link is negative.

Next, consider the composition of nodes in Figure 1(b): There are four
nodes, 1, 2, 3, and 4 located in the type space X = [0, 1]2, with x1 = (0.8, 0.2),

44Depending on the context, our results on the effects of changes in parameters such
as m and k (and even the cost function discussed in Subsection 5.4 in depth) would be
suggestive for social planners or “network designers” who, for example, manage social
networking services.
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x2 = (0.75, 0.95), x3 = (0.4, 0.1), and x4 = (0.25, 0.8). Again, we consider
the case with k = m = 2. Suppose that b(d) = 1

d
, c(0) = 0, c(1) = 1,

c(2) = 10, and c(3) = 30. Notice that c is convex. Distances between nodes
are d(1, 2) = 0.75, d(1, 3) = 0.4, d(1, 4) = 0.6, d(2, 3) = 0.85, d(2, 4) = 0.5,
and d(3, 4) = 0.7. In this case, there are at least two pairwise stable networks,
depicted in (b-1) and (b-2), respectively.45 Both networks in (b-1) and in (b-
2) are pairwise stable because the marginal cost for these nodes to have a
second link is very high. But the network in Figure 1(b-2) is not generated
by a cutoff rule. For, if it did, the cutoff value of node 1 has to be no less
than 0.75 because it is connected to node 2 and d(1, 2) = 0.75. The cutoff
value of node 3 has to be also no less than 0.7 because it is connected to
node 4 and d(3, 4) = 0.7. But then, d(1, 3) = 0.4 < 0.7 implies that it has to
be the case that the link 13 is formed; a contradiction.

Although we have multiplicity of pairwise stable networks in both con-
cave and convex cost functions, the reasons for the multiplicity are quite
different. Precisely, in the case of convex cost functions, it is impossible that
two networks g, g′ ∈ G(N) are both pairwise stable and g ( g′, while it is
possible in the case of concave cost functions, as shown in the example in
Figure 1(a).

Although multiple pairwise stable networks are possible, a refinement
of the concept of pairwise stability, strong stability (Jackson and van den
Nouweland, 2005), can predict a smaller set (or even a singleton set under
certain circumstances) of “stable” networks. By using this stronger notion of
stability, we can show that the resulting network, which turns out to exist,
can be described by the cutoff rule model analyzed in Section 4.

Before defining strong stability, we need one more definition: We say a
network g′ is obtainable from g via deviations by S ⊆ N if

(ij ∈ g′ ∧ ij 6∈ g) =⇒ i, j ∈ S and
(ij ∈ g ∧ ij 6∈ g′) =⇒ {i, j} ∩ S 6= ∅.
That is, g′ is obtainable from g via deviations by S if each newly formed

link in g′ involves the agents only from S, and each deleted link in g′ involves
at least one agent from S.

Definition 6. A network g is strongly stable if for any S ⊆ N and g′ that
is obtainable from g via deviations by S, (∃i ∈ S s.t. ui(g

′) > ui(g)) implies
(∃j ∈ S s.t. uj(g

′) < uj(g)).

This concept requires that a stable network be robust to deviations by
any coalitions. For example, the networks in Figure 1(a-3) and Figure 1(b-1)
are strongly stable, but other networks in Figure 1 are not. Note that if g is

45A network with links {14, 23} is also pariwise stable.
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strongly stable, then it is also pairwise stable, as the coalition S can be any
pair of agents.

The next proposition states that we are assured to have a pairwise stable
network that is generated by a cutoff rule, and moreover, that when the cost
function is linear or convex, the concept of strong stability selects a unique
network, and again it is generated by a cutoff rule.

Proposition 7. Suppose that the cost function c is linear, concave, or con-
vex. Then, almost surely, there exists a pairwise stable network that is gen-
erated by a cutoff rule. Furthermore, if c is linear or convex, there exists a
unique strongly stable network, and it is generated by a cutoff rule.

Proof Idea. We propose an algorithm in which agents make offers to form
links with others at each step. The algorithm stops in a finite number of steps,
and generates a strongly stable network. A cutoff value profile is given by the
one in which each agent’s cutoff is the maximum distance among his links
with others in the generated network. See Appendix A.7 for details.46

A pairwise stable network is not necessarily generated by a cutoff rule if it
is not strongly stable. In the example in Figure 1, for instance, the network
in (b-2) is pairwise stable, but is not (uniquely) strongly stable. So the fact
that it is not generated by a cutoff rule is still consistent with the result in
Proposition 7. But it is always the case that there exists a pairwise stable
network that is generated by a cutoff rule. Moreover, using the notion of
strong stability, we can select a smaller set (or even a singleton set under
certain circumstances) of networks in which players form links as if they
are using some cutoff values. Note that, as opposed to the case of linear
cost functions, the cutoff value profile, if any, in a pairwise stable network
under nonlinear cost function is not necessarily homogeneous. An example

46Although we were unable to prove the existence of strongly stable network for concave
cost functions, there is a sense in which the result seems to hold. For example, in Figure
1(a), the strongly stable network exists, which is simply a Pareto efficient network among
the set of pairwise stable networks (Figure 1(a-3)). One difficulty associated with concave
cost functions is that, as opposed to the cases of convex or linear cost functions, that
an agent does not have an incentive to sever one link from a current network does not
necessarily imply that she does not want to sever multiple links from the network. We
leave further investigation of the case of concave cost funcitons for future research. Also,
notice that we do not provide a result on efficiency. This is because efficiency does not
hold in general. For example, consider an example in Figure 1(b-1), but suppose that
there are only node 1-3, and consider the same k, m, b and c as in the main text, except
that now we assume c(2) = 2.5. Then, it is straightforward that g = {13} is the unique
strongly stable network. But this is not efficient: If link 12 were to be added, node 1
obtains 1/0.75 − 1.5 = −1/6, while node 2 obtains 1/0.75 − 1 = 1/3, hence the net effect
on the total surplus is positive (−1/6 + 1/3 = 1/6 > 0).
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is the network in Figure 1(a-2), where agents 1-3 and agent 4 cannot have
a homogeneous cutoff value profile. Note that this network is not strongly
stable, as the network in Figure 1(a-3) is obtainable from the network in
Figure 1(a-2) via deviations by S = {1, 2, 3, 4} and that all the agents would
be better off after such deviations.

A homogeneous cutoff value profile may not exist even in a strongly stable
networks: Consider the composition of nodes in Figure 2: There are four
nodes, 1, 2, 3, and 4 located in the type space X = [0, 1]2, with x1 = (0.7, 0.1),
x2 = (0.8, 0.95), x3 = (0.2, 0.05), and x4 = (0.15, 0.4). We consider the case
with k = m = 2. Suppose that b(d) = 1

d
, c(0) = 0, c(1) = 1, c(2) =

5, and c(3) = 10. Distances between nodes are d(1, 2) = 0.85, d(1, 3) =
0.5, d(1, 4) = 0.55, d(2, 3) = 0.9, d(2, 4) = 0.65, and d(3, 4) = 0.35. It is
straightforward to see that there is a unique pairwise stable network, namely
g = {12, 34}, as in the figure. This is also strongly stable.

Now, because node 1 is connected with node 2, his cutoff value, if any,
has to be no less than 0.85. But because node 3 is not connected with node
1, his cutoff value, if any, has to be strictly less than 0.5. This implies that
we can not find any homogeneous cutoff value profile. Hence, this example
shows that even in a strongly stable network, a homogeneous cutoff value
profile may not exist. On the other hand, as Proposition 7 shows, a het-
erogeneous cutoff value profile must exist. For example, (d̂1, d̂2, d̂3, d̂4) =
(0.85, 0.85, 0.35, 0.35) serves as a heterogeneous cutoff value profile.

The next subsection examines how heterogeneous a cutoff value profile
can be, when the number of nodes is very large.

5.4.2 Heterogeneous Cutoff Value Profile

The following proposition shows that the heterogeneity of a cutoff value pro-
file is small when the marginal cost approaches some constant value as the
number of agents goes to infinity.

Proposition 8. Suppose that b is continuous and strictly decreasing, and
that for some c1 > 0, limd→0 b(d) > c1 and limq→∞ ∆c(q) = c1 > 0 hold.

Then, the cutoff value profile for a strongly stable network, (d̂1, ..., d̂n), is
such that

min
i∈N

d̂i
n→∞−→ d̂ almost surely and max

i∈N
d̂i

n→∞−→ d̂ almost surely,

where b−1(c1) = d̂ > 0.

Proof Idea. For each agent, for sufficiently large number of nodes, there are
sufficiently many neighbors in his δ-neighborhood. The agent has to be
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connected with them in a strongly stable network, for otherwise the network
would not be pairwise stable, so it would not be strongly stable, either. This
implies that he has a sufficiently large degree, and hence the cost function is
almost linear when he decides whether or not to connect with agents outside
the δ-neighborhood. Hence, he can be described as if he were using a cutoff
that is only slightly different from some fixed cutoff. See Appendix A.8 for
details.

Next, we analyze networks under a heterogeneous cutoff value profile. We
assume that each agent has his own cutoff value, d̂i, and it is distributed in the
interval [d̂ − ε, d̂ + ε] for some ε > 0, according to some (possibly unknown
and/or correlated) distribution. That is, agents are using heterogeneous
cutoff values, which deviate from d̂ by at most ε. Define

Cl∗hetero = lim
d̂→0+

lim
ε→0+

Cld̂,ε where Cl(g)
n→∞−→ Cld̂,ε almost surely.

APL∗
hetero = lim

d̂→0+
lim

ε→0+
APLd̂,ε where APL(g)

n→∞−→ APLd̂,ε almost surely.

Note that the order of the limits implies that we consider the situation where
the heterogeneity of the cutoff values is almost negligible relative to the
sizes of the cutoff values themselves. Note also that there exists a sequence
of (b, c) pair that satisfies the assumptions in Proposition 8 such that the
corresponding d̂ converges to zero, due to the analogous argument as in Part
2 of Porposition 1, hence the requirement of d̂ → 0 above is not vacuous.
The next propositions state that the limit values of the clustering coefficient
and the average path length with heterogeneous cutoff values are the same
as in the case of homogeneous cutoff values.

Proposition 9. Cl∗hetero = Cl∗.

Proof Idea. Given d̂ and ε, by slightly modifying the calculation in the proof
of Proposition 1, we get an upper bound and a lower bound of Cl∗hetero. One

can show, for any d̂, that these modified formula approaches Cl∗ as ε goes to
zero. See Appendix A.9 for details.

Proposition 10. APL∗
hetero = APL∗.

The proof strategy runs parallel to that of Proposition 9, hence is omitted.
Summing up, our main results are almost unchanged under the condition

that heterogeneity of the cutoff values is almost negligible relative to the
cutoff values themselves. Combined with Proposition 8, our results in Section
4 carry over even in the case of nonlinear cost functions provided that they
approximate linear functions.
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5.5 Extensions of the Cutoff Rule Model to Stochastic
Models

In this subsection, we present models that include stochastic components in
the cutoff rule model. The results in this subsection apply to the cases of the
k’th norms with any k.

We propose two ways to include stochastic components. We obtain sim-
ilar results for both cases, but the two models highlight different aspects of
possible “randomness” in agents’ relationships.

Stochastic Model 1 (S1): Suppose that each pair of agents i and j
uses a cutoff value, d̂ + εwij, where ε ∈ [0, 1] is a fixed constant and wij is
an independently and identically distributed random term (Thus, this model
assumes that the cutoff values are not agent-specific, but pair-specific). Ran-
dom terms are interpreted as a result of idiosyncratic noises in preferences.
We assume that the distribution has a full-support over R+. When ε > 0,
this model differs from the deterministic cutoff rule model in that we now
allow each agent to use various cutoff values. Let the almost sure limit of
the average path length of this model as n → ∞ be APLS1 and the almost
sure limit of the clustering coefficient of this model as n → ∞ be ClS1.

Stochastic Model 2 (S2): Suppose that each agent has the cutoff value
of d̂ > 0 with probability 1 − ε, and that of D with probability ε, where D
is a random variable whose distribution has a full-support over [0, 1] and
ε ∈ [0, 1]. The interpretation is that fraction ε of agents who have different
cutoffs are “crazy,” while the remaining fraction 1−ε of agents are “normal.”
Assume also that Pr(D = 0) = 0. When ε > 0, this model differs from the
deterministic cutoff rule model in that agents can differ not only in their types
but also in their “sociabilities” (Fujii and Kamada, 2010). For example, an
agent with very high D corresponds to a very “social” agent. Let the almost
sure limit of the average path length of this model as n → ∞ be APLS2 and
the almost sure limit of the clustering coefficient of this model as n → ∞ be
ClS2.

The first proposition tells us that the prediction about the clustering
coefficient is not affected substantially by the introduction of slight stochastic
components.

Proposition 11. (i) ClS1 is continuous in ε at ε = 0; (ii) ClS2 is continuous
in ε at ε = 0.

Proof Idea. In both models, when ε is small, most of agents (or pairs) have
cutoffs very close to d̂. Also, for each agent i, most of her neighbors consist of
the agents with the cutoffs very close to d̂. Since clustering coefficients must
take values in [0, 1], we can essentially ignore the agents with cutoffs which
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are very different from d̂ when we take the limit as ε → 0. Because the cutoffs
of agents who we need to take care of converge to d̂, we can use Proposition
9 to show that the bounds of the clustering coefficient approaches Cl∗ from
below and above as ε → 0.

The next proposition shows that APL is very small in these stochastic
models, irrespective of k, m, and d̂.

Proposition 12. (i) APLS1 ≤ 2; (ii) APLS2 ≤ 3.

Proof Idea. In model S1, any pair of agents i and j can be connected through
some agent h who is very close to i and whj is very high. Such an agent exists
for large n almost surely by the strong law of large numbers. Thus the APL
in the limit is at most 2. In model S2, any pair of agents i and j can be
connected through some pair of agents h and h′, both of whom has very large
D, and h is very close to i and h′ is very close to j. Again, such a pair of
agents exists almost surely for large n by the strong law of large numbers.
Thus the APL in the limit is at most 3, unless the APL in the original
deterministic model is 2. Since we do not require d̂ → 0 nor ε → 0, only the
upperbounds can be obtained.

Proposition 4 tells us that the average path length with the Max norm is
very high. However, according to Proposition 12, the existence of stochastic
components in the model leads to networks that have surprisingly low APL,
regardless of the property of social distance.

Although the models with the k’th norm with k < m turn out to have
so-called “small world” property, i.e. high clustering and low average path
length, the model with the Max norm does not. But the model with stochas-
tic components exhibits the small world property, even when we use the Max
norm. The reason that we can recover this property is similar to the one
in Watts and Strogatz (1998). They construct a model in which with small
probability, randomly chosen links in a lattice network are deleted to make
other links to some randomly chosen nodes (i.e. the links are “rewired”).
The resulting networks turn out to have the small world property. By inter-
preting the network generated by the deterministic part of our model as a
lattice network in Watts and Strogatz’s model, the introduction of stochas-
tic components in our model can be seen to have the same spirit as their
“rewiring” process.
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6 Concluding Remarks

In this paper, we proposed a model that provides an explanation as to why
some networks are cliquish (they exhibit high clustering coefficients) and/or
closely connected (they have low average path lengths) while others do not.
In our model, agents are endowed with their own multi-dimensional char-
acteristics. When agents integrate and evaluate the information about the
relationships in different dimensions or groups, we supposed that they mea-
sure the “social distance” between themselves and others by using the “k’th
norm,” in which the distance is the k’th smallest dimension-wise distances.
When k is high, that is, when agents need many similar characteristics in
order to be linked with each other, the network is cliquish while it is not
closely connected, under certain regulatory conditions. On the other hand,
when k is low, that is, when it is enough for agents to share a small number of
similar characteristics in order to be linked, the network is not cliquish while
it is closely connected. One implication of our result is that the introduc-
tion of new communication technology makes a network closely connected
but cliquish. We related our model and results to the “strength of weak ties
hypothesis” of Granovetter (1973), the “similarity scale” of Tversky (1977),
and the “communication externality” of Rosenblat and Mobius (2004). We
also showed that the assumption of linear cost function is not essential to
our result, by replacing the notion of pairwise stability with that of strong
stability. Although the network does not have a small world property in
large networks when k is the same as the number of dimensions of the type
space, we showed that a stochastic version of the model has the small world
property.

Let us suggest possible generalizations of our model. First, the notion of
the k’th norm is tactable and useful to gain economic intuition, but perhaps
is too simple a model to fit to data. A generalization of the k’th norm,
for example a weighted average of the k’th norms over all k’s, would enable
the model to better fit the data. Second, our model supposed that agents’
characteristics are completely determined by their types. One natural way
to introduce further heterogeneity is to assume that different agents have
different “sociabilities” as in Fujii and Kamada (2010). As mentioned in the
Introduction, by introducing social distance in the model of Fujii and Kamada
(2010), or by introducing sociability in our model, we could have a more
realistic formation model of social networks. Third, some dimensions might
not be described appropriately by a continuous variables. If there are such
dimensions, we suspect that the average path length becomes smaller, the
clusetering coefficient becomes larger, and it becomes more difficult to obtain
a desired degree distribution, as essentially agents in the “same category”
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with respect to some dimension has “distance zero” between them, so even
in the limit of letting the cutoff go to zero, these neighbors have nonnegligible
effects on clustering and degrees. We leave these possibilities of generalization
to future research.

We conclude this paper by explaining how the paper could serve as a basis
for future works. First, this paper introduced a model of multi-dimensional
type space and various measures of distance that violate the triangle inequal-
ity, based on which agents form links. We believe these new ingredients of
the model would give us new insights when analyzing situations in which
preferences depend on similarity between agents involved. For example, they
would be useful in analyzing network formation models, models of match-
ing markets such as marriage or labor markets, voting models, and so forth.
Moreover, they would also be usuful even in the context of biology literature.
For example, Antal et al. (2009) consider an evolutionary model in which
individuals cooperate if their opponent is close to oneself in the phenotype
space, and show that evolution can favor cooperators. It would be natural
to consider a situation where cooperation takes place when some but not all
aspects of the individuals’ phenotypes are close to each other. Second, we
proved the existence and the uniqueness of a strong stabile network under
some regulatory conditions. Proving the existence and the uniqueness of a
strong stabile network is often a hard task, but our result suggests that these
are not “impossible results” if we restrict a class of preferences in a tractable
manner.
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A Appendix

A.1 Proof of Proposition 1

Proof.
Part 1-1: Existence of a Pairwise Stable Network
Consider the maximum of d’s that satisfies b(d) − c1 ≥ 0, and denote it

by d̂ (The maximum exists because b is nonincreasing and continuous from
the left). We have

∆c(q) = (c0 + c1(q + 1)) − (c0 + c1q) = c1 for all q.

g is pairwise stable if and only if (i) there is no link ij ∈ g such that ui(g) <
ui(g − ij) and (ii) there is no link ij 6∈ g such that ui(g) ≤ ui(g + ij). Now,
since ∆c(q) = c1 for all q, (i) is equivalent to saying that there is no ij ∈ g
such that 0 > b(d(i, j)) − c1, and (ii) is equivalent to saying that there is
no ij 6∈ g such that 0 ≤ b(d(i, j)) − c1. Noting that b(d(i, j)) − c1 ≥ 0 ⇐⇒
d(i, j) ≤ d̂, we have that g = {ij : d(i, j) ≤ d̂} is pairwise stable. Thus, a
pairwise stable network exists.

Part 1-2: Uniqueness of the Pairwise Stable Network
Suppose that there are two distinct pairwise stable networks, g and g′.

Without loss of generality, there exists a pair of agents i, j ∈ N such that
ij ∈ g and ij 6∈ g′. But ij ∈ g and (i) in Part 1 of this proof imply
b(d(i, j)) − c1 ≥ 0, while ij 6∈ g′ and (ii) in Part 1 of this proof imply
b(d(i, j)) − c1 < 0. Contradiction.

Part 1-3: Efficiency of the Pairwise Stable Network
Suppose, to the contrary, that the pairwise stable network g is not effi-

cient. That is, suppose that there is another network g′ in which the sum of
utilities of all the agents is strictly larger in g′ than in g. Let L1 = g \ g′ and
L2 = g′ \ g. That is, g′ is obtained from g by deleting all the links in L1 and
adding all the links in L2. Note that the order of deletion and addition of
links doesn’t matter for the efficiency from the resulting networks by the def-
inition of efficient networks. Now, for all ij ∈ L1, we have b(d(i, j))− c1 ≥ 0
from Part 1 of this proof, so the sum of utilities strictly decreases by deletion
of links in L1 unless L1 consists only of links ij such that d(i, j) = c1. Next,
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for all ij ∈ L2, we have b(d(i, j)) − c1 < 0 from Part 1 of this proof, so the
sum of utilities strictly decreases by addition of links in L2 if L2 is not empty,
and stays constant if it is empty. Hence, the only way that g′ be efficient
is that L1’s only elements are the links ij such that d(i, j) = c1, and L2 is
empty. But as deleting the links ij such that d(i, j) = c1 does not change the
utility of either i or j and hence it does not change the sum of utilities, g′ has
the same sum of utilities as g. But this contradicts our starting assumption
that g′ is such that the sum of utilities of all the agents is strictly larger in
g′ than in g. This completes the proof.

Part 1-4: Existence of a Homogeneous Cutoff Value Profile
In Parts 1 and 2 of this proof we have shown that the unique pairwise

stable network is g = {ij : d(i, j) ≤ d̂}. Let a cutoff value profile be such that
d̂i = d̂ for all i ∈ N . This cutoff value profile is homogeneous by definition,
and clearly generates network g.

Part 2: Existsnce of pair (b, c)
Fix a network g that is generated by curoff rule with a homogeneous

cutoff value profile. It suffices to provide one example of (b, c) pair such that
g is pairwise stable with respect to the pair (b, c). Uniqueness and efficiency
follows directly from Parts 1-2 and 1-3, respectively.

Let the homogeneous cutoff value be d̂. Consider a pair of functions

b(d) = a · d̂
d

and c(q) = a · q for some a > 0. These functions satisfy the
assumptions made in Section 3.1. Notice that the benefit from forming links
when the distance is very short decreases fast if a is small, and the marginal
cost of forming an additional link is large if a is large.

Now, notice that ij ∈ g implies d(i, j) ≤ d̂, which implies b(d(i, j))− a =

a · d̂
d(i,j)

− a ≥ 0, which in turn implies that the marginal benefit for each of
agents i and j from link ij is no less than the marginal cost. Also, ij 6∈ g

implies d(i, j) > d̂, which implies b(d(i, j)) − a = a · d̂
d(i,j)

− a < 0, which in
turn implies that the marginal benefit for each of agents i and j from link ij
is strictly less than the marginal cost. Hence g is pairwise stable. Thus the
proof is complete.

A.2 Proof of Proposition 2 and its Corollaries

Proof of Proposition 2.
Let the set of points sufficiently away from the boundary be X(d̂) = {xi ∈
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X : 0 < xih ± d̂ < 1, 0 ≤ h ≤ m}. We have:

Cl∗ = lim
d̂→0

a.s.

lim
n→∞

[
1

n
(

∑
xi∈X(d̂)

Cli(g)+
∑

xj∈X\X(d̂)

Clj(g))] = lim
d̂→0

a.s.

lim
n→∞

[
1

n
(

∑
i∈X(d̂)

Cli(g))],

where lima.s. denotes the almost sure limit, since the volume of vol(X(d̂))
vol(X)

→ 1

as d̂ → 0 where vol(·) denotes the volume of a set, and Clj(g) takes only a
finite value (a value in [0, 1]) for any j ∈ N .

Fix k. Take a point x in X(d̂) and consider a hypothetical agent situated
at the point, named agent i.

We will ignore the possibility of the tie in distances, as it does not occur
almost surely, hence does not affect the result.

Now, let Bd̂(x) be the d̂-neighborhood of point x.
Consider a randomly chosen y ∈ Bd̂(x) according to the uniform distri-

bution over Bd̂(x). Consider a hypothetical agent situated at y and call him

j. It is easy to see that limd̂→0 Pr
(
]{h|xih − yjh ≤ d̂} = k

)
= 1. So for our

result, we consider only the case of ]{h|xih − yjh ≤ d̂} = k.

Let Z(x, y) = {z ∈ Bd̂(x)|{h|xih − zjh ≤ d̂} = {h|xih − yjh ≤ d̂}}. Notice

that vol(Z(x,y))
vol(Bd̂(x))

→
(

m
k

)−1

as d̂ → 0.

Now, it is straightforward to see that the probability that z ∈ Bd̂(x) \
Z(x, y) is connected to y goes to 0 as d̂ goes to 0. Thus we only need to
consider z’s in Z(x, y).

Given that y and z are connected, the probability that {h|yih − zjh ≤
d̂} = {h|xih − yjh ≤ d̂} goes to 1 as d̂ → 0. Hence, the probability that z
and y are connected is equal to the probability that the projections of z and
y on the restricted space with dimensions in {h|xih − yjh ≤ d̂} are within the

distance d̂ with respect to the Max norm (i.e. the k’th norm).
This probability is simply:

1

(d̂)k

∫ d̂

0

∫ d̂

0

· · ·
∫ d̂

0

(2d̂ − y1)(2d̂ − y2) · · · (2d̂ − yk)

(2d̂)k
dy1dy2 · · · dyk =

(
3

4

)k

.

Hence the desired probability is

(
m
k

)−1

·
(

3
4

)k
, by the strong law of large

numbers. This completes the proof.
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Proof of Corollary 1.
The formula in Proposition 2 implies Cl∗(m,m) =

(
3
4

)m
and Cl∗(1,m) =

3
4m

. It is straightforward to see that
(

3
4

)m
is strictly larger than 3

4m
if and

only if m < 9, completing the proof.

Proof of Corollary 2.
Part 1 is straightforward from the formula in Proposition 2.
We consider Part 2. From the formula in Proposition 2,

Cl∗(k + 1,m) =

(
m

k + 1

)−1 (
3

4

)k+1

=
(k + 1)!(m − k − 1)!

m!

(
3

4

)k+1

= Cl∗(k,m)
3(k + 1)

4(m − k)
.

Taking logs, we get

log (Cl∗(k + 1,m)) − log (Cl∗(k,m)) = log

(
3(k + 1)

4(m − k)

)
.

Hence, Cl∗(k +1, m) ≥ Cl∗(k,m) is equivalent to 3(k+1)
4(m−k)

≥ 1, or k ≥ 4
7
m− 3

7
,

completing the proof.

A.3 Proof of Proposition 3

Proof.
Take two points in X, x and y. Almost surely, dmin(x, y) > 0. Hence we

restrict attention to the case of dmin(x, y) > 0. Fix d̂ > 0 at a value such
that d̂ < 1

2
dmin(x, y).

Consider a class of sets such that

β(t) = {z ∈ X : |yl − zl| <
d̂

2
if l ≤ t(m − k), |xl − zl| <

d̂

2
otherwise}

for positive integers t < m
m−k

. Let T be the largest t that satisfies t < m
m−k

.

Also, let β{0} = x. Then by definition, we have |wt − wt+1| < d̂ for all
wt ∈ β(t) and wt+1 ∈ β(t) for all t = 0, . . . , T − 1.

Now, as n goes to infinity, almost surely there is at least one agent in β(t)
for any t. Thus, almost surely, there exists a path between x and y whose
length is no more than

⌊
m

m−k

⌋
+ 1 if m

m−k
is not an integer and m

m−k
if it is.
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Finally, we show that the path length cannot be less than this value,
almost surely. To see this, suppose, to the contrary, that there exists a path
with length less than the value above that connects x and y. But such a path
has to have a link ww′ on it such that ]{h|wh −w′

h ≤ d̂} > k (the subscripts

h denote the index for dimension), so d(w,w′)(k) > d̂. Contradiction.
Hence, we have that APL∗ is exactly

⌊
m

m−k

⌋
+ 1 if m

m−k
is not an integer

and m
m−k

if it is.

A.4 Proof of Proposition 4

Proof. Take any pair of points in X, x and y. Consider a pair of hypothetical
nodes, i and j, situated at x and y, respectively. Almost surely, there exists
a dimension h such that |xih − yjh| > 0. Write this value as a > 0. Then,

with cutoff d̂ > 0, the path length between i and j is bounded below by a/d̂.
As d̂ > 0 goes to zero, this bound goes to infinity. Since this argument holds
for all the pairs x and y with x 6= y, the proof is completed.

A.5 Proof of Proposition 5

Proof.
Fix k. Take any distribution of nodes, f , which is strictly positive and

absolutely continuous over X. Consider a point in X and a hypothetical
agent i who is situated at that point. Denote his position by xi. Note that
f(xi) is strictly positive.

Consider a distribution generated by f over the restricted space Bδ(xi) =
{x ∈ X : d(k)(xi, x) < δ}. Denote by h the probability density function of
this distribution. By definition, we have:

h(x) =
f(x)∫

d(k)(xi,x′)<δ
f(x′)dx′ .

We will show that h becomes arbitrarily close to the uniform distribution as
δ goes to zero.

The continuity of f implies that for all small ε > 0, there exists δ′ >
0 such that for all x such that d(k)(xi, x) < δ′, it must be the case that
|f(xi) − f(x)| < ε holds. Hence, we have, for any ε and small enough δ,

f(xi) − ε∫
d(k)(xi,x)<δ

(f(xi) + ε) dx
≤ h(x) ≤ f(xi) + ε∫

d(k)(xi,x)<δ
(f(xi) − ε) dx

But the strict positiveness of f implies that both bounds approach the same
limit, which proves the claim.

38



Now, note that Cl∗ is continuous in the distribution of nodes. Also, note
that the proofs about APL∗ do not rely on any specific assumption about
f , as long as it is strictly positive over X. Combining this claim and the
above claim, we know that we can approximate a clustering coefficient and
an average path length with a general distribution by the clustering coefficient
and the average path length with the uniform distribution.

A.6 Proof of Proposition 6

Proof.
Fix m and k. Let a distribution f over X be a product measure with

marginals being uniform over dimensions 2, . . . ,m, and g over the first di-
mension. We will show that for any relative degree distributions that satisfy
our condition on the minimum relative degree, there exists g that generates
it.

Since the strong law of large numbers implies that the relative degree at
y ∈ X converges almost surely to∫

x∈Bd̂(y)
f(x)dx

maxy′∈X

∫
x∈Bd̂(y′)

f(x)dx

where Bδ(x) denotes the δ-neighborhood of x, the relative degree in the
almost sure limit at y is proportional to:(

m − 1
k − 1

)
· g(y) +

[(
m
k

)
−

(
m − 1
k − 1

)]
· 1.

First we consider the case of k < m. Let the first term be a · g(y) and the
second term be b. Let the cumulative distribution function of the desired
relative degree distribution be K and its “inverse” be L(y) = sup x s.t.
y ≥ K(x). Then what we have to show is that there exists a positive constant
c such that L(y1) = c (a · g(y) + b) for all y. Note that this is well-defined,
as g(y) depends only on the value of y1. Note that since the desired relative
degree distribution is bounded away from zero (the minimum relative degree
is bounded away from zero), we can find small enough c such that L(y1)−cb >
0 for all y. Take such c. Then, we have:

g(y) =
L(y1) − cb

ac
.

This generates g for any L, so for any K. However, for this g to be well-
defined, it is necessary (and sufficient) that the values of g integrate to 1,
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so ∫
y∈X

g(y)dy = 1, or
1

ac

(∫ 1

0

L(y1)dy1 − b

)
= 1.

Notice that the left hand side of the above equation can be unboundedly large
by taking c > 0 small enough. The infimum of this value can be obtained by
setting L(0) = cb, hence we need that

1

a · L(0)
b

(∫ 1

0

L(y1)dy1 −
L(0)

b
· b

)
< 1 or

b

a

(∫ 1

0
L(y1)dy1

L(0)
− 1

)
< 1.

Now, a simple algebraic manipulation shows that b
a

= m−k
k

. Also, it is

straightforward to see that
∫ 1

0
L(y1) ≥ 1, as K is a cumulative distribution

funciton for relative degrees. Combining, it is sufficient to have that

m − k

k

(
1

L(0)
− 1

)
< 1, or

m − k

m
< L(0).

This completes the proof.

A.7 Proof of Proposition 7

Proof.
Fix the types of agents, (x1, ..., xn). We ignore the possibility that there

exist h, i, j,∈ N such that d(i, j) = d(i, h), or that there exist i, j ∈ N and
q ∈ N such that b(d(i, j)) = ∆c(q − 1), because almost surely such events do
not occur. This in particular implies that Ni(g) 6= Ni(g

′) ⇒ ui(g) 6= ui(g
′).

We consider the following algorithm that generates a unique network. We
will show in the sequel that the algorithm stops in finite steps, the generated
network is pairwise stable, and is generated by a cutoff rule. Moreover, we
will show that the generated network is strongly stable if the cost function
is concave or linear.

Algorithm
step 1
Each player i ∈ N(1) := N proposes a “request”:

ri(1) = arg max
r′i1⊆N(1)\{i}

ui({ij|j ∈ r′i1}).

Generate a network g′ := g(0) ∪ {ij|j ∈ ri(1) and i ∈ rj(1)} ∈ G(N)
where we set g(0) = ∅. Delete k′l′ = arg maxi∈N,kl∈g′{ui(g

′ − kl) − ui(g
′)}

if ui(g
′ − k′l′) − ui(g

′) is positive. Let g′′ = g′\{k′l′}. Then, delete k′′l′′ =
arg maxi∈N,kl{ui(g

′′−kl)−ui(g
′′)} if ui(g

′′−k′′l′′)−ui(g
′′) is positive. Continue
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this procedure until the generated network ĝ satisfies the property that each
link ij satisfies ui(ĝ − ij) < ui(ĝ). Let the resulting network be g(1).

step t
Each player i ∈ N(t) := N(t−1)\{j : rj(t−1) = ∅} proposes a “request”:

ri(t) = arg max
r′it⊆N(t)\[{i}∪Ni(g(t−1))]

ui({ij|j ∈ r′it} ∪ g(t − 1)).

Generate a network g′ := g(t − 1) ∪ {ij|j ∈ ri(t) and i ∈ rj(t)}. Delete
k′l′ = arg maxi∈N,kl∈g′{ui(g

′ − kl)− ui(g
′)} if ui(g

′ − k′l′)− ui(g
′) is positive.

Let g′′ = g′\{k′l′}. Then, delete k′′l′′ = arg maxi∈N,kl∈g′′{ui(g
′′−kl)−ui(g

′′)}
if ui(g

′′−k′′l′′)−ui(g
′′) is positive. Continue this procedure until the generated

network ĝ satisfies the property that each link ij ∈ ĝ satisfies ui(ĝ − ij) <
ui(ĝ). Let g(t) be the resulting network.

Let t̄ be the first period, if any, such that N(t̄) = ∅. If such a period does
not exist, then denote t̄ = ∞.

Let us give an intuitive explanation about the algorithm. For each step t,
N(t) is the set of “remaining agents.” Each remaining agent makes a request
to form links to some of the remaining agents, which would make him better
off than the current network if it was accepted by all agents included in it.
However, at each step, all the requests are not necessarily satisfied. Instead,
we require that only links that are requested by both agents involved are
actually formed. Hence, it is possible that some portion of a request is
satisfied while the other portion is not satisfied. In such cases, it may be
that, after the formation of links based on the requests, some agents have
incentives to delete links that currently exist. Such links are deleted in the
“deletion procedure” in each step of the algorithm. Step by step, links are
gradually formed, and eventually some agents have empty requests. Such
agents are removed from the algorithm, and never be made a request to, nor
be able to make a request by himself. Eventually, at some step, no agent
“remains” in the algorithm, and the algorithm “stops” at such a step.

We prove the following Lemmas to complete the proof of Proposition 7.

Lemma 1. For every t ≤ t̄, if i ∈ N(t), k ∈ ri(t), and l ∈ N(t) \ ri(t), then
d(i, k) < d(i, l).

That is, i’s request ri(t) is a set of agents who are closer to i than anyone
who is in N(t) but is not included in the request.

Lemma 2. t̄ < ∞, and g(t̄) is unique.
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Hence, the algorithm “stops” in a finite steps, generating a unique net-
work.

Lemma 3. g(t̄) is pairwise stable.

Lemma 4. There exists d̂ = (d̂1, · · · , d̂n) such that g(t̄) is generated by a
cutoff rule with d̂.

To establish Lemma 4, we first prove the following claim.

Claim 1. Suppose c is convex. If j ∈ ri(t), then ∀t′ > t such that i, j ∈ N(t′),
either j ∈ ri(t

′) or ij ∈ g(t′ − 1) holds.

Claim 1 implies the following.

Claim 2. Let g = g(t̄) and suppose ij 6∈ g, and d(i, j) < maxk∈Ni(g){d(i, k)}.
Then, uj(g + ij) < uj(g) holds.

Claim 2 implies Claim 3, which in turn implies Lemma 4.

Claim 3. Let g = g(t̄) and suppose ij 6∈ g, and d(i, j) < maxk∈Ni(g){d(i, k)}.
Then, d(i, j) > maxl∈Nj(g){d(j, l)} holds.

Lemma 5. Suppose c is linear of convex. Then, g(t̄) is strongly stable.

Lemma 6. Suppose c is linear of convex. Then, a strongly stable network is
unique.

Proof of Lemma 1
Note that ri(t) maximizes the sum of additional benefits that i obtains

minus that of additional costs that he incurs. Separability of u and the
definition of ri imply

ri(t) = arg max
r′it⊆N(t)\[{i}∪Ni(g(t−1))]

∑
j∈r′it

b(d(i, j)) −
]r′it−1∑
s=0

∆c(qi(g(t − 1)) + s)

 .

Notice that the second term of the right hand side of the above equality
depends only on i’s degree but not on the identities of agents in r′it.

Suppose, to the contrary, that there exist i, k, l ∈ N(t) such that d(i, k) >
d(i, l), k ∈ ri(t), and l ∈ N(t)\ri(t). Then, depriving ri(t) of k and adding
l to ri(t) strictly increases i’s additional benefit (the first term of the right
hand side of the above equality) with i’s additional cost (the second term)
unchanged. This contradicts the assumption that ri(t) is the maximizer of
the right hand side of the above equality. This completes the proof.

Proof of Lemma 2
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Since there is no tie in distances, for each t and each i ∈ N , ri(t) is
uniquely determined. Therefore the algorithm generates a unique network,
if it ends in finite steps.

Now we prove that the algorithm ends in finite steps. The algorithm
can be regarded as a deterministic dynamic process over discrete time t =
1, 2, · · · , defined on state space G(N) × 2N , where the state at t is (g(t −
1), N(t)). Note that the number of states is finite.

We first show that this process is monotone. To see this, notice that
the set N(t) is nonincreasing. Hence it suffices to show that g(t − 1) is
nondecreasing. To show this, we will prove that no link in g(t − 1) is not
deleted in the “deletion procedure” at t (i) with a convex or linrar cost
function, and (ii) with a concave cost function.

First, consider case (i). We show that there is no agent deleting his links
in the algorithm, when c is convex or linear. By the definition of the request,
for each t, i ∈ N(t), and j ∈ ri(t), we have

b(d(i, j)) > ∆c(qi(g(t − 1)) + ]ri(t) − 1)

≥ ∆c(qi(g(t − 1)) + s),

where 0 ≤ s < ]ri(t). This ensures that however i’s requested links are
actually formed, he cannot become better off by deleting his newly formed
links.

Second, consider case (ii). At step 1, the statement trivially holds, since
g(0) = ∅. We have, by the construction of the algorithm, ∆c(qi(g(t)) − 1) <
b(d(i, j)) for all ij ∈ g(t). Now consider step t+1 and suppose that i becomes
better off by deleting links in g(t). Let ij be the first link that is deleted
from g(t). It must be the case that ∆c(qi(g(t)) + r − 1) > b(d(i, j)) for some
0 ≤ r ≤ ]ri(t). But then we would have ∆c(qi(g(t))+r−1) > ∆c(qi(g(t))−1),
which contradicts the assumption that ∆c is decreasing.

Hence, the process is monotone. Therefore, it suffices to show that there
does not exist an event in which the process remains in the same state such
that N(t) 6= ∅. This event could happen only if all the remining agents make
nonempty requests, and any of agents’ requests are not fulfilled in the step.
That is,

∀i ∈ N(t), [ri(t) 6= ∅] and [∀k ∈ ri(t) i 6∈ rk(t)].

Suppose that this is true at step t.
The simplest case is as follows: N(t) = {1, 2, 3}, r1(t) = {2}, r2(t) = {3},

and r3(t) = {1}. However, Lemma 1 implies that d(1, 2) < d(1, 3), d(2, 3) <
d(2, 1), and d(3, 1) < d(3, 2). Contradiction.

Generally, there must exist a sequence of agents (1, 2, · · ·n′) in N(t) (with
an appropriate renaming) such that 2 ∈ r1(t), 3 ∈ r2(t), · · · , n′ ∈ rn′−1(t),
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and 1 ∈ rn′(t), while 1 6∈ r2(t), 2 6∈ r3(t) ,· · · , n′ − 1 6∈ rn′(t), and n′ 6∈ r1(t).
By Lemma 1, we have d(1, 2) < d(1, n′), d(2, 3) < d(2, 1), · · · , d(n′ − 1, n′) <
d(n′ − 1, n′ − 2), and d(n′, 1) < d(n′, n′ − 1). Contradiction. This completes
the proof.

Proof of Lemma 3
We need to show that in g(t̄), (i) no agent has a strict incentive to delete

a link, and (ii) no pair has an incentive to add a link.
To show (i), note that we have constructed the network in the way that

there is no link to delete at the final step. Moreover, for agents who have
left the algorithm in earlier steps, deleting their links does not increase their
payoffs. This is because the set of neighbors of each agent who left earlier
remains unchanged after the step at which her request was empty, and (just
as in the final step,) there is no link for her to delete at that step.

To see (ii), partition the set of agents, (P1, . . . , PT ), so that in each cell
Pt of the partition, agents contained in it have empty requests at step t.
Consider an agent i in a partition Pt. At step t, there exists no agent j in⋃T

l=t Pl such that i would be better off by connecting with j at step t. This
is because otherwise j’s request would not be empty at step t. After step t,
his degree does not change until the algorithm stops, hence i does not have
an incentive to form a link with agents in

⋃T
l=t Pl. Suppose that there exists

agent j′ ∈ Pl′ with l′ < t such that i has an incentive to form a link with.
However, j′ does not have an incentive to form a link with agents in

⋃T
l=l′ Pl,

in partuicular with i ∈ Pt ⊆
⋃T

l=l′ Pl. Hence, no agent has an incentive to
form a link in the resulting network.

Proof of Claim 1
It suffices to show the statement in the case of t′ = t+1. To see this, first

suppose that ij ∈ g(t+1), given that j ∈ ri(t) and i, j ∈ N(t+1). Then, this
implies ij ∈ g(t′) for every t′ > t, by the monotonicity of g(·), proved in the
proof of Lemma 2. Second, suppose that j ∈ ri(t + 1), given that j ∈ ri(t)
and i, j ∈ N(t + 1). Then, when i, j ∈ N(t + 2), we can show that either
j ∈ ri(t + 2) or ij ∈ g(t + 1) holds, by repeating exactly the same argument
as in the case of t′ = t + 1, but by replacing t with t + 1. We can repeat this
argument to show that for any t′ = t + k with k > 0, the statement of the
claim holds.

Now, suppose, to the contrary, that given that j ∈ ri(t) and i, j ∈ N(t+1),
both j 6∈ ri(t + 1) and ij 6∈ g(t) hold. By Lemma 1, k ∈ ri(t + 1) implies
k ∈ ri(t), because of j ∈ ri(t) and j 6∈ ri(t + 1). That is, we have ri(t + 1) (
ri(t), where the inclusion is strict because of j.
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Since the payoff function is separable, j ∈ ri(t) implies ∆c(qi(g(t − 1)) +
]ri(t) − 1) < b(d(i, j)). Also, j 6∈ ri(t + 1), ij 6∈ g(t), and j ∈ N(t + 1) imply
∆c(qi(g(t))+]ri(t+1)) > b(d(i, j)). Therefore, we have qi(g(t−1))+]ri(t) ≤
qi(g(t)) + ]ri(t + 1), because ∆c is increasing.

On the other hand, we have Ni(g(t)) ⊆ Ni(g(t−1))∪ri(t), by construction.
Together with ri(t+1) ( ri(t), we obtain Ni(g(t))∪ri(t+1) ( Ni(g(t−1))∪
ri(t). This implies that we have qi(g(t)) + ]ri(t + 1) < qi(g(t − 1)) + ]ri(t),
because Ni(g(t)) ∩ ri(t + 1) = ∅. But this contradicts our earlier conclusion
that qi(g(t − 1)) + ]ri(t) ≤ qi(g(t)) + ]ri(t + 1). This completes the proof.

Proof of Claim 2
Denote k = arg maxk∈Ni(g){d(i, k)}, and l = arg maxl∈Nj(g){d(j, l)}.
Suppose, to the contrary, that uj(g + ij) > uj(g) holds. But from ij 6∈ g

and the pairwise stability of g, ui(g) > ui(g+ij) must hold. That is, we must
have b(d(i, j)) < ∆c(qi(g)). On the other hand, by the pairwise stability of g,
we have ui(g) > ui(g − ik). That is, b(d(i, k)) > ∆c(qi(g) − 1) holds. When
c is concave or linear, this contradicts b(d(i, j)) < ∆c(qi(g)), since ∆c(q) is
nonincreasing and b(d(i, j)) > b(d(i, k)).

Consider the case where c is convex. By Lemma 2, ri(t
′) = ∅ for some t′.

Since k ∈ ri(t
′′) for some t′′ < t′, by Lemma 1, j ∈ ri(t

′′) holds. From Claim
1, we have j ∈ ri(t) for any t > t′′ such that j ∈ N(t). This implies j ∈ ri(t

′),
contradicting ri(t

′) = ∅.
Therefore, for c that is either concave, convex, or linear, the statement is

proved.

Proof of Claim 3
Suppose, to the contrary, that d(i, j) < d(j, l) holds.
Consider the case in which c is linear or concave. From Claim 2, uj(g +

ij) < uj(g), it holds that b(d(i, j)) < ∆c(qj(g)). Since g is pairwise stable,
uj(g− jl) < uj(g), so that b(d(j, l)) > ∆c(qj(g)− 1) holds, where l is defined
in the proof of Claim 2 (we define k in the same way as in the proof of Claim
2, too). But this implies ∆c(qj(g) − 1) < ∆c(qj(g)), because of b(d(i, j)) >
b(d(j, l)). This contradicts that ∆c(q) is nonincreasing.

Consider the case of convex c. First, note that, as proved in the proof
of Lemma 1, there is no agent deleting his links in the algorithm, when c is
convex. Then, from ik ∈ g, at some t′, k ∈ ri(t

′) holds. Similarly, by jl ∈ g,
at some t′′, l ∈ rj(t

′′) holds. We have j ∈ ri(t
′) and i ∈ rj(t

′′) by Lemma 1
if j ∈ N(t′) and i ∈ N(t′′). Thus, it cannot be the case that t′ = t′′, as it
would imply ij ∈ g.

Consider the case of t′ < t′′. Claim 1 implies that j ∈ ri(t) for all t > t′

whenever j ∈ N(t). But then j ∈ N(t′′) implies j ∈ ri(t
′′), which would
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imply ij ∈ g as there is no “deletion procedure” in the case of convex c as we
have seen already. In a perfectly symmetric manner, we cannot have t′ > t′′.
Thus the proof is complete.

Proof of Lemma 4
We claim that(

max
i∈N1(g)

{d(1, i)}, max
i∈N2(g)

{d(2, i)}, ..., max
i∈Nn(g)

{d(n, i)}
)

is a cutoff value profile d̂ = (d̂1, d̂2, ..., d̂n) generating g, where g = g(t̄).
By the definition of the cutoff rule, it suffices to show that we do not

have the case in which there exists ij 6∈ g such that d(i, j) ≤ min{d̂i, d̂j}.
Suppose this holds. Then, ij 6∈ g and d(i, j) < maxk∈Ni(g){d(i, k)} while
d(i, j) < maxl∈Nj(g){d(j, l)} hold. This contradicts Claim 3, so that the
existence of a cutoff value profile is proved.

Proof of Lemma 5
As shown in Proposition 1, pairwise stable network is unique, and hence

Lemma 3 implies that the generated network is the network constructed in
the proof of Proposition 1. Due to the separability of the payoff function, it
is straightforward to see that the network is also stringly stable. Hence, we
constraint attention to the case in which c is convex: We prove that g = g(t̄)
is strongly stable when c is convex. Take g′ that is obtainable from g via
deviations by a set of agents S ⊆ N . The statement of the lemma is true if

[∃s ∈ S us(g
′) > us(g)] =⇒ [∃s′ ∈ S, u′

s(g
′) < u′

s(g)].

Hence, it suffices to show that it cannot be the case that us(g
′) > us(g) for

every s ∈ S. Define D(s) = {j ∈ N |sj ∈ g, sj 6∈ g′} and A(s) = {j ∈
N |sj 6∈ g, sj ∈ g′}, that is, D(s) (resp. A(s)) is a set of agents whose link
to s ∈ S is deleted (resp. added) in the deviations.

We are going to show that, for the profitable deviations by S to be possi-
ble, there must exist an infinite sequence of agents, denoted by s1, s2, s3, · · · ∈
S, such that sl+1 ∈ A(sl)\{s1, s2, · · · , sl−1} for each sl. (Since S is finite, this
is impossible.) To derive this sequence, we also show that qsl

(g) ≤ qsl+1
(g)

holds, and either d(sl, n̄l) > d(sl+1, n̄l+1) or qsl
(g) < qsl+1

(g) holds, where n̄i

denotes an agent whose distance to si is the longest among si’s neighbors,
i.e. d(si, n̄i) = maxn∈Nsi (g){d(si, n)}. We prove them by the mathematical
induction.

First, take an agent denoted by s1 ∈ S. Since the rule of the final step
of the algorithm and the convexity of c ensures that there is no incentive
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to delete links, agents in S cannot be better off by only deleting their links
in the deviations, implying A(s) 6= ∅ for every s ∈ S. There are two cases
concerning A(s1).

• Case 1: ∀si ∈ A(s1), us1(g) > us1(g + s1si).

In this case, if we have d(s1, si) > d(s1, n̄1) for every si ∈ A(s1), then
it would be impossible to satisfy us1(g) < us1(g

′). To see this, we
calculate s1’s net gain from the deviations as follows. When s1’s degree
increases in the deviations, i.e. ]A(s1) > ]D(s1), his net benefit is

∑
k∈A(s1)

b(d(s1, k)) −
∑

l∈D(s1)

b(d(s1, l)) −
]A(s1)−]D(s1)∑

j=1

∆c(qs1(g) + j − 1).

Notice that ∆c(qs1(g)) > b(d(s1, si)) holds for all si ∈ A(s1) in this
case, and that ∆c is increasing. Taking any subset Ā(s1) ⊂ A(s1) such
that ]Ā(s1) = ]A(s1) − ]D(s1), the net benefit can be rearranged to ∑

k∈A1\Ā(s1)

b(d(s1, k)) −
∑

l∈D(s1)

b(d(s1, l))



+

 ∑
k∈Ā(s1)

b(d(s1, k)) −
]A(s1)−]D(s1)∑

j=1

∆c(qs1(g) + j − 1)

 ,

which is negative because ∀si ∈ A(s1), us1(g) > us1(g + s1si). The
same argument carries over to the situation where his degree does not
increase in the deviations.

Hence, we can focus on the case where there exists si ∈ A(s1) such that
d(s1, si) < d(s1, n̄1) holds. Take such an agent si, and denote him by
s2. The inequality d(s1, s2) < d(s1, n̄1) and s1s2 6∈ g imply, by Claims
2 and 3 above, us2(g) > usi

(g + s1s2) and d(s2, n̄2) < d(s1, s2).

Notice that we obtained the desired inequality d(s2, n̄2) < d(s1, n̄1).

Now, we show that qs1(g) ≤ qs2(g): The pairwise stability of g im-
plies b(d(s1, n̄1)) > ∆c(qs1(g) − 1), and us2(g) > us2(g + s1s2) implies
b(d(s1, s2)) < ∆c(qs2(g)). By b(d(s1, s2)) ≥ b(d(s1, n̄1)), we have that
∆c(qs1(g) − 1) < ∆c(qs2(g)). Hence, we also get inequality qs1(g) ≤
qs2(g), since ∆c is increasing.

• Case 2: ∃si ∈ A(s1), us1(g) < us1(g + s1si).
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Take si ∈ A(s1) such that us1(g) < us1(g+s1si), and denote this agent
by s2. By the pairwise stability of g, we have us2(g) > us2(g + s0s1).
From ∆c(qs1(g)) < b(d(s1, s2)) < ∆c(qs2(g)), we get a desired inequality
qs1(g) < qs2(g).

Hence, we have shown the desired statements for the first step l = 1:
There exists s2 ∈ A(s1) such that qs1(g) ≤ qs2(g) holds, and either d(s1, n̄1) >
d(s2, n̄2) (Caase 1) or qs1(g) < qs2(g) (Case 2) holds.

Next, let us suppose that we have shown the statements up to l = r: There
exists a sequence (s1, s2, · · · , sr) in S such that sl+1 ∈ A(sl)\{s1, s2, · · · , sl−1},
and qsl

(g) ≤ qsl+1
(g) holds, and either d(sl, n̄l) > d(sl+1, n̄l+1) or qsl

(g) <
qsl+1

(g) holds for each l = 1, 2, · · · , r.
Suppose, to the contrary, that A(sr+1) ⊆ {s1, s2, · · · , sr}. We show this

is impossible, for both cases below.

• Case 1’: ∀si ∈ A(sr+1), usr+1(g) > usr+1(g + sr+1si).

Due to the same discussion as in the Case 1 above, we can focus
on the case where there exists si ∈ A(sr+1) such that d(sr+1, si) <
d(sr+1, n̄r+1). Take such an agent si. As we have derived d(s2, n̄2) <
d(s1, n̄1) and qs1(g) ≤ qs2(g) in the Case 1 above, we can get d(si, n̄i) <
d(sr+1, n̄r+1) and qsr+1(g) ≤ qsi

(g). But, because si ∈ {s1, s2, · · · , sr},
at least one of them contradicts the assumed inequalities: qsl

(g) ≤
qsl+1

(g), and either d(sl, n̄l) > d(sl+1, n̄l+1) or qsl
(g) < qsl+1

(g) for each
l = 1, 2, · · · , r.

• Case 2’: ∃si ∈ A(sr+1), usr+1(g) < usr+1(g + sr+1si).

Take si ∈ A(sr+1) such that usr+1(g) < usr+1(g + sr+1si). By the
same logic with which we have obtained qs1(g) < qs2(g) in the Case
2 above, we can get inequality qsr+1(g) < qsi

(g). But, because si ∈
{s1, s2, · · · , sr}, this contradicts the assumed inequalities: qsl

(g) ≤
qsl+1

(g) for each l = 1, 2, · · · , r.

Hence, for both cases, it must be the case that A(sr+1) includes some si ∈
S\{s1, s2, · · · , sr}, such that qsr+1(g) ≤ qsi

(g) holds, and either d(sr+1, n̄r+1) >
d(si, n̄i) or qsr+1(g) < qsi

(g) holds. Denote this si by sr+2.
Therefore, the mathematical induction is complete.
Since it is impossible for all the elements in the infinite sequence s1, s2, · · ·

are included in finite S ⊆ N , we conclude that there is no profitable devia-
tions by any set of agents S ⊆ N . Hence, g = g(t̄) is strongly stable.

Proof of Lemma 6
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Proposition 1 establishes the uniqueness for the case of linear cost func-
tions, so we concentrate on the case of convex cost functions.

Suppose, to the contrary, that a network g′ 6= g = g(t̄) is also strongly
stable. This implies that no pair of agents can profitably deviate from g′.
We will show that this contradicts the finiteness of N .

Notice first that there exists some i ∈ N such that ui(g) > ui(g
′), as

otherwise g would not be strongly stable. Take such an agent arbitrarily and
call him agent 1. Consider two possible (exhaustive) cases.

• (i) q1(g) > q1(g
′): In this case, pairwise stability of g and the convexity

of the cost function imply that there exists some i ∈ N1(g)\N1(g
′) such

that u1(g
′ + 1i) > u1(g

′).

• (ii) q1(g) ≤ q1(g
′): In this case, we can find some i ∈ N1(g)\N1(g

′) such
that there exists j ∈ N1(g

′) such that d(1, i) < d(1, j). Denote this j by
0. To see this, suppose, to the contrary, that for all i ∈ N1(g)\N1(g

′),
for all j ∈ N1(g

′), d(1, i) > d(1, j) holds. Take an arbitrary network
g′′ ⊂ g′ such that N1(g) ∩ N1(g

′) ⊂ N1(g
′′) and q1(g) = q1(g

′′). Such
g′′ exists because q1(g) ≤ q1(g

′). Then we have u1(g) ≤ u1(g
′′) ≤

u1(g
′), where the first inequality holds because we have, when g 6= g′′,

∀i ∈ N1(g)\N1(g
′′), ∀j ∈ N1(g

′′), d(1, i) > d(1, j), and the second
inequality is due to the pairwise stability of g′ and the convexity of c.
But this contradicts our earlier conclusion that u1(g) > u1(g

′).

In either case (i) or (ii), we take such i and call him agent 2.
To complete the proof, we construct a sequence of distinct agents, {1, 2, · · · },

such that 2k ∈ N2k−1(g)\N2k−1(g
′), 2k + 1 ∈ N2k(g

′)\N2k(g), 2k + 2 ∈
N2k+1(g)\N2k+1(g

′) , and d(2k − 1, 2k) > d(2k, 2k + 1) > d(2k + 1, 2k + 2)
hold for each k = 1, 2, · · · . We have considered a portion of the case with
k = 1 in the previous paragraph The rest of the first step can be shown
to be true by following exactly the same logic as we will have below (by
substituting k = 0), so we omit its proof.

Now, we start mathematical induction argument to obtain the remaining
parts of the infinite sequence and inequalities.

First, suppose we have shown the claims up to step k, and consider step
k + 1. Then, we must have u2k+2(g

′ + (2k + 1)(2k + 2)) < u2k+2(g
′), as

otherwise the pair 2k + 1 and 2k + 2 could profitably deviate from g′, by
adding (2k + 1)(2k + 2) while simultaneously deleting 2k(2k + 1). Hence, by
the pairwise stability of g 3 (2k + 1)(2k + 2) and the cost convexity, we have
q2k+2(g) ≤ q2k+2(g

′). Notice that this implies there is an agent in N2k+2(g
′)

who is not in N2k+2(g), because (2k + 1)(2k + 2) ∈ g \ g′. Similarly, we must
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have d(2k + 2, i) < d(2k + 1, 2k + 2) satisfied for all i ∈ N2k+2(g
′), to ensure

that 2k + 1 and 2k + 2 do not profitably deviate from g′.
The two conclusions in the previous paragraph imply that we can find

some i ∈ N2k+2(g
′)\N2k+2(g) such that d(2k + 2, i) < d(2k + 1, 2k + 2). If

i = 2l−1 (resp. 2l) for some l = 1, 2, · · · , k, then we would have d(2l−1, 2k+
2) < d(2k +1, 2k +2) < d(2l−1, 2l) (resp. d(2l, 2k +2) < d(2k +1, 2k +2) <
d(2l − 1, 2l)) by the inductive supposition. But, this contradicts Claim 3,
because we have (2l − 1)2l, (2k + 1)(2k + 2) ∈ g and (2l − 1)(2k + 2) 6∈ g
(resp. 2l(2k +2) 6∈ g ). Hence i 6∈ {1, 2, · · · , 2k +1}. Denote this i by 2k +3.

Since we have (2k+1)(2k+2) ∈ g, (2k+2)(2k+3) 6∈ g and d(2k+1, 2k+
2) > d(2k+2, 2k+3), we can apply Claim 2 to get u2k+3(g+(2k+2)(2k+3)) <
u2k+3(g). Then, this implies q2k+3(g) ≥ q2k+3(g

′), due to the cost convexity
and the pairwise stability of g′ 3 (2k+2)(2k+3). Again, this implies that we
can find some i ∈ N2k+3(g)\N2k+3(g

′), as (2k+2)(2k+3) ∈ g′\g. By applying
Claim 3, we must have d(2k+3, i) < d(2k+2, 2k+3). If i ∈ {2, 3, · · · , 2k+1},
then we would have d(i, 2k+3) < d(2k+2, 2k+3) < d(i, i+1) < d(i−1, i) by
the inductive supposition. But if i is odd (resp. even), then i and 2k+3 could
profitably deviate from g′ by adding i(2k + 3) while deleting (i − 1)i (resp.
i(i+ 1)) and (2k + 2)(2k + 3), respectively. Also, if i = 1, then the profitable
deviation by 1 and 2k + 3 from g′ is possible. This is because 1 would be
better off by adding (2k + 3)1 (as (2k + 3, 1) < d(2k + 2, 2k + 3) < d(1, 2))
in case (i) and by adding (2k + 3)1 and deleting 01 in case (ii), and (2k + 3)
would be better off by adding (2k+3)1 and deleting (2k+2)(2k+3). Hence,
it must be the case that i 6∈ {1, 2, 3, · · · , 2k + 1}. Denoting such agent i by
2k + 4, we have shown the desired properties for step k + 1.

We have completed the induction. But since N is finite, it is impossible to
have such infinite sequence of distinct agents. This completes the proof.

A.8 Proof of Proposition 8

Proof. Consider a point x in the type space X, and a hypothetical agent i
who is situated at x, i.e. x = xi.

Let q(xi, δ) denote the number of agents in δ-neighborhood of xi. Then,
for any δ > 0 and q′, q(xi, δ) > q′ holds almost surely as n → ∞. Also,
limq→∞ ∆c(q) = c1 > 0 implies that for all ε > 0, there exists q′ such that
for all qi > q′, |∆c(qi) − c1| < ε.

Now, take a small enough ε′ and δ′ > 0 such that b(δ′) ≥ c1 + ε′. Such ε′

and δ′ exist since limd→0 b(d) > c1.
If i is not connected with an agent in his δ′-neighborhood, the resulting

network would not be pairwise stable, hence it is not strongly stable. Thus, i
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is connected with all the agents in his δ′-neighborhood. Thus, for any ε > 0,
we have |∆c(qi) − c1| < ε almost surely as n → ∞.

Now, consider links with agents outside of the δ′-neighborhood. Since
strongly stability implies pairwise stability, c1 − ε < ∆c(qi) (implied by
|∆c(qi) − c1| < ε) implies that ij 6∈ g if b(d(i, j)) ≤ c1 − ε, or d̂ + ε′ ≤ d(i, j)
for b−1(c1) = d̂ and some ε′ > 0. Also, for the same reason, ∆c(qi) < c1 + ε
(implied by |∆c(qi) − c1| < ε) implies that ij ∈ g if c1 + ε ≤ b(d(i, j)), or
d(i, j) ≤ d̂ − ε′′ for the same d̂ and for some ε′′ > 0.

Now, for any ε′ and ε′′, there exist agents j and k such that d̂ + ε′ <
d(i, j) < d̂+2ε′ and d̂−2ε′′ < d(i, k) < d̂− ε′′ almost surely as n → ∞. Also,
these j and k have to satisfy ij 6∈ g and ik ∈ g because of the argument in
the previous paragraph. Hence, agent i’s cutoff value, denoted by d̂i, which
we know exists from Proposition 7, has to satisfy d̂ − 2ε′′ ≤ d̂i < d̂ + 2ε′

almost surely as n → ∞. Because ε′ and ε′′ go to zero as ε goes to zero by
the continuity and strict decreasingness of b, and because x can be arbitrary,
the proof is completed.

A.9 Proof of Proposition 9

Proof.
The procedure is almost the same as the Proof for Proposition 1.
We only need to modify the expression in the proof of Proposition 1:

1

(d̂)k

∫ d̂

0

∫ d̂

0

· · ·
∫ d̂

0

(2d̂ − y1)(2d̂ − y2) · · · (2d̂ − yk)

(2d̂)k
dy1dy2 · · · dyk

to take into account the heterogeneity of the cutoff values.
The expression has lower bound when the node in consideration has the

cutoff of d̂+ε, where all the other nodes have the cutoffs d̂−ε, which is larger
than:

1

(d̂ + ε)k

∫ d̂+ε

2ε

∫ d̂+ε

2ε

· · ·
∫ d̂+ε

2ε

(2d̂ − y1)(2d̂ − y2) · · · (2d̂ − yk)

(2d̂ + 2ε)k
dy1dy2 · · · dyk

=

(
3
2
d̂2 − 2d̂ε − ε + 3

2
ε2

2(d̂ + ε)2

)k

.

Also, it has an upper bound when the node in consideration has the cutoff
of d̂ − ε, where all the other nodes have the cutoffs d̂ + ε, which is smaller
than:

1

(d̂ − ε)k

∫ d̂−ε

0

∫ d̂−ε

0

· · ·
∫ d̂−ε

0

(2d̂ − y1)(2d̂ − y2) · · · (2d̂ − yk)

(2d̂ − 2ε)k
dy1dy2 · · · dyk
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=

(
3
2
d̂ + 1

2
ε

2(d̂ − ε)

)k

.

For any d̂ > 0, both bounds converges to the same desired limit,
(

3
4

)k
as

ε goes to zero. This completes the proof.

A.10 Proof of a Claim in Subsection 5.3

Proof. We prove that ∆E is decreasing in m and increasing in k. To see this,
fix agent i with position xi. We first calculate the probability that agent i and
his neighbor j has a dissimilar political type, i.e. |xi1 − xj1| > d̂. Assuming

that d̂ ≤ xi1 ≤ 1− d̂, by the strong law of large numbers, this probability is:

Pr
(
|xi1 − xj1| > d̂ | j ∈ Ni(g)

)
=

∑m−1
l=k

(
m − 1

k

)
(2d̂)l(1 − 2d̂)m−l−1

∑m
l′=k

(
m
k

)
(2d̂)l′(1 − 2d̂)m−l′

.

The limit of this probability as d̂ → 0 is:

lim
d̂→0

(
m − 1

k

)
(2d̂)k(1 − 2d̂)m−k−1(

m
k

)
(2d̂)k(1 − 2d̂)m−k

=
m − k

m
.

Using this limit probability, we now calculate the almost sure limit of x̃i1 as
n → ∞ and then d̂ → 0. First, notice that:

lim
n→a.s.∞

x̃i1 = lim
n→a.s.∞

xi1 + β ·
∑

j∈Ni(g) xj1

1 + β · qi(g)
= lim

n→a.s.∞

∑
j∈Ni(g) xj1

qi(g)
.

Note that this converges to xi1 as d̂ → 0. Hence,

lim
d̂→0

lim
n→a.s.∞

x̃i1(g)

= lim
d̂→0

lim
n→a.s.∞

Pr
(
|xi1 − xj1| > d̂ | j ∈ Ni(g)

)
· E[xj1| |xi1 − xj1| > d̂, j ∈ Ni(g)]

+ lim
d̂→0

lim
n→a.s.∞

Pr
(
|xi1 − xj1| ≤ d̂ | j ∈ Ni(g)

)
· E[xj1| |xi1 − xj1| ≤ d̂, j ∈ Ni(g)]

=
m − k

m
µ + (1 − m − k

m
)xi1.

Now we calculate the value of ∆E. Recallinng that as d̂ → 0 the fraction of
player i’s who do not satisfy d̂ ≤ xi1 ≤ 1 − d̂ goes to zero and these agents
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have only vanishing effect in the limit because the distance is bounded, we
have that by definition,

∆E = E
[∣∣∣∣(m − k

m
µ + (1 − m − k

m
)xi1

)
−

(
m − k

m
µ + (1 − m − k

m
)xj1

)∣∣∣∣]
=

k

m
E [|xi1 − xj1|]

=
k

3m
.

Therefore, ∆E is decreasing in m and increasing in k.

A.11 Proof of Proposition 11

Proof. Part (i):
Fix a composition of nodes. Take any δ > 0. Then, there exists ε > 0 such

that the probability of events in which the cutoff for some arbitrary chosen
pair ij is contained in (d̂ − δ, d̂ + δ) is above 1 − δ almost surely as n → ∞
(We surpress the depenence on n in the sequel in this proof of Proposition 11,
to simplify the exposition). Note that the supremum of the possible ε tends
to zero as δ tends to zero. Thus, ClS1 is a convex combination of clustering
coefficients among agents who have cutoffs in (d̂ − δ, d̂ + δ) and some value
in [0, 1], with the weight 1 − δ′ being placed on the former and the weight
δ′ on the latter, where δ′ > 0 is a constant that tends to zero as δ tends to
zero. But we know from the proof of Proposition 9 that the former converges
to the clustering coefficient with ε = 0 as δ goes to zero (although the proof
concerns the limit of clustering coefficient as the cutoff goes to zero, it is
straightforward that the proof can be applied to clustering coefficient with
any fixed cutoff values). Thus, by taking arbitrary small ε, δ goes to zero,
and so the convex combination tends to the one with ε = 0. This completes
the proof.

Part (ii):
Fix a composition of nodes. ClS2 is a convex combination of clustering

coefficients among agents who have the cutoff of d̂ and some value in [0, 1],
with the weight 1 − δ′ being placed on the former and the weight δ′ on the
latter, where δ′ > 0 is a constant that tends to zero as ε tends to zero. But
the former is exactly ClS2 with ε = 0. Thus, by taking arbitrary small ε, δ′

goes to zero, and so the convex combination tends to the one with ε = 0.
This completes the proof.

53



A.12 Proof of Proposition 12

Proof. Part (i):
Fix the cutoff d̂ > 0. Consider two points in X, and hypothetical agents

i and j who are situated at these points. The probability of the event in
which i and at least one of j’s neighbors are connected tends to 1 as n goes
to infinity because the random term wij’s have full support over R+, by the
strong law of large numbers. Take such an agent and call him agent h. Now,
agents i and h are connected, and agents h and j are connected. Thus, the
path length between i and j is at least 2 almost sure ly as n → ∞. Since
this argument holds for all pairs of points in X, we are done.

Part (ii):
Fix the deterministic part of the cutoff d̂ > 0. Consider two points in X,

and let i and j be hypothetical agents who are situated at these two points.
Let their cutoffs be d̂i and d̂j. Note that the distance between these points is
strictly between 0 and 1 almost surely. Now, for any δ > 0, the probability
of the event in which i has at least one neighbor h in the interior of X with
d̂h > 1 − δ is above 1 − δ, for sufficienctly large n. Similarly, for any δ > 0,
the probability of the event in which j has at least one neighbor h′ in the
interior of X with d̂h′ > 1 − δ is above 1 − δ, for sufficienctly large n. Note
that for small enough δ, d(h, h′) ≤ 1 − δ holds. Now, agents i and h are
connected, agents h and h′ are connected, agents h′ and j are connected.
Thus, the path length between i and j is at most 3 almost surely as n → ∞.
This completes the proof.
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Figure 1: (a): k = m = 2, b(d) = 1/d, c(0) = 0, c(1) = 2, c(2) = 2.2,
and c(3) = 2.3. All three networks are pairwise stable. A cutoff value profile
for the network in (a-2) cannot be homogeneous. The network in (a-3) is
strongly stable. (b): k = m = 2, b(d) = 1/d, c(0) = 0, c(1) = 1, c(2) = 10,
and c(3) = 30. Both networks are pairwise stable. The network in (b-2)
cannot be generated by a cutoff rule, and it is not strongly stable.
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Figure 2: k = m = 2, b(d) = 1/d, c(0) = 0, c(1) = 1, c(2) = 5, and
c(3) = 10. The network is strongly stable, but cannot be generated by a
cutoff rule with a homogeneous cutoff value profile.
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