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Abstract

I modify the basic SEIR model to incorporate demand for health care. The model 
is used to study the relative effectiveness of policy interventions that include social 
distancing, quarantine, contact tracing, and random testing. A version of the model 
that is calibrated to the Ferguson et al. (2020) model suggests that permanent, high-
intensity social distancing reduces mortality rates and peak ICU demand substantially, 
but that a policy that relaxes high-intensity social distancing over time in the context of 
a permanent efficient quarantine regime is even more effective and also likely to be less 
disruptive for the economy. Adding contact tracing and random testing to this policy 
further improves outcomes. However, given the uncertainty surrounding the disease 
parameters, especially the transmission rate of the disease and the effectiveness of 
policies, the uncertainty for health outcomes is very large.

∗Important qualification: I am an economist and not an epidemiologist, so take anything
stated here with a very large grain of salt. This revision corrects an algebra mistake in previous
versions that significantly affected results. I would like to thank Alex Wolman and Zhilan Feng for helpful
comments and Elaine Wissuchek for research assistance. Any opinions expressed are mine and do not reflect
those of the Federal Reserve Bank of Richmond or the Federal Reserve System.
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1 Introduction

So far the primary response to the coronavirus pandemic, high-intensity social distancing, has

been extremely disruptive for any economy where it has been applied. The question becomes

whether the response can be maintained for an extended time without large negative effects

for social, economic, and health outcomes. If high-intensity social distancing cannot be a

permanent response to limit the spread of the coronavirus, then it is likely that the fallout of

the pandemic might be dampened now but ultimately only delayed. Or are there alternative

policy options that would be less disruptive for the economy but still contain the spread of

the disease?

In trying to come up with an answer, I have to acknowledge that I am not an epidemiolo-

gist and very likely do not have a full appreciation of the literature. So I may be reinventing

the wheel.

Ferguson et al. (2020) study the possible containment of the virus in a large-scale pan-

demic model emphasizing social distancing. Shen, Taleb and Bar Yam (2020) argue that

this approach omits effective methods, such as testing for the virus and tracing contacts of

known infected individuals. Modeling these methods could reduce the number of predicted

deaths. To evaluate this criticism, I modify a simple susceptible-exposed-infected-recovered

(SEIR) model to provide a stylized version that abstracts from all the demographic detail

of the model of Ferguson et al. (2020). The model includes asymptomatic and symptomatic

individuals who spread the disease and hospitalized individuals who require more or less

intensive medical care. Symptomatic individuals are assumed to be known and can be quar-

antined. Furthermore, previously infected contacts of newly symptomatic individuals can

be traced, and some can be quarantined too. Finally, random tests can be performed on

the general population to find asymptomatic but infectious individuals. As in the standard

SEIR model, health-state changes follow Poisson processes. The model is calibrated based

on information in Ferguson et al. (2020).

With a baseline infection fatality rate of about 1 percent, the consequences from no

intervention are dire: about 1 percent of the population is at risk of dying. For the UK

that means about 600 thousand deaths, and for the US it means about 3.25 million deaths.

I consider various interventions that involve social distancing, quarantine, contact tracing,

and random testing to ameliorate this outcome. For the calibrated stylized model, I find

that

• high-intensity social distancing (SD) is effective in the sense that it lowers cumula-

tive deaths to less than 0.1 percent of the population, but it is only effective if it is

permanent;
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• permanent efficient quarantine is less effective than SD, it lowers cumulative deaths to

0.25 percent of the population, but when augmented with an efficient tracing process

for previous contacts of newly symptomatic individuals, it is about as effective as

permanent high-intensity SD;

• combining permanent high-intensity quarantine with a gradual relaxation of high-

intensity SD is noticeably more effective than a policy of permanent high-intensity

SD. At the same time this combination is presumably less disruptive for the overall

economy and likely to reduce employment by less;

• adding contact tracing or random testing to the combination of permanent quarantine

and gradual relaxation of SD further improves outcomes, but more for tracing than for

testing.

To summarize, for a simple SEIR model that is calibrated to the Ferguson et al. (2020)

study, there are alternative policies to permanent SD that provide health outcomes that are

at least as good and potentially less disruptive. All of these policies attempt to reduce the

rate at which the disease spreads, a summary statistic of which is the basic reproduction

rate. Independent of whether the simple SEIR model is appropriate, there is a large degree

of uncertainty associated with the effectiveness of any of these policies in the model. Most of

this uncertainty is related to what we do (not) know about the parameters that characterize

the spread of the disease. In a robustness analysis, I find that

• the model cannot match the sharp increase in cumulative deaths observed for the

US and UK from late March to mid-April 2020 if it is parameterized to widely used

estimates of the basic reproduction rate;

• the model can match the sharp increase in cumulative deaths if more recent estimates of

higher reproduction rates are used, but for this case all policies become correspondingly

less effective;

• more generally, given the large uncertainty surrounding parameter estimates for the dis-

ease process, the uncertainty about health outcomes predicted by the model is equally

large. In the model the main driver of this outcome uncertainty is the uncertainty

surrounding the basic reproduction rate.

One can have well-founded reservations on the use of the kind of model described here

for policy analysis, and Jewell, Lewnard and Jewell (2020) provide an extensive list of these

reservations. On the other hand, short of running actual ‘experiments’ on an economy,
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models like the one described here provide some guidance on possible outcomes for these

policy interventions. Nevertheless, predictions on the relative efficiency of policy measures

should be interpreted in the context of other work and past experience.

1.1 Related work in epidemiology

We work with an augmented version of the standard SEIR model of disease diffusion with

Poisson arrival rates for health-state changes and implied exponential distributions for stage

duration. While analytically convenient, the assumption of constant hazard rates for tran-

sitioning between disease stages in a SEIR model leads to outcomes that do not match the

actual spread patterns for many infectious diseases. For example, Wearing, Rohani and

Keeling (2005) and Feng, Xu and Zhao (2007) argue that relative to the observed diffusion

of infectious diseases, standard SEIR-type models for which health-state transitions follow

Poisson processes understate peak infection periods and overstate the duration of the pro-

cess. They suggest that SEIR-models with gamma distributions for the stage distributions

provide a better match of actual disease diffusion. But Feng (2007) also argues that in the

presence of policy interventions, like quarantine, this simple ranking of the disease process

for exponential and gamma distributions may no longer hold. These qualifications should

be kept in mind when interpreting the numerical results from our SEIR model.

Most epidemiological work on quarantine and contact tracing models these interventions

as setting aside a fraction of newly infected individuals and gradually moving them to a

quarantine state, similar to the transition between health states. The effectiveness of these

interventions is then determined by the share and speed parameters, see for example Wearing

et al. (2005) or Feng (2007). Lipsitch et al. (2003) use a similar approach to study the issue

of contact tracing in the context of the SARS epidemic.

Compared to this epidemiological work, the approach taken here to model quarantine

and tracing is more reduced form: a share of infected individuals is identified, and they are

immediately quarantined, but only a fraction of quarantined individuals can be excluded

from the infectious pool.

1.2 Related recent work by economists using SIR-type models

Eichenbaum, Rebelo and Trabandt (2020) study the impact of SIR-type dynamics on em-

ployment and output in a simple macro model with some endogenous response of meeting

rates to the disease. Atkeson (2020) studies the impact of SD on deaths in a simple SIR-

model. Alvarez, Argente and Lippi (2020) and Farboodi, Jarosch and Shimer (2020) study

the optimal application of social distancing measures in a SIR model without and with an en-
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dogenous response of individuals to the emergence of the disease. Fernandez-Villaverde and

Jones (2020) estimate time-varying transmission rates in a SIR-model by matching observed

time paths of cumulative deaths in different localities.

Piguillem and Shi (2020) and Berger, Herkenhoff and Mongey (2020) are closest to this

paper. They study optimal quarantine and testing in a SEIR-type model but do not include

contact tracing. Berger et al. (2020) use a time-delayed quarantine model similar to the

standard epidemiological literature, whereas the quarantine model in Piguillem and Shi

(2020) is similar to the one we are using. The calibration in neither paper is tied as closely

to Ferguson et al. (2020) as this paper is. Stock (2020) discusses the limitations of random

testing of the general population to obtain better estimates of the asymptomatic share in

the population.

New papers on the implications of the coronavirus for the economy are appearing daily,

so this survey is already outdated.

2 The basic SEIR model

Define the stock of susceptible population S, infected and infectious population I, and re-

covered population R. Total population is

N = S + I +R.

Individuals transition sequentially between the states determined by Poisson processes with

given arrival rates. Assume that the disease transmission rate for a given encounter is α,

that the recovery rate from the disease is γ, and that recovered individuals are immune to

the disease. See Figure 1 (a) for a graphic representation.

Total disease transmission, M , following from meetings between the susceptible and

infected population is then,

M = α
IS

N
.

The dynamics of x = (S, I, R) are described by the differential equations

Ṡ = −αIS
N

İ = α
IS

N
− γI

Ṙ = γI.

The growth rate of the infectious group is

Î =

(
α

γ

S

N
− 1

)
γ.
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Assume that the initial value for the population share of susceptible individuals when the

process starts is essentially one, S (0) ≈ N . Therefore the number of infected people is

initially increasing if

R0 =
α

γ
> 1.

The ratio R0 is called the basic reproduction number because it is approximately the average

number of new infections before recovery from an infected individual at time zero,∫ ∞
0

[
α
S(τ)

N
τ

]
γe−γτdτ ≈ α

γ
= R0,

where the first term in the integral is the average number of infections over a time interval

τ and the second term is the probability of staying infectious for that time.

A standard extension of the SIR model places an exposed state that is not infectious, E,

between the susceptible and the infectious group. This is called the SEIR model. Introducing

the exposed state changes the dynamics of the model, e.g., it tends to change peak infection

rates, but it usually does not affect terminal outcomes much. Let φ denote the rate at which

exposed individuals become infectious, normalize the population at one, N = 1, and interpret

the variables x = (S,E, I, R) as population shares. Then the modified SEIR system is

Ṡ = −αES

Ė = αES − φE

İ = φE − γI

Ṙ = γI.

The system of differential equations is straightforward to solve, e.g., using MATLAB’s ode45

routine starting with an initial condition x0 = (S0, E0, I0, R0).

3 An extended SEIR model with hospitalizations and

death

I now extend the basic SEIR model to provide a stylized representation of the pandemic

model in Ferguson et al. (2020). The pandemic model of Ferguson et al. (2020) contains a

detailed description of the demographics of the population, its age distribution, locations,

etc. Our stylized model will not contain any of that detail. What the model takes from

Ferguson et al. (2020) is the basic mechanics of how the disease spreads from exposure

to asymptomatic infection to symptomatic infection, hospitalization, and finally recovery

or death. This abstraction makes it easy to explore the relative merits of various policy
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measures, such as social distancing, quarantine, contact tracing, and random testing in a

unified framework.

We start with the SEIR model. Susceptible individuals are exposed to the infection but

are not immediately infectious. Exposed individuals become infectious, but they initially

do not show any symptoms. After some time, asymptomatic infected individuals do show

symptoms of the disease and are triaged depending on their condition. Most do not require

hospitalization, but some do, in severe cases in ICUs. All infected individuals either recover

over time and become immune, or they die.

Figure 1 (b) provides a graphic representation of this process. The stock of exposed

individuals is E, the inflow of newly exposed individuals is M , and the rate at which exposed

individuals become infectious without symptoms is φ. Asymptomatic individuals recover at

rates γ, and they become symptomatic at rate β. For a fraction ω of newly symptomatic

individuals, the condition is serious enough to be hospitalized. In addition, a fraction η

of the hospitalized individuals require ICU treatment. Hospitalized individuals recover at

rates γ respectively γICU , and they die at rates δ respectively δICU . Asymptomatic and

symptomatic individuals who are not hospitalized also recover or die at rates γ respectively

δ.1

The following system of differential equations provides the formal representation of the

process dynamics.

Ṡ = −M

Ė = M − φE − qTE − qFE
İA = φE − (β + γ) IA − qTA − qFA
ĖT = qTE + qFE − φET
İAT = qTA + qFA + φET − (β + γ) IAT

İS = (1− ω)β(IA + IAT )− (γ + δ)IS

ḢB = (1− η)ωβ(IA + IAT )− (γ + δ)HB

ḢI = ηωβ(IA + IAT )− (γICU + δICU)HI

Ṙ = γ (IA + IAT + IS +HB) + γICUHI

Ḋ = δ (IS +HB) + δICUHI

1Total deaths are small enough such that the implicit assumption of a constant population is not too
distorting.
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The flow terms qTE, qTA, qFE, and qFA, and the stocks ET and IAT refer to the identification

of exposed and asymptomatic individuals through tracing and/or random testing discussed

below.

Policy interventions, such as social distancing and quarantining known infected individ-

uals, are modeled through their impact on the flow of new infections. As in the basic SIR

model, the flow of new infections is proportional to the product of susceptible individuals

and infectious individuals, but quarantine can reduce the number of infected individuals

who can meet the susceptible population. We assume that symptomatic individuals are

always known and that tracing and random testing can identify some of the exposed and

asymptomatic individuals, ET and IAT . Let εi denote the effectiveness of quarantine for the

known infected population groups, i ∈ {S,B, ICU,AT}, and also assume that symptomatic

infected are more infectious than asymptomatic infected at the rate σ, then the effective

pool of infectious individuals that meets the susceptible population and the inflow of newly

infected individuals are2

I∗ = IA + (1− εAT )IAT + σ

[
(1− εS)IS +

∑
i=B,ICU

(1− εi)Hi

]
,

M = αSI∗.

Social distancing is assumed to directly reduce the rate at which individuals, infectious

and susceptible, contact each other. Let ψ denote the relative contact rate for an individual,

that is, ψ ≤ 1 and ψ = 1, in the absence of SD. Then the transmission flow is

M = α0(ψS)(ψI∗) = α0ψ
2SI∗,

where α0 is the disease transmission rate without any SD measures. In the following we will

use α = α0ψ
2 as the effective transmission rate.

Social distancing is thus potentially a very effective way to contain the spread of the

disease since a reduction of contact rates applies to all individuals, infectious and non-

infectious. Therefore a reduction of contact rates implies a squared reduction of transmission

rates. Social distancing is also ‘easy’ to implement since all individuals are supposed to

reduce their contact rates, that is, no particular information is required. This indiscriminate

reduction of contact rates also makes SD very disruptive for the economy.

Quarantine methods on the other hand target individuals who are infectious, that is,

they require information on an individual’s health status. As long as the health status is

2This is a simplified version of the quarantine model used in the epidemiological literature in the sense
that identified people are added instantaneously to the quarantine pool, but some infections seep out of that
pool. The epidemiological literature I am aware of assumes that infected individuals join the quarantine
pool gradually following a Poisson process, but then quarantine is perfect. For example, Feng (2007).
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observable, that is, for symptomatic individuals, it is relatively straightforward to implement,

though not costless. The problem with a disease like COVID-19 is that a large share of

infectious individuals, current estimates are around 50 percent, may never show symptoms.

Thus even if one were able to quarantine all symptomatic individuals, one would only be able

to reduce the pool of infectious individuals by 50 percent. On the other hand, quarantine

is somewhat more efficient than that since symptomatic individuals are presumably more

infectious than asymptomatic individuals. Contact tracing and random testing are attempts

to reduce the pool of infectious individuals even more.

Tracing of asymptomatic infected individuals is modeled as follows. The average number

of people an asymptomatic individual has infected and who are still in the exposed resp.

asymptomatic state when he or she becomes symptomatic is RATE resp. RATA, derived in

the Appendix. If εT is the efficiency of tracing, then the inflow of newly identified exposed

and asymptomatic individuals through tracing is

qTE = εTRATEβIS and qTA = εTRATAβIS.

We essentially assume that tracing does not require time, but is instantaneous.3

Testing is modeled as follows. Let f be the flow rate at which not yet identified asymp-

tomatic people are randomly tested. Assume that asymptomatic infected can be identified

through tests, but not merely exposed individuals. Also assume that recovered individuals

are not tested. Then the share of identified asymptomatic in a random test is4

pF =
IA

S + E + IA
.

The inflow of newly identified exposed and asymptomatic individuals through random testing

is

qFA = pFf (1 + εTRATA) and qFE = pFfεTRATE,

where we allow for the possibility that previous contacts of newly identified asymptomatic

individuals are then also traced.

4 Calibration

I parameterize the model following Ferguson et al. (2020) as much as possible, that is, unless

otherwise noted all listed statistics are from Ferguson et al. (2020). The unit time interval

is a year.

3It is straightforward to introduce a time delay for the recovery of tracked individuals. Again, we model
the efficiency of tracing not through the rate at which potentially traceable individuals enter the quarantine
pool, but through the size of the captured pool, see footnote 2.

4This potentially overstates the effectiveness of random testing with incomplete quarantine to the extent
that the infectious pool also contains symptomatic individuals.
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• The basic reproduction rate is R0 = 2.4. This estimate is consistent with the assess-

ment of Fauci, Lane and Redfield (2020).

• The incubation period is 5.1 days, φ = 1/(5/365).

• Symptomatic infections are 50% more infectious than asymptomatic infections, σ = 1.5

• 4.4 percent of newly symptomatic infected are hospitalized, ω = 0.044

• 30 percent of hospitalized infected require ICU, η = 0.3

• The mean duration of a hospital stay is 10.4 days

– Non-ICU for 8 days, γB = 1/(8/365)

– ICU for 16 days, of which 10 days are on ICU. We set γICU = 1/(16/365), which

overstates the time ICU requirement by about 50 percent.

– We set the recovery rates of non-hospitalized infected to the same as the one of

non-ICU hospitalized, γ = γB

• 50 percent of infected in ICU die, pD,ICU = 0.5. In the appendix we derive the probabil-

ity for death in ICU, PD,ICU (δICU , γICU). We can solve pD,ICU = PD,ICU (δICU , γICU)

for δICU .

• 40 percent to 50 percent of infected are never identified, mainly because they are

asymptomatic, pAR = 0.5. In the Appendix we derive the probability that an asymp-

tomatic infected recovers before showing symptoms as a function of the rate of be-

coming symptomatic, and the recovery and death rates, PAR (β, γ, δ). We can solve

pAR = PAR (β, δ, γ) for β.

• The unconditional infection fatality ratio (IFR) is 0.9 percent, pI = 0.009. We adjust

the death rate for non-ICU infected, δ, such that the overall terminal fatality rate

without intervention is close to pI .

• Two-thirds of IS self-isolate after one day, with a mean delay of five days. Since our

quarantine does not involve any time delay, we assume that the baseline quarantine

rate for non-hospitalized IS is εS = 1/3.

• Quarantine: Baseline effectiveness for policy intervention is εS = 0.5, which is an

average of the two options listed
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– Case isolation at home (CI): IS stay home for seven days, reduce contacts with

non-household members by 75%. Compliance is 75%. ε = 0.75× 0.75 = 0.6

– Voluntary quarantine at home (VQ): All household members stay home for 14

days. Infection rate within households doubles, community contacts reduced by

75%. Compliance is 50%.

• Social distancing (SD) is assumed to reduce contact rates for workplace interactions

by 25 percent and for social interactions by 75 percent. I use the 2018 American Time

Use survey together with data on US employment rates to calculate the implications of

these assumed reductions in contact rates for the average contact rate in the economy,

Appendix A.2. The average contact rate ψ declines by about 60 percent, depending

on what assumptions we make on the relative intensity of social and workplace inter-

actions. This means that SD can reduce the transmission rate α and the reproduction

rate R0 by about 80 percent.

• Finally, I made up the quarantine rate for hospitalized infected, εi = 0.95 for i ∈
{B, ICU}. These quarantine rates should be high, but medical staff gets infected.

5 Experiments

I consider various time-varying interventions affecting the basic reproduction rate, R0, that

is, infection rate α, the quarantine efficiency for non-hospitalized symptomatic infected, εS,

and the tracing efficiency, εT . For SD and quarantine policies, we consider a permanent

intervention, that is, a permanent change in the policy parameter, and a temporary inter-

vention that returns the policy parameter to its initial value after some time. I then consider

joint policies of SD and quarantine, augmented by tracing and testing.

We seed the initial condition following Ferguson et al. (2020) and assume that the first

infection occurs January 1, 2020, and that infections double every five days. Taking the

case fatality rate of 0.9%, we then match the number of deaths at the starting date of the

simulation. For the UK and the USA, we take the starting date to be March 24, when the

UK imposed a national lockdown.5 Up to that day, 335 deaths and 5,654 infections were

reported in the UK. According to the seeding method, reported infections represented 9

5In the US, 21 states had issued stay-at-home orders by March 24, including California and the north-
eastern states. An additional 19 states issued these orders by April 1. These orders cover most of the US
population. Source: https://www.kff.org/coronavirus-policy-watch/stay-at-home-orders-to-fight-covid19/
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percent of imputed infections in the UK.6 We also assume that initially there are one and a

half times as many exposed individuals as there are imputed infected individuals.

The baseline outcome from the spread of the disease without any policy intervention

is about 1 percent of the population dead since the assumed case fatality rate is about 1

percent. That means 600 thousand deaths in the UK and 3.25 million deaths in the USA.

By how much can the various policy interventions reduce the total number of deaths?

The model specification assumes that ICU units are available for any infected individuals

requiring intensive care. Fatality rates will be higher if demand for ICU units exceeds the

number of available ICU units. So the impact of policies on the number of infected requiring

ICU units is also important. There are about 4 thousand ICU units in the UK, about 0.006

percent of UK population, and 63 thousand ICU units in the US, about 0.095 percent of US

population.7

In the following section, we consider the impact of variations in social distancing and

the effectiveness of quarantine, tracing, and random testing measures to reduce cumulative

deaths and peak ICU demand. These experiments are performed for the UK seeding, but

the seeding does not make a big difference. We report the outcomes for population shares

and occasionally compare the absolute numbers with Ferguson et al. (2020).

5.1 Effectiveness of social distancing

High-intensity SD, that is, large permanent reductions in the basic reproduction rate, has

a large impact on fatalities and peak ICU usage. But even high-intensity SD interventions

have to be permanent to be effective.

• We consider permanent SD interventions and SD interventions that are limited to six

months, after which the reproduction rate returns to its base value. The results are

displayed in Table 1 and Figure 2.8

• A permanent reduction of the reproduction rate by 75 percent reduces total deaths by

a factor of 150, from 1 percent to 0.006 percent of the population, top panel of Table

1, column 5. In addition it cuts the peak demand for ICU units by a factor of more

6We could also seed the model with US data. On March 24, there were 471 cumulative deaths and 42,164
reported infections in the USA. Reported infections represent 43 percent of imputed infections in the USA.
Peak infection rates and terminal conditions do not depend on the two initial conditions.

7For the UK, Daily Telegraph, March 25, 2020, https://www.telegraph.co.uk/global-health/science-and-
disease/hospitals-could-need-75-times-number-critical-care-beds-treat/. For the US, medical intensive care
and other ICUs for adults from https://www.aha.org/statistics/fast-facts-us-hospitals for the US.

8Recall that the percentage reduction of the reproduction rate is the squared percentage reduction of the
contact rate.
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than 50 to 0.001 percent of the population, Table 1, column 4. This peak ICU demand

is below ICU capacity for either the UK or the US.

• SD interventions need not necessarily have to bring the basic reproduction rate below

one to be effective. For example, a 50 percent reduction of the reproduction rate still

leaves it above one, but it reduces total deaths by a factor of twenty.

• Temporary reductions of the basic reproduction rate have a minor impact on total

deaths and peak ICU demand, they mostly delay them, see bottom panel of Table

1, columns 4 and 5, and Figure 2. Essentially, most people are still susceptible to

the virus at the time SD is lifted, and the spread of the disease starts anew, Table 1,

column 6.9

• It is not obvious how much of a reduction in the reproduction rate can be attained

through SD. Using the assumptions of Ferguson et al. (2020), the reproduction rate can

be reduced by about 80 percent, depending on the assumptions on the relative intensity

of social and workplace interactions, Appendix A.2. But even a 75 percent reduction of

the reproduction rate reduces total deaths to about 4 thousand in the UK and brings

peak ICU demand below capacity. These numbers for deaths and ICU demand in the

UK are substantially smaller than the numbers in Ferguson et al. (2020), who report

cumulative deaths of 80 thousand to 100 thousand for policies that emphasize SD.

Since we are interested in the impact of policy alternatives to SD for a calibration that

starts with an SD policy whose implications are comparable to the ones discussed in

Ferguson et al. (2020), from now on we assume that the impact of SD is more limited.

In particular, we assume that SD reduces the reproduction rate only by 45 percent,

resulting in cumulative deaths of about 80 thousand in the UK.

5.2 Effectiveness of quarantine

Efficient permanent quarantine on its own reduces fatalities and peak ICU demand substan-

tially. When quarantine is combined with contact tracing, it yields results comparable to

SD.

• We allow for the possibility of quarantining a fraction, εS, of the known symptomatic

non-hospitalized individuals, and possibly trace previous contacts of newly symp-

tomatic individuals. We only display results for a permanent quarantine regime, since

9In Piguillem and Shi (2020), a temporary SD policy is effective because they assume that a critical mass
of infected individuals is needed for the disease to spread.
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transitory quarantine policies are as ineffective as are transitory SD policies. The

results are displayed in the top panel of Table 2 and Figure 3.

• Permanent strict quarantine that removes up to 90 percent of the known symptomatic

infected individuals from the infectious pool reduces total deaths by 75 percent and

brings peak ICU demand below capacity in the UK and US, top panel of Table 2,

columns 4 and 5.

• Combining efficient quarantine with perfect contact tracing reduces the infectious pool

by another factor of three, column 1 of Table 2. Quarantining traced asymptomatic

individuals then cuts peak ICU demand and total deaths by another factor of four,

Table 2, columns 4 and 5.

5.3 Effectiveness of combined policies

We now consider the impact on total deaths and peak ICU demand of four policy inter-

ventions that to various degrees combine elements of SD, quarantine, tracing, and testing,

Table 3. As a reference point, we list the outcomes from no intervention in the first row of

Table 3. The baseline policy is one of permanent high-intensity SD and temporary medium

efficient quarantine based on Ferguson et al. (2020). We then consider alternative policies

that combine a relaxation of SD over time with more efficient permanent quarantine regimes,

augmented with efficient tracing and/or random testing. We find that in our calibrated styl-

ized model, the alternative policies that combine efficient quarantine with tracing do equally

well as SD in terms of reducing peak ICU demand and imply significantly lower total deaths

than the baseline SD policy.

For our stylized version of the policy studied in Ferguson et al. (2020), we interpret the

baseline policy as a permanent 45 percent reduction of the transmission rate α, combined

with a temporary three-month increase of quarantine efficiency to εS = 0.5.10 Relative to no

intervention, this policy reduces total deaths by a factor of ten and peak ICU demand by a

factor of 50, Table 3, Policies 0 and 1. In absolute numbers, for the UK this means about

50 thousand deaths and 800 peak ICU demand. Recall that UK ICU capacity is estimated

to be about 5 thousand. These projected numbers are lower than those projected in the

Ferguson et al. (2020) study.11

10See sections 4, 5.1, and Ferguson et al. (2020), Table 4, for the cases with general quarantine and
SD. Ferguson et al. (2020) propose SD for at least five months, with subsequent relaxation and tightening
contingent on ICU demand triggers. Effectively SD is in place for 80 percent of the time.

11Ferguson et al. (2020), Table 4, for the cases with general quarantine and SD predicts total deaths of
100 thousand and peak ICU demand of 10 thousand. These numbers are predicted to be lower if additional
policies targeting particular demographic groups are implemented.
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We now consider alternative policies that relax SD over time, in the context of a perma-

nent and efficient quarantine policy, backed up by efficient contact tracing and/or random

testing. For this policy, we start with a two-month, 45 percent reduction of the transmission

rate α through SD, followed by another three months with a 25 percent reduction of the

transmission rate, and finally a permanent 5 percent reduction. All reductions are relative

to the base level. Quarantine efficiency is permanently increased to 90 percent.

The first alternative policy combines a gradual relaxation of SD with an efficient quar-

antine regime, Table 3, Policy 2. For this policy, we assume that 90 percent of newly

symptomatic individuals are known and quarantined. This policy reduces total deaths rela-

tive to the baseline SD policy by a factor of seven and yields similar peak ICU demand. As

we now show, contact tracing and random testing yield only marginal improvements over

this policy.

The second alternative policy backs up the efficient quarantine policy with an efficient

tracing regime, Table 3, Policy 3. For this policy, we assume that 90 percent of previous

contacts that a newly symptomatic individual has infected are traced and quarantined. This

policy reduces total deaths relative to the baseline SD policy by a factor of eight and yields

similar peak ICU demand.

We have not discussed how tracing is actually implemented. The contact-tracing process

for a newly confirmed symptomatic patient consists of a detailed interview with the patient

to find out where they have been and then reaching out to those people or the heads of

organizations responsible for places, such as airlines, hotels, or religious organizations, that

may have been affected. High-risk/close contacts are monitored by public health authorities

and low-risk contacts are asked to self-monitor for symptoms in the process laid out by the

CDC.12 As far as we can tell, even among traced individuals only the ones showing symptoms

are tested.

No matter how contact tracing is implemented, our assumptions that tracing is efficient

and that individuals who have been identified through tracing can be quarantined the same

way as symptomatic individuals are highly optimistic. Furthermore, contact tracing has

been mainly used for less prevalent diseases and not for large-scale pandemics.

Consider now the alternative of backing up quarantine through random testing of asymp-

tomatic individuals at a rate that would test the complete population within a year. For

comparison, the US has been able to increase its testing rate from 50 thousand a day to 100

thousand a day from the middle of March to the middle of April. At that rate the US can

test 10 percent of its population in a year. So our assumption on the testing rate would

require another ten-fold increase. Table 3, Policy 4, displays the impact of high-intensity

12Landman (2020), Armbruster and Brandeau (2007)
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random testing. In our stylized model, adding random testing to quarantine, at least for the

rate considered here, is somewhat less effective than contact tracing, but total deaths are

reduced by a similar magnitude as with tracing, and peak ICU demand is reduced as much

as with tracing. Finally, adding random testing to tracing with quarantine has a negligible

impact, Table 3, Policy 5.

The main reason why random testing is not very effective is that with an efficient quaran-

tine policy in the background, the share of infectious asymptomatic individuals in the general

population is not very large. The peak value of that share is less than 0.1 percent, Table

3, column 1, and the probability of finding an asymptomatic infectious individual through

a random test is less than 0.01 percent. Testing every newly symptomatic individual alone

would require testing less than 0.5 percent of the population in a year, well within the current

capacity constraints for testing.

To summarize, the stylized model predicts that a policy with gradual relaxation of SD,

combined with permanent high-efficiency quarantine and possibly tracing of infectious indi-

viduals reduces total deaths more and has the same impact on peak ICU demand as a policy

of high-intensity permanent SD. A by-product of the successful reduction of new infections

by all of these policies is that after more than a year almost all of the population remains

susceptible to the virus, Table 3, last column. Thus, in the absence of a vaccine or effective

treatment, these policies need to remain permanently in place.

5.4 Implications for employment

The purpose of this paper is to study the impact of policy alternatives to a high-intensity

SD policy that are less disruptive for the workings of the overall economy. If we view cur-

rent policy in the UK or US as representing high-intensity SD as described in the preceding

exercises, that is, a reduction of individual contact rates by 25 percent with a corresponding

reduction of the transmission rate by 45 percent, then this policy has been disruptive. Em-

ployment has declined by about 12 percent, and current estimates are for a total decline of

25 percent in the second quarter of 2020, see Appendix A.2.

In Figure 4, we plot ‘guesses’ of the impact of the policy alternatives on employment in the

economy. The solid lines represent the population available for work in the economy, relative

to normal at one. The dashed lines represent employment consistent with the available

workforce and the extent of SD.
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The available workforce consists of those who are healthy and not quarantined.13 For

none of the policies we consider, the pure health effect on workforce availability is noticeable,

and the pure health effect on employment is dwarfed by the disruptions of high-intensity SD.

The dashed lines in Figure 4 represent the joint impact of SD and other policies on em-

ployment. We take as given that a 25 percent reduction of contact rates reduces employment

relative to available workforce by 25 percent. We then assume that smaller reductions of

the transmission rates through SD reduce employment proportionally to the correspond-

ing reduction in the contact rate. More or less by assumption (or interpolation), the al-

ternative policies result in substantially better employment outcomes than the permanent

high-intensity SD policy.

6 Caveats

I have used a stylized model to evaluate the relative efficiency of four policy interventions to

contain the spread of the coronavirus: SD, quarantine, contact tracing, and random testing.

The qualitative features of the relative efficiency of these policies are intuitive enough to

expect that they would hold in more general models. How much one should trust the

quantitative implications is a different issue.

The first thing to note is that the model was intentionally parameterized to replicate the

Ferguson et al. (2020) model. To the extent that there is uncertainty about the ‘stylized

facts’ in Ferguson et al. (2020), we will do a robustness exercise below. Second, and possibly

more important, the disease does not spread as fast in the model as we observe in the data.

6.1 Higher basic reproduction rate

We have seeded the model to the 335 cumulative deaths in the UK on March 24. Three weeks

later on April 14, cumulative deaths in the UK were 11,329. The model predicts, however,

that after three more weeks, cumulative deaths without an intervention should have been

about 4,600, and under a high-intensity SD policy they should have been about 3,300. The

corresponding numbers for the US are actual cumulative deaths of 673 on March 24 and

21,972 on April 14. Seeding the model to the March 24 deaths, the model predicts 8,700

deaths for April 14 with no intervention and 5,800 deaths with a high-intensity SD policy.

For both countries, the predicted increase of cumulative deaths is substantially below the

actual increase of reported deaths.14

13We essentially assume a representative worker or that employed and non-employed are equally affected
by the spread of the disease.

14The data are from the WHO website https://covid19.who.int/region/euro/country/gb and ../usa, April
22, 2020.
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One way to account for the large increase of cumulative deaths from March 24 to April

14 is to work with a larger basic reproduction rate. Sanche, Lin, Xu, Romero-Severson,

Hengartner and Ke (2020), for example, reconsider the emergence of COVID-19 in Wuhan

and argue that it is twice as infectious as previous estimates suggested. They estimate the

basic reproduction rate to be 5.7 and that infections double within 2.7 days. Similarly,

Fernandez-Villaverde and Jones (2020) estimate a time-varying effective transmission rate α

by matching cumulative deaths to the predictions of a SIR model. They find reproduction

rates in excess of 4 for some US cities and European countries.15

We now replicate the comparison of alternative policies when we seed the model to the

higher basic reproduction rate estimated by Sanche et al. (2020), keeping all other parameters

unchanged. Again, we match the cumulative deaths on March 24. For the UK, the model

now predicts cumulative deaths on April 14 of about 26,000 with no intervention and about

11,400 with the high-intensity SD policy. The corresponding cumulative deaths for the US

on April 14 are now about 56,000 with no intervention and 20,200 with the high-intensity

SD policy. Recall that we chose March 24 as a starting date because the UK adopted a

national lockdown policy on that day, and a substantial share of US population was already

subject to stay-at-home policies by March 24. The predicted increase in cumulative deaths

associated with the high-intensity SD policy is then remarkably close to actual outcomes for

both the UK and the US.

Table 4 displays the outcomes for the same policies we considered previously when the

reproduction rate is twice as high as in the baseline analysis. If there is no intervention,

peak infections and ICU demand triple, and deaths increase by 30 percent relative to the

lower reproduction rate; Table 4, Policy 0. The main result for all policy interventions is

that their ability to reduce the spread of the disease is greatly diminished. Permanent high-

intensity SD now reduces cumulative deaths by only 10 percent, rather than a factor of ten

as before. The alternative policies still improve on the high-intensity SD policy but by less.

For example, they reduce cumulative deaths by an additional 10 percent, rather than a factor

of seven. Finally, peak ICU demand now exceeds capacity for the UK, but it remains below

capacity for the US.

With a higher reproduction rate, policies not only cannot reduce cumulative deaths that

much, they also cannot slow down the rate at which deaths accumulate. The substantial

15Another reason why the stylized model might understate the increase in cumulative deaths could be
related to the assumption that disease state changes follow a Poisson process. As mentioned in Section 1.1,
a number of authors in the epidemiological literature argue that SEIR-type models with duration-dependent
transition rates provide a better match for the dynamics of diseases like SARS, delivering a bigger peak
and shorter duration, for example, Wearing et al. (2005) and Feng et al. (2007). But then Feng (2007) also
argues that this simple ranking of models with duration (in)dependent transition rates may depend on the
particular way policy interventions like quarantine are modeled.
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run-up in cumulative deaths that the model generates for late March is only the precursor

of more future deaths to come in the near future. Given the high rate at which the disease

spreads, cumulative deaths attain their terminal value within 15 to 25 weeks, depending on

the policy, Figure 5. This seems inconsistent with European countries and US states being

able to flatten the path for cumulative deaths substantially. One way to account for this

observation in the model might be further adjustments to the social distancing parameter.

6.2 Uncertainty

As we just saw, estimates of the basic reproduction rate are being revised upward, but

estimates of other parameters, such as the incident fatality rate, also vary substantially. We

do not really know what the share of exposed or asymptomatic individuals in the population

is, etc. On the policy side, we do not really know what the implemented SD policies mean

for the transmission rate of the disease. For example, if we target a 50 percent reduction of

the transmission rate through such a policy, how do we know that that’s what we get? To

address some of these questions, we perform the following simulation study.

We classify parameters from our baseline calibration as being subject to low, medium,

or high uncertainty. This means that percentage deviations of a parameter from its baseline

value have a 5 percent, 10 percent, or 15 percent coefficient of variation. The classification

is subjective but informed by the literature as summarized by the Robert Koch Institut,

see Appendix A.4.16 For example, we consider the uncertainty surrounding the basic re-

production rate and the effectiveness of SD as large, but the uncertainty surrounding the

mean recovery periods as small. That being said, the alternative basic reproduction rate

we just discussed is very unlikely, even for the high uncertainty case. We then generate

one million joint random draws on the parameters from gamma distributions, keep 5,000

of them, and calculate the implied time paths. As an illustration, in Figure A.4 we plot

for the above-discussed high-intensity SD policy the time path of cumulative deaths for the

fixed parameter values and the mean, median, and the symmetric ranges containing 33 per-

cent and 66 percent of all realizations. We do this for four cases. The first case displays

the joint uncertainty surrounding disease and policy parameters. The second case considers

only uncertainty related to policy parameters, that is, we take all parameters but ε as fixed.

The third case considers only uncertainty related to disease parameters, that is, we take the

policy parameters ε as fixed. Finally, the fourth case illustrates the main source of outcome

uncertainty, the basic transmission rate α0.

16https://www.rki.de/DE/Content/InfAZ/N/Neuartiges Coronavirus/Steckbrief.html, as of April 30,
2020.
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Figure A.4 shows that for the stylized model and the particular SD policy the uncertainty

surrounding outcomes for total deaths is large, and almost all of it can be attributed to the

uncertainty surrounding the disease parameters, in particular, the basic transmission rate

α0. Panel (a) of Figure A.4 shows that the outcome uncertainty associated with uncertainty

in all parameters is large, the 66 percentage coverage area for total deaths after a year ranges

from 0.02 percent to 0.9 percent. The latter is the no-intervention outcome for the baseline

parameters. Even though the median outcome is close to but below the fixed-parameter

path, the mean outcome is substantially larger than the fixed parameter path. In other

words, the risks associated with uncertainty are weighted to the upside. Comparing panels

(b) and (c) of Figure A.4, we see that almost all of the outcome uncertainty is associated with

the disease parameter uncertainty rather than the uncertainty about policy parameters.17

Finally, comparing panels (c) and (d) of Figure A.4 shows that uncertainty in the basic

transmission rate is the main driver of outcome uncertainty.

7 Conclusion

I have studied the effectiveness of alternative policies to contain the spread of a pandemic

in a stylized model of the SEIR variety that is calibrated to the Ferguson et al. (2020)

study. I find that a policy that combines a gradual relaxation of social distancing with an

efficient quarantine, possibly augmented by contact tracing, improves noticeably on a policy

of permanent high-intensity SD.

We should qualify the stylized model’s ability to make quantitative predictions on the

spread of the disease. First, cumulative deaths in the model do not increase as fast as

we observe for the UK and the US from late March to mid-April 2020. The model better

matches this increase in cumulative deaths for a higher basic reproduction rate, consistent

with recently revised estimates. But if COVID-19 is much more infectious than what we

have assumed until now, then the effectiveness of all policies will be greatly reduced. More

generally, the uncertainty surrounding all parameter estimates used to calibrate the model

is large, and so is the implied uncertainty for policy outcomes. The most important contrib-

utor to outcome uncertainty, at least as it relates to cumulative deaths, appears to be the

uncertainty about the disease transmission rate.

17Note the different scales for panels (b) and (c).
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A Appendix

A.1 Reproduction rates

We now calculate the average new infections caused by a newly infectious agent. We start

with the basic reproduction rate in the SIR model, then the basic reproduction rate in the

SEIR model, and then calculate average new infections from an asymptomatic individual

until he becomes symptomatic and is quarantined.

A.1.1 Basic reproduction rate R0 for SIR model

The individual is infectious at rate S(τ)α until recovery or death (γ̃ = γ + δ).

R0 =

∫ ∞
0

[S (τ)ατ ]
[(
γe−γτ

)
e−δτ +

(
δe−δτ

)
e−γ̃τ

]
dτ

≈ S (0)

∫ ∞
0

(ατ)
(
γ̃e−γ̃τ

)
dτ

≈ αγ̃

∫ ∞
0

τe−γ̃τdτ

For the first approximation, we assume that changes in the measure of susceptible individuals

S are small over the time of an individual infection. For the second approximation, we assume

that initially the share of susceptible individuals is close to one.

Note that ∫ t

0

τeατdτ =
1

α2

[
1 + eαt (αt− 1)

]
and lim

t→∞

∫ t

0

τe−γτdτ =
1

γ2

Therefore

R0 =
α

γ̃

A.1.2 Basic reproduction rate in R0 for SEIR model

We consider the progression from an asymptomatic infectious individual to a symptomatic

infectious one, working backwards.

The average number of new infections caused by a symptomatic individual, ignoring

hospitalization, is

R0S = S(t)

∫ ∞
0

[σατ ]
(
γ̃Se

−γ̃Sτ
)
dτ

= S(t)α
σ

γ̃S

with γ̃S = γS + δ
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The average number of new infections caused by an asymptomatic individual is

R0A = S(t)

∫ ∞
0

[ατ +R0S]
(
βe−βτ

) (
e−γAτ

)
dτ + S(t)

∫ ∞
0

(ατ)
(
γAe

−γAτ
) (
e−βτ

)
dτ

= S(t)α
1

(β + γA)

[
1 +

σβ

γS (β + γA)

]
A.1.3 New infections with quarantine

We consider an asymptomatic infectious individual, (α, β, γA), who is quarantined once he

becomes symptomatic. For this case, we calculate the average number of exposed and

infectious asymptomatic individuals that this individual has created.

By the time an asymptomatic individual becomes symptomatic, the average number that

individual has infected is

RAQ = S(t)

[∫ ∞
0

(ατ)
(
βe−βτ

) (
e−γAτ

)
dτ

]
= S(t)α

β

(β + γA)2

The average number of individuals that the infectious agent has infected and who are

not yet infectious at the time the agent becomes symptomatic is

RATE = S(t)

∫ ∞
0

[
α

∫ τ

0

e−φsds

] [(
βe−βτ

) (
e−γAτ

)]
dτ

The term in the first square bracket denotes the total who have been infected by the infectious

individual at τ and who have not yet become infectious at that time. This can be rewritten

as

RATE = S(t)α
β

(β + γA) (β + γA + φ)
.

The average number of individuals that an infectious agent has infected and who are

infectious but asymptomatic at the time the agent becomes symptomatic is

RATA = S(t)

∫ ∞
0

[
α

∫ τ

0

[∫ s

0

φe−φve−γA(s−v)dv

]
ds

] [
βe−(β+γA)τ

]
dτ

The innermost integral is the probability that an individual who has been infected time s

ago has become infectious in the meantime but also has not yet recovered at the time the

original infectious individual becomes symptomatic. This can be rewritten as

RATA = α
βφ

2 (β + γA)2 (β + γA + φ)
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A.1.4 Probability of recovery without developing symptoms

The probability of recovering while asymptomatic before becoming symptomatic

pAR =

∫ ∞
0

(
γAe

−γAτ
)
e−βτdτ =

γA
γA + β

A.2 Social distancing

• According to the American Time Use Survey for 2018, an employed person spends on

average 6.3 hours working and 5.13 hours on social activities (purchasing, helping non-

household members, education, participating in organizations, and leisure and sports).

A non-employed person spends on average 0.12 hours on work related activities and

9.36 hours on social activities.

• Social interactions may be more or less intense than workplace interactions. Given

the reports on super spreader events related to soccer games in Italy and churches in

South Korea, social interactions may well be more intense than workplace interactions,

suppose 50 percent more. This is the opposite of Eichenbaum et al. (2020) for which

workplace infections dominate infections related to consumption or unspecified social

interactions.

• Assume that 60 percent of the population are working. This corresponds to US em-

ployment rates.

• In the last two weeks of March and the first week of April, new unemployment insurance

claims increased by about 18 million. On a payroll employment base of 151 million, this

means that employment probably decreased by about 12 percent, and the employment

rate declined to about 53 percent. Current estimates are for additional employment

declines with a total employment decline of 25 percent. Taking this into account

reduces social contacts per person by about 63 percent, an additional 2 percentage

points.

• The following table lists the implied average contact rates and social reproduction

factors for various assumptions on the relative intensity of social interactions, with

and without taking into account changes in the employment rates. Contact rates may

decline by about 60 percent, and implied reproduction rates may decline by about 80

percent.
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Individual Contact Rate ψ Reproduction Rate Factor αS
Percent relative to normal Fraction relative to normal

S/W ω fixed ω declines ω fixed ω declines
0.75 46.4 42.1 0.22 0.18
1.00 43.0 39.6 0.18 0.16
1.50 38.6 36.5 0.15 0.13

A.3 Seeding the initial condition

We start with initial cumulative deaths, D (0). Assuming a seeding rate σ, such that infec-

tions are doubling every five days, and an unconditional case fatality rate δ, consistent with

an unconditional case fatality probability pD = 0.009, total cumulative deaths starting from

−∆ are

D (0) = I (0) δ

(
1− e−σ∆

σ

)
We assume that infections start two and half months before the initial date, ∆ = 2.5/12.

A.4 Representing parameter uncertainty

Consider a parameter p and assume that the uncertainty about the parameter is represented

by the following form

ln p = ln p̄+ lnX − E [lnX]

lnX ∼ Γ (k, θ)

where Γ denotes the Gamma distribution. Then

E [ln p] = ln p̄

V ar (ln p) = V ar (lnX)

The mean and variance of the gamma distribution are

µ = E [lnX] = kθ

σ2 = V ar (lnX) = kθ2

and the median ν is bounded by

µ− 1/3 < ν < µ

So to get a symmetric distribution we need µ to be large. Let

S = kθ
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Suppose we fix the coefficient of variation for the observed variable

CoV =
Std (ln p)

E [ln p]
=
Std (lnX)

ln p̄
=

√
kθ

ln p̄
=

√
kS/k

ln p̄
=

S√
k ln p̄

So the parameters of the gamma distribution are

k =

(
S

CoV ln p̄

)2

θ =
S

k
= S

(
CoV ln p̄

S

)2

=
(CoV ln p̄)2

S

The MATLAB usage of the gamma function is

Γ (a, b) = Γ (k, θ)

We represent uncertainty through the CoV . The Robert Koch Institut (RKI) summarizes

the available evidence on various characteristics of the coronavirus.18 For example, estimates

of the basic reproduction rate R0 range from 2.4 to 3.3. If we interpret the range as rep-

resenting a 2 standard deviation band around a mean of 2.8, then the CoV for percentage

deviation is 13%. We interpret this CoV as representing the uncertainty surrounding the

basic transmission rate α0, but we should note that R0 not only depends on the transmission

rate, but also on the incubation time, recovery time, and relative infectiousness of symp-

tomatic individuals. Since the RKI excludes studies with significantly higher values than 3.3

from its summary of the evidence, assuming a CoV of 15% for the basic transmission rate

α0 may not overstate its uncertainty by much. We classify uncertainty as high, CoV = 15%,

medium, CoV = 10%, and low, CoV = 5% for the parameters

High: α, αS, φ, β, σ, εi for i ∈ {AT, S,B, ICU}, εT
Medium: δ, δICU , ω, η,
Low: γ, γICU

18https://www.rki.de/DE/Content/InfAZ/N/Neuartiges Coronavirus/Steckbrief.html, April 30, 2020.
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Table 1: Effectiveness of Social Distancing

(1) (2) (3) (4) (5) (6)
Model Max IA Max IAT Max IS Max HICU Term D Term S

Permanent Change
R0=2.40 4.294 0.000 3.871 0.054 0.912 23.665
R0=1.80 1.556 0.000 1.444 0.020 0.627 47.476
R0=1.20 0.101 0.000 0.070 0.001 0.040 96.684
R0=0.60 0.100 0.000 0.056 0.001 0.006 99.521

Transitory Change
R0=2.40 4.294 0.000 3.871 0.054 0.912 23.665
R0=1.80 1.656 0.000 1.529 0.021 0.802 32.813
R0=1.20 3.932 0.000 3.556 0.050 0.901 24.594
R0=0.60 4.179 0.000 3.768 0.053 0.907 23.977

Note. The rows list the replication rate R0 implied by reduction of contact rates ψ
through SD. The first four columns are the peak shares of (1) asymptomatic infected,
(2) known asymptomatic infected, (3) symptomatic at home, and (4) ICU units required.
The last two columns are the terminal values after one and a half years for (5) cumulative
deaths and (6) susceptible population. All variables are percent of total population. A
temporary intervention reduces the basic reproduction rate for a six month period and
then returns it to its baseline value of 2.4.
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Table 2: Effectiveness of Quarantine εS and Tracing εT

(1) (2) (3) (4) (5) (6)
Model Max IA Max IAT Max IS Max HICU Term D Term S

No Contact Tracing εT = 0
εS=0.33 4.294 0.000 3.871 0.054 0.912 23.665
εS=0.50 3.085 0.000 2.817 0.040 0.804 32.718
εS=0.70 1.571 0.000 1.456 0.020 0.599 49.830
εS=0.80 0.858 0.000 0.801 0.011 0.448 62.507
εS=0.90 0.293 0.000 0.274 0.004 0.247 79.293

Perfect Contact Tracing εT = 1.0
εS=0.33 3.674 0.402 3.679 0.052 0.899 24.698
εS=0.50 2.421 0.297 2.490 0.035 0.772 35.326
εS=0.70 0.910 0.134 0.972 0.014 0.509 57.402
εS=0.80 0.303 0.050 0.331 0.005 0.290 75.677
εS=0.90 0.101 0.016 0.092 0.001 0.058 95.211

Note. See Notes for Table 1.
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Table 3: Effectiveness of Alternative Policies

(1) (2) (3) (4) (5) (6)
Model Max IA Max IAT Max IS Max HICU Term D Term S
Policy 0 4.301 0.000 3.879 0.054 0.912 23.645
Policy 1 0.116 0.000 0.083 0.001 0.076 93.464
Policy 2 0.115 0.000 0.074 0.001 0.013 98.976
Policy 3 0.112 0.007 0.074 0.001 0.009 99.261
Policy 4 0.114 0.001 0.074 0.001 0.012 99.008
Policy 5 0.111 0.008 0.073 0.001 0.009 99.277

Note. The policies are defined on the intervals covering the first two months, the third
through fifth month, and the remaining time. Policy 0 is the no-intervention case. The
parameters for policy interventions are as follows
Policy 1: α = 0.55, εS = (0.5, 1/3, 1/3), εAT = εT = f = 0
Policy 2: α = (0.55, 0.75, 0.95), εS = εAT = 0.9, εT = 0, f = 0
Policy 3: α = (0.55, 0.75, 0.95), εS = εAT = 0.9, εT = 0.9, f = 0
Policy 4: α = (0.55, 0.75, 0.95), εS = εAT = 0.9, εT = 0, f = 1.0
Policy 5: α = (0.55, 0.75, 0.95), εS = εAT = 0.9, εT = 0.9, f = 1.0

Table 4: Effectiveness of Alternative Policies for High R0

(1) (2) (3) (4) (5) (6)
Model Max IA Max IAT Max IS Max HICU Term D Term S
Policy 0 15.089 0.000 11.711 0.164 1.180 1.193
Policy 1 6.679 0.000 5.857 0.082 1.050 12.107
Policy 2 5.115 0.000 4.522 0.063 0.932 21.980
Policy 3 3.114 0.551 3.305 0.046 0.877 26.600
Policy 4 4.940 0.097 4.443 0.062 0.921 22.870
Policy 5 2.941 0.592 3.194 0.045 0.865 27.541

Note. The basic reproduction rate is R0 = 5.7. All policies are defined as in Table 3.
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Figure 1: The SEIR model

(a) SIR

(b) GSEIR
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Figure 2: Effectiveness of Social Distancing R0
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(b) Deaths

Note: See notes for Table 1. Solid lines represent permanent policies and dashed lines represent temporary
policies. The shaded area denotes the first six months for which a temporary policy is in place.
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Figure 3: Effectiveness of Quarantine εIS
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Note: See notes for Table 1. Solid lines represent permanent policies and dashed lines represent temporary
policies. The shaded area denotes the first six months for which a temporary policy is in place.
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Figure 4: Employment Impact

Workforce: Healthy Available and Employed, Relative to Normal
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Note: The solid lines denote the population available for work, that is, not hospitalized and not quarantined.
In terms of health outcomes all policies are about equally effective. The dashed lines denote the additional
employment reduction associated with SD. For the policies see notes for Table 3. SD1Q1 is Policy 1,
SD2Q2T2 is Policy 3, SD2Q2F2 is Policy 4, and SD2Q2T2F2 is Policy 5.
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Figure 5: Deaths with Large R0
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Note: The reproduction rate is R0 = 5.7. The policies correspond to the policies in Table 3: SD1Q1 is
Policy 1, SD2Q2 is Policy 2, SD2Q2T2 is Policy 3, SD2Q2F2 is Policy 4, SD2Q2T2F2 is Policy 5. Some
of the policies vary over time, and the shaded areas cover the first two months, and the third through fifth
month for which the policies change.
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Figure 6: Impact of Parameter Uncertainty on Projected Deaths
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(a) All Parameters
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(b) Policy Parameters
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(c) Disease Parameters
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Note: Baseline policy is permanent high-intensity SD, combined with temporary medium-intensity quar-
antine. Solid black line is the outcome for the calibrated parameter values. Solid red and blue lines are the
mean and median from the Monte Carlo simulations. The area between the dashed purple and green lines
reflect the symmetric ranges that contain 33 percent, respectively 66 percent, of the realizations from
the Monte Carlo simulations. Panel (a) allows for uncertainty in policy and disease parameters, panel (b)
keeps the disease parameters fixed, panel (c) keeps the policy parameters ε fixed, and panel (d) keeps all
parameters fixed except the disease transmission rate α0.

(d) Contagiousness α0
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