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Social Foraging Theory for Robust
Multiagent System Design

Burton W. Andrews, Kevin M. Passino, and Thomas A. Waite

Abstract—An analogy between an agent (e.g., an autonomous vehicle)
and a biological forager is extended to a social environment by viewing
a communication network as implementing interagent sociality. We first
describe engineering design within an evolutionary game-theoretic frame-
work. We then explain why sociality may emerge in some environments
and for some agent objectives. Next, we derive the evolutionarily stable de-
sign strategy for an agent manufacturer: 1) choosing whether the agent it
produces should cooperate with other agents in a search problem and 2)
choosing the group size of a multiagent system tasked with a cooperative
search problem. We show the impact of ‘“agent relatedness,” a measure of
common descent between two agents based on their underlying manufac-
turers, on the choices in scenarios 1) and 2). Our predictions are evaluated
in an autonomous vehicle simulation testbed. The results illustrate a new
methodology for manufacturers to make robust, optimal choices for multi-
agent system design for a given set of objectives and domain of operation.

Note to Practitioners—The design of autonomous multirobot systems
with various applications, such as in parts production or search and de-
stroy operations in a military environment, is of growing importance. Here,
we integrate economic and technical issues into an unified engineering
design framework for the manufacturers of robots. Our approach leads to
manufacturer design decisions that are robust relative to the market for a
manufacturer’s products. Robot component aspects, such as sensors and
communications as well as mission performance aspects, can be captured
and coupled into the design process. We use the design of intervehicle
cooperation and robot group size to illustrate this approach. The practical
significance lies in the fact that we take a broad perspective on engineering
design, one closer to the real world, due to the considerations of market-
place economics. Moreover, the approach provides a framework to study
design choices that escape systematic analysis in other frameworks (e.g.,
group size).

Index Terms—Agent, autonomous vehicle, cooperative control, design,

evolution, evolutionarily stable strategy (ESS), foraging theory, group size,
manufacturer, multiagent, social.

I. INTRODUCTION

There is a considerable current interest in “cooperative control” for
multiagent systems. One area is cooperative robotics where, for in-
stance, cooperative task allocation is studied [2]-[4]. This work, how-
ever, focuses on the design of an agent’s decision-making strategy,
emphasizing 1) reaction to different situations in its domain of op-
eration and 2) the design of strategies that perform well while oper-
ating in real time. Rather than study the design of similar strategies, we
assume such a strategy is in place and examine the cooperative/non-
cooperative and group size design choices for the manufacturer. We
integrate economics into engineering design to make high-level, mis-
sion-planning-type choices (e.g., team composition), not decisions that
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are made in real time. We know of no work that analytically approaches,
at the level of manufacturer design, search design choices for multi-
agent systems.

The specific multiagent control problem we consider is that of coop-
erative search. For instance, autonomous vehicles may need to perform
a search and rescue operation or search for targets in a military opera-
tion. Robots on a manufacturing floor may need to search for tasks or
buffers to process, or in a distributed dynamical system (e.g., a temper-
ature grid), a group of software controllers or agents may need to search
for and eliminate regions of error [5]. In each case, the agents must co-
operate to achieve their goal. As discussed before, our objective is to
go beyond the existing cooperative control theory, which primarily ad-
dresses real-time control decisions of the agents, and study high-level
design decisions, such as group size. Given the limitations of existing
cooperative control theory and that the models required for the applica-
tion of classical control methods from engineering to such a multiagent
control problem would be extremely complex (and to our knowledge,
none has addressed or solved this problem), a natural approach is to
use foraging theory, which models similar problems in nature.

Foraging theory is used in the field of behavioral ecology to model
animal decision making [6]-[8]. Evolutionary considerations often
lead to optimization models of adaptive behavior, which is behavior
shaped by natural selection. Foraging models predict animal behavior
such as whether an animal should attack certain types of prey or how
many animals should join a group under given circumstances. The
applicability of foraging theory to a search problem in engineering is
clear. In engineering, a decision-making agent, such as an autonomous
vehicle or software module, can be viewed as a forager in a domain
of operation as discussed in [1] and [9]. Foraging theory can then be
used to determine an agent’s optimal control strategy in a particular
situation. While a solitary agent is the focus of [1] and [9], and a
recent application of solitary foraging theory to robotics was studied
in [10], we use social foraging theory to study manufacturer design
decisions for multiple cooperative autonomous robots. Our approach is
to extend the work in [11] to address the cooperative search problem.
We incorporate vehicle cost and quantify sensing accuracy in terms of
communication network and collaborative signal processing capabili-
ties. Using evolutionary game theory, we predict evolutionarily stable
design strategies for a manufacturer designing a group of agents or a
single agent that may cooperate with other agents in the environment.
Our overall approach rests on viewing design as an evolutionary
process as we will discuss next.

A. Engineering as Evolutionary “Design”

Engineering designs are evaluated and purchased by consumers. De-
signs that have a great impact or generate huge profits for manufac-
turers will thrive in the marketplace, while less successful designs are
likely to be discarded. Other manufacturers are likely to adopt designs
similar to those that are successful. As new designs are put on the
market, the process is repeated. This is an evolutionary process, where
fitness corresponds to profitability. Designs that perform well within
the fluctuating, unpredictable market tend to persist.

Here, we describe the evolutionary analogy in more detail with re-
spect to multiagent systems. Our focus is on the evolution of aspects
of an agent controller that determine cooperation and group size in a
particular environment. The manufacturing system that produces the
physical components of an agent (i.e., chips, parts, and algorithms) can
be thought of as the agent’s genetic makeup and is a direct byproduct
of the manufacturers’ design choices. In this sense, the manufacturers’
design process and the apparatus responsible for producing the phys-
ical realization of the design can both be considered as the agent’s ge-
netic makeup and are both subject to change via natural selection. The
genetic makeup determines the agent’s “phenotype,” which includes

everything from the physical components that comprise the resulting
agent to how the agent maneuvers and interacts with other agents. The
“lifetime” of an agent can be thought of as a single mission, an opera-
tion in which the agent strives to achieve some goal. Evolution occurs
over the repetition of missions assuming an agent’s existence ends with
its mission.

Different components of an agent may be developed by different
manufacturers, and if there exists a common manufacturer between
two separate agents, the two agents are said to be similar. For instance,
target sensors on two separate autonomous vehicles may be developed
by the same manufacturer while all other parts of the vehicles are de-
signed by different manufacturers. In other cases, two agents may have
many different manufacturers in common. The degree to which this
agent similarity exists is described by a coefficient of relatedness r, cal-
culated as the percentage of an agent’s manufacturers held in common
with another agent. This definition departs from the biological defini-
tion of r used in Hamilton’s rule [12], which quantifies r as the proba-
bility that two individuals carry the same allele from common descent.
(A recent departure in biology from the classic coefficient quantifies re-
lationships between individuals based on familiarity [13]). Relatedness
is important because of its potential influence on the design of agents.
For instance, an agent might be designed to assist a related agent. This
will increase the fitness of the “relative” who has a similar genetic
makeup as the original agent, thus increasing the probability that the
agent’s components are passed on to future generations. That is, such
cooperation results in mission success and the ultimate production and
sale of more of this product by the manufacturer.

An agent’s success is determined by some currency related to the
achievement of the mission’s goal. One simple currency is a point
system. A more successful agent acquires more points. If cooperation
emerges and agents form a group, then the points acquired by the group
are distributed among the group members. Groups may be formed for
many reasons and, hence, points may be distributed among members of
a group in many ways. Once an agent obtains some number of points,
there is a further division of these points between the components of
the agent and, hence, the manufacturers of these components, in the
form of profits.

Since the goal of the manufacturer is to make money, the compo-
nents of a successful agent are expected to persist in future missions.
However, the creation of exact replicas in future generations is impos-
sible due to imperfections in components or the manufacturing process
(i.e., there are mutations). Also, the manufacturers may, in their de-
sign process, “explore” combinations of successful aspects of designs
to try and enhance profits (analogous to sexual recombination). This
could come via mergers between manufacturing companies, or via a
manufacturer merging its subcontractors that make components of the
design. While these mutations and combinations result in design vari-
ations that may often lead to the degradation of mission performance
or even failure, sometimes they may increase successfulness. As mis-
sions are repeated, the selection will lead to increasingly robust designs
that succeed in a “typical” environment. It is possible to analyze the ro-
bustness of engineering designs using game theory and the concept of
an evolutionarily stable strategy (ESS) [14] and we will do so here (a
loosely related general characterization of robustness of engineering
designs appears in [15]).

B. Summary and Contributions

We approach the group-size aspect of the cooperative search
problem by considering two design problems: 1) the design of a single
agent’s strategy of whether to cooperate with an already existing
group of arbitrary size and 2) the design of an entire group of coop-
erative agents of a particular size. We use the ESS concept to predict
manufacturer-designed strategies that are evolutionarily stable. An
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evolutionarily stable design strategy is robust to changes or mutations
in the strategies employed by other manufacturers in the environment
in the sense that a population of manufacturers using the ESS in the
design game cannot be invaded by another manufacturer strategy.
Effects of agent relatedness as well as model parameter variations are
considered. For each design scenario, an equilibrium group size is
predicted by noting group size tendencies when manufacturers use the
ESS for the design of agents in specific environmental situations.

One of the primary contributions of our work is to bridge fields (be-
havioral ecology, economics, and engineering) to provide a new per-
spective and methodology for approaching engineering design prob-
lems for multiagent systems. To do so, we extend foraging theory [11]
to fit the cooperative search problem under consideration. We define
P, (@) as the probability of mission success for a group of G vehicles,
s indicating success, and use this probability as the cost function for
vehicular cooperative search. The use of P, (G) embeds concepts from
risk-sensitive foraging theory [1], [16], [17] by using the variance in
the discovery of objects to make design decisions. Decisions that ex-
ploit high variance options (linked to smaller group sizes) are said to
be “risk prone,” and those that exploit low variance options (linked to
larger group sizes) are said to be “risk averse.” We include vehicle costs
(not done for animals in [11]), and we incorporate the group searching
advantage concept into the vehicular problem by denoting such an ad-
vantage for G vehicles as K (G) and defining it via the dependence
of sensing accuracy on a communication network, collaborative signal
processing, and their limitations. Other contributions include expan-
sions of the original analysis in [11] to predict group size equilibriums
based on the use of evolutionarily stable strategies as opposed to solely
Nash equilibrium strategies. This is done by formulating the design
games explicitly and allows us to specify mixed ESS cases where ex-
pected group sizes may be noninteger values (which may be common,
especially for small ). This last set of contributions is likely to be
useful for behavioral ecologists.

Our predictions are evaluated in a multiautonomous vehicle simula-
tion. As expected, the vehicular case does not perfectly fit the theory
due to the existence of a finite number of objects and a finite domain
within which perfect search coverage is impossible for a moving ve-
hicle. However, the simulation provides a useful demonstration of the
applicability of the theory to vehicular, cooperative search problems. In
particular, we see important properties of mission success for a group of
vehicles that are consistent with those of the model used in our theory.
As a consequence, the theory is able to predict robust design strategies
that translate to increased profits for manufacturers.

II. COOPERATION AND GROUP SIZE

Social foraging theory considers the benefits individuals accrue
by foraging socially. Using concepts from social foraging theory, we
present a cooperative search model and use game theory to analyze
agent manufacturer design strategies under two scenarios. First, a
manufacturer must decide whether to design an individual agent to
cooperate with an already-existing group. We examine the evolu-
tionary stability of each strategy and discuss how this game theoretic
analysis is a means by which the manufacturer can determine, before
manufacturing and deployment, strategies that are robust for a given
situation in the sense that they will survive in the market amid design
strategy mutations. This, in turn, provides insight into group size
tendencies in the environment. The second scenario addresses the
issue of group design. We suppose the manufacturer now must decide
how many agents are needed in a multiagent system. Once again, this
is a design decision by the manufacturer prior to deployment of the
group, and the game theoretic analysis allows for the determination
of evolutionarily stable design strategies. Provided that manufacturers
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Fig. 1. Plot of P(G). Parameter values are « = 8, 7. = 12 min, ¢ = 1
point, V. = 3 points, v = 1 points, and A = 0.006 objects/s.

design based on the ESS, we gain insight into the equilibrium size at
which a designer will tend to design a group.

Before proceeding, a couple of remarks should be made. In the above
discussion we ignore the explicit role of a customer. If you wish, you
can think of the customer as purchasing and deploying the agent ac-
cording to the manufacturer’s design guidelines (e.g., whether to coop-
erate with other customers who are going to deploy agents). The cus-
tomer and manufacturer have an agreement that if the agent succeeds,
the points it gets on a mission are converted to a proportional amount
of monetary profits that are given to the manufacturer. If the agent fails,
then no profits are given to the manufacturer. Here, for simplicity, we
embed the notion of a customer in the design process and focus on the
perspective of the self-interested manufacturer.

As will be discussed in further detail below, the design game has a
population of manufacturers and, at each stage, we imagine that two
manufacturer’s designed agents are drawn from the population and
compete. We say “imagine” since we do not actually send them out
to compete in a real mission. The two agents acrue points and corre-
sponding profits are provided to their manufacturers. Then, a process
based on selection and differential fitness acts on the proportions of
the different designs in the population resulting in some manufacturers
increasing the numbers of agents they produce (the relatively more
successful agents) and other manufacturers decreasing the number of
agents they produce (the relatively less successful agents), or going out
of business altogether. In this situation, the manufacturer’s interest is
solely in the success of the agent it produces, and it must decide in the
design challenge of this section whether to cooperate with the agents
produced by other self-interested manufacturers to improve its success
and, hence, increase its marketshare. Since there is a one-to-one cor-
respondence between the manufacturer and its product, we will some-
times speak of the agents as competing, but, of course, they are just the
instruments of the true competitors—the manufacturers.

A. Agent-Based Cooperative Search Model

Here, we extend the model in [11, Ch. 2] to fit a cooperative search
problem in engineering. Consider multiple agents that search a domain
for objects, each with point value v. The goal of the manufacturer is to
design one of these agents to acquire V,. points (r indicating required)
within 7. time units (¢ indicating critical). For example, T.. may be
mission time for military autonomous vehicles or a time constraint for
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a robot in a search operation. Points obtained flow back to manufac-
turers in the form of profits, hence V,. may be translated to a profit
requirement for manufacturers. If V. is not obtained, the agent and,
thus, its manufacturers (and its subcontractors for components) fails.
We also assume a cost of ¢ points associated with the deployment of
the agent. This might be due to manufacturing, fuel, or maintenance
costs. To summarize, the manufacturer wants a profit of V.. points for
a payment of ¢ points for the agent, resulting in a rate of return on the
investment of V,./c.

First, consider a solitary agent. The agent must discover Ny = (V. +
¢)/v objects during 7. in order to be successful (subscript 1 indicates
that this is the number of objects required for a solitary to succeed).
For simplicity, we assume V. is defined such that V; is an integer. If
multiple agents cooperate in a group of size (G, we assume they will
equally share the profits from finding objects so that the group must
obtain G N7 objects for the success of every agent in the group. Note
that the success of the group implies success from each member of
the group. If we consider the design of a group of agents by a man-
ufacturer, the total investment for the group is G points, and if the
group succeeds (i.e., finds GN7 objects), the manufacturer’s net profit
is GN1v — G, giving a rate of return

GNv—Ge _ Vi

Ge ¢
Thus, the manufacturer’s objective is still to achieve a rate of return of
V../c on its investment in each agent; however, a group may have the
capability of obtaining far more points to offset costs than a solitary as
will be seen below.

We assume objects are discovered by an individual agent at a con-
stant rate A (implying an infinite number of objects) via a Poisson
process [11]. A group collectively discovers objects at arate of K (G) A,
where K (G) > 0 is the searching advantage of the group. The proba-
bility of a group of size G succeeding is

OOl KON [ (G)ATL)
PS(G):]_— Z e ]['( ) c]. (1)

1=0

Due to the equal sharing of points discussed before, the probability of
success of a group equals the probability of success of each member of
the group. Search paths of solitary agents are assumed not to overlap
so that encounter rates are independent of other vehicles’ existence.

When group sizes grow large, diminishing reward portions often out-
weigh group benefits. This property is likely to occur, for instance, with
a group searching advantage of the form

o

K& = 1ra

@)
where @ > 1 is a constant. Choosing # = 1 + ln(a — 1) guar-
antees that K'(1) = 1. The searching advantage increases quickly
for low G, but as groups grow too large, the advantage becomes in-
significant and quickly saturates. For example, in an autonomous ve-
hicle application, the network bandwidth may be limited or quality may
degrade as G increases. This concept is illustrated in Fig. 1, which
shows P,(G). Note that although we have linearly interpolated be-
tween points, Ps(G) € [0, 1] is only definedon G € {1,2,...}. Using
biological terms, we have defined the fitness of an agent as its proba-
bility of success. In general, we find that the fitness function peaks at
G = G* and that limg_—. P;(G) < P,(1). Agents maximize their
per capita fitness when the group size is G™ (although not noticeable
in Fig. 1, P5(4) is indeed greater than P, (5) for the example given re-
sulting in G* = 4). As group size expands past G, the group benefit
begins to be outweighed by the loss in members’ success due to point
sharing in an overpopulated group. Eventually, an individual’s fitness
drops below that of a solitary agent.

B. Cooperative Agent Design

We first provide a game theoretic explanation for the choice of man-
ufacturers designing an agent that can either search for objects as an
individual or by cooperating with an already-existing group. This deci-
sion must be made given that other manufacturers exist and are facing
the same problem in the same environment. Each agent cooperates with
other agents in the formation of a group only if the manufacturers de-
sign them to do so. The existing group corresponds to a standard group
size in the environment. The problem here represents a “free entry”
game from social foraging theory [11]. We begin with the case where
agents are “genetically unrelated” (i.e., there are no similarities be-
tween agents with respect to their manufacturers) and then discuss the
effect of relatedness on design strategies.

1) Unrelated Agents: Consider a simplified version of the above sit-
uation in which two agents are randomly drawn from an infinite pool
of agents and deployed in an environment where a group of G — 1
agents already exists. Agents are assumed to be unrelated, and each
agent possesses a manufacturer-designed strategy of either joining the
group or searching as a solitary. We define the “payoft” to the manu-
facturer as the expected number of successful components designed by
the manufacturer. The complete utility of this definition will become
clear later when we discuss related agents. In the unrelated case we
consider here, all components of the agent designed by a manufacturer
yield profits for the manufacturer (since the agent was designed by that
manufacturer); hence, the payoff to the manufacturer is simply the total
number of components of the agent times the probability of the agent
succeeding. This is the expected number of successful components of
the agent. For simplicity, we assume that all agents in the environment
have the same total number of components. This, in a sense, normal-
izes the payoff matrix for an agent playing the game so that the total
number of components does not need to be included as a factor in the
entries of the payoff matrix (this term would cancel when analyzing
ESS conditions). Having said this, the payoff matrix for Agent 1 is

[P P

"=k PG+

and the payoff matrix for Agent 2 is Jo = Ji . For agent 1 (2), row 1
(column 1) corresponds to the strategy Go Alone, and row 2 (column 2)
corresponds to the strategy Join. The payoff matrix and, hence, the ESS
depends on P, (1), P,(G), and P.(G + 1). For instance, if P,(1) <
P(G) < P,(G+1) [e.g., Fig. 2], orif P,(1) < P,(G+ 1) <
P.(@) [e.g., Fig. 2(b)], the ESS is the pure strategy [0,1] " (i.e., Join)
via diagonal dominance [18]. In this case, an individual can always do
better as a member of a group of size G or G + 1 than as a solitary.
Also notice that if P,(G+1) < P.(G) < P,(1) [e.g., Fig. 2(d)], then
the pure ESS is [1,0] " (i.e., Go Alone) by diagonal dominance.

An interesting case, one not considered in [11] or elsewhere in the
literature, arises if P (G+1) < P:(1) < P:(G) [e.g., Fig. 2(c)] where
the ESS is mixed and given by

P(1)=P(G+1) P(G)=P(1)
P(G) - P.(G+1) P.(G) - PG+ 1)

T

3)

The mixed ESS is a result of a solitary having a larger probability of
succeeding than a member of a G + 1 group, yet a smaller probability
of succeeding than a member of a G' group.

The above analysis predicts the ESS of a manufacturer designing an
agent in the presence of a standard group size. It also predicts the ten-
dency for the existing group size to increase or decrease based on the
ESS. We emphasize, though, that this is not a model of the dynamics of
the engineering design process. Rather, our analysis is a means of deter-
mining, during design and prior to implementation, agent strategies that
are evolutionarily stable for the current environmental situation. Such
stability implies a robustness to strategy variations by other agents in
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Fig. 2. Possible game scenarios and the corresponding ESS for an agent in the
entry-decision game when r = 0. (a) Ps(1) < P,(G) < Ps(G + 1) ESS:
Join; (b) Ps(1) < Ps(G+1) < P,(G)ESS: Join; (¢) P.(G+1) < P(1) <
P, (G) ESS: Mixed; (d) Ps(G + 1) < P,(G) < Ps(1) ESS: Go Alone.

a given environmental situation since it is a strategy that cannot be in-
vaded by mutant strategies (i.e., deviations from the ESS).

Given the implementation of the ESS, we can predict tendencies for
group size to increase or decrease and, consequently, reach an equi-
librium level. If the group size increases or decreases based on these
tendencies, it will tend to level off at G in Fig. 2. Note that although
not considered in [11], G may be a noninteger if the only integer group
size with fitness Ps(1) is G = 1. In this case, G will be an expected
value depending on the mixed strategies played by the agents. In partic-
ular, if we denote the ESS given in (3) as [pa, p;] ", then the expected
G is G = paG+p;(G+1).1t can be shown then that P, (G) = P(1).

2) Related Agents: Relatedness, as discussed in Section I-A, de-
scribes the similarities between the component manufacturers of two
agents. Relatedness has the potential to influence design decisions since
points and, hence, profits from relatives all flow back to the manufac-
turers. This concept is mathematically described by a modified ver-
sion of Hamilton’s Rule [11]: an agent should have a given strategy if
rE,. + E, > 0, where r € [0, 1] is the coefficient of relatedness (here,
the proportion of common physical or software components), E' is the
effect of the strategy on other related agents, and E is the effect of
the strategy on the agent itself. Since r is defined as the percentage
of an agent’s manufacturers held in common with another agent, the
ease with which » may be computed clearly depends on the number of
components of an agent. Clearly, however, in practice, the costs of the
components are known and these can be used to specify the percentage
of components of an agent attributed to each component manufacturer.

Here, we evaluate the cooperative agent-design game when agents
are genetically related. As before, suppose two agents must be designed
with either the strategy Go Alone or Join a group of size G — 1 that
is already in existence. However, now all agents are genetically re-
lated. Defining Player 1 (Player 2) as Agent 1 (Agent 2), we assume
that Agent 1 is related to Agent 2 with the coefficient of relatedness
r1 and to each member of the external group with coefficient r2. The
payoff matrices are defined by incorporating ideas from Hamilton’s
rule. Each cell for a manufacturer (or its corresponding agent’s) payoff

matrix gives, as before, the payoff to the manufacturer as the expected
number of successful components of the manufacturer. This is the same
payoff definition as in the unrelated-agent game. However, the manu-
facturer may profit from components of other agents in the environment
if those agents are related to the agent produced by the manufacturer.
The payoft matrix entries for Agent 1 are

T = Po(1) + 11 Po(1) + 72(G = 1)P.(G = 1),
T2 = Pi(1) + 11 Pu(G) + 2(G — D P(G),
J' =Py(G) + r1 Py(1) 4 ro(G — 1)P,(G), and
JP2 =PG4+ 1)+ mP(G+1)+m(G-1)P.(G+1)
I =J; .
The ESS for the game described above may be pure or mixed de-
pending on which scenario in Fig. 2 applies to the current group size.

We first examine the pure ESS cases. The pure strategy [1,0] " (i.e., Go
Alone) is an ESS if

r2(G = 1) (Pe(G) = Po(G = 1))+ Pu(G) < Pu(1)  (4)

by diagonal dominance. Similarly, the pure strategy [0, 1]T (i.e., Join)
is an ESS if

(r472(G = 1) (PG+1) = P(G) + P(G+1) > P(1). (5)
Setting 71 = ro = 0 gives rise to the genetically unrelated case, and
the analysis from Section II-B.1 holds.

There are three pure ESS scenarios corresponding to panels (a), (b),
and (d) of Fig. 2. First, suppose r1 = r2 = 0 and P.(G) < Ps(1) so
that we have the situation in Fig. 2(d) with the ESS being Go Alone.
Since, at this location on the curve, P (G) < Ps;(G —1), increasing 72
will decrease the left-hand side of (4) and will not alter the ESS. Thus, if
P,(G) < Ps(1),the ESS is to Go Alone independent of 71 or r2. Next,
if Ps(1) < Ps(G) < P;(G+1) [panel (a)], the ESS whenry = ro =
(0 is Join. As either r; or r2 increases, the left-hand side of (5) increases
since P.(G + 1) > P.(G) and, thus, the ESS is Join independent of
ri or r2. The third scenario is when Ps(1) < P,(G + 1) < P,(G)
[panel (b)]. As in the panel (a) case, ri = r2 = 0 results in an ESS
of Join. However, increasing 71 or > now decreases the left-hand side
of (5), thus decreasing the tendency for Join to be the ESS. The design
decision of whether to join involves a tradeoff between the fitness of
the individual agent and the fitness of its relatives. A higher degree of
relatedness leads to stronger dependence on the relatives’ fitness and,
hence, a stronger disinclination to join the group and thereby decrease
the members’ fitness. This shows that the tendency for the size of a
group to increase when P5(1) < P,(G + 1) < P:(G) decreases as
genetic relatedness increases.

Now consider the case where a pure ESS does not exist, again some-
thing that has not been considered in the literature. The mixed ESS [18]
is

> 9 2 T
JiZ - g J? - gh

A S N TR

22
— J]

The “equilibrium” group size will be either the group size under which
a mixed ESS exists or the smallest group size such that (4) holds. This
equilibrium will lie somewhere between G* and G.

C. Cooperate and Group Size Design Games

Now suppose that manufacturers are to design a group of agents
that compete in the market with other groups. This corresponds to the
“group-controlled entry” game in social foraging theory [11]. However,
contrary to the biological case, group size here is determined a priori
as a part of the design process. We view the group size design decision
as a type of incremental process that analyzes the effects of increasing
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the size of an already established group by one member. The analysis is
based on a game similar to that of the cooperative agent-design game.
Specifically, suppose two groups, each of size (7, exist in a domain in
which two individual agents external to the groups also exist. Thus,
there is a total of 2G' + 2 agents in the domain. The group manufac-
turer must make a design decision as to whether to have its group of
agents remain at size G when deployed or increase its size to G 4 1 by
cooperating with one of the external agents. Thus, the design of a group
begins at size ¢ = 1 and increases via the cooperation with additional
agents until the desired group size is reached.

We label the two groups in the domain as Group 1 and Group 2 and
choose Player 1 (Player 2) of the game to be Group 1 (Group 2). We
assume that Group 1 is related to Group 2 with the coefficient of re-
latedness | and to each of the two solitary agents in the domain with
r2. The relatedness coefficient between a group and a single agent or
another group is an average measure of the similarity between all of the
manufacturers of the group and the manufacturers of the other group
or agent. For example, if there are G members of a group and the
ith member has relatedness r; with an agent outside the group, then
the relatedness of the group to the external agent is (1/G) 37, r;.
The relatedness of the same group to another group with G mem-
bers is (1/G*) 17, 27(; r;; where 7;; is the relatedness between
the 7th member of the first group and the jth member of the second
group. Group size decisions are influenced by their effects on the re-
lated agents. Since the manufacturers of Group 1 are common to each
member of the group, we assume all G agents of Group 1 are related
with coefficient 1.

The payoft matrix entries for Group 1 are

Ji' =GPy(G) + 2r2P.(1) + Gri Ps(G),
Ji? =GP(G) + r2(Ps(1) + Py(G+ 1)) + Gr P, (G + 1)
JPN=GP.(G+ 1)+ 12(P(G + 1) + Pu(1)) + Gri P (G),
JP? =GP(G4+1)+2r:Pi(G+ 1)+ Gri Po(G+ 1)
where row 1 corresponds to the strategy to remain at the current group
size GG (the Remain strategy), and row 2 corresponds to the strategy to

increase the group size to G+ 1 (the Add strategy) via cooperation with
one external agent. Also, Jo = J; . The Remain strategy is an ESS if

ro (Ps(1) — Po(G+ 1))+ G(Ps(G) — P,(G+1)) >0
(6)
and Add is an ESS if

ro (Ps(G+1)— Ps(1))+ G(P.(G+1) — P.(G)) > 0.

@)

We analyze the ESS conditions as before using the panels in Fig. 2
as a guide. When the group size G is such that panel (a) of Fig. 2 holds,
then Add is an ESS independent of r2 or 7, via diagonal dominance.
Hence, the group size will tend to increase. Due to the assumed nature
of the P,(G) curve, the group size will reach a level such that either
P,(G) = P.,(G+1)or P,(G) > P,(G + 1). Let us first examine
the P,(G) > P.(G + 1) case (i.e., there does not exist a G such that
P.(G) = P;(G+1)).If ro = 0, the group size will tend to settle at the
optimal size G*. This is because Remain will become the ESS as soon
as P,(G) > P:(G+ 1), and the group size will never have a tendency
to move past the peak of the fitness curve and into the panel (b) of
Fig. 2. If 7o # 0, the first term in (6) (with coefficient r2) becomes
negative at the transition from panel (a) to (b). Hence, the left-hand
side of (6) decreases with increasing r2, which decreases the tendency
for the group to remain at the current group size G. In other words, the
“equilibrium” group size increases past G* with increasing r2 . Groups
will then tend to form at the minimum size such that (6) holds. If there
does not exist a G such that P;(G) = P;(G + 1), then a mixed ESS

will never exist since one of either (6) or (7) will always hold. Also
note that Ji* 4+ Ji' — J{' — J* = 0 is independent of 72 and ; so
that the mixed ESS does not exist.

If, on the other hand, a G exists such that P;(G + 1) = P(G)
(something not considered in the literature), then we have one of two
scenarios. The first is 72 # 0, in which case, Remain is the ESS if
P.(1) > P:;(G + 1) and Add is the ESS if P;(G + 1) > Ps(1).
The second scenario is 7o = (), in which case there is no ESS since
Add and Remain are essentially the same strategy (all entries of the
payoff matrix are the same). The expected equilibrium group size must
lie somewhere between GG and G + 1; however, this expected group
size cannot be solved for analytically since the ESS analysis does not
provide any predictions on frequencies of strategies in a population
when all entries of the payoff matrix are equal.

In summary, we have determined which strategy (remaining at G or
increasing to G + 1) of a manufacturer is evolutionarily stable given
that all other manufacturers are facing the same problem. The fact that a
given strategy is an ESS holds only under the assumption that repeated
play of the game via manufacturer design iterations always occurs with
a group size of G. In other words, the group size G does not change
from generation to generation as a result of the last game’s outcome.
Rather, this analysis determines strategies that are ESSs and, hence,
robust for a given situation, and provides a prediction of the tendency
for a standard group size to increase as a result of implementing the
ESS.

D. Parameter Effects

The parameters of the model underlying our analysis are found in
(1). The variation of each parameter changes the shape of the fitness
curve P;(G) and, consequently, the ESS of a manufacturer in either
the cooperative agent design or group size design game. If changing a
parameter simply shifts the P;(G) curve up or down (e.g., increasing
T or A shifts P;(G) up), then the analysis from Sections II-B and II-C
holds. However, it should be noted that some of the discussion in these
sections is under the assumption of a P, (G) of the shape in Fig. 1. The
same approach to the problem as in Sections II-B and II-C may be taken
to study design strategies for curves of different shapes (e.g., ones with
more than one local maximum), but aspects of the analysis such as the
panels from Fig. 2 may not apply.

By studying such parameter changes, we find an important trend.
The group size at which groups tend to form increases as the diffi-
culty of a mission decreases by: decreasing the agent cost, decreasing
the point requirement, increasing object reward, increasing object en-
counter rate, increasing critical time, or increasing the group searching
advantage. This pattern highlights the concept of risk sensitivity. An in-
crease in group size results in a decrease in the variance of the number
of object discoveries. In other words, small groups are “risky” [11].
An underlying theme in risk-sensitive foraging theory is that when re-
quirements are expected to be met (i.e., when critical times are long or
requirements are small), safer or less variant options result in a higher
probability of success. In contrast, risky or more variant options result
in a higher probability of success when requirements are not expected
to be met. These same concepts arise here. For easy missions, manufac-
turers will tend to design agents that form larger groups, and when mis-
sions are difficult, manufacturers will tend to design agents that form
smaller groups.

III. APPLICATION TO AUTONOMOUS VEHICLES

Here, we demonstrate the applicability of the analysis in Section II
to an autonomous vehicle cooperative search problem. Consider a do-
main where multiple autonomous vehicles are designed and deployed
to search for objects as a group. This may be the result of a manu-
facturer designing a single agent to cooperate with an already existing
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Fig. 3. Simulated probability of success for a group of G vehicles.

group as discussed in Section II-B or an entire group of agents as dis-
cussed in Section II-C. Each vehicle has a 500 x 500-m sensor “foot-
print” and can sense or find an object when its footprint is positioned
over it. Vehicles search the domain systematically by covering one do-
main length and, upon reaching the edge, turning and covering the op-
posite direction precisely one sensor width away from the previous
search strip (i.e., via a “lawnmower pattern”). Vehicle starting posi-
tions are dispersed evenly across the domain guaranteeing nonoverlap-
ping search paths. Objects are distributed via a Poisson process, and the
expected encounter rate of a solitary is calculated as Ao = N,Wu/A
where N, is the number of objects, W is sensor width, « is vehicle
velocity (120 m/s), and A is the domain area.

The vehicle’s sensing equipment is intrinsically imperfect and, thus,
subject to error. However, vehicles are capable of communication via a
network, allowing for the sharing of information, such as shape or con-
spicuousness of objects. Such information sharing increases sensing
effectiveness. Based on this, we denote the probability of a vehicle de-
tecting an object in its footprint as v(G), an increasing function of
group size G. Note that 0 < (@) < 1. If a single agent encoun-
ters objects at a rate of Ao objects/s, the resulting rate of detection
of objects for a solitary is A = Agy(1) objects/s. The collective de-
tection rate for a group of G agents is Gv(G)M\o, setting this equal
to the collective detection rate of the model K'(G)A and rearranging
K(G) = Gy(G)/~(1). Therefore, a particular K (G) corresponds to
the probability of detection function v(G) = K(G)~(1)/G.

Parameter values are arbitrarily chosen to illustrate the relevant con-
cepts as N, = 150 (implying Ao = 0.01 objects/s), v(1) = 0.6,
v = 1 point, ¢ = 1 point, and V;, = 3 points. Assume K (G) given
by (2) with o = 8. Since v(G) = K(G)~(1)/G, information sharing
via the communication network and group information processing al-
lows agents to increase the accuracy of object detection as group sizes
increase for relatively small groups. However, for the example here,
as groups increase past ¢ = 4, this detection probability decreases.
This may be due to network bandwidth limitations and information pro-
cessing overhead.

Fig. 3 shows P, (), resulting from a simulated group of vehicles
under the preceding parameters. Fig. 3 is similar to Fig. 1. The most sig-
nificant difference is that the simulated curve is shifted down from the
theoretical curve. This is expected since, in simulation, each vehicle’s
sensor footprint swings outside the domain when turning around. This
decreases A from the estimated A = 0.006 objects/s, shifting P (G)
down.

Now that we have established the existence of a fitness curve of
the shape assumed in Section II, the rest of the analysis in that sec-
tion holds with respect to the decisions of a manufacturer designing

an agent or group to operate in each scenario. For instance, the ex-
pected equilibrium group size for the cooperative agent design case
whenry = 7, = 0is G = 7.4405. The noninteger group size is a
result of a mixed ESS in the design game. The standard group size has
a tendency to increase until it reaches a size of 7, at which point, it is
evolutionarily stable, according to (3), for the design strategy of a man-
ufacturer to be to design an agent to search alone with a probability of
0.5595 and cooperate with the group with a probability of 0.4405. If
we increase relatedness so that, for example, r1 = 0.3 and 7> = 0.7,
the equilibrium group size becomes GG = 6 since there is no group size
under which a mixed ESS exists, and 6 is the smallest group size such
that (4), the Go Alone pure ESS holds. This is a smaller size than G
since decreasing the size from G increases P, (G), which is profitable
to the external group manufacturers and, hence, to the related manu-
facturers of the agent being designed.

The equilibrium group size for the group size design case is G* = 4
when ri = ro = 0. If welet 1 = 0.3 and r2 = 0.7, the equilibrium
increases to G = 5 since 5 is the smallest group size such that (6), the
Go Alone pure ESS holds. This increase arises because manufacturers
of a group have some desire, due to relatedness, to increase the profits
of the manufacturers of the solitary agents in the environment. Adding
the solitaries to the group increases their probability of success and the
profits of their manufacturers.

IV. CONCLUSION

We have introduced a method for producing robust designs for man-
ufacturers that produce agents that operate in a potentially cooperative
framework. The robustness stems from the merging of engineering with
the field of behavioral ecology via evolutionary game theory. A man-
ufacturer design strategy that is evolutionarily stable is robust to al-
terations of the strategies of other manufacturers designing agents in
the environment. We apply the concepts discussed to a particular mul-
tiagent application where autonomous vehicles perform a cooperative
search. In doing so, we address the problem of group size in multiagent
systems, which, to our knowledge, has not been considered in other
cooperative control areas, such as in cooperative robotics. The robust-
ness of evolutionarily stable group design strategies provides success
for manufacturers, and success translates to monetary profits, which is
the manufacturers’ ultimate goal. Our analysis is centered around the
use of the probability of mission success as the cost function which we
choose to optimize. It would be straightforward to extend the theory to
other cost functions, such as the number of points an agent is expected
to obtain for a given mission.
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A Case Study on Integrated Production Planning and
Scheduling in a Three-Stage Manufacturing System

Hong-Sen Yan and Xiao-Dong Zhang

Abstract—This paper presents an integrated optimization model of pro-
duction planning and scheduling for a three-stage manufacturing system,
which is composed of a forward chain of three kinds of workshops: a job
shop, a parallel flow shop consisting of parallel production lines, and a
single machine shop. As the products at the second stage are assembled
from the parts produced in its upstream workshop, a complicated produc-
tion process is involved. On the basis of the analysis of the batch production,
a dynamic batch splitting and amalgamating algorithm is proposed. Then,
a heuristic algorithm based on a genetic algorithm (known as the integrated
optimization algorithm) is proposed for solving the problem.

Note to Practitioners—This paper presents a method for integrated
production planning and scheduling in a three-stage manufacturing
system consisting of a forward chain of three kinds of workshops, which is
common in such enterprises as producers of automobiles and household
electric appliances, as in the case of an autobody plant usually with the
stamping workshop, the welding and assembling workshop, and the
painting workshop. Herein, the production planning and scheduling prob-
lems are simultaneously addressed in the way that a feasible production
plan can be obtained and the inventory reduced. A batch splitting and
amalgamating algorithm is proposed for balancing the production time
of the production lines. And a case study of the integrated planning and
scheduling problem in a real autobody plant verifies the effectiveness of
our method.

Index Terms—Batch splitting, integrated optimization, multistage man-
ufacturing system, production planning, scheduling.

I. INTRODUCTION

In a manufacturing setting, production planning is essential for
achieving efficient resource allocation over time in meeting demands
for finished products [1]. Scheduling is a key factor for manufacturing
productivity [2]. Effective scheduling can improve on-time delivery,
reduce inventory, cut lead time, and improve machine utilization [2].
Thus, production planning and scheduling problems have been studied
extensively. However, the current literature mainly focuses on the
production planning and scheduling problems of a single workshop
[3]. Little has been written about simultaneously optimizing the
production plan and schedule of a multistage manufacturing system
[4]-[6]. Most of them focus on the master production schedule (MPS)
and capacity requirement planning (CRP) in a manufacturing resource
planning (MRP) II environment, while the scheduling problem is
seldom considered. Since these methods keep the planning separate
from scheduling, they often generate an infeasible production plan,
which has to be modified to obtain a feasible schedule [3]. Undoubt-
edly, considering these two problems simultaneously is advisable
for avoiding an infeasible solution [3], [7]-[9]. However, none of
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