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Abstract

Past social experience affects the circuitry responsible for producing and interpreting current behaviors. The
social behavior network (SBN) is a candidate neural ensemble to investigate the consequences of early-life so-
cial isolation. The SBN interprets and produces social behaviors, such as vocalizations, through coordinated
patterns of activity (functional connectivity) between its multiple nuclei. However, the SBN is relatively unex-
plored with respect to murine vocal processing. The serotonergic system is sensitive to past experience and
innervates many nodes of the SBN; therefore, we tested whether serotonin signaling interacts with social ex-
perience to affect patterns of immediate early gene (IEG; cFos) induction in the male SBN following playback
of social vocalizations. Male mice were separated into either social housing of three mice per cage or into iso-
lated housing at 18–24d postnatal. After 28–30d in housing treatment, mice were parsed into one of three
drug treatment groups: control, fenfluramine (FEN; increases available serotonin), or pCPA (depletes available
serotonin) and exposed to a 60-min playback of female broadband vocalizations (BBVs). FEN generally in-
creased the number of cFos-immunoreactive (-ir) neurons within the SBN, but effects were more pronounced
in socially isolated mice. Despite a generalized increase in cFos immunoreactivity, isolated mice had reduced
functional connectivity, clustering, and modularity compared with socially reared mice. These results are anal-
ogous to observations of functional dysconnectivity in persons with psychopathologies and suggests that
early-life social isolation modulates serotonergic regulation of social networks.
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Significance Statement

Social isolation and serotonergic signaling each modulate neural functions independently of each other. It is
unknown whether these factors interact to affect activity at the level of individual nuclei, and/or functional
networks. Using a vocal playback paradigm, we find that acutely increasing or systemically depleting avail-
able serotonin increased cFos-immunoreactive (-ir) neurons in the social behavior network (SBN) of mice
raised in social isolation compared with their socially reared counterparts. We show for the first time that
mice raised in social isolation have reduced functional connectivity in the SBN relative to socially reared
mice. Importantly, network perturbations were not resolved by drug treatment in isolated mice suggesting
that social experience is necessary to facilitate functional relationships in the SBN.
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Introduction
The importance of social rearing has been evident since

the 1960s and the now-controversial “Harlow monkey ex-
periments,” which demonstrated that early-life social iso-
lation deprives macaques of the experiences necessary
to develop into functional adults (Harlow et al., 1965). The
ability to amicably behave and communicate with con-
specifics is important to social cohesion, which in turn af-
fects individual fitness and psychological wellness (Heim
and Nemeroff, 2001; Bailey and Moore, 2018). Neural sys-
tems have evolved to support social cohesion (Goodson,
2013; Matthews and Tye, 2019) such that social interac-
tions may carry positive valence (Goodson and Wang,
2006), and be reinforced by the brain’s reward circuitry
(Dölen et al., 2013). Early-life social immersion or depriva-
tion may shape the circuits responsible for the appropri-
ate expression of social behaviors.
One such circuit is the vertebrate social behavior net-

work (SBN). This includes the lateral septum (LS); bed nu-
cleus of the stria terminalis (BNST); medial preoptic area
(mPOA); paraventricular (PVN), anterior (AH), and ventro-
medial (VMH) hypothalamic nuclei; the ventral tegmental
area (VTA); and periaqueductal gray (PAG; Newman,
1999; Goodson, 2005; Goodson and Kingsbury, 2013).
Rather than an exhaustive list of regions that facilitate so-
cial processes (Rogers-Carter and Christianson, 2019),
the SBN is an evolutionarily conserved suite of nuclei re-
sponsible for interpreting and generating responses to so-
cial stimuli (Goodson, 2005; O’Connell and Hofmann,
2012). SBN nuclei or “nodes” are differentially engaged
during specific behaviors (Lin et al., 2011; Lee et al., 2014;
Decot et al., 2017; McHenry et al., 2017; Kohl et al., 2018;
Tschida et al., 2019); however, coordinated patterns of
activity or functional connectivity (Friston, 2011) across
the SBN contribute to variation in behavioral output
(Goodson, 2005; Goodson and Kabelik, 2009).
Since the original proposal of the SBN (Newman, 1999),

analytical tools have been developed to quantitatively de-
scribe functional anatomic networks (Sporns, 2010; Fornito
et al., 2016). For example, metrics such as density measure
functional connectivity in a given network, whereas the clus-
tering coefficient is an indicator of “small-world” networks
which display increased efficacy of communication among

regions (Watts and Strogatz, 1998). Community structure/
modularity calculates the degree to which nodes assemble
into functionally similar clusters (Newman and Girvan, 2004).
Functional networks are disrupted in human psychopatholo-
gies (Bullmore et al., 1997; van den Heuvel and Sporns,
2019), emphasizing the importance of investigating net-
work-level features in rodent translational models (Van den
Heuvel et al., 2016). Network-based analyses in non-tradi-
tional model systems describe changes in SBN functional
connectivity following presentation of socially salient vocal
stimuli (Hoke et al., 2005; Ghahramani et al., 2018); however,
no such studies exist in laboratory mice.
Murine vocalizations are a source of context-dependent

information during social interactions (Hanson and
Hurley, 2012; Finton et al., 2017; Warren et al., 2018,
2020; Sangiamo et al., 2020). Vocal processing relies on
auditory circuitry as well as functionally diverse nuclei
such as the SBN. For example, receivers must extract the
physical characteristics of vocal signals (e.g., frequency,
duration, amplitude, etc.) and interpret them in light of
their own experiences and current conditions (Petersen
and Hurley, 2017). Investigating whether social isolation
disrupts vocal processing in circuits such as the SBN will
be important in understanding the mechanisms underly-
ing aberrant behavior in mouse models of communicative
and affective disorders (Portfors and Perkel, 2014).
Serotonergic signaling is sensitive to social isolation:

socially isolated mice downregulate 5-HT receptor ex-
pression in hypothalamic nodes of the SBN (Schiller et al.,
2003; Bibancos et al., 2007). As anatomically distinct re-
gions of the dorsal raphe nucleus send serotonergic pro-
jections to the SBN (Schwarz et al., 2015; Muzerelle et al.,
2016; Beier et al., 2019), serotonin may modulate SBN ac-
tivity in accordance with an animal’s internal state and
changes in the external environment (Muzerelle et al.,
2016; Niederkofler et al., 2016; Ren et al., 2018). Broadly
activating serotonergic pathways affects neural activity
markers across a distributed suite of nuclei including the
SBN (Giorgi et al., 2017; Grandjean et al., 2019); however,
it remains unknown whether social experience interacts
with serotonin signaling to affect activity-dependent
measures and network-level metrics such as functional
connectivity.
We use immediate early gene (IEG) mapping to test the

hypothesis that serotonin signaling interacts with social
experience to affect patterns of cFos-immunoreactive (-ir)
neurons in the SBN of male mice following presentation of
female broadband vocalizations (BBVs). Increasing avail-
able serotonin increased the IEG response in several SBN
nodes. This effect was more prominent in socially isolated
mice regardless of drug treatment. Despite increases in
cFos-ir neurons, network analyses reveal fewer functional
relationships within the SBN of socially isolated mice.

Materials and Methods

Animal information

The Indiana University, Bloomington Institutional
Animal Care and Use Committee (protocol #15-021) ap-
proved all of the following experiments. Individual cohorts
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of male CBA/J mice (Mus musculus) from different litters
were shipped from The Jackson Laboratory and received
at 18–24d of age (Fig. 1A). Each cohort was assigned to 1
of three pharmacological treatment groups: saline (SAL;
control), fenfluramine (FEN), or pCPA (see pharmacologi-
cal details below). Upon arrival, mice were separated into
either social housing of three mice per cage or into iso-
lated housing (Fig. 1B). Mice remained in social (SOC) or
isolated (ISO) conditions on a 14/10 h light/dark cycle with
ad libitum access to food and water and weekly cage
changes for 28–30d before vocal playback (Fig. 1C,D).
ISO mice were physically separated from conspecifics;
however, all experimental animals were housed in the
same room within our vivarium. While ISO mice were po-
tentially exposed to olfactory, auditory, and/or visual stim-
uli from neighboring cages, similar conditions did not
attenuate the effects of social isolation in other studies
(Keesom et al., 2017a,b; Manouze et al., 2019).

Pharmacology

pCPA methyl ester hydrochloride (pCPA; 4-chloro-DL-
phenylalanine methyl ester hydrochloride; Tocris) was
used to deplete systemic serotonin. pCPA is a non-re-
versible inhibitor of tryptophan hydroxylase (TPH; the

rate-limiting enzyme in serotonin synthesis; Koe et al.,
1966). Over the course of 3–4 d, pCPA depletes serotonin
in brain regions including the hippocampus, striatum, and
cortex (Dailly et al., 2006). Conversely, dexfenfluramine
hydrochloride (Fenluramine; (S)-N-ethyl-a-methyl-3-(tri-
fluoromethyl) benzeneethanamine hydrochloride; Tocris),
which releases stores of vesicular serotonin and blocks
its reuptake at the synapse (Davis and Faulds, 1996;
Rothman and Baumann, 2002), was used to acutely in-
crease levels of available serotonin.
FEN and pCPA were diluted in 0.9% sterile SAL within

3 d of use. pCPA was administered at 200mg/kg in a vol-
ume of 5 ml/kg; FEN was administered at 100mg/kg in a
volume of 5 ml/kg (Hanson and Hurley, 2016). Sterile SAL
(vehicle; 10 ml/kg) was used for all control injections.
Each mouse in SOC cages received the same pharmaco-
logical treatment. Injections were administered interperi-
toneally following brief anesthetization with isoflurane,
after which mice were returned to their home cage.
Beginning 3d before playback, mice were transferred
from housing quarters to the experimental room where
they received injections at roughly 24-h intervals in the
morning. Over the course of these 3d, pCPA mice re-
ceived pCPA injections while FEN and SAL mice received
equivalent injections of sterile SAL (Fig. 1D). Following

Figure 1. Experimental design: playback paradigm and neuroanatomy. A, Male CBA/J mice arrived from The Jackson Laboratory
at 18–24d postnatal and were immediately separated into social (three per cage) or isolated (one per cage) housing (B). C, Mice re-
mained in their respective housing conditions for 28–30d. D, SAL and FEN mice received SAL injections for 3 d before playback;
mice in the pCPA group received pCPA injections on these days. E, Forty-five minutes before playback trials, mice in the SAL and
pCPA group received SAL injections, whereas FEN mice received FEN. F, Playback trials were 60min and consisted of 14–15 bursts
of five female BBVs. G–L, Representative inverse fluorescent 10� photomicrographs showing seven nodes of the SBN: LS (G),
BNST (H), mPOA (I), PVN and AH (J), VMH (K), and PAG (L). ac, anterior commissure; lv, lateral ventricle; 3v, third ventricle. Scale
bars: 1 mm (G) and 500 mm (H–L).
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injections, mice remained in the experimental room for
45min before being returned to the vivarium. This process
was designed to habituate mice to injections and being
moved between rooms to reduce non-specific cFos ex-
pression before playback trials. On the day of playback,
pCPA and SAL mice were injected with sterile SAL 45min
before trials. FEN mice received FEN injections 45min be-
fore playback (Fig. 1E). For each treatment group n = 9
except for SOC-SAL, where n = 8. Over the course of in-
jections, ISO-pCPA mice lost a significant amount of
weight (paired t(8) = 2.82, p, 0.05, mean difference
0.43 6 0.15 g), but there was no difference between the
weights of treatment groups on the day of playback
(p = 0.2).

Playback trials

Ninety minutes before playback trials, mice were re-
trieved from animal quarters and placed in a quiet room.
After 45min, the first of three animals received an injection
(as above) and was returned to its home cage (Fig. 1E).
Forty-five minutes after injection, focal mice were trans-
ferred from their home cage to an identical testing cage
(12 � 6 � 6 inches) with fresh bedding within in a sound
attenuation chamber (Coulbourn Habitest) with an ultra-
sonic speaker (Ultrasonic Dynamic Speaker Vifa, Avisoft
Bioacoustics) powered by an UltraSoundGate Player 116
(Avisoft Bioacoustics). Trials were monitored with a CCD
video camera (30 fps) placed above the test cage, with
SuperDVR software (Q-See, Digital Peripheral Solutions
Inc.) and a Q-see four channel DVR PCI video capture card.
Trials were 60min and playback consisted of 14–15 natural-
istic bursts of five female BBVs (Fig. 1F), the final number of
BBVs (70–75) represented the average number of BBVs
emitted during the study from which they were recorded. All
mice were played back the same BBV sound file; omission
of the final burst of five BBVs was counterbalanced across
groups. Following trials, spectrograms of the playback were
created in Avisoft, and the number of male-emitted ultra-
sonic vocalizations (USVs) were quantified.

Playback generation

Source BBVs were originally recorded during sociosex-
ual interactions between male and female CBA/J mice.
First, spectrograms of sociosexual interactions were gen-
erated using Avisoft SASlab Pro software; next, individual
female BBVs were located, high-pass filtered to remove
any potentially overlapping male USVs, and copied into a
new playback audio file. We assembled naturalistic bursts
of five individual BBVs and interspersed 270 s of silence
between bursts. BBVs were calibrated by matching rms
intensity of the playback (as recorded in the testing arena)
to the intensity of the originally recorded vocalizations.
The same condenser microphone (CM16/CMPA, Avisoft
Bioacoustics) with an UltraSoundGate 116Hb sound card
(250-kHz sample rate Avisoft Bioacoustics) was used to
assess the intensities of the originally recorded vocaliza-
tions and the playback.
In naturalistic social interactions, female BBVs correlate

with male-directed aggression (i.e., rejection-like

behaviors), as they also emitted during mounting, BBVs
are considered to be functionally ambiguous (Finton et al.,
2017). Our playback file consisted of BBVs that were ac-
quired during multiple interactions where mounting either
did or did not occur. Thus, any potential structural differ-
ences in BBVs emitted during different contexts (i.e.,
mounting vs rejection) would not shape the overall va-
lence of playback.

Immunohistochemistry (IHC)

Playback lasted for 60min, at which point focal animals
remained in the sound attenuation chamber for 30 addi-
tional minutes to allow for accumulation of the cFos pro-
tein (Kovacs, 2008). Ninety minutes following the onset of
playback, mice were deeply anesthetized with isoflurane
and transcardially perfused with ice-cold Krebs-Henseleit
solution (pH 7.2) followed by 50 ml of 4% paraformalde-
hyde in phosphate buffer (PFA). Brains were extracted
and postfixed overnight in PFA, transferred to 30% su-
crose in PBS (pH 7.4) for ;48 h, and cut into three series
of 50-mm sections in the coronal plane using a freezing
microtome. Sections were collected throughout the ros-
tral-to-caudal extent of the inferior colliculus (IC; approxi-
mately bregma �5.34 thru �4.36 mm) and starting at the
appearance of the median eminence (bregma �1.94 mm)
through the bifurcation of the anterior commissure (AC;
; bregma 10.38 mm). Sections were stored in cryopro-
tectant solution at �80°C until IHC. Three separate IHC
runs counterbalanced across treatment groups were
performed as follows.
Tissue was equilibrated to room temperature; free-

floating sections were first sorted in PBS, then washed for
5� 5 min in PBS, followed by a 1-h soak in blocking solu-
tion: PBS1 10% donkey serum (DS; Millipore) and 0.3%
Triton X-100 (Tx; Millipore). Sections were incubated for
18 h at room temperature in rabbit anti-cFos (F7799,
lot:105M4831V; Sigma-Aldrich) diluted 1:2000 in PBS15%
DS and 0.3% Tx (diluent). Following primary incubation,
sections were washed 4� 5 min in PBS1 0.5% DS, and
then incubated for 2 h at room temperature in Alexa
Fluor donkey anti-rabbit 680 (Life Technologies) diluted
6:1000 in diluent. Sections were washed 3� 10 min in
PBS, followed by a 30 min incubation in NeuroTrace
500/525 Green Fluorescent Nissl (NT) diluted 1:200 in
PBS. Following a final, 10-min PBS wash, sections were
mounted onto chrome alum-subbed slides and cover-
slipped with Prolong Gold Antifade reagent with 4,6-di-
amidino-2-phenylindole (DAPI; Life Technologies) and
stored at 4°C until microscopy.

Image acquisition and anatomy

All images were collected at 10� with 568-nm resolu-
tion using a Leica SP8 scanning confocal microscope.
cFos-ir neurons were visualized using a 680-nm laser line;
DAPI and NT were visualized using 405- and 490-nm
laser lines, respectively. The intensity of each laser line
was identical for all images, and tissue was scanned at 12
separate z planes spaced 2.41 mm apart. When more than
one confocal image was needed to capture the expanse
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of a nucleus (LS, mPOA, VMH, PAG) or adjacent nuclei (i.e.,
PVN and AH), images were automatically merged using
Leica Application Suite X software (Leica Microsystems). In
instances where tissue was damaged, the next available
section was used.
SBN regions were identified based on cytoarchitecture

at approximate rostral-caudal levels relative to bregma as
per the mouse brain atlas (Paxinos and Franklin, 2004).
The LS (Fig. 1G) was collected beginning at the bifurca-
tion of the AC (bregma 0.38 mm) and continued for three
consecutive sections. We captured the medial division of
the BNST starting at the level where the bifurcation of AC
begins to close (bregma 0.26 mm). BNST (Fig. 1H) was
sampled bilaterally in two consecutive sections within
boundaries established by the lateral ventricle and the
stria terminalis (lateral), the fornix (medial), and ventrally
by the AC. Sampling for mPOA (Fig. 1I) began at the clo-
sure of AC (bregma 0.14 mm) and continued for two con-
secutive sections. PVN was shot at three consecutive
sections beginning at the appearance of a triangular clus-
ter of neurons immediately adjacent to the dorsal aspect
of the third ventricle (bregma �0.70 mm). We collected
AH beginning at the second level of PVN (bregma �0.82
mm; Fig. 1J) and continued for three consecutive sec-
tions. The final level of AH overlapped with the first sec-
tion where sampling for VMH began (bregma �1.22) and
continued for two to three sections (Fig. 1K). PAG (Fig. 1L)
was collected for three consecutive sections beginning
approximately at bregma �4.24 mm.
Z stacks for laser lines 405 (DAPI), 490 (NT), and 680

(cFos-ir) were projected using the maximal intensity func-
tion in Fiji (National Institutes of Health; Schindelin et al.,
2012), and saved as .tif files before analysis. A single ob-
server blind to animal identity and treatment group per-
formed all image analyses and microscopy.

Cell counting

Regions of interest (ROIs) were drawn around the boun-
daries of SBN nodes based on cytoarchitecture (Fig. 1G–

L) and saved using the Fiji ROI manager. cFos-ir neurons
were quantified using custom macros in ImageJ as fol-
lows. First, background was subtracted from cFos images
using the rolling ball function with a radius of 50 pixels.
ROIs derived from NT images were transferred to the cor-
responding cFos channel. Using the internal clipboard
function, we created a new image containing only the se-
lected ROI. Tsai’s moments threshold was applied using
Fiji’s Auto Threshold plugin v1.17. The thresholded image
was then made binary, the watershed function was ap-
plied, and the analyze particles function was run thresh-
olding out objects with fewer than 75 pixels and a
circularity,0.15. Cell counts were normalized by multi-
plying the total number of cFos-ir neurons in each region
by 100 divided by the sum of the areas of the ROI(s) from
which they were obtained.

Statistics

Inferential statistics were performed in JMP Pro version
14 (SAS Institute Cary) with an a = 0.05, or GraphPad

Prism version 8. We used repeated measures multivariate
ANOVA (MANOVA) to test the between-subject effects of
housing (SOC vs ISO) and drug treatment (SAL vs FEN vs
pCPA) on the within-subjects measure of cFos-ir neu-
rons/100 mm2 across seven nodes of the SBN. We found
main effects of housing and drug treatment, as well as a
significant housing-by-drug interaction (see Results). We
followed MANOVA with a series of linear mixed model
analyses with housing and drug treatment as fixed effects
to test for group differences in cFos-ir neurons within
each SBN node. Our model included IHC run as a random
effect to control for potential variation introduced by sep-
arate IHC procedures. As SOC mice were housed in
groups of 3, we also included cage as a random effect to
control for potential within-cage influence on cFos ex-
pression. Post hoc differences between groups were as-
sessed via independent t tests where applicable.
Next, we performed pair-wise correlations on the num-

ber of cFos-ir neurons to test for functional relationships
between SBN nodes within each of our six treatment
groups; p values obtained from Pearson coefficients were
corrected for multiple comparisons using the two-stage
linear step-up procedure of Benjamini, Krieger, and
Yekutieli (Benjamini et al., 2006). To test for differences in
the distribution of internodal correlations between groups,
we performed principal components analysis (PCA) on
the covariation matrix derived from these data.
Network analyses were performed on within-group cor-

relations using Gephi open source network analysis and
visualization software version 0.9.2 (Bastian et al., 2009).
Functional relationships were visualized as unweighted,
undirected graphs using the ForceAtlas2 algorithm, which
spatially distributes nodes based on the overall strengths
of each node’s correlations (Bastian et al., 2009; Jacomy
et al., 2014). Graphs were subsequently filtered so that
non-significant edges (i.e., correlations p. 0.05) were ex-
cluded from visualization. The overall relatedness of any
given region is indicated not only by its shared edges, but
by its position relative to other nodes. In order to quantita-
tively describe functional relationships among groups, we
performed three separate graph analyses in Gephi. First,
we calculated network density, the number of significant
intraregional correlations as a proportion of the total num-
ber of possible correlations, for each treatment group.
This analysis, a graph-based supplement to our strength
of correlation analysis (see Results), quantifies the overall
functional connectivity of the SBN in each treatment
group. Next, for each treatment group we calculated the
average clustering coefficient as the likelihood for any pair
of a node’s functional connected neighbors to be con-
nected to each other (Watts and Strogatz, 1998; Fornito
et al., 2016). Finally, we performed community analysis
which parses nodes into highly interconnected subgroups
which is indicative of functional commonality (Fornito et
al., 2016).

Results
Repeated measures MANOVA found significant effects

of housing (F(6,36) = 4.45, p=0.002) and drug treatment
(F(12,74) = 5.71, p, 0.0001), as well as a significant
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housing-by-drug interaction (F(12,74) = 3.17, p=0.001) on
number of cFos-ir neurons/100 mm2 across seven nodes
of the SBN. Next, we performed linear mixed model analy-
ses with housing and drug treatment as fixed factors, con-
trolling for random effects of IHC run and cage. Below we
report only p values for linear mixed models; a complete
summary can be found in Table 1. Arithmetic means for
housing and drug treatments are reported in Table 2.
Results from the applicable post hoc comparisons can be
found in Extended Data Figure 2-1.
Our model detected effects of housing in the BNST

(p=0.017), mPOA (p=0.018), PVN (p=0.005), and PAG
(p=0.021). ISO mice had higher numbers of cFos-ir neu-
rons in each one of these regions (Tukey’s HSD, p� 0.02).
We found significant effects of drug treatment in LS
(p,0.0001; Fig. 2A), BNST (p, 0.0001; Fig. 2B),

mPOA (p, 0.0001; Fig. 2C), PVN (p, 0.0001; Fig. 2D),
AH (p = 0.006; Fig. 2E), and VMH (p = 0.0001; Fig. 2F).
In each region except for AH, FEN mice had signifi-
cantly more cFos-ir neurons than both SAL and pCPA
mice (Tukey’s HSD, p� 0.0007). In AH, FEN mice had
significantly more cFos-ir neurons than pCPA mice
(Tukey’s HSD, p = 0.005), and a trend toward an in-
crease relative to SAL mice (Tukey’s HSD, p = 0.054).
Interestingly, PAG was the only region where our
model did not detect a significant effect of drug treat-
ment (p.0.4; Fig. 2G). Drug effects were dependent
on housing conditions as indicated by significant inter-
action terms in LS (p = 0.018) and PVN (p = 0.003). In
LS, the interaction is driven by an increase in cFos-ir
neurons in ISO-pCPA compared with the SOC-pCPA
mice. In PVN, the interaction is driven by an almost

Table 2: Summary of group means with housing and drug treatments

Housing LS BNST mPOA PVN AH VMH PAG
Social 25.256 3.8 13.66 5.2 31.586 6.6 15.976 4.1 15.246 2.0 4.486 2.1 12.506 0.6
Isolated 26.236 2.5 17.566 5.3* 40.656 10.2* 23.396 10.4** 16.006 2.1 6.176 2.1 18.426 2.6*

Summary of arithmetic group means of cFos-ir neurons within drug treatments 6 SE
Drug treatment LS BNST mPOA PVN AH VMH PAG
SAL 22.956 1.2 10.326 1.0 27.736 0.1 12.716 1.1 14.796 1.5 3.5876 0.5 13.836 0.9
FEN 31.366 0.9** 26.06 2.1*** 52.596 8.1*** 34.26 10.0*** 19.066 1.0* 9.4586 0.9*** 15.26 2.0
pCPA 22.96 3.6 10.426 2.9 28.026 5.4 12.136 1.0 13.026 1.6 2.9336 1.2 17.356 6.0

Values expressed as arithmetic mean 6 SEM. Statistically significant differences group means indicated with asterisks: *p , 0.05, **p , 0.01, ***p , 0.001; p val-
ues corrected for multiple comparisons (Benjamini et al., 2006). Complete post hoc comparisons can be found in Extended Data Figure 2-1.

Table 1: Summary of mixed linear models

Source DF F p Variance component Estimate SE 95% lower 95% upper p

LS
Housing 1, 22.8 0.28 0.60 Cage number �4.18 4.95 �13.89 5.53 0.40
Drug 2, 22.8 15.98 ,0.0001*** IHC run 7.83 9.45 �10.70 26.36 0.41
Housing � drug 2, 22.8 4.84 0.02* Residual 33.51 8.33 21.73 58.40

BNST
Housing 1, 14.5 7.23 0.02* Cage number 3.15 6.84 �10.25 16.55 0.65
Drug 2, 14.5 52.63 ,0.0001*** IHC run 2.80 4.31 �5.64 11.24 0.52
Housing � drug 2, 14.5 0.49 0.62 Residual 20.98 6.70 12.23 44.13

mPOA
Housing 1, 20.5 6.67 0.02* Cage number 57.24 24.33 9.56 104.93 0.02*
Drug 2, 20.5 25.34 ,0.0001*** IHC run 34.86 40.78 �45.08 114.80 0.39
Housing � drug 2, 20.5 1.96 0.17 Residual 28.66 10.54 15.59 69.15

PVN
Housing 1, 19.1 10.12 0.005** Cage number 21.13 12.54 �3.44 45.70 0.09
Drug 2, 19.1 40.99 ,0.0001*** IHC run 13.95 17.01 �19.39 47.29 0.41
Housing � drug 2, 19.1 8.25 0.003** Residual 25.61 8.42 14.71 55.33

AH
Housing 1, 21.2 0.18 0.67 Cage number 0.11 4.80 �9.29 9.51 0.98
Drug 2, 21.2 6.60 0.001** IHC run 4.92 6.33 �7.48 17.32 0.44
Housing � drug 2, 21.2 1.91 0.17 Residual 24.55 6.49 15.53 44.58

VMH
Housing 1, 21.5 2.52 0.13 Cage number 7.18 2.50 2.28 12.08 0.004**
Drug 2, 21.5 14.47 ,0.0001*** IHC run 0.49 1.01 �1.48 2.46 0.63
Housing � drug 2, 21.5 0.06 0.94 Residual 1.48 0.56 0.79 3.68

PAG
Housing 1, 22.5 6.11 0.02* Cage number 32.71 11.90 9.39 56.04 0.01**
Drug 2, 22.5 0.91 0.42 IHC run 5.48 8.02 �10.24 21.21 0.49
Housing � drug 2, 22.5 1.45 0.26 Residual 10.71 3.87 5.88 25.36

Statistically significant main effects and interactions indicated with asterisks: *p,0.05, **p, 0.01, ***p, 0.001.
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Figure 2. Summary linear mixed model analysis of cFos-ir within nodes of the SBN. A–G, All data are represented as arithmetic
mean 6 SEM between socially housed mice (green) and socially isolated mice (magenta). Asterisks represent main effects of drug
treatment, **p, 0.001, ***p, 0.0001. Letters indicate post hoc differences (independent t test, p values corrected for multiple com-
parisons) in the case of housing by drug interaction. H, I, Representative photomicrographs in mPOA (H) and PVN (I) showing the ef-
fects of FEN on cFos-ir in socially reared (H1/I1) or socially isolated (H2/I2) mice. NT, blue; cFos-ir, magenta. Scale bar: 250 mm.
Please see Extended Data Figure 2-1 for a complete summary of post hoc analyses for linear mixed models performed within each
SBN region.
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twofold increase in cFos-ir neurons in ISO-FEN com-
pared with SOC-FEN mice.
We found a main effect of housing (F(1,47) = 5.97,

p=0.02) and a significant housing-by-drug interaction
(F(2,47) = 6.03, p=0.005; data not shown) on the number of
USVs emitted by focal males during playback. The inter-
action was driven by a significant increase in USV produc-
tion in ISO-SAL compared with SOC-SAL mice (Tukey’s
HSD, p=0.004). There were no differences in USV pro-
duction between SOC and ISO males in either the FEN
or pCPA groups (p.0.8). Interestingly, there were no

relationship between USV production and cFos-ir within
the SBN of any treatment group.
As the SBN comprises a reciprocally connected ana-

tomic network (Hahn et al., 2019), we tested whether cor-
relations of neural activity markers between nodes (i.e.,
functional connectivity) varied between treatment groups.
Figure 3 summarizes these data as heatmap matrices
based on the Pearson r values of each pairwise correla-
tion. A detailed summary of pairwise correlations of cFos-
ir neurons between SBN nodes within each of our six
treatment groups can be found in Extended Data Figure

Figure 3. Correlated patterns of cFos-ir are dependent on social experience. A–F, Heatmap matrices represent pairwise correlations
between cFos-ir neurons with SBN nodes (boxes); colors indicate Pearson correlation coefficients. White boxes are self-correlations
(r=1); data are mirrored above and below the diagonal. G, Comparison between the absolute value of Pearson correlation coeffi-
cients between groups. Data are represented as mean 6 SEM; letters indicate post hoc differences (independent t test, p values
corrected for multiple comparisons). H, Results of PCA on covariation matrix derived from A–F. I, Distribution of PC1 scores be-
tween groups; data are represented as mean 6 SEM. Please see Extended Data Figure 3-1 for a complete summary of pairwise
correlation statistics.
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3-1. Cursory analysis of the heatmaps suggested that
SOC-FEN (Fig. 3B) and SOC-pCPA (Fig. 3C) had more rel-
atively strong correlations (i.e., more functional connectiv-
ity) than all other treatment groups. To test this, we used
two-way ANOVAs on the absolute value of Pearson r
scores of each treatment group (Tanimizu et al., 2017).
We found a main effect of housing (F(1,120) = 6.33,
p=0.013; Fig. 3G), where SOC mice had larger Pearson r
values than ISO mice (Tukey’s HSD, p=0.013). Drug
treatment (F(2,120) = 2.68, p=0.07) and housing-by-drug
interaction (F(2,120) = 2.45, p=0.09) approached but did
not reach statistical significance.
While we did not find a statistically significant effect of

drug treatment on the strength of internode correlations, we
hypothesized that pharmacologically increasing or systemi-
cally depleting available serotonin would differentially affect
the distribution of functional relationships. We thus per-
formed PCA on the covariation matrix generated by cFos-ir
counts. PC1 had an eigenvector of 543.53, which ac-
counted for over 76% of the variation and contained eigen-
values most strongly loaded by mPOA (0.682) and PVN
(0.553; Fig. 3H). We analyzed PC1 scores between groups
via two-way ANOVA and found main effects of housing
(F(1,41) = 14.11, p,0.001) and drug treatment (F(2,41) =
39.28, p, 0.0001; Fig. 3I), but no significant interaction
(F(2,41) = 2.43, p = 0.10). FEN mice had divergent and
significantly different (Tukey’s HSD, p,0.0001) PC1
scores from both SAL and FEN mice; Thus, despite hav-
ing similar overall Pearson r values, the distribution of
correlations among SBN nodes was different between
drug treatment groups.
We visualized the distributions of correlations using the

ForceAtlas2 algorithm in Gephi, and filtered the resulting
graphs to exclude non-significant edges (i.e., correlations
p. 0.05) from visualization (Bastian et al., 2009; Jacomy
et al., 2014). There were visible differences between
groups in functional network structure: ISO mice have
fewer significant functional relationships than SOC mice,
which is indicated by relatively few connections between
nodes (Fig. 4A–F). For example, cFos-ir neurons in the
PVN of ISO-FEN mice is significantly correlated with AH;
thus, PVN shares an edge with only AH (Fig. 4E).
Conversely, in SOC-FEN mice the number of cFos-ir neu-
rons in the PVN is significantly correlated with LS, BNST,
mPOA, AH, and PAG; thus, PVN shares edges with each
of these regions (Fig. 4B). Further, the strength of func-
tional relationships is indicated by the closeness of nodes
in space. In SOC-pCPA mice, the significant correlation
between cFos-ir in mPOA and BNST is indicated not only
by a shared edge, but their relative adjacency (closeness)
in space (Fig. 4C). In ISO-pCPA mice, there was a rela-
tively weak, non-significant correlation between cFos-ir in
mPOA and BNST which is reflected by a relatively large
distance between these nodes in space (Fig. 4F).
We quantifiably described the network organization of

the above graphs by performing three separate graph
analyses. First, we quantified the number of significant
functional relationships as a proportion of total possible
functional relationships (i.e., functional density; Fornito et
al., 2016). In each of the three SOC treatment groups,

there was an over twofold increase in functional density
compared with their ISO counterparts (Fig. 4G). While in-
creased density indicates that there is more functional
connectivity between regions in SOC mice, this metric
tells us little about the nature of these correlations
(Bullmore and Sporns, 2009). Importantly, do correlated
nodes go on to form (1) additional functional relationships,
and/or (2) larger functional modules?
Next, we calculated the clustering coefficient, the aver-

age number of connected pairs of a node’s connected
neighbors of each treatment group. SOC mice had higher
clustering coefficients than ISO mice in each treatment
group (Fig. 4H). Indeed, regardless of drug treatment, ISO
mice had a clustering coefficient of zero; thus, even when
ISO mice have significant correlations between nodes,
those regions do not in-turn form additional connections
with each other. Our final graph analysis assessed modu-
larity/community structure in SOC and ISO mice. In com-
munity structure analysis, the smallest number of
communities that can be formed is one, indicating a com-
pletely connected group; the maximum number of com-
munities is equal to the number of nodes contained in the
analysis, and indicates complete functional segregation.
We found that ISO mice formed more communities than
their socially reared counterparts in each of the drug treat-
ment groups (Fig. 4I). Together, our results support that
functional networks are more disconnected in ISO mice.

Discussion
Individual experience establishes the backdrop on

which current events are interpreted. Early-life social iso-
lation can profoundly affect an animal’s behavioral pheno-
type (Mumtaz et al., 2018), and likely affects how social
signals (e.g., vocalizations) are represented in the brain;
however, the effects of social isolation on the neural re-
sponse to rodent vocalizations are relatively unexplored.
We tested whether social experience interacts with sero-
tonin signaling to affect IEG expression in the male SBN
following playback of female BBVs. FEN robustly in-
creased the number of cFos-ir neurons across all nodes
of the SBN except PAG. Housing treatment also af-
fected IEG induction: ISO mice had more cFos-ir neurons in
several nodes of the SBN than SOCmice. Despite a general-
ized increase in cFos-ir, ISO mice had lower functional con-
nectivity among regions than SOC mice. Indeed, functional
density, clustering, and community structure remained rela-
tively low in ISO mice despite pharmacological changes in
available serotonin. Importantly, drug treatment had little ef-
fect on graph analyses in ISO mice and facilitated network
measures in SOCmice.

Social experience interacts with serotonin signaling to

affect neural responses in the SBN

IEG mapping has established that early-life stressors
alter neural activity markers at the level of individual
SBN nodes. Chronic social subjugation decreased cFos
expression in the LS, PVN, and PAG following open-
arm exposure in male mice (Singewald et al., 2009). In
rats, postweaning social isolation increased both ag-
gression and cFos-ir neurons in the BNST and PVN (but
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not LS or PAG) following a resident-intruder paradigm
(Toth et al., 2012). Despite structural interconnected-
ness, we found that changes in the cFos response in
the SBN of ISO mice was not global: BNST, mPOA,
PVN, VMH, and PAG had increased cFos-ir neurons,
whereas LS and AH did not. Interestingly, the direction
(i.e., an increase) of the cFos response was similar in
each region affected in ISO mice.

The effects of housing on cFos-ir neurons were modu-
lated by drug treatment. Similar to previous studies (Li
and Rowland, 1993), we found that FEN increased cFos-ir
neurons in all nodes of the SBN except for PAG. However,
the effects of FEN were not homogenous across housing
treatments: cFos-ir neurons were increased to a greater
extent in the PVN and mPOA of ISO-FEN compared with
SOC-FEN mice (Fig. 3C,D). Conversely, we found no

Figure 4. Correlated patterns of activity form different functional networks between treatment groups. A–F, Individual nodes are rep-
resented as green (SOC) or magenta (ISO) circles. The spatial distribution of nodes is determined by their individual strengths of cor-
relation (Jacomy et al., 2014). Lines (edges) connecting nodes are indicative of statistically significant Pearson r values (p, 0.05);
non-significant edges (p.0.05) are excluded from graphs. G–I, Network measures vary between SOC and ISO mice. G, SOC mice
(green) have denser functional networks than ISO mice (magenta). H, SOC mice have higher clustering coefficients than ISO mice,
whose clustering coefficient is zero in each drug treatment group. I, SOC mice formed fewer thus more densely populated function-
al communities than ISO mice.
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difference in cFos-ir in the PVN of pCPA mice regardless
of social experience, an observation consistent with previ-
ous studies in rats (Harbuz et al., 1993; Conde et al.,
1998). Serotonin affects neural activity through a combi-
nation of excitatory and inhibitory serotonin receptor (5-
HTR) subtypes (Barnes and Sharp, 1999), and 5-HTR
expression patterns are sensitive to social isolation
(Schiller et al., 2003; Bibancos et al., 2007); thus, the net
effect of serotonergic manipulations is likely driven by
complex excitatory and inhibitory interactions within and
between each node of the SBN. Importantly, the increase
in cFos-ir neurons was not observed exclusively in ISO-
FEN mice: ISO-pCPA mice had more cFos-ir neurons in
LS, BNST, mPOA, and PAG than SOC-pCPA mice.
Together, we found heterogenous effects of both phar-

macology and housing conditions on the number of cFos-
ir neurons within nodes of the SBN. An a priori assumption
is that the SBN is a structurally interconnected network
within which the patterns of functional connectivity are in-
dicative of behavioral context (Newman, 1999; Goodson,
2005; Goodson and Kabelik, 2009). We therefore tested
whether functional network measures differed within the
SBN of SOC or ISO mice.

Social experience affects functional connectivity in

the SBN

The term functional connectivity, defined as “statistical
dependencies among remote neurophysiological events”
(Friston, 2011), has been used extensively in human fMRI
studies to describe activity patterns in resting and patho-
logic states. This statistical phenomenon appears to be a
crucial component to adaptive social processes across
multiple species, including humans (Lynall et al., 2010).
IEG mapping in non-traditional vertebrate model systems
demonstrates functional connectivity between neuro-
modulatory systems/circuits (including the SBN) during
vocal-acoustic processing in fishes (Petersen et al., 2013;
Ghahramani et al., 2018) and frogs (Hoke et al., 2005), as
well as prosocial and aggressive behavior in fishes
(Weitekamp and Hofmann, 2017; Butler et al., 2018) and
lizards (Kabelik et al., 2018). In male prairie voles (Microtus
ochrogaster), oxytocin receptor antagonists reduce func-
tional connectivity within the SBN and attenuate partner
preference behavior (Johnson et al., 2016). In mice,
Tanimizu et al. (2017) demonstrated that functional con-
nectivity between memory-associated regions (including
nodes of the SBN) was increased following a social learn-
ing task. Finally, different clusters of functional relation-
ships in the SBN are observed in subordinate mice who
maintain their beta status compared with those who as-
cend through the social hierarchy (Williamson et al., 2019).
We found that functional connectivity was decreased in

ISO relative to SOC mice following playback of female
BBVs. Importantly, these results were not because of a
global increase in IEG induction as ISO mice tended to
have more cFos-ir neurons than SOC mice. That function-
al connectivity is disrupted in the SBN of ISO mice repre-
sents an important foundation from which to develop
models of how variation in functional network architecture
relates to variation in aberrant behavioral (Keesom et al.,

2017b; Manouze et al., 2019) and neural phenotypes
(Keesom et al., 2017a, 2018) following early-life social
stress.
We further analyzed patterns of functional connectivity

by PCA and found that FEN mice had positive average
PC1 scores, whereas SAL and pCPA mice had negative
values (Fig. 4I). Thus, variation in the distribution of func-
tional relationships differs following acutely increasing (i.e.,
with FEN) or systemically depleting (i.e., with pCPA) sero-
tonin. Interestingly, the general direction of these relation-
ships was consistent within drug treatment regardless of
housing conditions. Therefore, while overall functional con-
nectivity may be preferentially modulated by social experi-
ence, serotonin signaling drives variation in the nodes that
are functionally coupled. However, the extent to which the
effects of social experience and serotonin signaling are in-
dependent of each other remains unknown.

Individual nodes disproportionately affect functional

connectivity

PCA revealed that individual nodes disproportionately
affect variation in functional connectivity. We found that
eigenvectors within PC1 were most heavily loaded by
mPOA and PVN. As mPOA and PVN underlie different
functions, they may also drive variation in circuit-level
metrics in different manners. mPOA has increased IEG in-
duction following playback of social vocalizations in frogs
and songbirds (Hoke et al., 2005; Maney et al., 2008). In
mice, mPOA is a crucial site for affective-olfactory inte-
gration (Dhungel et al., 2011; McHenry et al., 2017), and
activity in mPOA coincides with sociosexual investigation
and facilitates mounting behavior (Wei et al., 2018). As the
behavioral response to vocal signals (i.e., BBVs) is modu-
lated by olfactory stimuli (Grimsley et al., 2013; Seagraves
et al., 2016; Ronald et al., 2020), mPOA is in a functional
anatomic position to integrate multisensory stimuli and ef-
fect circuit-level responses to vocal signals (Kohl et al.,
2018). However, to our knowledge no studies have di-
rectly investigated mPOA involvement in rodent vocal
processing.
We found that the number of cFos-ir neurons in the

PVN is not only increased in ISO mice, but contributes a
significant amount of variation to functional relationships
within the SBN. Within the PVN, dysregulation of cortico-
tropin-releasing factor (CRF) neurons which modulate the
hypothalamic-pituitary-adrenal axis contributes to cardio-
vascular disease and impaired immune function in animal
models of chronic social isolation as well as in persons
with early-life social trauma (Heim and Nemeroff, 2001;
McEwen, 2003; Cacioppo et al., 2015). Further, chemi-
cally heterogeneous PVN neurons underly different suites
of behaviors: activating CRF neurons in PVN drives condi-
tioned place aversion (Kim et al., 2019), whereas activat-
ing oxytocin neurons drives pup retrieval behavior in
response to USVs (Marlin et al., 2015). Elucidating the
chemical phenotypes and projection profiles of isolation-
sensitive neurons in the PVN (and SBN in general) will be
crucial to understanding the mechanisms through which
different nodes affect functional relationships within the
SBN.
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Network measures are lower in ISO relative to SOC

mice

Variation in functional relationships includes reduced
functional connectivity in ISO mice. Further, we found de-
creased network density and clustering in ISO mice,
which is consistent with observations that similar reduc-
tions are observed in persons with schizophrenia (Lynall
et al., 2010) and depression (Wise et al., 2017). Similarly,
functional dysconnectivity within the SBN may provide a
partial mechanism for decreased social competence ob-
served in mice raised in social isolation (Keesom et al.,
2017b). Investigating the mechanisms that drive variation
in functional dysconnectivity will contribute to a better
understanding of the diverse array of physiological and
behavioral consequences observed in animals following
social isolation and other early-life stressors (Heim and
Nemeroff, 2001; Mumtaz et al., 2018). As neither FEN nor
pCPA were sufficient to facilitate an increase in network
measures in ISO mice, it is critically important to consider
variation in an individual’s contextual state (i.e., social his-
tory, physiological condition, pathologic severity, etc.)
when designing experiments and interpreting the results
of psychoactive reagents on animal or human subjects
(Bartz et al., 2011).

Technical considerations

This study does not directly compare the cFos re-
sponse in the SBN following playback of BBVs to a non-
social acoustic stimulus (i.e., pure tones) or a silent condi-
tion. Playback of social vocalizations is sufficient to increase
the cFos expression relative to tones in in the PAG of rats
(Ouda et al., 2016), and relative to ambient environmental
noise in multiple SBN nodes in the midshipman fish
(Porichthys notatus; Petersen et al., 2013; Ghahramani et
al., 2018). However, a lack of playback in the current study
would not necessarily be a behaviorally neutral condition,
given that silence could have a very different significance for
socially housed versus isolated males. Likewise, mouse
vocal signals encompass a wide range of frequencies and
nonlinear structures (Holy and Guo, 2005; Grimsley et al.,
2013; Lupanova and Egorova, 2015; Finton et al., 2017;
Niemczura et al., 2020) and some commonly used ‘control’
sounds can evoke behavioral responses similar to call play-
back (K. Hood and L. Hurley, unpublished observations). In
comparison to silence or other non-vocal sounds, playback
of BBVs is a condition with a behavioral salience that is rela-
tively well-understood. BBVs correspond to fewer male
mounts of females in observational studies (Finton et al.,
2017). Playback of BBVs alters the number of USVs as well
as the numbers of males making USVs (Niemczura et al.,
2020; Ronald et al., 2020). BBVs are therefore suppressive
to some types of social behaviors, creating a defined behav-
ioral context in the current study. However, we are unable to
determine whether the observed cFos response in the SBN
of SOC and ISO mice is selective for social vocalizations
(Maney et al., 2006, 2008), whether functional connectivity is
an emergent response to socially salient stimuli (Hoke et al.,
2005; Ghahramani et al., 2018), or as a potential confound
from a novel testing environment (VanElzakker et al., 2008)
or as a direct result of social isolation in SOC animals

(Matthews et al., 2016). Further studies are needed to di-
rectly test how the SBN responds to social vocalizations,
and to probe the consequences of variation in functional
connectivity in the production of murine social behaviors.
IEG mapping is limited in that there is no direct relation-

ship with the production of action potentials and the pres-
ence of IEG products (including cFos; Clayton, 2000;
Kovacs, 2008). Despite its wide use as a proxy for neural
activation, the cFos protein is a transcription factor; one
interpretation of our data is that instead of an increase in
neural activity per se, we are observing an increased po-
tential for neuroplasticity in ISO mice. Further, using cFos-ir
as a putative marker for neural activity limits our temporal re-
solution to the entire 60-min trial. It is therefore impossible to
make causal or directional statements pertaining to func-
tional connectivity. We make no assumption that functional
relationships imply structural connectivity, or vice versa. For
example, a subset of mPOA neurons monosynaptically pro-
ject to PVN (Kohl et al., 2018); however, the particular neu-
rons that connect mPOA and PVN might not be similarly
engaged in our paradigm.
Importantly, because the presence of cFos-ir is an indi-

cator of past neural activity, it may be robust to action po-
tentials that otherwise habituate over the course of a
repeated stimulus i.e., auditory playback. For example,
whereas neurons in the IC decrease spike rate following re-
peated presentation of auditory stimuli (Pérez-González et
al., 2005), cFos-ir neurons are detectable in the IC following
90 min playbacks of pure-tone stimuli (D’Alessandro and
Harrison, 2014). Further, repeated presentation of ultrasonic
distress calls increases cFos-ir within auditory and limbic
structures in the rat (Ouda et al., 2016). We find it unlikely
that the potential for SBN neurons to adapt to repeated
playback of BBVs influenced our results. cFos takes
;30min to reach detectable changes in expression,
and the half-life of the cFos protein is ;45min (Kovacs,
2008). The mice used in this study were at least 180min
removed from being transferred to the lab and 135min
removed from injections; we would expect cFos induc-
tion brought on by these aspects of our experimental
design to be negligible.
Systemic pharmacological manipulations likely drive

“off-target” effects such that activity markers are influ-
enced not only by serotonin signaling within the SBN, but
via direct or polysynaptic modulation of inputs into the
SBN. Extrinsic to the SBN, depleting systemic serotonin
reduces synaptic densities in the cortex of rats (Chen et
al., 1994) and changes glutamate receptor distribution in
the amygdala (Tran et al., 2013). Interestingly, functional
connectivity/density, clustering, and community structure
remain relatively high in SOC-FEN and SOC-pCPA mice
despite potential off-target pharmacological and physio-
logical effects (Otchy et al., 2015) resulting from chroni-
cally depleting or acutely increasing available serotonin.
Manipulating site-specific serotonergic inputs into the
SBN will be crucial to untangling the effects of individual
nodes on network-level functionality (Ren et al., 2018).
Importantly, network measures were also increased in
SOC-SAL relative to ISO-SAL mice, suggesting the im-
portance of social experience in the ability to form func-
tional relationships in the SBN.
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In conclusion, FEN and social isolation each broadly
increased cFos-ir within individual nodes of the SBN fol-
lowing payback of social vocalizations. Importantly, by
extending our analyses from individual nodes to the net-
work level, we found that functional connectivity, cluster-
ing, and community structure within the SBN was highly
dependent on social experience, whereas patterns of
functional connectivity (i.e., which nodes formed function-
al relationships) were driven more by pharmacological
manipulations. Our findings suggest the hypothesis that
functional dysconnectivity may underlie psychopathologi-
cal phenotypes that arise from social isolation and reinfor-
ces the importance to move beyond functional analyses
limited to individual nodes. We highlight the importance of
how laboratory housing conditions (SOC vs ISO) can af-
fect functional neuroanatomical processes in rodents.
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