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Social Force Model-Based MCMC-OCSVM Particle
PHD Filter for Multiple Human Tracking

Pengming Feng, Wenwu Wang, Senior Member, IEEE, Satnam Dlay, Member, IEEE,
Syed Mohsen Naqvi, Senior Member, IEEE, and Jonathon Chambers, Fellow, IEEE

Abstract—Video-based multiple human tracking often involves
several challenges, including target number variation, object
occlusions, and noise corruption in sensor measurements. In this
paper, we propose a novel method to address these challenges based
on probability hypothesis density (PHD) filtering with a Markov
chain Monte Carlo (MCMC) implementation. More specifically,
a novel social force model (SFM) for describing the interaction
between the targets is used to calculate the likelihood within the
MCMC resampling step in the prediction step of the PHD filter,
and a one class support vector machine (OCSVM) is then used in
the update step to mitigate the noise in the measurements, where
the SVM is trained with features from both color and oriented
gradient histograms. The proposed method is evaluated and
compared with state-of-the-art techniques using sequences from
the CAVIAR, TUD, and PETS2009 datasets based on the mean
Euclidean tracking error on each frame, the optimal subpattern
assignment metric, and the multiple object tracking precision
metric. The results show improved performance of the proposed
method over the baseline algorithms, including the traditional
particle PHD filtering method, the traditional SFM-based particle
filtering method, multi-Bernoulli filtering, and an online-learning-
based tracking method.

Index Terms—Multiple human tracking, Markov chain Monte
Carlo (MCMC) resampling, one class support vector machine
(OCSVM), probable hypothesis density (PHD) filter, social force
model.

I. INTRODUCTION

V IDEO based multiple human tracking plays an important
role in many applications such as surveillance, guidance,

and homeland security, especially in enclosed environments
such as an airport, campus or shopping mall. Tracking multiple
human targets in the above situations presents several challenges
including varying number of targets, object occlusion, and the
adverse effect of environmental noise within measurements [1],
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[2]. Moreover, it is not always possible to associate measure-
ments with particular targets which results in false alarms and
missed detections [3]. In this work we attempt to address aspects
of these challenges and focus on the problem of estimating the
position of an unknown number of human targets, based on
noisy observations, with the possible presence of missed detec-
tions and false alarms due to clutter.

A. Related Work

Most multiple human tracking approaches fall into one of
three categories: achieving a more accurate dynamic model for
prediction such as using an interaction model when predicting
the position and velocity of a target [4], [5]; generating more sta-
ble recursive mathematical models such as unscented Kalman
filters and MCMC particle filters [6]; and searching for more ac-
curate measurement models [7], [8], for example, the tracking-
learning-detection (TLD) [9] approach. However, the almost
universally accepted mathematical framework used to describe
multiple target tracking is that of filtering theory and, in par-
ticular, Bayesian filtering [10], where the posterior probability
distribution is recursively predicted by propagating this distribu-
tion with the state model, which describes the motion of a target,
and updates the state when a new observation becomes available
[11]. The two such popular algorithms are the Kalman filter and
particle filter. The Kalman filter is well-known to be optimal
with the Gaussian linear model, while the particle filter can be
employed to address the tracking problem with a non-Gaussian
and non-linear model. These two methods can address the basic
multiple target tracking problem when the number of targets is
assumed to be known and fixed, however, they are not designed
for dealing with the problem of a variable number of targets.

The random finite set (RFS) [12] probability hypothesis den-
sity (PHD) filter has been recently proposed to deal with the
problem of tracking a varying number of targets. The advantage
of the PHD filter is that it can estimate both the cardinality of
targets and their states, and thus avoids the need for data associ-
ation techniques as part of the multiple target framework [13],
[14]. Moreover, it mitigates the computational complexity issue
as often occurs in other multiple target tracking approaches such
as multiple hypothesis tracking (MHT) [14] since it simply uti-
lizes the first-order moment of the multi-target posterior rather
than the posterior itself. The PHD filter will be used here and is
the focus of this paper.

However, the tracking accuracy of the PHD filter is compro-
mised due to the first order approximation of the RFS in both
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the prediction and update steps, as well as noise in the mea-
surements [15]. To address these limitations, we propose two
new methods. First, the prediction of the states of the human
targets is improved by considering the dynamics of the targets
and the interactions between them via an interaction model [5].
This is different from conventional Bayesian filtering, where
a fixed model is often used to predict the state of the target
and then random noise is employed to generate new candidate
states. Second, a background subtraction algorithm is used to
generate the measurements for new born targets (detailed later in
Section III-D.1), and then a classifier is employed to distinguish
the clutter from the human targets based upon their different
spatial characteristics, so that the measurement noise is miti-
gated effectively and the probability of false alarms and missed
detections is thereby reduced.

In our work, the interaction information is exploited by a
model constraining the motion between the targets. Within ex-
isting interaction models, the social force model (SFM) [4] is
considered due to its ability in handling the interaction between
human targets as well as their typical behaviour. Several re-
searchers have used social force models to predict the states
of humans based on their behaviour [4], [16]. Within the so-
cial force model, the behaviour of human targets is modelled
via energy potentials which are adjusted by other targets and
obstacles through repulsive forces [17]. We propose a product
model suitable for likelihood calculation to characterise the so-
cial force interactions between the human targets based on mul-
tiple exponential-terms. This improves the MCMC resampling
[18] of the PHD filter used in our work. To the best of our knowl-
edge, no previous work has considered the interaction model in
the prediction stage of MCMC-based PHD filtering algorithms.
To compare the social force models for human tracking in [4],
[16] with that proposed in this paper we consider their simi-
larities, differences, advantages and disadvantages. In all these
approaches, interaction forces between the targets are used to
simulate the dynamic model of pedestrians; distance and angle
between the targets, change of velocity and destination of in-
dividual targets are considered in the models; and the models
are designed to use domain knowledge and thereby improve the
performance of multiple human tracking. The major differences
are that in [4] a sum function is used to combine the compo-
nents of the social force model, but in [16] an exponential-term
model is used and, as in (21) in Section II, a summation form
is used to combine the model parameters. Our approach instead
uses a product function as described by (27) and the influence
of each model parameter is controlled by the variance terms in
the exponential models. Moreover, a threshold is introduced to
avoid calculating social forces when two targets are a large dis-
tance apart. The model in [4] has the advantage that it is simple,
but the model in [16] is more flexible offering better tracking
accuracy. Equation (21) also allows the influence from differ-
ent model components to be more easily matched to different
environments. Our model offers further improvement in accu-
racy in more complicated environments and these are demon-
strated in Table IV in the simulation section. Finally, in terms
of disadvantages, the approach in [4] has much less flexibility
for use in different environments than our approach and that
in [16].

B. Summary of Contributions

Our novel contributions include:
1) A new model is used to describe the social forces be-

tween targets to calculate likelihood values in the predic-
tion stage of the particle PHD filter.

2) An MCMC resampling step is exploited to improve the
prediction part of the particle PHD filter.

3) An OCSVM classifier which is trained by features from
both color and oriented gradient histograms to mitigate
measurement noise in background subtraction results,
thereby further reducing the probability of false alarms
and hence improving the performance of the PHD filter.

The remainder of the paper is structured as follows: In
Section II, the background preliminaries of the traditional par-
ticle PHD filter and social force model are introduced, then
the complete proposed multiple human tracking system frame-
work is described in Section III, including the novel social force
model, the MCMC resampling step and the OCSVM classi-
fier; results and comparisons between the proposed approach
and baseline methods are presented in Section IV. Finally,
Section V provides a short conclusion and a discussion about
the possible directions for future work.

II. BACKGROUND AND PRELIMINARIES

A. Adapted Particle PHD Filter

In order to track a variable number of targets, the PHD filter
is employed because of its relatively low computational com-
plexity and good tracking performance. There are typically two
forms of implementation of PHD filtering. One is based on
numerical solutions [19] of the integrals in the prediction and
measurement updating step of the PHD filter. The other is the
Sequential Monte Carlo (SMC) approach based on the parti-
cle PHD filter. Here we use the SMC-PHD method because it
performs well in the scenarios of non-Gaussian noise and non-
linear models; besides, it offers the flexibility to incorporate an
OCSVM classifier to improve the update of the PHD filter in
the presence of noisy measurements.

Assuming the set {xmk }m=Mk
m=1 includes the states of all the

human targets, where xmk = [pmk,x , p
m
k,y , v

m
k,x , v

m
k,y , h

m
k , w

m
k ]T ∈

R6 denotes the state of themth target at discrete time k, includ-
ing the 2D position (pmk,x , p

m
k,y ), velocity (vmk,x , v

m
k,y ), height

and width of targets hmk , wm
k ; where (·)T denotes the transpose

operator and subscripts x, y are the horizontal and vertical co-
ordinates of the target; Mk is the number of targets at time k.
Denote the measurement set at time k as Zk , which includes zk
for each target. The basic principle of importance sampling in
the particle filter is to represent a PDF p(Xk |Zk ) by a set of
random particles xm,i

k having associated weights wm,i
k , where

Xk = {xm,i
k ,m = 1, ...,Mk , i = 1, ..., N}, which denotes all

the particles utilized to describe the states of all human targets
at time k, where N is the number of particles employed to
describe the state of a target; in this paper, the notation with
superscript (·)m,i denotes a particle with index i employed to
describe the state of the target with index m. Given a set of
targets with states at time k − 1, {xmk−1}m=Mk −1

m=1 , the set of pre-
dicted particles and the associated weights from the state model
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at time k is given by [10]
{
x̃m,i
k , wm,i

k−1

}m=Mk ,i=N

m=1,i=1
. (1)

The particles are independently drawn from importance sam-
pling density q(·) [10] to represent the prior distribution for the
next step p(Xk |Zk−1) [20], where ‘̃·’ denotes the value resulting
from the estimation step. Then the weights for the particles are
calculated as [21]

wm,i
k ∝ wm,i

k−1
p(zk |x̃m,i

k )p(x̃m,i
k |xm,i

k−1)

q(x̃m,i
k |xm,i

k−1 , zk )
(2)

and by using the suboptimal choice of the particle sampling
described in [22], the importance sampling density function
q(·) is chosen as

q(x̃m,i
k |xm,i

k−1 , zk ) = p(x̃m,i
k |xm,i

k−1) (3)

so the weights for each particle are calculated as [22]

wm,i
k ∝ wm,i

k−1p(zk |x̃m,i
k ) (4)

thus the posterior distribution for a single target p(xmk |Zk ) can
be approximated as

p(xmk |Zk ) ≈
N∑
i=1

wm,i
k δ(xmk − x̃m,i

k ) (5)

where δ(·) denotes the Dirac delta measure and the poste-
rior distribution for all targets p(Xk |Zk ) can be calculated as
p(xmk |Zk )

Mk

m=1 . In this way, the traditional particle filter is ob-
tained, which can be utilized to implement the PHD filter.

To formulate the PHD filter, the RFS framework is employed.
Assuming the particles for the PHD filter are independently
drawn from the PDF p(Xk−1 |Zk−1), the resulting particles are
employed to describe the states of Mk targets at time k, which
are approximately distributed as p(Xk |Zk ) [19]. In this case, the
proposed filter is an approximation of the relationship between
the prediction and updating step of the filter. Denoting D(·) as
the PHD at a discrete time associated with the multi-target pos-
terior density, the prediction and updating steps for the particle
PHD filter can be described as follows:

1) Prediction: Particles x̃m,i
k are drawn from the predicted

particle set as (1) and fed into the prediction model of the particle
PHD filter, which is described as [23]

D(Xk |Zk−1) =
∫
φ(x̃m,i

k |Xk )D(Xk−1 |Zk−1)δx̃
m,i
k +Υk (Xk )

(6)
where Υk is the intensity function of the new target birth RFS,
φ(x̃m,i

k ) is the analogue of the state transition probability in the
single target case which is calculated from

φ(x̃m,i
k |Xk ) = e(x̃m,i

k |Xk ) + β(x̃m,i
k |Xk ) (7)

in which e(·) is the probability that the target still exists at
time k and β(·) is the intensity of the RFS for spawned targets.
When exploiting the PHD filter with the particle filter, the PHD
of states is represented by the weights of the particles, which
include the survived particles and new-born particles.

In the traditional particle PHD filter, the particles employed
to describe the new-born targets are selected randomly in the
scene, however, in human tracking, the new-born targets can
be obtained by employing a background subtraction step, as
proposed in Section III-D.1 to be described later. In this case,
assuming at time k, Jk new-born targets are obtained from the
background subtraction, the initial weights assigned to the new
born particles, which are employed to represent the new-born
targets, are calculated as

w̃b,i
k =

1
Jk ×N

(8)

where i = 1, ..., Jk ×N index the particles utilized to represent
the new-born targets, then the weights are fed into (6). Since
in a later step, the likelihood of all particles and the weights
are calculated in the same way, for convenience, the new-born
particles are added to the survived particles. With this method,
we can obtain a particle set, which includes particles for both
survived targets and new born targets

{x̃ik , w̃i
k |k−1}i=(Mk −1 +Jk )×N

i=1 (9)

where i is the index of the i-th particle. The weights obtained
from the prediction step are given as

w̃i
k |k−1 =

⎧
⎨
⎩
φ(x̃ik )w

i
k−1 i = 1, ...,Mk−1 ×N

Υk

Jk ×N i = Mk−1 ×N + 1, ..., (Mk−1 + Jk ) ×N.
(10)

In this way, the predicted PHD D(Xk |Zk−1) at time k for
target states Xk is obtained based on the weights of the particles.

2) Measurement Update: The update step of the PHD filter
is defined as [23]:

D(Xk |Zk ) = D(Xk |Zk−1)

×
[
pM (x̃ik ) +

∑
∀zk ∈Zk

ψk,zk (x̃
i
k )

κk + 〈ψk,zk (x̃ik ),D(Xk |Zk−1)〉

]

(11)

where pM (·) is the probability of missed detection,ψk,zk (x̃
i
k ) =

(1 − pM (x̃ik ))gk (zk |x̃ik ), and gk (zk |x̃ik ) is the single-target
likelihood defining the probability that a measurement zk is
generated by a target, κk is the clutter intensity, and 〈f, g〉 =∫
f(x)g(x)dx [14].
In the particle PHD filter, the PHD D(·) is represented by

the weights of particles. Once the new set of observations is
available, we can substitute the approximation of D(Xk |Zk−1)
into (11) and the weights of each particle are updated based
upon the receipt of the measurement Zk as [23]

w̃i
k =

[
pM (x̃ik ) +

∑
∀zk ∈Zk

ψk,zk (x̃
i
k )

κk + Ck (zk )

]
w̃i
k |k−1 (12)

where

Ck (zk ) =
(Mk −1 +Jk )×N∑

i=1

ψk,zk (x̃
i
k )w̃

i
k |k−1 . (13)
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Algorithm 1: Adapted particle PHD filter.

Input: {xmk−1}m=Mk −1
m=1 .

Output: {xmk }m=Mk
m=1 with Mk targets.

1: Generate (1) from {xmk−1}m=Mk −1
m=1 and feed into (6).

2: Select new-born particles as described in Section III-D.1.
3: Obtain (9) with weights as (10).
4: for i = 1 : (Mk−1 + Jk ) ×N do
5: Calculate g(zk |x̃ik ).
6: Update particle weights with (12).
7: end for;% Achieve particle set
{x̃ik , w̃i

k}i=(Mk −1 +Jk )×N
i=1

with updated weight.
8: Calculate Mk by (14) and (15).
9: Normalize w̃i

k with (16).
10: Initialize the cumulative probability c1 = 0
11: Update ci = ci−1 + w̃i

k , i = 2, ..., (Mk−1 + Jk ) ×N .
12: Draw a starting point μ1 ∼ [0, (Mk ×N)−1 ]
13: for j = 1, ...,Mk ×N do
14: μj = μ1 + (j − 1)/(Mk ×N)
15: while μj > ci do
16: i = i+ 1
17: end while
18: xjk = x̃ik
19: wj

k = N−1

20: end for
21: Clustering {xik , 1

N }i=Mk ×N
i=1 , calculate (5) and output

{xmk }m=Mk
m=1

Then the number of targets is calculated by the sum of all the
weights for particles as follows [23]:

M̃k =
(Mk −1 +Jk )×N∑

i=1

w̃i
k (14)

Mk = int(M̃k ) (15)

where int(·) takes the integer nearest to M̃k .
At each iteration k, Jk ×N new particles are added to the

old Mk−1 ×N particles for the new born targets. To limit the
growth of the number of particles, and to avoid the problem
of degeneracy, a resampling step is performed after the update
step. Firstly, the weights for the particles are normalized as

w̃i
k =

w̃i
k

M̃k

. (16)

The algorithm for the adapted particle PHD filter with a resam-
pling step at each time k is described as Algorithm 1 [24], where
the input {xmk−1}m=Mk −1

m=1 represents the survived targets from
the previous time k − 1 and the output {xmk }m=Mk

m=1 denotes the
tracking results in the form of the states of the targets.

The above method underpins the traditional particle PHD
filter for multiple human tracking. However, using this method,
the prediction of the states cannot be achieved accurately. We
therefore exploit a social force model to improve the prediction
of the states after step 3 and before step 4 of Algorithm 1
described in Section III-B, and an OCSVM classifier is utilized
to improve the accuracy in step 5 as detailed in Section III-D.2.

B. Social Force Model for Multiple Human Tracking

Recently, modeling the behavior of pedestrians has been an
important area of research mainly in evacuation dynamics and
traffic analysis. Helbing et al. [25], [26] proposed the social
force model for human tracking, where the human behavior,
destination and velocity information are utilized to model the
prediction for human targets.

Given a current set of target states {xmk }m=Mk
m=1 based on

the position, velocity and walking behaviour of each target in-
cluding its destination and avoiding collision with others [16],
it is assumed in a social force model that every human target
knows its current position and velocity, as well as its destina-
tion. In addition, it has social force with other targets if they
are closer in distance than a pre-defined threshold. It is also
often assumed that each target will predict the movement of
other targets via a constant velocity model. Thus, the position
information pmk = [pmk,x , pmk,y ]

T and the velocity information
vmk = [vmk,x , vmk,y ]

T , as the state of target xmk at time k, can be
used to represent the social force between the targets. The social
force model for target m is calculated between target m and all
other targets. For example, the social force between targets m
and n (n 	= m) is calculated based upon the following param-
eters: the distance and angular displacement between m and n:
dmk (n) andAm

k (n); the change of velocity compared with target
m: Um

k and the cosine between velocity and destination path of
target m: Wm

k [4].
The distance dmk (n) can be calculated as [16]

dmk (n) = ‖pmk + tvmk − pnk − tvnk ‖ (17)

where ‖ · ‖ denotes the Euclidean norm and t is the time interval
between frame k − 1 and k. Since we assume each target intends
to avoid collisions with other targets, the angular displacement
between the velocity of the two targets is also considered as one
of the important parameters for the social force model, which
can be represented as factor Am

k (n) [4]

Am
k (n) = 1 +

(vmk )T vnk
‖vmk ‖‖vnk ‖

. (18)

We also assume that each target m walks towards a desti-
nation pmo = [pmo,x , p

m
o,y ]

T , and in doing so tries to maintain a
desired speed um = [umx , u

m
y ]T . These two components can be

described as two energy functions Um
k and Wm

k , which denote
the change of velocity and cosine between the current velocity
and destination path for target m respectively

Um
k = ‖(vmk − um )‖ (19)

Wm
k =

(pmo − pmk )T vmk
‖pmo − pmk ‖‖vmk ‖ (20)

where vmk denotes the velocity of target m at time k.
After calculating the above parameters, the overall social

force for target m at time k can be written as [16]

Smk =
∑
n 	=m

dmk (n)Am
k (n) + λ1U

m
k + λ2W

m
k (21)

where λ1 and λ2 ∈ R + control the influence of the two regu-
larizers. After the social force is obtained for each target, it can
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Fig. 1. Flowchart of the proposed system for multiple human tracking, where
the red parts in the flowchart represent our contributions in the proposed system.

be incorporated into the prediction step of the particle filter. As
mentioned earlier, the PHD filter can be easily influenced by the
measurement noise, which may cause false alarms and missed
detections; to address this problem, we use an OCSVM in the
updating step to mitigate the noise effect. In the next section,
we present details for our proposed particle PHD filter with a
social force model-aided MCMC resampling step in prediction
and an OCSVM in the updating step.

III. SOCIAL FORCE MODEL-AIDED MCMC PHD FILTER

A. Overview of the Proposed System

Fig. 1 gives an overview of our proposed algorithm. When
an input frame is obtained from the video sequence, two main
steps are performed based upon the fundamental Bayesian fil-
tering framework: firstly, a social force model is established and
an MCMC resampling step is performed which serves as the
prediction part; secondly, background subtraction is employed
in the PHD update step with an OCSVM classifier to obtain the
states of the human targets as the resulting output.

B. Exponential-Term-Based Social Force Model

We exploit an exponential-term based energy function similar
to that in [16] to describe the social force model for the likelihood
calculation in the prediction stage of the MCMC-PHD filter.
When a particle x̃m,i

k is predicted to represent the state of target
m,xmk , at timek, its weight is predicted by the social force model
representing interactions with other existing targets. Based upon
(17), the distance between particle x̃m,i

k from target m and the
state xnk of target n can be used within an energy term

Em,i
k,d (n) = e

d
m , i
k

(n )

2 σ 2
d (22)

where σd controls the influence of the distance factor (denoted
by subscript d) on the social force model. So the larger the
distance between the predicted particle and the selected target,
the higher the energy from the distance aspect, and Em,i

k,d (n)
becomes minimum if the linear trajectories collide with each

other. In this paper, obstacles in the scenes are also considered;
the states of which are considered as targets with velocity vmk =
[0, 0]T to calculate the social force model for each particle. Since
the pedestrians will change their speed and angular velocity in
order to avoid collision with others, by employing (18), the
angular displacement factor for the social force model can be
represented as

Em,i
k,φ (n) = (Am,i

k (n))β (23)

where β controls the influence from the direction of the velocity
and the subscript φ is used to represent angular displacement.
Based on (22) and (23), the influence of multiple subjects can
now be modeled as a weighted product. For example where
particle x̃m,i

k is assigned an energy with respect to each tar-
get n (n 	= m) depending on its current distance and angular
displacement φ [16] of the form

Em,i
k (n) = Em,i

k,d (n)Em,i
k,φ (n). (24)

Two energy functions which denote the change of velocity
and cosine between current velocity and destination path for
particle xm,i

k respectively can also be represented

Ek,U (m, i) = e
− U

m, i
k

2 σ 2
v (25)

Ek,W (m, i) = e
−W

m, i
k

2 σ 2
D (26)

where σv and σD control the influence of changing the velocity
and destination on the social force of the target respectively.

To represent the state of target m, the overall interaction
energy for particle xm,i

k is predicted as

Sm,i
k =

∏
n 	=m

Em,i
k (n)Ek,U (m, i)Ek,W (m, i) (27)

where the calculation of Sm,i
k is different from those in [4] and

[16] where a sum function instead of a product function was
used.

The above equations can be used as the social force weight
functions for establishing a posterior distribution within the pre-
diction stage of the particle PHD filter. By calculating the social
force from other targets, the estimated weight for prediction
sm,i
k can be obtained by normalizing Sm,i

k . After calculating the
social force, the particle set with their social force model results
is obtained, which is used to derive the likelihood for particles
in the MCMC resampling step described in Section III-C, to
achieve more accurate prediction for particles.

C. Social Force Model-Based MCMC Resampling

In the traditional particle filter, an importance function is used
in the sample selection step [27], [22], however, the MCMC
based particle filter replaces the importance sampling step by
building a Markov chain which exploits the posterior distribu-
tion [22], and thereby improves diversity among particles. In this
paper, the MCMC resampling step is employed to improve the
accuracy of the prior distribution, where the social force model
is utilized to replace the likelihood function in the traditional
MCMC particle filter [28].
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Fig. 2. Basic operation of the proposed social force model-aided MCMC
based particle filter.

As described in [18], during the MCMC resampling, a particle
x̃m,i
k is propagated to a new state x̃m,i∗

k based on the following
model:

x̃m,i∗
k = x̃m,i

k + q (28)

where q denotes a zero-mean Gaussian noise vector. From the
Metropolis-Hastings acceptance probability [22], we have the
acceptance ratio calculated as

α = min

{
1,
p(zk |x̃m,i∗

k )p(x̃m,i∗
k |xmk−1)q(x̃

m,i
k |x̃m,i∗

k )

p(zk |x̃m,i
k )p(x̃m,i

k |xmk−1)q(x̃
m,i∗
k |x̃m,i

k )

}
.

(29)
Since in our work, q(·|x̃m,i

k ) is symmetric in its arguments, that
is

q(x̃m,i∗
k |x̃m,i

k ) = q(x̃m,i
k |x̃m,i∗

k ) (30)

we can calculate the acceptance ratio α as

α = min

{
1,
p(zk |x̃m,i∗

k )p(x̃m,i∗
k |xmk−1)

p(zk |x̃m,i
k )p(x̃m,i

k |xmk−1)

}
. (31)

In this work, the likelihoods of particle state p(zk |·) are replaced
by the results obtained from the social force model, thus

α = min

{
1,
sm,i∗
k p(x̃m,i∗

k |xmk−1)

sm,i
k p(x̃m,i

k |xmk−1)

}
. (32)

The state to be preserved is determined by drawing a point j
from a uniform distribution. If j < α then the new state xm,i∗

k

is retained, otherwise it is rejected. In this way, the social force
model is fed into the MCMC resampling step for achieving more
robust prediction.

Fig. 2 shows the steps of the social force model aided MCMC
resampling step with an example target m.

As shown in Fig. 2, a particle x̃m,i
k predicted from the state

model is chosen as the initial value of the Markov chain. A
new state x̃m,i∗

k is propagated as (28), then the acceptance ratio
α [28] is calculated as in (32), where the likelihood for the

Algorithm 2: Social force model based MCMC resampling
step (SFM-MCMC)
Input: Predicted particles for target m from state model
{x̃m,i

k }i=Ni=1
Output: Particles with predicted weights from the social

force model aided MCMC resampling {x̃m,i
k , w̃m,i

k |k−1}i=Ni=1
1: Initialize the Markov chain by the predicted particles

from the state transition function using the states of
target at k − 1.

2: for i = 1:N +B do
3: Propagate x̃m,i∗

k from x̃m,i
k with (28) .

4: Calculate sm,i
k and sm,i∗

k for x̃m,i
k and x̃m,i∗

k with
(27).

5: Compute α with (32).
6: Draw a point j from a uniform distribution.
7: if j < α then
8: retain the new state: x̃m,i

k = x̃m,i∗
k .

9: else reject the new state.
10: end if
11: end for
12: Discard the first B particles of the iterations.

particles p(zk |·) is obtained from the exponential term social
force model sk , described in Section III-B. After resampling
the particles, which are obtained from the state model, a more
robust prior distribution is achieved. The example pseudocode
of this MCMC particle filter for target m is then summarised
as Algorithm 2, where the inputs are the predicted particles for
target m and the output is the posterior distribution from the
prediction stage, and B denotes the number of burn-in period
particles.

We note that the acceptance of a proposed state depends on
the likelihood found by calculating the social force from the
other targets. The predicted weight for particles w̃i

k |k−1 can be
replaced by the results obtained from the social force model

w̃i
k |k−1 = sik . (33)

In this case, after resampling all the predicted particles, we can
obtain a set of predicted particles with estimated weights from
the social force model {x̃ik , w̃i

k |k−1}i=(Mk +Jk )×N
i=1 . In the next

section, we will present the measurement we use for updating.

D. Robust Measurement Model

Besides the state model, another important step is the mea-
surement model for particle updating, in this work, two main
steps are employed to obtain a robust measurement model: back-
ground subtraction and a one class support vector machine.

1) Background Subtraction: In multiple human tracking, the
measurement and the new-born targets are difficult to select from
the video sequence. In the prediction part, instead of sampling
particles for a new-born target, we employed a background sub-
traction step to facilitate the sampling step. The background sub-
traction results can also be utilized as the random measurement
set for the proposed particle PHD filter [24]. In this paper, we
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used the codebook method [29], [30] for background subtraction
which is robust to capture structural background motion over a
long period of time under limited memory. In this method, sam-
ples at each pixel are clustered into the set of codewords based
on a color distortion metric together with brightness bounds. Not
all pixels are represented with the same number of codewords.
The background is encoded on a pixel-by-pixel basis. Back-
ground/foreground detection involves testing the difference of
the current image from the background model with respect to
color and brightness differences. If an incoming pixel satisfies
two conditions, it is classified as background: first, the color
distortion to a codeword is less than the detection threshold;
second, its brightness lies within the brightness range of that
codeword. Otherwise, it is classified as foreground [30]. Some
background subtraction results are shown in Section IV-C.1. The
results can be used to select the new-born targets and build up
an RFS for the measurement set [31]. The center of each block
ck = [ck,x , ck,y ]T which contains the localization information,
can be employed as one part of the measurement [24], so the
likelihood for each particle based upon the foreground position
gb(ck |x̃ik ) can be calculated as

gb(ck |x̃ik ) = e
− (p i

k
−c k )T (p i

k
−c k )

σ 2
R (34)

which shows the distance between the state of the particles and
the foreground information, where pik = [pik,x , p

i
k,y ]

T denotes
the position of the targets taken from the particle x̃ik andσR is the
standard deviation of the measurement model in the Bayesian
filtering model.

However, the raw background subtraction results generally
contain many artifacts, which include small ‘salt and pepper’
terms and large noise patches caused by the problem of poor
illumination and similar color between the foreground and back-
ground. The noise patches may be regarded as a new born target
in the prediction step of the PHD filter and cause the occurrence
of false alarms [32]. To address this issue, in this paper, we pro-
pose to use an OCSVM classifier [33] to distinguish the human
targets from noise as described next.

2) One Class Support Vector Machine: The basic idea is
that given a data set drawn from an underlying probability dis-
tribution p, the OCSVM estimates a function f to describe its
‘support region’ (where a sample of p most likely comes from),
where the corresponding values of the function f are larger than
a particular threshold value [34].

To design the classifier, based on a training dataset, the fol-
lowing quadratic optimisation problem needs to be solved:

min
w ,ς ,ρ

1
2
‖w‖2 +

1
νL

L∑
i=1

ςi − ρ

subject to (wT Φ(x̃ik )) ≥ ρ− ςi , ξi ≥ 0 (35)

where w is the normal vector, ν ∈ (0, 1], ρ is from the La-
grangian model of the SVM, which is set to be zero in this work
and the nonzero slack variables ς = [ς1 , ..., ςL ] are introduced
to allow for the possibility of outliers (the data points which are
not drawn from the supporting region) and Φ(·) is a nonlinear

kernel function which maps the original data into a different
space for better separation. For a test particle x̃ik , the decision
function for estimating whether it comes from the determined
distribution is

f(x̃ik ) = (wT Φ(x̃ik )) − ρ. (36)

In the application of multiple human tracking, the features
from both color and oriented gradient [35] of multiple human
regions are employed for training the OCSVM classifier, which
can be used to estimate the likelihood function value for each
particle. Given a particle x̃ik at time instance k, the features from
both the color and oriented gradient histogram are extracted
based upon the position, width and height information of x̃ik and
the corresponding likelihood function, ϑk (x̃ik ) can be estimated
as

ϑk (x̃ik ) = e(� ·f (x̃ i
k )) (37)

where � is a constant we set for calculating the weights for the
particles, thereby controlling the influence of the sub-likelihood
from the OCSVM. Its value is chosen empirically in our work.
In this way, the likelihood for each particle is obtained and these
weights can then be taken as the input to the updating step of
the PHD filter.

E. Particle PHD Updating and Resampling

After obtaining the particles from the MCMC resampling
step, we can achieve a particle set with their estimated weights
described by their social force as described in Section III-C
and the likelihood g(zk |x̃ik ) is calculated based upon the results
from both background subtraction and the OCSVM

g(zk |x̃ik ) = ϑk (xik )gb(ck |x̃ik ). (38)

By feeding (38) into (12), the weights for particles are updated.
The number of human targets and the particles are resampled as
in Algrorithm 1 described in Section II.

F. Summary of the Proposed System

A summary of the proposed system is given in Algorithm 3,
which we refer to as SFM-MCMC-OCSVM-PHD.

IV. SIMULATION EXPERIMENTS

In this section, simulations are provided to examine the per-
formance of our system and to compare with results from other
recent methods.

A. Dataset Selection and Parameter Setup

In order to evaluate the performance of the proposed system
for multiple human tracking, particularly to handle the situation
of varying number of targets, close interactions and occlusions,
we firstly chose sequences from three different publicly avail-
able video datasets: one from the PETS2009 dataset [36] where
3–6 human targets are walking in an outdoor campus environ-
ment, one sequence from the CAVIAR dataset [37] where 1–5
human targets are walking in a shopping mall environment and
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Algorithm 3: Social force model-aided MCMC-OCSVM
particle PHD filter (SFM-MCMC-OCSVM-PHD)
Input: Video sequence with � frames.
Output: {xmk }Mk

m=1 and Mk .
1: OCSVM classifier training.
2: Initialize targets states in the first frame {xm1 }m=M 0

m=1 .
3: for k = 2:� do
4: Background subtraction to extract the measurement

set Zk for targets and the estimated positions of the
new born targets.

5: Predict particles for both survived targets and new
born targets separately as described in Algorithm 1.

6: Calculate social force sik for each particle.
7: SFM-MCMC resampling with Algorithm 2.
8: Calculate g(zk |x̃ik ) by (34), (37) and (38).
9: Update the PHD weights with (12).

10: Calculate Mk by (14).
11: Resampling of particles with the method described

in Algorithm 1.
12: Output tracking results at time k, {xmk }Mk

m=1 and
Mk .

13: end for

Fig. 3. Selected frames and examples for background subtraction results from
the three selected sequences from three different datasets, i.e., (a) is from the
“EnterExitCrossingPaths1cor” sequence from the CAVIAR dataset, (b) is from
the “PETS09 View001 S2 L1” sequence from the PETS2009 dataset, and
(c) is from “TUD Stadtmitte” sequence from the TUD dataset, where we
can find the human target boundaries are extracted successfully, but there is still
much environmental noise which may cause missed detections and false alarms.
In order to mitigate such noise, an OCSVM classifier will be employed based
upon the features from both color and oriented gradient histograms of human
targets.

one from the TUD dataset [38] where 5–7 human targets are
walking in an outdoor-shopping mall environment. In order to
make more reliable evaluation, 17 more sequences from the
CAVIAR dataset are also employed. All sequences are recorded
at a resolution of 320 × 240 pixels at 25 frames/sec and each
sequence contains around 200 frames, including human targets
appearing, disappearing and occlusion in the scenario, selected
example frames are given in Fig. 3. 100 particles are employed
for each target and for the MCMC step, 20 burn-in particles
are used for each target in the MCMC resampling step. The set
up of the remaining parameters is discussed in the following
sections. The dynamic and measurement models which were
used to predict and update the particles are described as

xk = Fxk−1 + ωk (39)

zk = Hxk + vk (40)

TABLE I
BACKGROUND SUBTRACTION PARAMETERS FOR EACH SEQUENCE

αb βb εb

CAVIAR dataset 0.5 2 30
PETS 2009 0.7 1.5 20
TUD dataset 0.7 1.7 10

where the state and measurement transformation matrices F and
H are given as

F =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 Δt 0 0 0
0 1 0 Δt 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0
0 1
0 0
0 0
0 0
0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

T

(41)

where Δt is the time interval between frame k and k + 1
which is set as 1 in the simulations, the zero-mean noise vector
ωk for prediction in the state model has covariance structure
cov{ωk} = Diag{25, 25, 16, 16, 4, 4} and for vk cov{vk} =
Diag{25, 25}. The missed detection probabilitypM = 0.01, the
survival probability e = 0.99, the new born intensity Υ = 0.1
and clutter intensity κ = 0.01. The parameters for background
subtraction, exponential-term based social force model and
OCSVM classifier are selected empirically, which are shown
as follows:

1) Parameters for Background Subtraction: For the back-
ground subtraction method described in Section III-D.1, the
parameters that need to be set include the shadow bound αb , the
highlight bound βb and the color detection threshold εb which
for each sequence are given as Table I, which were found empir-
ically to yield best performance. For other parameters, we used
the default values as those set in [30], for example, the color
sampling bandwidth is set to be 20 for all these three datasets.
Due to space limitation, the set-up for the remaining parameters
is omitted but can be found from [30].

2) Parameters for Exponential-Term-Based Social Force
Model: The exponential-term based social force model intro-
duced in Section III-B has many parameters, such as σd , β,
σv , and σD , which control the influence from distance, angular
displacement, change of velocity and destination respectively.
In this paper, the parameters are selected based on pilot tests,
we use a sequence from PETS2009 to perform simulations with
different values of the above four parameters and use the mean
Euclidean error for each target position as the evaluation mea-
sure to select the best parameter set, which is shown in Table II.
From the experiment and comparison, we found when the pa-
rameters are chosen as: σd = 4, β = 4, σv = 4, and σD = 2, the
exponential-term based social force model performs the best,
therefore these settings are adopted for simulations in subse-
quent sections.

3) Parameters for OCSVM-Classifier: In our work, to ob-
tain the OCSVM classifier, the training dataset S = [s1 , ..., sL ]
is employed, where each training data s is a 593 × 1 vector,
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TABLE II
EXPERIMENTAL VALUES FOR PARAMETERS

USED IN SOCIAL FORCE MODEL

σd β σv σD Mean of
Euclidean error

1 1 1 1 5.15
1 1 1 2 5.11
1 1 1 4 5.33
1 1 1 8 5.12
1 2 1 2 5.15
1 4 1 2 5.14
1 8 1 2 5.33
1 4 2 2 5.53
1 4 4 2 5.21
1 4 8 2 5.41
2 4 4 2 5.12
4 4 4 2 5.05
8 4 4 2 5.22
16 4 4 2 5.09
32 4 4 2 5.18

TABLE III
PARAMETERS VALUES USED IN OCSVM
CLASSIFIER AND SYSTEM EVALUATION

� value 1 25 50 75 100
OSPA value 4.49 4.77 4.86 4.25 4.77

containing human features extracted from the training frame,
including 512 parameters from the color histogram and 81 from
oriented gradient histogram. The OCSVM classifier is trained
by 82 sets of features extracted from different human targets.
The influence of the OCSVM is controlled by parameter � in
(37), which is also chosen based on experiments. The OSPA
results with respect to the different values of � are shown as
Table III. From the comparison,� = 75 is found to perform the
best, hence is employed in the later simulations.

B. Performance Metrics

Several measures are employed to examine the performance
of the proposed particle PHD filter and compare the results
from the related algorithms, including the Euclidean error in
each frame, the optimal subpattern assignment (OSPA) [40],
[41], and the multiple object tracking precision (MOTP) [42].
For a sequence with � frames, assuming at time k, the track-
ing system gives the tracking results Ok = {o1

k , ...,o
n
k } with n

targets while Y = {y1
k , ...,y

m
k } is the ground truth information

with m targets. These measures are defined below. In addition,
the computational complexity has also been considered in our
evaluations.

1) Mean and Standard Deviation of Euclidean Error on Each
Frame: The localization error for each target in terms of mean
and variance can be used as a performance metric to evaluate
the accuracy and stability of our proposed tracking system. The
mean of Eucidean errors (MEE) at frame number k is denoted

by

MEEk =
1
n

n∑
i=1

‖oik − yik‖ (42)

and its standard deviation (SD) is given by

SDk =

√√√√ 1
n

n∑
i=1

(‖oik − yik‖ −MEEk )2 . (43)

2) OSPA: In multiple human tracking, the accuracy not only
depends on the error between the estimated position and the
ground truth information of the targets in the scenario, but also
the missed detections and false alarms. Dominic et al. proposed
a metric to evaluate the tracking system by error from both
distance and the number of targets [39] which is used by Ristic
et al. [40] for evaluating multiple human tracking algorithms.
As described in [39], given the set of tracking results Ok and
the ground truth information Yk , the distance between Ok and
Ym
k , dck (o

n
k ,y

m
k ) := min(c, d(onk ,y

m
k )) with cut off at c > 0

and 1 ≤ p ≤ ∞, is calculated as [40]

dck,p(Ok ,Yk ) :=
(

1
n

(
min
π∈∏ n

m∑
i=1

dc(oik ,y
π (i)
k )p + cp(n−m)

)) 1
p

(44)

for m ≤ n, and dck,p(O,Y) = dcp(Y,O) for m > n. The func-
tion dcp is named as the OSPA metric of order pwith cut-off c. In
this paper, we use c = 20 and p = 2 in our evaluations. Based on
the OSPA metric, a new evaluation measure for multiple target
tracking has been recently proposed, named optimal subpattern
assignment for multiple target tracking (OSPAMT) [41], how-
ever, in this paper OSPA and the following MOTP measure,
which is also employed in [43], are sufficient for comparative
evaluation.

3) MOTP: The MOTP [42] is the total error in the estimated
position for matched object-hypotheses pairs over all frames,
averaged by the total number of matches made. It shows the
ability of the tracker to estimate the precise object positions,
which can be calculated as

MOTPk =

∑i=n,k=�
i=1,k=1 error

i
k∑�

k=1 ck
(45)

where errorik denotes the Euclidean error for target i at time k
and ck is the total number of matched targets at time k.

C. Evaluation of Tracking Results

In this section, our proposed exponential-term based SFM-
MCMC is compared with the traditional SFM proposed in [4]
and the S-SFM proposed by Pellegrini et al. in [16]. The pro-
posed SFM-MCMC-OVSCM-PHD filter is compared with the
traditional particle PHD filter in [24]. First, the comparison be-
tween the particle PHD filter and SFM-MCMC-PHD filter is
made, followed by the comparison between the SFM-MCMC-
PHD and SFM-MCMCOCSVM-PHD filters.
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Fig. 4. Comparison in terms of Euclidean tracking error of the three social
force models when employed by the particle PHD filter for multiple human
tracking. (a) is the comparison for the “EnterExitCrossingPaths1cor” sequence
from the CAVIAR dataset, (b) is for the “PETS09 View001 S2 L1” sequence
from the PETS2009 dataset, and (c) is for the “TUD Stadtmitte” sequence
from the TUD datasett. The blue line denotes the traditional SFM [4], the green
line denotes S-SFM [16] and the red line denotes the SFM-MCMC algorithm
proposed in our paper.

1) Background Subtraction Results: In Fig. 3 we show some
selected frames and results from the background subtraction for
three datasets we employed, from which, we can find most of
the targets appearing in the scenario, however, there is still much
noise from the environment, which may cause false alarms and
hence influence the performance. What’s more, sometimes it
may fail to detect the targets because of occlusion and the poor
lightning. In this case, the OCSVM classifier is employed to aid
calculation for each particle, in this way, the noise is mitigated, in
the later section, the improvement made by employing OCSVM
will be shown.

2) Social Force Model Results: By employing the param-
eters in Table II, and three example sequences selected from
different datasets, our proposed social force model is first com-
pared with the traditional SFM [4] and the S-SFM [16]. Fig. 4
shows the comparison of Eulidean tracking error in each frame
between the above methods for the three sequences. The MEE
over all the frames and their SD are also compared in Table IV.
From Table IV and Fig. 4 we can see that the proposed social
force model consistently attains better performance for the three
sequences in terms of both the MEE and SD, as compared with
the two baseline social force models. The improvement of the
proposed social force model comes from the exponential-term
model employed to describe the parameters such as the dis-
tance, angle, change of velocity, and the destination used in the

model, with their influence controlled by the variance terms in
the exponential-term model. In addition, in the proposed social
force model, we have employed a threshold to control the mod-
elling of the social forces between two targets, by excluding
those that are far apart from each other in terms of distance
(i.e. greater than the pre-defined threshold). This essentially
avoids the influence from unnecessary targets, hence improv-
ing the tracking accuracy when more targets are present in the
environment. After the SFM-MCMC resampling, the predicted
weights for particles are updated. Fig. 5 shows an example
distribution of predicted particle weights, for frame 11 of the
‘ PETS09 View001 S2 L1′ sequence from the PETS2009
dataset.

From the figure we can find that the particles with higher
social force are given higher weights than others, the redun-
dant peaks in the figure are because of the noise patches which
will be mitigated in the updating step. Compared with the tra-
ditional particle PHD filter, where the particles are given the
same weights in the prediction stage, the weights in our SFM-
MCMC-PHD filter are determined based on the SFM which
leads to more accurate prediction.

3) OSPA Evaluation: In order to evaluate our proposed
system in terms of both localization and cardinality, the OSPA
metric has also been employed. In this paper, we use c = 20
and p = 2. Comparisons for the three example sequences as in
the previous experiment are shown in Fig. 6, where the black
line denotes the OSPA value from the traditional PHD filter,
the blue line corresponds to our proposed SFM-MCMC-PHD
particle PHD filter and the red line denotes our proposed SFM-
MCMC-OCSVM-PHD algorithm. To perform more reliable
evaluation, the average OSPA values for all the 20 sequences
based upon different methods have been obtained and are
shown in Table V. From the above comparison, we can observe
that the improvement of the proposed system comes from
both the exponential-term based SFM-MCMC resampling step
and the OCSVM likelihood calculation step. The background
subtraction is an integrated component as in [25] which is
used to determine the measurement foreground pixels. Without
background subtraction, none of the methods under study
would operate, so the individual improvement from background
subtraction is not provided in this paper. By using the OCSVM,
the average OSPA value for the 20 sequences is further reduced
by 4.71 pixels since the OCSVM can distinguish the measure-
ment of the human targets from the noise in the environment. To
examine the difference in OSPA results between the traditional
particle PHD filter and our proposed SFM-MCMC-OCSVM-
PHD filter, one-way ANOVA based F -test [44] is performed.
We obtained F = 8.74, p-value = 0.0051 and the degree of free-
dom (1,42), where the F value is the ratio of the between-group
variability to the within-group variability and the p-value is the
probability of a more extreme result than the value we actually
achieved when the null hypothesis is true. Using the degree of
freedom value and significant value 0.05, the critical value Fcrit
is found to be 4.07 from the F -distribution table given in [44].
According to the test, the results are accepted as statistically
significant if F ≥ Fcrit and the p-value is less than the signifi-
cant value. From the test results, we can confirm the difference
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TABLE IV
COMPARISON OF THE MEAN OF THE EUCLIDEAN TRACKING ERRORS OVER THE FRAMES AND THEIR STANDARD DEVIATION BY THREE SOCIAL

FORCE MODELS FOR THE “ENTEREXITCROSSINGPATHS1COR” SEQUENCE FROM THE CAVIAR DATASET, THE “PETS09 VIEW001 S2 L1”
SEQUENCE FROM THE PETS2009 DATASET, AND THE “TUD STADTMITTE” SEQUENCE FROM THE TUD DATASET

CAVIAR PETS2009 TUD

SFM [4] S-SFM [16] SFM-MCMC SFM [4] S-SFM [16] SFM-MCMC SFM [4] S-SFM [16] SFM-MCMC

MEE (pixel) 31.81 14.28 13.22 68.25 40.76 39.41 188.70 89.60 77.0
SD (pixel) 39.55 9.99 8.26 17.20 14.95 13.29 85.12 41.06 33.64

Fig. 5. Comparison between the two distributions of the predicted particle
weights, where (a) is from the traditional particle PHD filter and (b) is from
the SFM-MCMC-PHD filter; for frame 11 of the “PETS09 View001 S2 L1”
sequence from the PETS2009 dataset, where the ground truth position of the
targets are (142,102), (233,115), and (200,95).

in OSPA results between our proposed SFM-MCMC-OCSVM-
PHD and traditional PHD filter is statistically significant.

4) MOTP Evaluation: Besides the Euclidean error in each
frame, standard deviation and OSPA are used for evaluation,
MOTP is also employed to evaluate the proposed tracking sys-
tem. The MOTP results for the three selected sequences from
different datasets are shown in Table VI. From the MOTP com-
parison, it can be observed clearly that our proposed method
can greatly improve the tracking accuracy over the traditional
PHD filter. For the CAVIAR dataset, the MOTP value is reduced
by 6.14 pixels by employing the SFM-MCMC-PHD filter and
then further reduced by 2.71 by employing the SFM-MCMC-
OCSVM-PHD filter. For the PETS2009 dataset, the MOTP
value is reduced by 1.67 and 2.92 pixels respectively. For the
TUD dataset, the MOTP value is reduced by 2.56 and a further
1.79 pixels respectively. The average MOTP value over all the
20 sequences is reduced from 10.70 to 8.63 pixels by employing
the SFM-MCMC-PHD filter and a further 6.31 pixels by SFM-
MCMC-OCSVM-PHD filter. The reduction of MOTP is mainly
due to the utilization of the social force model aided MCMC
step for resampling in the prediction stage, so that a more accu-

Fig. 6. Performance evaluation with OSPA measure for our proposed social
force model aided MCMC particle PHD filter and the traditional particle PHD
filter for multiple human tracking. The performance is examined with the “En-
terExitCrossingPaths1cor” sequence from the CAVIAR dataset, the “PETS09
View001 S2 L1” sequence from the PETS2009 dataset, and the “TUD Stadt-
mitte” sequence from the TUD dataset. The black line in the figure denotes the
OSPA value from the traditional PHD particle PHD filter; the blue line shows
the result by adding a social force model aided MCMC resampling step in the
prediction stage of the particle PHD filter, and the red line denotes the OSPA
value from our proposed SFM-MCMC-OCSVM-PHD filter.

rate posterior distribution is achieved. Moreover, the OCSVM
classifier in the updating step helps to mitigate the measurement
noise from the environment so that the problems of missed de-
tections and false alarms are mitigated. By performing a one way
ANOVA based F test for our proposed SFM-MCMC-OCSVM-
PHD filter and the traditional particle PHD filter, we obtained F
= 6.86, p-value = 0.0131 and the degree of freedom (1,34). By
setting the significant value to be 0.05, the critical value Fcrit
is found to be 4.13 from the F -distribution table given in [44].
From the test results, we can observe the difference in MOTP
results between our proposed SFM-MCMC-OCSVM-PHD and
the traditional PHD filter is statistically significant.
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TABLE V
COMPARISON OF OSPA OVER 20 SEQUENCES

FOR PROPOSED PHD FILTERS

PHD
[24]

SFM-
MCMC-

PHD

OCSVM-
PHD

SFM-
MCMC-
OCSVM-

PHD

OSPA (pixel) 21.93 13.54 12.42 8.83
Improvement – 38.25% 43.36% 59.73%

TABLE VI
MOTP COMPARISON FOR THREE SEQUENCES USING THE

TRADITIONAL AND PROPOSED PARTICLE PHD FILTERS

CAVIAR PETS2009 TUD

PHD [24] 12.49 8.23 16.42
SFM-MCMC-PHD 6.35 6.56 13.86
OCSVM-PHD 5.73 6.15 14.21
SFM-MCMC-OCSVM-PHD 3.64 4.84 12.07

TABLE VII
COMPARISON OF OSPA RELATED

TO THE NUMBER OF PARTICLES

Number of particles 50 100 500 1000

Run-time/frame 1.44s 1.84s 4.85s 5.10s
OSPA (pixel) 22.52 21.32 21.06 21.03

5) Computational Complexity: In this section, the computa-
tional complexity is also examined through the run-time. Since
we are using the particle PHD filter in this system, the number
of particles plays an important role in affecting the computa-
tional complexity. In order to select the most suitable number of
particles, as an example, the OSPA measure and run-time as a
function of the number of particles are calculated by employing
a sequence from the PETS2009 dataset, the results of which
are shown in Table VII. It can be observed that the increase
in particle number has a bigger impact on the computational
cost as compared with that on the OSPA results. Similar results
have been observed for other sequences. In our simulations,
the number of particles is selected empirically based on these
experiments. We found that the number of particles chosen as
100 tends to provide a good compromise between run time and
tracking performance.

The computational complexity of the proposed tracking sys-
tem has also been considered. Compared with RFS, the parti-
cle PHD filter has a smaller computational cost since only the
first moment of the posterior is employed instead of the poste-
rior itself. However, the main growth of the time complexity is
from the background subtraction and the OCSVM part of the
proposed tracking system. If the times needed for determining
the brightness and color conditions are denoted as TB and TC
respectively, and the update time is TU , the total processing time

TABLE VIII
RUN-TIME COMPARISONS FOR PROPOSED PHD FILTERS

PHD [24] SFM-MCMC-PHD SFM-MCMC-OCSVM-PHD

Run-time/frame 1.39s 1.43s 1.95s

TABLE IX
OSPA COMPARISON OF THREE RECENT METHODS AND

THE PROPOSED METHOD OVER 20 SEQUENCES

PHD [24] Method in [46] Method in [45] Proposed method

OSPA (pixels) 21.93 15.39 12.95 8.83

for a single image pixel can be expressed as

T = NBTB +NC (TB + TC ) +NU (TB + TC + TU ) (46)

where NB is the number of codewords rejected after testing the
brightness condition, NC is the number of codewords rejected
after testing both the brightness and color conditions and NU

is 1 if a matching codeword is found and 0 otherwise. Further-
more, the computational complexity of the OCSVM classifier is
O(m3) wherem is the number of the training patterns. As com-
pared with the traditional PHD filter [24], the time complexity of
the proposed algorithm becomes higher due to the introduction
of the SFM and OCSVM steps. The average run-time (calcu-
lated using 20 video sequences from the three different datasets)
is shown in Table VIII. This run-time comparison is made by
implementing the algorithms with MATLAB (version R2015a)
with a 3.4 GHz I5 processor.

From this table, we can find that the run time for the traditional
particle PHD filter is 1.39 s/frame, and the overhead for the
social force model aided MCMC resampling step is 0.04 s/frame
and for the one class SVM is 0.52 s/frame, the run-time increases
2.9% by employing the social force based MCMC resampling
step, and grows 36% by employing the OCSVM. However, the
tracking accuracy has been improved by 38.25% and 34.9% by
employing them respectively. From the comparison, we find that
the increase of time complexity is mainly due to the use of the
OCSVM classifier when calculating the features from the color
and oriented gradient histograms for each particle.

6) Comparison With State-of-the-art Methods: We also
compared our work with two recent multiple human tracking
methods proposed in [45] and [46]. In [45], online learning of
non-linear motion patterns and robust appearance models are
used for multiple target tracking and in [46] a background sub-
traction based multi-Bernoulli filtering method is proposed for
visual tracking. The mean of the OSPA measure is employed for
evaluation, which is shown in Table IX. All the three methods
are evaluated on the 20 sequences from the CAVIAR, PETS2009
and TUD datasets.

From the comparison in the table we observe that the multi-
Bernoulli filter proposed in [46] performs better than the particle
PHD filter proposed in [24]. However, in [46], a kernel based
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Fig. 7. Selected examples of failure cases of the proposed tracking system. In
(a) the tracking results are influenced by the failure of detection from background
subtraction, and in (b) the brightness of the environment causes the failure of
the background subtraction.

background subtraction method was employed instead of the
codebook method which we employed in our system. As such,
the quality of the measurement is generally worse than that in
our proposed system. Moreover, the social force model based
MCMC resampling step provides more accurate predictions of
target states. The appearance modelling based method in [45],
however, does not address the challenge of varying number of
targets hence it generates an OSPA value that is higher than our
proposed method.

7) Examples of Tracking Failures: Nevertheless, the track-
ing results of the proposed system can be degraded by the fol-
lowing factors: increase in the number of targets and variations
in lighting and color of the targets which will influence the
results from background subtraction. For example, for the se-
quence Browse1 from the CAVIAR dataset, the lighting in the
environment is varying, and there is a large amount of noise in
the results obtained from the background subtraction, hence it
fails to provide accurate foreground measurement, which also
leads to possible failure of the tracking system. What is more,
when human targets are very crowded in the visual scene, the
social force model can be influenced by false alarms.

Fig. 7 shows selected failure cases of the proposed tracking
system. We would like to note that these tracking scenarios pose
common challenges to many existing methods such as [47]–[50]
as well as the baseline methods [24], [46]. The codebook method
for background subtraction is adopted in our study as it is the
preference in other works in this field [17], [30] but there may
be other approaches to further improve the detection results and
hence the quality of the measurement set. However, a detailed
comparison of such techniques is outside of the scope of this
work.

The proposed method gives advantages over the baselines in
certain scenarios especially with group target movements, vary-
ing number of targets, and large amount of environmental noise.

However, to address the aforementioned common challenges,
more powerful techniques in appearance modeling [51]–[53],
background subtraction and occlusion handling [2] are required
which will be the focus of our future research.

V. CONCLUSION

In this paper, we have presented a novel method based upon
the particle PHD filter for multiple human tracking, where in
the prediction step a novel social force model was used in an
MCMC chain for resampling the particles; the posterior from the
MCMC resampling was used as the posterior distribution in the
particle updating step; in the particle likelihood calculation step,
an OCSVM classifier was used to mitigate the adverse impact
of measurement noise. The simulations showed improvement
of our proposed method in terms of both localization and cardi-
nality. In our future work, we will explore alternative classifiers,
e.g. an online one-class classifier, for dealing with the situation
where only a limited length of video sequence is available. In
addition, sparsity in either the observed feature space or the
parameter space of the tracking model could be exploited to
further reduce the computational complexity of the proposed
method.
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