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Abstract

Understanding human motion behavior is critical for au-

tonomous moving platforms (like self-driving cars and so-

cial robots) if they are to navigate human-centric environ-

ments. This is challenging because human motion is inher-

ently multimodal: given a history of human motion paths,

there are many socially plausible ways that people could

move in the future. We tackle this problem by combining

tools from sequence prediction and generative adversar-

ial networks: a recurrent sequence-to-sequence model ob-

serves motion histories and predicts future behavior, using

a novel pooling mechanism to aggregate information across

people. We predict socially plausible futures by training ad-

versarially against a recurrent discriminator, and encour-

age diverse predictions with a novel variety loss. Through

experiments on several datasets we demonstrate that our

approach outperforms prior work in terms of accuracy, va-

riety, collision avoidance, and computational complexity.

1. Introduction

Predicting the motion behavior of pedestrians is essen-

tial for autonomous moving platforms like self-driving cars

or social robots that will share the same ecosystem as hu-

mans. Humans can effectively negotiate complex social in-

teractions, and these machines ought to be able to do the

same. One concrete and important task to this end is the

following: given observed motion trajectories of pedestri-

ans (coordinates for the past e.g. 3.2 seconds), predict all

possible future trajectories (Figure 1).

Forecasting the behavior of humans is challenging due to

the inherent properties of human motion in crowded scenes:

1. Interpersonal. Each person’s motion depends on the

people around them. Humans have the innate ability

to read the behavior of others when navigating crowds.

Jointly modeling these dependencies is a challenge.

2. Socially Acceptable. Some trajectories are physically

possible but socially unacceptable. Pedestrians are gov-

Figure 1: Illustration of a scenario where two pedestrians

want to avoid each other. There are many possible ways that

they can avoid a potential collision. We present a method

that given the same observed past, predicts multiple socially

acceptable outputs in crowded scenes.

erned by social norms like yielding right-of-way or re-

specting personal space. Formalizing them is not trivial.

3. Multimodal. Given a partial history, there is no single

correct future prediction. Multiple trajectories are plau-

sible and socially-acceptable.

Pioneering work in trajectory prediction has tackled some

of the above challenges. The interpersonal aspect has been

exhaustively addressed by traditional methods based on

hand-crafted features [2, 17, 41, 46]. Social acceptabil-

ity has been recently revisited with data-driven techniques

based on Recurrent Neural Networks (RNNs) [1, 28, 12, 4].

Finally, the multimodal aspect of the problem has been stud-

ied in the context of route choices given a static scene (e.g.,

which streets to take at an intersection [28, 24]). Robicquet

et al. [38] have shown that pedestrians have multiple navi-

gation styles in crowded scenes given a mild or aggressive

style of navigation. Therefore, the forecasting task entails

outputting different possible outcomes.

While existing methods have made great progress in ad-

dressing specific challenges, they suffer from two limita-

tions. First, they model a local neighborhood around each

person when making the prediction. Hence, they do not

have the capacity to model interactions between all people

in a scene in a computationally efficient fashion. Second,

they tend to learn the “average behavior” because of the
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commonly used loss function that minimizes the euclidean

distance between the ground truth and forecasted outputs.

In contrast, we aim in learning multiple “good behaviors”,

i.e., multiple socially acceptable trajectories.

To address the limitations of previous works, we propose

to leverage the recent progress in generative models. Gen-

erative Adversarial Networks (GANs) have been recently

developed to overcome the difficulties in approximating

intractable probabilistic computation and behavioral infer-

ence [14]. While they have been used to produce photo-

realistic signals such as images [34], we propose to use

them to generate multiple socially-acceptable trajectories

given an observed past. One network (the generator) gener-

ates candidates and the other (the discriminator) evaluates

them. The adversarial loss enables our forecasting model

to go beyond the limitation of L2 loss and potentially learn

the distribution of “good behaviors” that can fool the dis-

criminator. In our work, these behaviors are referred to as

socially-accepted motion trajectories in crowded scenes.

Our proposed GAN is a RNN Encoder-Decoder gen-

erator and a RNN based encoder discriminator with the

following two novelties: (i) we introduce a variety loss

which encourages the generative network of our GAN to

spread its distribution and cover the space of possible paths

while being consistent with the observed inputs. (ii) We

propose a new pooling mechanism that learns a “global”

pooling vector which encodes the subtle cues for all peo-

ple involved in a scene. We refer to our model as “Social

GAN”. Through experiments on several publicly available

real-world crowd datasets, we show state-of-the-art accu-

racy, speed and demonstrate that our model has the capacity

to generate a variety of socially-acceptable trajectories.

2. Related Work

Research in forecasting human behavior can be grouped

as learning to predict human-space interactions or human-

human interactions. The former learns scene-specific mo-

tion patterns [3, 9, 18, 21, 24, 33, 49]. The latter models

the dynamic content of the scenes, i.e. how pedestrians in-

teract with each other. The focus of our work is the latter:

learning to predict human-human interactions. We discuss

existing work on this topic as well as relevant work in RNN

for sequence prediction and Generative models.

Human-Human Interaction. Human behavior has been

studied from a crowd perspective in macroscopic models or

from a individual perspective in microscopic models (the fo-

cus of our work). One example of microscopic model is the

Social Forces by Helbing and Molnar [17] which models

pedestrian behavior with attractive forces guiding them to-

wards their goal and repulsive forces encouraging collision

avoidance. Over the past decades, this method has been of-

ten revisited [5, 6, 25, 26, 30, 31, 36, 46]. Tools popular in

economics have also been used such as the Discrete Choice

framework by Antonini et. al. [2]. Treuille et. al. [42]

use continuum dynamics, and Wang et. al. [44], Tay et. al.

[41] use Gaussian processes. Such functions have also been

used to study stationary groups [35, 47]. However, all these

methods use hand crafted energy potentials based on rela-

tive distances and specific rules. In contrast, over the past

two years, data-driven methods based on RNNs have been

used to outperform the above traditional ones.

RNNs for Sequence Prediction. Recurrent Neural Net-

works are a rich class of dynamic models which extend

feedforward networks for sequence generation in diverse

domains like speech recognition [7, 8, 15], machine trans-

lation [8] and image captioning [20, 43, 45, 39]. However,

they lack high-level and spatio-temporal structure [29].

Several attempts have been made to use multiple networks

to capture complex interactions [1, 10, 40]. Alahi et al. [1]

use a social pooling layer that models nearby pedestrians. In

the rest of this paper, we show that using a Multi-Layer Per-

ceptron (MLP) followed by max pooling is computationally

more efficient and works as well or better than the social

pooling method from [1]. Lee et al. [28] introduce a RNN

Encoder-Decoder framework which uses variational auto-

encoder (VAE) for trajectory prediction. However, they did

not model human-human interactions in crowded scenes.

Generative Modeling. Generative models like vari-

ational autoencoders [23] are trained by maximizing the

lower bound of training data likelihood. Goodfellow et

al. [14] propose an alternative approach, Generative Ad-

versarial Networks (GANs), where the training procedure

is a minimax game between a generative model and a dis-

criminative model; this overcomes the difficulty of approx-

imating intractable probabilistic computations. Generative

models have shown promising results in tasks like super-

resolution [27], image to image translation [19], and image

synthesis [16, 34, 48] which have multiple possible outputs

for a given input. However, their application in sequence

generation problems like natural language processing has

lagged since sampling from these generated outputs to feed

to the discriminator is a non-differentiable operation.

3. Method

Humans possess an intuitive ability to navigate crowds

taking into account the people around them. We plan our

paths keeping in mind our goal and also simultaneously tak-

ing into account the motion of surrounding people like their

direction of motion, velocity, etc. However, often in such

situations multiple possible options exist. We need models

which not only can understand these complex human inter-

actions but can also capture the variety of options. Current

approaches have focused on predicting the average future

trajectory which minimizes the L2 distance from the ground

truth future trajectory whereas we want to predict multi-

ple “good” trajectories. In this section, we first present our
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Figure 2: System overview. Our model consists of three key components: Generator (G), Pooling Module, and Discriminator

(D). G takes as input past trajectories Xi and encodes the history of the person i as Ht
i . The pooling module takes as input

all Htobs
i and outputs a pooled vector Pi for each person. The decoder generates the future trajectory conditioned on Htobs

i

and Pi. D takes as input Treal or Tfake and classifies them as socially acceptable or not (see Figure 3 for PM).

GAN based encoder-decoder architecture to address this is-

sue, we then describe our novel pooling layer which models

human-human interactions and finally we introduce our va-

riety loss which encourages the network to produce multiple

diverse future trajectories for the same observed sequence.

3.1. Problem Definition

Our goal is to jointly reason and predict the future trajec-

tories of all the agents involved in a scene. We assume that

we receive as input all the trajectories for people in a scene

as X = X1, X2, ..., Xn and predict the future trajectories

Ŷ = Ŷ1, Ŷ2, ..., Ŷn of all the people simultaneously. The

input trajectory of a person i is defined as Xi = (xt
i, y

t
i)

from time steps t = 1, ..., tobs and the future trajectory

(ground truth) can be defined similarly as Yi = (xt
i, y

t
i)

from time steps t = tobs + 1, ..., tpred. We denote pre-

dictions as Ŷi.

3.2. Generative Adversarial Networks

A Generative Adversarial Network (GAN) consists of

two neural networks trained in opposition to each other

[14]. The two adversarially trained models are: a generative

model G that captures the data distribution, and a discrimi-

native model D that estimates the probability that a sample

came from the training data rather than G. The generator G

takes a latent variable z as input, and outputs sample G(z).
The discriminator D takes a sample x as input and outputs

D(x) which represents the probability that it is real. The

training procedure is similar to a two-player min-max game

with the following objective function:

min
G

max
D

V (G,D) =

Ex∼pdata(x)[logD(x)] + Ez∼p(z)
[log(1−D(G(z)))].

(1)

GANs can used for conditional models by providing both

the generator and discriminator with additional input c,

yielding G(z, c) and D(x, c) [13, 32].

3.3. Socially­Aware GAN

As discussed in Section 1 trajectory prediction is a multi-

modal problem. Generative models can be used with time-

series data to simulate possible futures. We leverage this

insight in designing SGAN which addresses the multi-

modality of the problem using GANs (see Figure 2). Our

model consists of three key components: Generator (G),

Pooling Module (PM) and Discriminator (D). G is based

on encoder-decoder framework where we link the hidden

states of encoder and decoder via PM. G takes as input Xi

and outputs predicted trajectory Ŷi. D inputs the entire se-

quence comprising both input trajectory Xi and future pre-

diction Ŷi (or Yi) and classifies them as “real/fake”.

Generator. We first embed the location of each person

using a single layer MLP to get a fixed length vector eti.

These embeddings are used as input to the LSTM cell of

the encoder at time t introducing the following recurrence:

eti = φ(xt
i, y

t
i ;Wee)

ht
ei = LSTM(ht−1

ei , eti;Wencoder)
(2)

where φ(·) is an embedding function with ReLU non-

linearity, Wee is the embedding weight. The LSTM weights

(Wencoder) are shared between all people in a scene.

Naı̈ve use of one LSTM per person fails to capture in-

teraction between people. Encoder learns the state of a per-

son and stores their history of motion. However, as shown

by Alahi et al. [1] we need a compact representation which

combines information from different encoders to effectively

reason about social interactions. In our method, we model

human-human interaction via a Pooling Module (PM). Af-

ter tobs we pool hidden states of all the people present in

the scene to get a pooled tensor Pi for each person. Tra-

ditionally, GANs take as input noise and generate samples.

Our goal is to produce future scenarios which are consistent

with the past. To achieve this we condition the generation

of output trajectories by initializing the hidden state of the
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decoder as:
cti = γ(Pi, h

t
ei;Wc)

ht
di = [cti, z]

(3)

where γ(·) is a multi-layer perceptron (MLP) with ReLU

non-linearity and Wc is the embedding weight. We deviate

from prior work in two important ways regarding trajectory

prediction:

• Prior work [1] uses the hidden state to predict pa-

rameters of a bivariate Gaussian distribution. How-

ever, this introduces difficulty in the training process

as backpropagation through sampling process in non-

differentiable. We avoid this by directly predicting the

coordinates (x̂t
i, ŷ

t
i).

• “Social” context is generally provided as input to the

LSTM cell [1, 28] . Instead we provide the pooled

context only once as input to the decoder. This also

provides us with the ability to choose to pool at spe-

cific time steps and results in 16x speed increase as

compared to S-LSTM [1] (see Table 2).

After initializing the decoder states as described above we

can obtain predictions as follows:

eti = φ(xt−1
i , yt−1

i ;Wed)

Pi = PM(ht−1
d1 , ..., ht

dn)

ht
di = LSTM(γ(Pi, h

t−1
di ), eti;Wdecoder)

(x̂t
i, ŷ

t
i) = γ(ht

di)

(4)

where φ(·) is an embedding function with ReLU non-

linearity with Wed as the embedding weights. The LSTM

weights are denoted by Wdecoder and γ is an MLP.

Discriminator. The discriminator consists of a separate

encoder. Specifically, it takes as input Treal = [Xi, Yi] or

Tfake = [Xi, Ŷi] and classifies them as real/fake. We apply

a MLP on the encoder’s last hidden state to obtain a clas-

sification score. The discriminator will ideally learn subtle

social interaction rules and classify trajectories which are

not socially acceptable as “fake”.

Losses. In addition to adversarial loss, we also apply L2
loss on the predicted trajectory which measures how far the

generated samples are from the actual ground truth.

3.4. Pooling Module

In order to jointly reason across multiple people we need

a mechanism to share information across LSTMs. However,

there are several challenges which a method should address:

• Variable and (potentially) large number of people in a

scene. We need a compact representation which com-

bines information from all the people.

• Scattered Human-Human Interaction. Local informa-

tion is not always sufficient. Far-away pedestrians

might impact each others. Hence, the network needs

to model global configuration.

Figure 3: Comparison between our pooling mechanism (red

dotted arrows) and Social Pooling [1] (red dashed grid) for

the red person. Our method computes relative positions be-

tween the red and all other people; these positions are con-

catenated with each person’s hidden state, processed inde-

pendently by an MLP, then pooled elementwise to compute

red person’s pooling vector P1. Social pooling only con-

siders people inside the grid, and cannot model interactions

between all pairs of people.

Social Pooling [1] addresses the first issue by proposing

a grid based pooling scheme. However, this hand-crafted

solution is slow and fails to capture global context. Qi et al.

[37] show that above properties can be achieved by apply-

ing a learned symmetric function on transformed elements

of the input set of points. As shown in Figure 2 this can be

achieved by passing the input coordinates through a MLP

followed by a symmetric function (we use Max-Pooling).

The pooled vector Pi needs to summarize all the informa-

tion a person needs to make a decision. Since, we use rel-

ative coordinates for translation invariance we augment the

input to the pooling module with relative position of each

person with respect to person i.

3.5. Encouraging Diverse Sample Generation

Trajectory prediction is challenging as given limited past

history a model has to reason about multiple possible out-

comes. The method described so far produces good pre-

dictions, but these predictions try to produce the “average”

prediction in cases where there can be multiple outputs.

Further, we found that outputs were not very sensitive to

changes in noise and produced very similar predictions.

We propose a variety loss function that encourages the

network to produce diverse samples. For each scene we

generate k possible output predictions by randomly sam-

pling z from N (0, 1) and choosing the “best” prediction in

L2 sense as our prediction.

Lvariety = min
k

‖Yi − Ŷ
(k)
i ‖2, (5)

where k is a hyperparameter.

By considering only the best trajectory, this loss encour-

ages the network to hedge its bets and cover the space of

outputs that conform to the past trajectory. The loss is struc-

turally akin to Minimum over N (MoN) loss [11] but to the

42258



Metric Dataset Linear LSTM S-LSTM
SGAN (Ours)

[1] 1V-1 1V-20 20V-20 20VP-20

ADE

ETH 0.84 / 1.33 0.70 / 1.09 0.73 / 1.09 0.79 / 1.13 0.75 / 1.03 0.61 / 0.81 0.60 / 0.87

HOTEL 0.35 / 0.39 0.55 / 0.86 0.49 / 0.79 0.71 / 1.01 0.63 / 0.90 0.48 / 0.72 0.52 / 0.67

UNIV 0.56 / 0.82 0.36 / 0.61 0.41 / 0.67 0.37 / 0.60 0.36 / 0.58 0.36 / 0.60 0.44 / 0.76

ZARA1 0.41 / 0.62 0.25 / 0.41 0.27 / 0.47 0.25 / 0.42 0.23 / 0.38 0.21 / 0.34 0.22 / 0.35

ZARA2 0.53 / 0.77 0.31 / 0.52 0.33 / 0.56 0.32 / 0.52 0.29 / 0.47 0.27 / 0.42 0.29 / 0.42

AVG 0.54 / 0.79 0.43 / 0.70 0.45 / 0.72 0.49 / 0.74 0.45 / 0.67 0.39 / 0.58 0.41 / 0.61

FDE

ETH 1.60 / 2.94 1.45 / 2.41 1.48 / 2.35 1.61 / 2.21 1.52 / 2.02 1.22 / 1.52 1.19 / 1.62

HOTEL 0.60 / 0.72 1.17 / 1.91 1.01 / 1.76 1.44 / 2.18 1.32 / 1.97 0.95 / 1.61 1.02 / 1.37

UNIV 1.01 / 1.59 0.77 / 1.31 0.84 / 1.40 0.75 / 1.28 0.73 / 1.22 0.75 / 1.26 0.84 / 1.52

ZARA1 0.74 / 1.21 0.53 / 0.88 0.56 / 1.00 0.53 / 0.91 0.48 / 0.84 0.42 / 0.69 0.43 / 0.68

ZARA2 0.95 / 1.48 0.65 / 1.11 0.70 / 1.17 0.66 / 1.11 0.61 / 1.01 0.54 / 0.84 0.58 / 0.84

AVG 0.98 / 1.59 0.91 / 1.52 0.91 / 1.54 1.00 / 1.54 0.93 / 1.41 0.78 / 1.18 0.81 / 1.21

Table 1: Quantitative results of all methods across datasets. We report two error metrics Average Displacement Error (ADE)

and Final Displacement Error (FDE) for tpred = 8 and tpred = 12 (8 / 12) in meters. Our method consistently outperforms

state-of-the-art S-LSTM method and is especially good for long term predictions (lower is better).

best of our knowledge this has not been used in the context

of GANs to encourage diversity of generated samples.

3.6. Implementation Details

We use LSTM as the RNN in our model for both decoder

and encoder. The dimensions of the hidden state for encoder

is 16 and decoder is 32. We embed the input coordinates as

16 dimensional vectors. We iteratively train the Generator

and Discriminator with a batch size of 64 for 200 epochs

using Adam [22] with an initial learning rate of 0.001.

4. Experiments

In this section, we evaluate our method on two publicly

available datasets: ETH [36] and UCY [25]. These datasets

consist of real world human trajectories with rich human-

human interaction scenarios. We convert all the data to real

world coordinates and interpolate to obtain values at every

0.4 seconds. In total there are 5 sets of data (ETH - 2, UCY-

3) with 4 different scenes which consists of 1536 pedes-

trians in crowded settings with challenging scenarios like

group behavior, people crossing each other, collision avoid-

ance and groups forming and dispersing.

Evaluation Metrics. Similar to prior work [1, 28] we

use two error metrics:

1. Average Displacement Error (ADE): Average L2 dis-

tance between ground truth and our prediction over all

predicted time steps.

2. Final Displacement Error (FDE): The distance between

the predicted final destination and the true final destina-

tion at end of the prediction period Tpred.

Baselines: We compare against the following baselines:

1. Linear: A linear regressor that estimates linear parame-

ters by minimizing the least square error.

2. LSTM: A simple LSTM with no pooling mechanism.

3. S-LSTM: The method proposed by Alahi et al. [1]. Each

person is modeled via an LSTM with the hidden states

being pooled at each time step using the social pooling

layer.

We also do an ablation study of our model with different

control settings. We refer our full method in the section as

SGAN-kVP-N where kV signifies if the model was trained

using variety loss (k = 1 essentially means no variety loss)

and P signifies usage of our proposed pooling module. At

test time we sample multiple times from the model and

chose the best prediction in L2 sense for quantitative eval-

uation. N refers to the number of time we sample from our

model during test time.

Evaluation Methodology. We follow similar evaluation

methodology as [1]. We use leave-one-out approach, train

on 4 sets and test on the remaining set. We observe the tra-

jectory for 8 times steps (3.2 seconds) and show prediction

results for 8 (3.2 seconds) and 12 (4.8 seconds) time steps.

4.1. Quantitative Evaluation

We compare our method on two metrics ADE and FDE

against different baselines in Table 1. As expected Linear

model is only capable of modeling straight paths and does

especially bad in case of longer predictions (tpred = 12).

Both LSTM and S-LSTM perform much better than the lin-

ear baseline as they can model more complex trajectories.

However, in our experiments S-LSTM does not outperform

LSTM. We tried our best to reproduce the results of the pa-

52259



0 25 50 75 100
0.6

0.8

1.0

34%

ETH

0 25 50 75 100

0.25

0.30

0.35

0.40

29%

ZARA1

0 25 50 75 100
0.30

0.35

0.40

0.45

0.50

33%

ZARA2

Num Samples (N)

A
D
E

SGAN-1V-N SGAN-NV-N

Figure 4: Effect of variety loss. For SGAN-1V-N we train a single model, drawing one sample for each sequence during

training and N samples during testing. For SGAN-NV-N we train several models with our variety loss, using N samples

during both training and testing. Training with the variety loss significantly improves accuracy.

per. [1] trained the model on synthetic dataset and then fine-

tuned on real datasets. We don’t use synthetic data to train

any of our models which could potentially lead to worse

performance.

SGAN-1V-1 performs worse than LSTM as each pre-

dicted sample can be any of the multiple possible future

trajectories. The conditional output generated by the model

represents one of many plausible future predictions which

might be different from ground truth prediction. When we

consider multiple samples our model outperforms the base-

line methods confirming the multi-modal nature of the prob-

lem. GANs face mode collapse problem, where the gener-

ator resorts to generating a handful of samples which are

assigned high probability by the discriminator. We found

that samples generated by SGAN-1V-1 didn’t capture all

possible scenarios. However, SGAN-20V-20 significantly

outperforms all other models as the variety loss encourages

the network to produce diverse samples. Although our full

model with proposed pooling layer performs slightly worse

we show in the next section that pooling layer helps the

model predict more “socially” plausible paths.

Speed. Speed is crucial for a method to be used in a real-

world setting like autonomous vehicles where you need ac-

curate predictions about pedestrian behavior. We compare

our method with two baselines LSTM and S-LSTM. A sim-

ple LSTM performs the fastest but can’t avoid collisions or

make accurate multi-modal predictions. Our method is 16x

faster than S-LSTM (see Table 2). Speed improvement is

because we don’t do pooling at each time step. Also, unlike

S-LSTM which requires computing a occupancy grid for

each pedestrian our pooling mechanism is a simple MLP

followed by max pooling. In real-world applications our

model can quickly generate 20 samples in the same time it

takes S-LSTM to make 1 prediction.

Evaluating Effect of Diversity. One might wonder what

will happen if we simply draw more samples from our

model without the variety loss? We compare the perfor-

mance of SGAN-1V-N with SGAN-NV-N. As a reminder

LSTM S-LSTM SGAN SGAN-P

8 0.02 1.79 0.04 0.12

12 0.03 2.61 0.05 0.15

Speed-Up 82x 1x 49x 16x

Table 2: Speed (in seconds) comparison with S-LSTM. We

get 16x speedup as compared to S-LSTM allowing us to

draw 16 samples in the same time S-LSTM makes a single

prediction. Unlike S-LSTM we don’t perform pooling at

each time step resulting in significant speed bump without

suffering on accuracy. All methods are benchmarked on

Tesla P100 GPU

SGAN-NV-N refers to a model trained with variety loss

with k = N and drawing N samples during testing. As

shown in Figure 4 across all datasets simply drawing more

samples from the model trained without variety loss does

not lead to better accuracy. Instead, we see a significant

performance increase as we increase k with models on av-

erage performing 33% better with k = 100 .

4.2. Qualitative Evaluation

In multi-agent (people) scenarios, it is imperative to

model how actions of one person can influence the actions

of other people. Traditional approaches for activity fore-

casting and human trajectory prediction have focused on

hand crafted energy potentials modeling attractive and re-

pulsive forces to model these complex interactions. We use

a purely data driven approach which models human-human

interaction via a novel pooling mechanism. Humans walk-

ing in the presence of other people plan their path taking

into account their personal space, perceived potential for

collision, final destination and their own past motion. In

this section, we first evaluate the effect of the pooling layer

and then analyze the predictions made by our network in

three common social interaction scenarios. Even though our

model makes joint predictions for all people in a scene we

show predictions for a subset for simplicity. We refer to
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Figure 5: Comparison between our model without pooling (SGAN, top) and with pooling (SGAN-P, bottom) in four collision

avoidance scenarios: two people meeting (1), one person meeting a group (2), one person behind another (3), and two people

meeting at an angle (4). For each example we draw 300 samples from the model and visualize their density and mean. Due

to pooling, SGAN-P predicts socially acceptable trajectories which avoid collisions.

each person in the scene by the first letter of the color in the

figure (e.g., Person B (Black), Person R (Red) and so on).

Also for simplicity we refer SGAN-20VP-20 as SGAN-P

and SGAN-20V-20 as SGAN.

4.2.1 Pooling Vs No-Pooling

On quantitative metrics both methods perform similarly

with SGAN slightly outperforming SGAN-P (see Table

1. However, qualitatively we find that pooling enforces a

global coherency and conformity to social norms. We com-

pare how SGAN and SGAN-P perform in four common so-

cial interaction scenarios (see Figure 5). We would like to

highlight that even though these scenarios were created syn-

thetically, we used models trained on real world data. More-

over, these scenarios were created to evaluate the models

and nothing in our design makes these scenarios particu-

larly easy or hard. For each setup we draw 300 samples and

plot an approximate distribution of trajectories along with

average trajectory prediction.

Scenario 1 and 2 depict the collision avoidance capacity

of our model by changing direction. In the case of two peo-

ple heading in the same direction pooling enables the model

to predict a socially accepted way of yielding the right of

way towards the right. However, SGAN prediction leads

to a collision. Similarly, unlike SGAN, SGAN-P is able to

model group behavior and predict avoidance while preserv-

ing the notion of couple walking together (Scenario 2).

Humans also tend to vary pace to avoid collisions. Sce-

nario 3 is depicts a person G walking behind person B albeit

faster. If they both continue to maintain their pace and di-

rection they would collide. Our model predicts person G

overtaking from the right. SGAN fails to predict a socially

acceptable path. In Scenario 4, we notice that the model

predicts person B slowing down and yielding for person G.

4.2.2 Pooling in Action

We consider three real-scenarios where people have to alter

their course to avoid collision (see Figure 6).

People Merging. (Row 1) In hallways or in roads it

is common for people coming from different directions to

merge and walk towards a common destination. People use

various ways to avoid colliding while continuing towards

their destination. For instance a person might slow down,

alter their course slightly or use a combination of both de-

pending on the context and behavior of other surrounding

people. Our model is able predict variation in both speed

and direction of a person to effectively navigate a situation.

For instance model predicts that either person B slows down

(col 2) or both person B and R change direction to avoid col-

lision. The last prediction (col 4) is particularly interesting

as the model predicts a sudden turn for person R but also

predicts that person B significantly slows down in response;

thus making a globally consistent prediction.

Group Avoiding. (Row 2) People avoiding each other

when moving in opposite direction is another common sce-

nario. This can manifest in various forms like a person

avoiding a couple, a couple avoiding a couple etc. To

make correct predictions in such cases a person needs to

plan ahead and look beyond it’s immediate neighborhood.

Our model is able to recognize that the people are moving

in groups and model group behavior. The model predicts

change of direction for either groups as a way of avoiding

collision (col 3, 4). In contrast to Figure 5 even though the

convention might be to give way to the right in this par-

ticular situation that would lead to a collision. Hence, our

models makes prediction where couples give way towards

the left.

Person Following. (Row 3) Another common scenario

is when a person is walking behind someone. One might

want to either maintain pace or maybe overtake the person

72261



P
eo

p
le

M
er

g
in

g

G
ro

u
p

A
v
o

id
in

g

P
er

so
n

F
o

ll
o
w

in
g

(1) (2) (3) (4)

Figure 6: Examples of diverse predictions from our model. Each row shows a different set of observed trajectories; columns

show four different samples from our model for each scenario which demonstrate different types of socially acceptable

behavior. BEST is the sample closest to the ground-truth; in SLOW and FAST samples, people change speed to avoid

collision; in DIR samples people change direction to avoid each other. Our model learns these different avoidance strategies

in a data-driven manner, and jointly predicts globally consistent and socially acceptable trajectories for all people in the scene.

We also show some failure cases in supplementary material.

in front. We would like to draw attention to a subtle dif-

ference between this situation and its real-life counterpart.

In reality a person’s decision making ability is restricted

by their field of view. In contrast, our model has access

to ground truth positions of all the people involved in the

scene at the time of pooling. This manifests in some inter-

esting cases (see col 3). The model understands that person

R is behind person B and is moving faster. Consequently,

it predicts that person B gives way by changing their direc-

tion and person R maintains their direction and speed. The

model is also able to predict overtaking (ground truth).

4.3. Structure in Latent Space

In this experiment we attempt to understand the land-

scape of the latent space z. Walking on the manifold that

is learnt can give us insights about how the model is able

to generate diverse samples. Ideally, one can expect that

the network imposes some structure in the latent space. We

found that certain directions in the latent space were associ-

ated with direction and speed (Figure 7).

5. Conclusion

In this work we tackle the problem of modeling human-

human interaction and jointly predicting trajectories for all

people in a scene. We propose a novel GAN based encoder-

decoder framework for trajectory prediction capturing the

multi-modality of the future prediction problem. We also

propose a novel pooling mechanism enabling the network

Figure 7: Latent Space Exploration. Certain directions in

the latent manifold are associated with direction (left) and

speed (right). Observing the same past but varying the in-

put z along different directions causes the model to predict

trajectories going either right/left or fast/slow on average.

to learn social norms in a purely data-driven approach. To

encourage diversity among predicted samples we propose

a simple variety loss which coupled with the pooling layer

encourages the network to produce globally coherent, so-

cially compliant diverse samples. We show the efficacy of

our method on several complicated real-life scenarios where

social norms must be followed.
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