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Abstract: Without drastic efforts to reduce carbon emissions and mitigate globalized stressors, 136 

tropical coral reefs are in jeopardy. Strategic conservation and management requires identifying 137 

the environmental and socioeconomic factors driving the persistence of scleractinian coral 138 

assemblages – the foundation species of coral reef ecosystems. Here, we compiled coral 139 

abundance data from 2,584 Indo-Pacific reefs to evaluate the influence of 21 climate, social, and 140 

environmental drivers on the ecology of reef coral assemblages. Higher abundances of 141 

framework-building corals were typically associated with: weaker thermal disturbances with 142 

longer intervals for potential recovery; slower human population growth; reduced access by 143 

human settlements and markets; and less nearby agriculture. We then propose a framework of 144 

three management strategies (protect, recover, or transform) by considering: (i) if reefs were 145 

above or below a proposed threshold of >10% cover of coral taxa important for structural 146 

complexity and carbonate production, and (ii) reef exposure to severe thermal stress during the 147 

2014-2017 global coral bleaching event. Our findings can guide urgent management efforts for 148 

coral reefs, by identifying key threats across multiple scales and strategic policy priorities that 149 

might sustain a network of functioning reefs in the Indo-Pacific to avoid ecosystem collapse.  150 

 151 

Two-sentence summary: Surveys from 2,584 sites across the Indo-Pacific identify key climate, 152 

socioeconomic, and environmental drivers associated with hard coral assemblages, the 153 

foundation species of tropical coral reefs. This informs a strategic approach to protect, recover, 154 

or transform coral reef management.  155 

 156 

Introduction: With the increasing intensity of human impacts from globalization and climate 157 

change, tropical coral reefs have entered the Anthropocene1,2 and face unprecedented losses of 158 

up to 90% by mid-century3. Against a backdrop of globalized anthropogenic stressors, the 159 

impacts of climate change can transform coral communities4 and reduce coral growth rates that 160 

are crucial to maintain reef structure and track rising sea levels5. Under expectations of continued 161 

reef degradation and reassembly in the Anthropocene, urgent actions must be taken to protect 162 

and manage the world’s remaining coral reefs. Given such concerns about the long-term 163 

functional erosion of coral communities, one conservation strategy is to prioritize the protection 164 

of reefs that currently maintain key ecological functions, i.e., reefs with abundant fast-growing 165 
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and structurally-complex corals that can maintain vertical reef growth and net carbonate 166 

production5,6. However, efforts to identify potentially functioning reefs across large spatial scales 167 

are often hindered by a focus on total coral cover, an aggregate metric that can overlook taxon-168 

specific differences in structural complexity and carbonate production7,8
. To date, global 169 

empirical studies of scleractinian coral communities – and their environmental and 170 

socioeconomic drivers – are rare, in part due to the absence of large-scale assemblage datasets – 171 

a key challenge that must be overcome in modern ecology. Here, we apply a method developed 172 

from trait-based approaches to evaluate regional patterns and drivers of Indo-Pacific coral 173 

assemblages.   174 

We assembled the largest dataset of the community structure of tropical scleractinian 175 

corals from 2,584 Indo-Pacific reefs within 44 nations and territories, spanning 61° of latitude 176 

and 219° of longitude (see Methods). Surveys were conducted between 2010 and 2016 during 177 

continuous and repeated mass bleaching events, notably following the 1998 El Niño. A ‘reef’ 178 

was defined as a unique sampling location where coral genera and species-level community 179 

composition were evaluated on underwater transects using standard monitoring methods. 180 

Compared to coral reef locations selected at random, our dataset is representative of most 181 

geographies: 78 out of 83 Indo-Pacific marine ecoregions with coral reef habitat are represented 182 

with <5% sampling disparity, although there are exceptions of undersampled (Palawan/North 183 

Borneo and Torres Strait Northern Great Barrier Reef) and oversampled (Hawaii, Rapa-Pitcairn, 184 

and Fiji) ecoregions (Supplementary Table 1).  185 

On each reef, we evaluated total coral cover and the abundance of different coral life 186 

history types previously developed from a trait-based approach with species characteristics of 187 

colony morphology, growth, calcification, and reproduction9 (https://coraltraits.org). The 188 

abundance of different coral taxa can affect key ecological processes for future reef persistence, 189 

including the provision of reef structural complexity, carbonate production (the process by which 190 

corals and some other organisms lay down carbonate on the reef), and ultimately reef growth (the 191 

vertical growth of the reef system resulting from the processes of carbonate production and 192 

erosion)5,7,8,10. Fast-growing branching, plating and densely calcifying massive coral taxa that 193 

can contribute to these processes are expected to be functionally important, not only by 194 

maintaining critical geo-ecological functions that coral reefs provide10, but might also help reefs 195 
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track sea level rise5, recover from climate disturbances11, and sustain critical habitat for reef fish 196 

and fisheries12,13. 197 

Here, we adopt a previous classification of four coral life history types to evaluate Indo-198 

Pacific patterns of total coral abundance and the composition of coral assemblages, and their key 199 

social-environmental drivers. Specifically, we consider four coral life histories9 (Supplementary 200 

Table 2): a ‘competitive’ life history describes fast-growing branching and plating corals that can 201 

accrete structurally-complex carbonate reef architectures but are disproportionately vulnerable to 202 

multiple stressors; a ‘stress-tolerant’ life history describes large, slow-growing and long-lived 203 

massive and encrusting corals that can build complex high-carbonate reef structures to maintain 204 

coral-dominated, healthy and productive reefs, and often persist on chronically disturbed reefs; 205 

by contrast, ‘generalist’ plating or laminar corals may represent a subdominant group of deeper 206 

water taxa, while smaller brooding ‘weedy’ corals typically have more fragile, lower-profile 207 

colonies that provide less structural complexity and contribute marginally to carbonate 208 

production and vertical growth10,12,14. We therefore consider competitive and stress-tolerant life 209 

histories as key framework-building species given their ability to build large and structurally 210 

complex coral colonies8,10,12. We hypothesize that the abundance of different life histories within 211 

a coral assemblage provides a signal of past disturbance histories or environmental conditions15–212 
17 that may affect resilience and persistence to future climate impacts18. 213 

Drawing on theoretical and empirical studies of coral reef social-ecological systems19,20, 214 

we tested the influence of 21 social, climate, and environmental covariates on coral abundance, 215 

while controlling for sampling methodologies and biogeography (Supplementary Table 3). These 216 

include: (i) climate drivers (the intensity and time since past extreme thermal stress, informed by 217 

Degree Heating Weeks, DHW), (ii) social and economic drivers (human population growth, 218 

management, agricultural use, national development statistics, the ‘gravity’ of nearby markets 219 

and human settlements), (iii) environmental characteristics (depth, habitat type, primary 220 

productivity, cyclone wave exposure, and reef connectivity), and (iv) sampling effects and 221 

biogeography (survey method, sampling intensity, latitude, and coral faunal province). We fit 222 

hierarchical mixed-effects regression models using the 21 covariates to predict the percent cover 223 

of total coral cover and the four coral life history types individually. Models were fit in a 224 

Bayesian multilevel modelling framework and explain ~25-48% of the observed variation across 225 
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total cover and the four life histories (Supplementary Table 4). We also fit these models to four 226 

common coral genera (Acropora, Porites, Montipora, Pocillopora) as a complementary 227 

taxonomic analysis. 228 

 229 

Results & Discussion Across the 2,584 reefs, total hard coral cover varied from <1% to 100% 230 

(median ± SD, 23.7 ± 17.0%). Competitive and stress-tolerant corals were the dominant life 231 

history on 85.7% of reefs (competitive: 42.4%, n = 1,095 reefs; stress-tolerant: 43.3%, n = 1,118 232 

reefs); generalist and weedy taxa dominated only 8.8% and 5.6% of reefs respectively (Figure 1; 233 

Supplementary Figure 1).  It is striking that the majority of Indo-Pacific reefs remain dominated 234 

by structurally-important corals even following the impacts of the 1998 mass coral bleaching 235 

event  and subsequent bleaching events, and given expectations of different trajectories of regime 236 

shifts and recovery following bleaching impacts or human activities6,21,22. Notably, these findings 237 

are in contrast to contemporary Caribbean reefs where very few reefs remain dominated by key 238 

reef-building species and instead comprised of weedy taxa with limited functional 239 

significance8,23. However, Indo-Pacific reefs varied in their absolute abundance of the four types 240 

(Figure 1), also suggesting the potential for dramatic structural and functional shifts away from 241 

expected historical baselines of highly abundant branching and plating corals24, a warning sign 242 

considering recent community shifts in the Caribbean23.  243 

 244 

Climate, social and environmental drivers 245 

Climate variables describing the frequency and intensity of past thermal stress events 246 

strongly affected coral assemblages. Reefs with more extreme past climate disturbances 247 

(assessed by maximum DHW) had fewer competitive and generalist corals, while time since the 248 

strongest past thermal disturbance was associated with more hard coral cover and the cover of all 249 

four life histories (Figure 2). These results provide some of the first large-scale empirical support 250 

for the importance of recovery windows after bleaching in structuring coral assemblages25,26. Our 251 

findings are also consistent with expectations that branching and plating corals are vulnerable to 252 

temperature anomalies and bleaching4,11,15. Stress-tolerant and weedy corals were less affected 253 

by the magnitude of past thermal stress, consistent with long-term studies in Indonesia7, the 254 
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Seychelles11, and Kenya15 that have shown these coral taxa often persist through acute 255 

disturbances and maintain important reef structure12,27. There was no effect of past thermal stress 256 

on total coral cover, possibly because this composite metric can overlook important differences 257 

in species and trait responses. 258 

Our results also reveal the important role of socioeconomic drivers on some life histories: 259 

reefs influenced by human populations, markets, and agricultural use were associated with a 260 

lower abundance of competitive, stress-tolerant, and generalist corals (Figure 2). The 261 

mechanisms underpinning these relationships could include direct mortality from destructive 262 

fishing practices28, tourism, or industrial activities29, or indirect effects on coral growth 263 

associated with the overexploitation of grazing herbivorous fishes that control macroalgae30 or 264 

declining water quality that can increase sediments and nutrients to smother or sicken corals31. 265 

We also observed two positive associations of coral abundance with human use: generalist corals 266 

increased near agricultural land use, and weedy corals increased near larger and more accessible 267 

markets. In some cases, these relationships require further investigation; for example, the 268 

abundance of generalists (e.g., deeper-water plating corals) was negatively associated with 269 

cropland expansion, but positively associated with cropland area. Overall, we identify human 270 

gravity and agricultural use as key social drivers that could be locally mitigated (i.e., through 271 

behaviour change32) to promote structurally complex and calcifying reefs that can sustain 272 

important ecological functions. 273 

 Local management actions in the form of no-take reserves or restricted management (e.g., 274 

gear restrictions) were associated with higher total coral cover, and greater abundance of stress-275 

tolerant, generalist, and weedy corals, but not competitive corals (Figure 2). Our findings suggest 276 

that management approaches typically associated with marine protected areas (MPAs) and 277 

fisheries management can both have benefits for total coral cover and some, but not all, life 278 

histories. Notably, local management did not increase the abundance of structurally-important 279 

branching and plating competitive corals. This is consistent with expectations that branching and 280 

plating corals are often extremely sensitive to extreme heat events and bleaching mortality11,14,15, 281 

which can swamp any potential benefits of local management15,33. Our analyses did not account 282 

for management age, size, design, or compliance, all of which could influence these outcomes; 283 

for example, older, larger, well-enforced, and isolated marine protected areas (MPAs) have been 284 
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shown to increase total coral cover, although mostly through the cover of massive (i.e., stress-285 

tolerant) coral growth forms34. Our results also suggest that partial protection (i.e., gear 286 

restrictions) can be associated with similar increases in coral abundance as fully no-take areas. 287 

For corals, any type of management that reduces destructive practices can have direct benefits 288 

for coral survival and growth28. While protection from local stressors may not increase coral 289 

resilience33, we find that managed sites are associated with a higher abundance of total coral 290 

cover and some coral life histories relative to unmanaged sites, even after accounting for climate 291 

disturbances and other environmental conditions.  292 

 Environmental factors such as latitude, reef zonation (i.e., depth and habitat), primary 293 

productivity, wave exposure, and cyclone intensity were also strongly associated with coral 294 

abundance (Figure 2). Competitive corals were more abundant on reef crests, shallower reefs and 295 

on reefs with higher wave exposure, compared to stress-tolerant corals that were more abundant 296 

on deeper reefs and reefs with lower wave exposure. Stress-tolerant, weedy and generalist corals 297 

were typically associated with higher latitudes, smaller reef areas, and greater depths. Primary 298 

productivity and cyclone exposure were associated with fewer competitive, stress-tolerant and 299 

weedy corals, likely due to unfavourable conditions for coral growth in areas of eutrophication 300 

and high productivity31, or hydrodynamic breakage or dislodgement of coral colonies35. These 301 

findings suggest that environmental conditions are important in predicting conservation baselines 302 

and guiding management investments. For example, restoring or maintaining grazer functions 303 

when environmental conditions can support abundant corals and other calcifying organisms36. 304 

After controlling for method and sampling effort in the models (Figure 2), our results suggest 305 

that future comparative studies would benefit from standardized methods and replication to allow 306 

for faster comparative approaches for field-based monitoring37, especially given the urgency of 307 

tracking changes to coral assemblages from climate change and bleaching events.  308 

 The four life histories showed some different responses than common genera 309 

(Supplementary Figure 2). For example, life histories were generally more sensitive to climate 310 

and social drivers (17 vs. 12 significant relationships for life histories compare to genera, 311 

respectively; Figure 2, Supplementary Figure 2). For example, competitive corals had stronger 312 

associations with two metrics of climate disturbance (years since maximum DHW and maximum 313 

DHW) compared to Acropora (a genus classified as competitive). Three of the four life histories 314 
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showed positive associations with local management (no-take or restricted management) 315 

compared to only one genus (Porites, a stress-tolerant and weedy genus); Acropora was 316 

negatively associated with restricted management. Overall, our results suggest that life histories 317 

might provide more sensitive signals of disturbance for coral assemblages, perhaps because life 318 

history groups integrate morphological and physiological traits that can determine coral 319 

responses to disturbance38. However, further comparisons of life history and taxonomic 320 

responses, at both regional and local scales, are certainly warranted.  321 

 322 

Management strategies in the Anthropocene 323 

The livelihoods of millions of people in the tropics depend on healthy and productive 324 

coral reefs19,20, yet coral reefs worldwide are imperilled by climate change3,25. Between 2014 and 325 

2017, reefs worldwide experienced an unprecedented long, extensive, and damaging El Niño and 326 

global bleaching event26,39. The 2,584 reefs in our dataset were exposed to thermal stress ranging 327 

between 0 to 30.5 annual °C-weeks above summer maxima (i.e., Degree Heating Weeks, DHW) 328 

between 2014 and 2017 (Figure 3; Methods). Nearly three-quarters of the surveyed reefs (74.9%, 329 

n = 1,935 reefs) were exposed to greater than 4 °C-week DHW, a common threshold for 330 

ecologically significant bleaching and mortality39 (Supplementary Figure 3). Previous studies 331 

have identified 10% hard coral cover as a minimum threshold for carbonate production on 332 

Caribbean40 and Indo-Pacific27,41 reefs. Below this threshold (or ‘boundary point’), reefs are 333 

more likely to have a neutral or negative carbonate budget and may succumb to reef 334 

submergence with rising sea levels5. Here, we adapt this threshold by considering only the live 335 

cover of competitive and stress-tolerant corals (hereafter, ‘framework’ corals) since these are two 336 

life histories that can build large, structurally-complex colonies to maintain carbonate production 337 

and vertical reef growth10,12,27. Prior to the third global bleaching event between 2014 and 2017, 338 

71.8% of reefs (1,856 out of 2,584) maintained a cover of framework corals above 10%, 339 

suggesting the majority of reefs could sustain net-positive carbonate budgets prior to their 340 

exposure to the 2014-2017 global bleaching event. The abundance of framework corals was 341 

independent of the thermal stress experienced in the 2014-2017 bleaching event (Figure 3). 342 

Considering these two thresholds of ecologically significant thermal stress (4 DHW) and 343 

potential ecological function (10% cover; sensitivity analysis provided in Supplementary Table 344 
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5), this creates a portfolio of three management strategies: 1) protect functioning reefs exposed 345 

to less intense and frequent climate disturbance during the 2014-7 bleaching event, 2) recover 346 

reefs exposed to ecologically significant bleaching stress that were previously above potential 347 

functioning thresholds, and 3) on degraded reefs exposed to ecologically significant bleaching 348 

stress, transform existing management, or ultimately assist societies to transform away from 349 

reef-dependent livelihoods (Figure 3).  350 

A protect strategy was identified for 449 reefs (out of 2,584, or 17.4%), which were 351 

exposed to minimal bleaching-level stress (<4 DHW during 2014-2017) and had >10% cover of 352 

framework corals (Figure 3; Supplementary Table 5). These reefs were located throughout the 353 

Indo-Pacific (Figure 4, Supplementary Table 6) suggesting that it is currently possible to 354 

safeguard a regional network of functioning coral reefs6,42,43. The conservation goal for protect 355 

reefs is to maintain reefs above functioning thresholds, while anticipating the impacts of future 356 

bleaching events. Policy actions include dampening the impacts of markets and nearby 357 

populations, placing local restrictions on damaging fishing, pollution, or industrial activities 358 

within potential refugia from climate change, while addressing the broader context of poverty, 359 

market demands, and behavioural norms32,44 – and ideally within areas of potential climate 360 

refugia43,45. The recover strategy was identified for the majority of reefs: 1,407 reefs (out of 361 

2,584, or 54.4%) exceeded 10% cover of framework corals but were likely exposed to severe 362 

bleaching-level heat stress during 2014-2017 global bleaching event (i.e., >4 DHW). As these 363 

reefs had recently maintained 10% cover, mitigating local stressors as described above, alongside 364 

targeted investments in coral reef rehabilitation and restoration could help to accelerate natural 365 

coral recovery. In this strategy, the goal is to move reefs back above the 10% threshold as 366 

quickly as possible following climate impacts. Active management to restore habitat with natural 367 

or artificial complexity, coral ‘gardening’, or human-assisted evolution could be considerations 368 

to quickly recover coral cover following climate disturbances42, although often at high cost but 369 

there are options for low-cost, long-term restoration46. For the transform strategy, we identified 370 

728 reefs (or 28.2%) below 10% cover that were likely on a trajectory of net erosion prior to the 371 

2014-2017 bleaching event. Here, transformation is needed – either by management to enact new 372 

policies that urgently and effectively address drivers to rapidly restore coral cover, or ultimately, 373 

by societies who will need to reduce their dependence on coral reef livelihoods facing the loss of 374 

functioning coral reefs. Such social transformations could be assisted through long-term 375 
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investments in livelihoods, education, and adaptive capacity47,48, investments which can also 376 

accompany the protect and recover strategies.  377 

We also investigated how combinations of key drivers could affect the predicted cover of 378 

framework corals (Figure 5). While certain combinations were predicted to reduce cover below a 379 

10% threshold (e.g., high population or market gravity with less recovery time from climate 380 

disturbances or with high cyclone exposure, and high gravity with high primary productivity), 381 

the majority of parameter space predicted coral cover above 10%. In addition, increasing 382 

management restrictions appeared to expand a safe operating space for corals above a 10% 383 

threshold. This is hopeful, in that even as the frequency of bleaching events is expected to 384 

increase, reducing the impact of local stressors may provide conditions that can sustain some 385 

functions on coral reefs. Nevertheless, management through MPAs alone have not been shown to 386 

increase climate resistance or recovery33. Thus, addressing global climate change is paramount.  387 

Our dataset describes contemporary coral assemblages within a period of escalating 388 

thermal stress, notably following the 1998 bleaching event26,39. Patterns of coral bleaching vary 389 

spatially25, and we can make no predictions about which reefs might escape future bleaching 390 

events or mortality from our dataset. The long-term persistence of corals within potential climate 391 

refuges (i.e., the protect strategy) requires a better understanding of future climate conditions and 392 

tracking the long-term ecological responses of different reefs6,37,45. Predicting and managing 393 

coral reefs through a functional lens, such as through coral life histories, is challenging but 394 

necessary10,49. Here, we adapt previous estimates of 10% coral cover as a threshold of net-395 

positive carbonate production. However, this threshold is based on methods that estimate the 396 

three-dimensional structure of a reef40, while our dataset consists primarily of planar two-397 

dimensional methods that do not account for the vertical or three-dimensional components of 398 

coral colonies50. Thus, the 10% threshold should be considered an uncertain, but potentially 399 

precautionary, threshold of net carbonate production and reef growth, and a sensitivity analysis 400 

considering this threshold at 8% or 12% cover suggests a three-strategy framework is robust to 401 

uncertainty around these thresholds (Supplementary Table 5). Future work can help refine these 402 

thresholds by considering species-specific contributions to structural complexity and carbonate 403 

production, as has been recently developed for Caribbean corals8.  404 

 405 
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Conclusions 406 

Facing an Anthropocene future of intensifying climate change and globalized 407 

anthropogenic impacts1,2,39, coral reef conservation must be more strategic by explicitly 408 

incorporating climate impacts and ecological functioning into priority actions for conservation 409 

and management. Given expectations that coral assemblages will shift towards smaller and 410 

simpler morphologies and slower growth rates to jeopardize reef function4,7,15, our findings 411 

highlight the importance of urgently protecting and managing reefs that support assemblages of 412 

large, complex branching, plating and massive taxa that build keystone structure on coral reefs10–413 
12. Our findings reveal key drivers of coral assemblages, and identify some locations where 414 

societies can immediately enact strategic management to protect, recover, or transform coral 415 

reefs. Our framework also provides a way to classify management strategies based on relatively 416 

simple thresholds of potential ecological function (10% cover of framework corals) and recent 417 

exposure to thermal stress (4 DHW); thresholds that have the potential to be incorporated into 418 

measurable indicators of global action under the Convention on Biological Diversity’s post-2020 419 

Strategic Plan that will include a revised target for coral reefs. Local management alone, no 420 

matter how strategic, does not alleviate the urgent need for global efforts to control carbon 421 

emissions. The widespread persistence of functioning coral assemblages requires urgent and 422 

effective action to limit warming to 1.5˚C. Our findings suggest there is still time for the strategic 423 

conservation and management of the world’s last functioning coral reefs, providing some hope 424 

for global coral reef ecosystems and the millions of people who depend on them.  425 

 426 

Methods 427 

We conducted coral community surveys along 8,209 unique transects from 2,584 reefs 428 

throughout the Indian and Pacific Oceans, covering ~277 km of surveyed coral reef.  Our dataset 429 

provides a contemporary Indo-Pacific snapshot of coral communities between 2010 and 2016; 430 

surveys occurred following repeated mass bleaching events (e.g., 1998, 2005, 2010), but were 431 

not influenced by widespread mortality during the 2014-2017 global coral bleaching event. 432 

Surveyed reefs spanned 61.2 degrees of latitude (32.7°S to 28.5°N) and 219.3 degrees of 433 

longitude (35.3°E to 105.4°W), and represented each of the 12 coral faunal provinces described 434 

for Indo-Pacific corals51. A random subsampling method was used to evaluate the representation 435 
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of our dataset across Indo-Pacific coral reefs, whereby we compared locations of empirical 436 

surveys to the global distribution of coral reefs by generating 2600 randomly selected Indo-437 

Pacific coral reef sites using the R package dismo52 from a 500 m resolution tropical coral reef 438 

grid53. Comparing our empirical surveys (n = 2,584 reefs) to the randomly generated reefs 439 

allowed us to estimate ecoregions with relative undersampling or oversampling (Supplementary 440 

Table 1).  441 

Climate, social and environmental covariates were organized at three spatial scales19: 442 

(i) Reef (n = 2,584). Coral community surveys were conducted at the scale of ‘reefs’, 443 

defined as a sampling location (with a unique latitude, longitude and depth) and comprised 444 

of replicate transects. Surveys occurred across a range of depths (1 - 40 m; mean ± standard 445 

deviation, 8.9 ± 5.6 m), though the majority of surveys (98.8%) occurred shallower than 20 446 

m. Surveys were conducted across a range of reef habitat zones, classified to three major 447 

categories: reef flat (including back reefs and lagoons), reef crest, and reef slope (including 448 

offshore banks and reef channels).  449 

 (ii) Site (n = 967). Reefs within 4 km of each other were clustered into ‘sites’.  The 450 

choice of 4 km was informed by the spatial movement patterns of artisanal coral reef fishing 451 

activities as used in a global analysis of global reef fish biomass19. We generated a 452 

complete-linkage hierarchical cluster dendrogram based on great-circle distances between 453 

each point of latitude and longitude, and then used the centroid of each cluster to estimate 454 

site-level social, climate and environmental covariates (Supplementary Table 3). This 455 

provided a median of 2.0 reefs (+/- 2.83) per site.   456 

 (iii) Country (n = 36). Reefs and sites were identified within geopolitical countries to 457 

evaluate national-level covariates (GDP per capita, voice and accountability in governance, 458 

and Human Development Index). Overseas territories within the jurisdiction of the France, 459 

the United Kingdom, and the United States were informed by their respective country. 460 

 461 

Coral communities and life histories. At each reef, underwater surveys were conducted using 462 

one of three standard transect methods: point-intercept transects (n = 1,628 reefs), line-intercept 463 

transects (n = 399 reefs) and photo quadrats (n = 557 reefs). We estimated sampling effort as the 464 
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total number of sampled points during each reef survey. Line-intercept transects were estimated 465 

with sampling points every 5 cm, since most studies only estimate the length of corals greater 466 

than 3 or 5 cm (T. McClanahan, A. Baird pers. comm). On average, the number of sampling 467 

points was 300.0 ± 750.0 (median ± SD), and effort ranged from 30 to 5,138 sampling points. 468 

Method and sampling effort were included as fixed effects in the models to control for their 469 

effects.  470 

The absolute percent cover of hard corals was evaluated to the taxonomic level of genus or 471 

species for each transect. Surveys that identified corals only to broader morphological or life 472 

form groups did not meet the criteria for this study. The majority of surveys recorded coral taxa 473 

to genus (1,506 reefs out of 2,584, or 58.2%), and the remainder recorded some or all taxa to 474 

species level; a small proportion of unidentified corals (0.30% of all surveyed coral cover) were 475 

excluded from further analyses. We estimated the total hard coral cover on each transect, and 476 

classified each coral taxa to a life history type9; some species of Pocillopora, Cyphastrea and 477 

Leptastrea were reclassified by expert coral taxonomists and ecologists54. A representative list of 478 

species and their life history types are provided in Supplementary Table 2, and original trait 479 

information is available from the Coral Traits Database (https://coraltraits.org/)55. Four genera 480 

included species with more than one life history classification (Hydnophora, Montipora, 481 

Pocillopora, Porites), and we distributed coral cover proportional to the number of species 482 

within each life history, which was estimated separately for each faunal province based on 483 

available species lists51. In total, we were able to classify 97.2% of surveyed coral cover to a life 484 

history. We then summed coral cover within each of the four life histories on each reef.  485 

Climate, social and environmental drivers. To evaluate the relative influence of climate, social 486 

and environmental drivers on total hard coral cover and coral assemblages, we identified a suite 487 

of covariates at reef, site and country scales (Supplementary Table 3). These covariates included: 488 

the frequency and intensity of thermal stress since 1982, local human population growth, market 489 

and population gravity (a function of human population size and accessibility to reefs), local 490 

management, nearby agricultural use, a country’s Human Development Index, primary 491 

productivity, depth, reef habitat, wave exposure, cyclone history, and habitat connectivity. A full 492 

description of covariates, data sources and rationale can be found in the Supplementary Methods.   493 
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Analysis of drivers. We first assessed multicollinearity among the different covariates by 494 

evaluating variance inflation factors (Supplementary Table 7) and Pearson correlation 495 

coefficients between pairwise combinations of covariates (Supplementary Figure 4). This led to 496 

the exclusion of four covariates: (i) local population size, (ii) national GDP per capita, (iii) 497 

national voice and accountability, and (iv) years since extreme cyclone activity. A final set of 16 498 

covariates was included in statistical models, whereby all pairwise correlations were less than 0.7 499 

and all variance inflation factors were less than 2.5 indicating that multicollinearity was not a 500 

serious concern (Supplementary Table 7, Supplementary Figure 4). 501 

To quantify the influence of multi-scale social, human and environmental factors on hard 502 

coral assemblages, we modelled the total percent cover of hard corals and the percent cover of 503 

each life history as separate responses. We fit mixed-effects Bayesian models of coral cover with 504 

hierarchical random effects, where reef was nested within site, and site nested within country; we 505 

also included a random effect of coral faunal province to account for regional biogeographic 506 

patterns51. For each response variable, we converted percent coral cover into a proportion 507 

response and fit linear models using a Beta regression, which is useful for continuous response 508 

data between 0 and 156. We incorporated weakly informative normal priors on the global 509 

intercept (mean = 0, standard deviation = 10) and slope parameters (mean = 0, standard deviation 510 

= 2), and a Student t prior on the Beta dispersion parameter (degrees of freedom = 3, mean = 0, 511 

scale = 25). We fit our models with 5,000 iterations across four chains, and discarded the first 512 

1,000 iterations of each chain as a warm-up, leaving a posterior sample of 16,000 for each 513 

response. We ensured chain convergence by visual inspection (Supplementary Figure 5), and 514 

confirmed that Rhat (the potential scale reduction factor) was less than 1.05 and the minimum 515 

effective sample size (neff) was greater than 1000 for all parameters57. We also conducted 516 

posterior predictive checks and estimated Bayesian R2 values for each model to examine 517 

goodness of fit58. All models were fit with Stan59 and brms60; analyses were conducted in R61.  518 

We applied the same modelling approach to the percent cover of four dominant coral 519 

genera: Acropora, Porites, Montipora, and Pocillopora, in order to provide a comparison 520 

between life history and taxonomic responses.  521 

Strategic portfolios. We developed three management strategies (protect, recover, or transform) 522 

based on the potential thermal stress experienced during the 2014-2017 bleaching event, and a 523 
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reef’s previous observed ecological condition. To evaluate potential thermal stress, we estimated 524 

the maximum annual Degree Heating Weeks (DHW) between 2014 and 2017 from NOAA’s 525 

CoralTemp dataset (Coral Reef Watch version 3.1; see Drivers section). Ecologically significant 526 

bleaching and mortality can occur at different thresholds of thermal stress, likely between 2 and 527 

4 DHW39, and this range of thresholds also represents the lowest quintile of DHW exposure for 528 

the 2,584 reefs during the 2014-2017 global bleaching event (20th quintile = 3.2 DHW). 529 

Considerations of different DHW thresholds were highly correlated and identified similar ‘no-530 

regrets’ locations of limited thermal stress exposure between 2014 and 2017 (Supplementary 531 

Figure 3). 532 

For ecological condition, we assessed whether each reef had the potential for a net positive 533 

carbonate budget prior to the 2014-2017 bleaching event based on a reference point of 10% 534 

cover of competitive and stress tolerant corals. We assumed that this threshold represents a 535 

potential tipping point (i.e. unstable equilibrium, or boundary point) for reef growth and 536 

carbonate production, whereby 10% hard coral cover is a key threshold above which reefs are 537 

more likely to maintain a positive carbonate budget and therefore net reef growth27,40,41. 538 

Additionally, 10% coral cover is suggested to be a threshold for reef fish communities and 539 

standing stocks of biomass62–64, and associated with some thresholds to undesirable algal-540 

dominated states at low levels of herbivore grazing and coral recruitment65. As a sensitivity 541 

analysis for the 10% coral cover threshold, we considered how 8% and 12% coral cover 542 

thresholds would affect the distribution of conservation strategies across the 2,584 reefs 543 

(Supplementary Table 5). This sensitivity analysis also helps account for the uncertainty in how 544 

two-dimensional planar estimates of percent cover recorded during monitoring may affect three-545 

dimensional processes on coral reefs, like carbonate production50. Ultimately, applying 546 

thresholds of recent extreme heat and reef led to the proposed framework of three management 547 

strategies: protect, recover and transform, which we mapped across the Indo-Pacific based on 548 

the surveyed locations in our dataset.  549 

We also investigated how combinations of key drivers differentiated reefs below or above 550 

10% cover of competitive and stress-tolerant corals. Using the Bayesian hierarchical models for 551 

competitive and stress-tolerant corals, we predicted coral cover across a range of observed values 552 

for five key covariates: population gravity, market gravity, years since maximum DHW, primary 553 
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productivity, and cyclone exposure. For each covariate combination, we kept all other 554 

parameters at their median values for continuous predictors, or their reference value for 555 

categorical predictors (habitat: reef slope; method: PIT); we then summed the median predicted 556 

cover of competitive and stress-tolerant corals from 10,000 posterior samples for an estimate of 557 

combined cover. We repeated this approach with each level of management: fished, restricted 558 

management, and no-take management.  559 

 560 

Data availability All R code is available on https://github.com/esdarling/IndoPacific-corals. To 561 

access primary data, interested parties can contact data contributors. Contact information and the 562 

geographies covered by each data contributor is provided in Supplementary Table 8.  563 
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Figure captions 730 

Figure 1. Indo-Pacific patterns of reef coral assemblages. (a) Percent cover of four coral life 731 

histories from 2,584 reef surveys in 44 nations and territories; colour indicates life history and 732 

circle size indicates percent cover. Circles are semi-transparent; locations with many surveyed 733 

reefs are darker than locations with fewer surveyed reefs. (b) Example of life histories with a 734 

representative genus, from left to right: fast-growing competitive (Acropora); slow-growing and 735 

long-lived massive stress-tolerant (Platygyra); sub-dominant generalists (Echinopora); fast-736 

growing brooding weedy taxa (Pavona). (c) Distribution of abundance (percent cover) for each 737 

life history; dotted line identifies 10% cover, a potential threshold for net-positive carbonate 738 

production. Maps are shown separately for each life history in Supplementary Figure 1.  739 

 740 

Figure 2. Relationship between climate, social, environment and methodology variables with 741 

total coral cover and life history type. Standardized effect sizes are Bayesian posterior median 742 

values with 95% Bayesian credible intervals (CI; thin black lines) and 80% credible intervals 743 

(coloured thicker lines); filled points indicate the 80% CI does not overlap with zero and grey 744 

circles indicate an overlap with zero and a less credible trend. DHW indicates Degree Heating 745 

Weeks; HDI is Human Development Index. For the effects of population gravity on stress-746 

tolerant and weedy corals which can appear to intersect zero, there was a 96.0% (15,362 out of 747 

16,000 posterior samples) and 98.0% (15,670 out of 16,000) probability, respectively, of a 748 

negative effect; for market gravity and competitive corals, there was a 90.2% (14,424 out of 749 

16,000 posteriors) probability of a negative effect. Models of four dominant coral genera are 750 

shown in Supplementary Figure 2. 751 

 752 

Figure 3. Strategic management portfolio of protect, recover, and transform for Indo-Pacific 753 

coral reefs. The 2,584 reefs varied in their ecological condition (assessed at the combined cover 754 

of stress tolerant and competitive corals) and exposure to maximum annual DHW during the 755 

2014-2017 Third Global Coral Bleaching Event. A protect strategy (blue dots) is suggested for 756 

449 reefs (out of 2,584, or 17.4%) that were associated with limited exposure to recent 757 

bleaching-level thermal stress (<4 DHW) and maintained coral cover above 10%. A recover 758 

strategy could be prioritized for reefs that have recently maintained cover above 10% but were 759 
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exposed to severe potential bleaching stress in 2014-2017 (orange dots; n = 1407, or 54.5%). As 760 

coral cover falls below potential net-positive carbonate budgets (i.e., <10% hard coral cover), a 761 

transformation is needed for existing management or ultimately, the dependence of societies on 762 

reef-dependent livelihoods (grey dots; n = 728, or 28.2%).  763 

 764 

Figure 4. Three management strategies of a) protect, b) recover, and c) transform are distributed 765 

throughout the Indo-Pacific, suggesting there remain opportunities to sustain a network of 766 

functioning reefs, while supporting coral recovery or social transformations for the majority of 767 

reefs. Strategies are not restricted by geography and distributed across reefs in the Indo-Pacific 768 

region.   769 

 770 

Figure 5. Combinations of key social and environmental drivers that differentiate between reefs 771 

below (red) and above 10% cover of framework corals (yellow to blue gradient), based on model 772 

predictions (see Methods). Coral cover refers to the combined cover of competitive and stress-773 

tolerant corals; gravity estimates are reported as log(values). Results are predicted separately for 774 

three management categories: fished, restricted, or no-take reserves.  775 



−20

0

20

Absolute 
% cover

10
25
50
75

Dominant 
life history
●

●

●

●

Competitive
Stress−tolerant
Generalist
Weedy

c

b

a

Competitive Stress−tolerant Generalist Weedy

0 10 25 50 75 0 10 25 50 75 0 10 25 50 75 0 10 25 50 75
0

500

1000

Absolute % cover

# 
re

ef
s



Total coral cover Competitive Stress−tolerant Generalist Weedy C
lim

ate
Social

Environm
ent

M
ethods

−0.5 0.0 0.5 1.0 −0.5 0.0 0.5 1.0 −0.5 0.0 0.5 1.0 −0.5 0.0 0.5 1.0 −0.5 0.0 0.5 1.0

Maximum DHW
Years since maximum DHW

Restricted management
No−take closures

National HDI
Croplands growth

Total croplands
Market gravity

Population gravity

Habitat, crest
Habitat, flat

Depth
Primary productivity

Wave exposure
Cyclone exposure

Reef area
Latitude, from equator

Sampling points
Photo quadrats

Line intercept transects

Standardized effect size



10

25

50

75

4 10 20 30
Maximum Degree Heating Weeks 

2014−2017

%
 C

or
al

 c
ov

er
 

(c
om

pe
tit

ive
 +

 s
tre

ss
−t

ol
er

an
t)

Strategy
●
●
●

Protect
Recover
Transform

10

25

50

75

4 10 20 30
Maximum Degree Heating Weeks 

2014−2017

%
 C

or
al

 c
ov

er
 

(c
om

pe
tit

ive
 +

 s
tre

ss
−t

ol
er

an
t)

Strategy
●
●
●

Protect
Recover
Transform



transform

recover

refugea Protect

b Recover

c Transform



0.0

2.5

5.0

7.5

0 10 20 30
Years since max DHW

Po
pu

la
tio

n 
gr

av
ity

a

0.0

2.5

5.0

7.5

10.0

0 10 20 30
Years since max DHW

M
ar

ke
t g

ra
vi

ty

0

10

20

30

0 10 20 30
Years since max DHW

M
ea

n 
cy

cl
on

e 
da

ys

0

1000

2000

3000

0.0 2.5 5.0 7.5
Population gravity

Pr
im

ar
y 

pr
od

uc
tiv

ity

0

1000

2000

3000

0.0 2.5 5.0 7.5 10.0
Market gravity

Pr
im

ar
y 

pr
od

uc
tiv

ity

0.0

2.5

5.0

7.5

0 10 20 30
Years since max DHW

Po
pu

la
tio

n 
gr

av
ity

b

0.0

2.5

5.0

7.5

10.0

0 10 20 30
Years since max DHW

M
ar

ke
t g

ra
vi

ty

0

10

20

30

0 10 20 30
Years since max DHW

M
ea

n 
cy

cl
on

e 
da

ys

0

1000

2000

3000

0.0 2.5 5.0 7.5
Population gravity

Pr
im

ar
y 

pr
od

uc
tiv

ity

0

1000

2000

3000

0.0 2.5 5.0 7.5 10.0
Market gravity

Pr
im

ar
y 

pr
od

uc
tiv

ity

0.0

2.5

5.0

7.5

0 10 20 30
Years since max DHW

Po
pu

la
tio

n 
gr

av
ity

c

0.0

2.5

5.0

7.5

10.0

0 10 20 30
Years since max DHW

M
ar

ke
t g

ra
vi

ty

0

10

20

30

0 10 20 30
Years since max DHW

M
ea

n 
cy

cl
on

e 
da

ys

0

1000

2000

3000

0.0 2.5 5.0 7.5
Population gravity

Pr
im

ar
y 

pr
od

uc
tiv

ity

0

1000

2000

3000

0.0 2.5 5.0 7.5 10.0
Market gravity

Pr
im

ar
y 

pr
od

uc
tiv

ity

Fi
sh

ed
Re

st
ric

te
d

N
o-
ta
ke

0.0

2.5

5.0

7.5

0 10 20 30
Years since max DHW

Po
pu

la
tio

n 
gr

av
ity

0.0

2.5

5.0

7.5

10.0

0 10 20 30
Years since max DHW

M
ar

ke
t g

ra
vi

ty

0

10

20

30

0 10 20 30
Years since max DHW

M
ea

n 
cy

cl
on

e 
da

ys
0

1000

2000

3000

0.0 2.5 5.0 7.5
Population gravity

Pr
im

ar
y 

pr
od

uc
tiv

ity

0

1000

2000

3000

0.0 2.5 5.0 7.5 10.0
Market gravity

Pr
im

ar
y 

pr
od

uc
tiv

ity

<10%

 10%

 15%

 20%

Coral cover

0.0

2.5

5.0

7.5

0 10 20 30
Years since max DHW

Po
pu

la
tio

n 
gr

av
ity

0.0

2.5

5.0

7.5

10.0

0 10 20 30
Years since max DHW

M
ar

ke
t g

ra
vi

ty

0

10

20

30

0 10 20 30
Years since max DHW

M
ea

n 
cy

cl
on

e 
da

ys
0

1000

2000

3000

0.0 2.5 5.0 7.5
Population gravity

Pr
im

ar
y 

pr
od

uc
tiv

ity

0

1000

2000

3000

0.0 2.5 5.0 7.5 10.0
Market gravity

Pr
im

ar
y 

pr
od

uc
tiv

ity

<10%

 10%

 15%

 20%

Coral cover

0.0

2.5

5.0

7.5

0 10 20 30
Years since max DHW

Po
pu

la
tio

n 
gr

av
ity

0.0

2.5

5.0

7.5

10.0

0 10 20 30
Years since max DHW

M
ar

ke
t g

ra
vi

ty

0

10

20

30

0 10 20 30
Years since max DHW

M
ea

n 
cy

cl
on

e 
da

ys
0

1000

2000

3000

0.0 2.5 5.0 7.5
Population gravity

Pr
im

ar
y 

pr
od

uc
tiv

ity

0

1000

2000

3000

0.0 2.5 5.0 7.5 10.0
Market gravity

Pr
im

ar
y 

pr
od

uc
tiv

ity

<10%

 10%

 15%

 20%

Coral cover


	Article File
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

