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Abstract

The coronavirus disease (COVID-19) caused by a novel coronavirus, SARS-CoV-2, has been declared a global pandemic.

Due to its infection rate and severity, it has emerged as one of the major global threats of the current generation. To

support the current combat against the disease, this research aims to propose a machine learning–based pipeline to detect

COVID-19 infection using lung computed tomography scan images (CTI). This implemented pipeline consists of a number

of sub-procedures ranging from segmenting the COVID-19 infection to classifying the segmented regions. The initial

part of the pipeline implements the segmentation of the COVID-19–affected CTI using social group optimization–based

Kapur’s entropy thresholding, followed by k-means clustering and morphology-based segmentation. The next part of the

pipeline implements feature extraction, selection, and fusion to classify the infection. Principle component analysis–based

serial fusion technique is used in fusing the features and the fused feature vector is then employed to train, test, and

validate four different classifiers namely Random Forest, K-Nearest Neighbors (KNN), Support Vector Machine with Radial

Basis Function, and Decision Tree. Experimental results using benchmark datasets show a high accuracy (> 91%) for the

morphology-based segmentation task; for the classification task, the KNN offers the highest accuracy among the compared

classifiers (> 87%). However, this should be noted that this method still awaits clinical validation, and therefore should not

be used to clinically diagnose ongoing COVID-19 infection.

Keywords COVID-19 infection · CT scan image · Fused feature vector · KNN classifier · Segmentation and detection

accuracy

Introduction

Lung infection caused by coronavirus disease (COVID-19)

has emerged as one of the major diseases and has affected

over 8.2 million of the population globally1, irrespective of

their race, gender, and age. The infection and the morbidity

rates caused by this novel coronavirus are increasing rapidly

[1, 2]. Due to its severity and progression rate, the recent

report of the World Health Organization (WHO) declared

1https://www.worldometers.info/coronavirus/, as of June 17, 2020
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it as pandemic [3]. Even though an extensive number

of precautionary schemes have been implemented, the

occurrence rate of COVID-19 infection is rising rapidly due

to various circumstances.

The origin of COVID-19 is due to a virus called

severe acute respiratory syndrome-coronavirus-2 (SARS-

CoV-2) and this syndrome initially started in Wuhan,

China, in December 2019 [4]. The outbreak of COVID-19

has appeared as a worldwide problem and a considerable

amount of research works are already in progress to

determine solutions to manage the disease infection rate and

spread. Furthermore, the recently proposed research works

on (i) COVID-19 infection detection [5–8], (ii) handling

of the infection [9, 10], and (iii) COVID-19 progression

and prediction [11–13] have helped get more information

regarding the disease.

The former research and the medical findings discovered

that COVID-19 initiates disease in the human respiratory

tract and builds severe acute pneumonia. The existing
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research also confirmed that the premature indications of

COVID-19 are subclinical and it necessitates a committed

medical practice to notice and authenticate the illness. The

frequent medical-grade analysis engages in a collection

of samples from infected persons and sample supported

examination and confirmation of COVID-19 using reverse

transcription-polymerase chain reaction (RT-PCR) test

and image-guided assessment employing lung computed

tomography scan images (CTI), and the chest X-ray [14–

17]. When the patient is admitted with COVID-19 infection,

the doctor will initiate the treatment process to cure the

patient using the prearranged treatment practice which will

decrease the impact of pneumonia.

Usually, experts recommend a chain of investigative tests

to identify the cause, position, and harshness of pneumonia.

The preliminary examinations, such as blood tests and

pleural-fluid assessment, are performed clinically to detect

the severity of the infection [18–20]. The image-assisted

methods are also frequently implemented to sketch the

disease in the lung, which can be additionally examined

by an expert physician or a computerized arrangement

to recognize the severity of the pneumonia. Compared

with chest X-ray, CTI is frequently considered due to its

advantage and the 3-D view. The research work published

on COVID-19 also confirmed the benefit of CT in detecting

the disease in the respiratory tract and pneumonia [21–23].

Recently, more COVID-19 detection methods have been

proposed for the progression stage identification of COVID-

19 using the RT-PCR and imaging methods. Most of

these existing works combined RT-PCR with the imaging

procedure to confirm and treat the disease. The recent work

of Rajinikanth et al. [8] developed a computer-supported

method to assess the COVID-19 lesion using lung CTI. This

work implemented few operator-assisted steps to achieve

superior outcomes during the COVID-19 evaluation.

ML approaches are well-known for their capabilities in

recognizing patterns in data. In recent years, ML has been

applied to a variety of tasks including biological data mining

[24, 25], medical image analysis [26], financial forecasting

[27], trust management [28], anomaly detection [29, 30],

disease detection [31, 32], natural language processing [33],

and strategic game playing [34].

The presented work aims to:

– Propose a ML-driven pipeline to extract and detect the

COVID-19 infection from lung CTI with an improved

accuracy.

– Develop a procedural sequence for an automated extrac-

tion of the COVID-19 infection from a benchmark lung

CTI dataset.

– Put forward an appropriate sequence of techniques,

tri-level thresholding using social group optimiza-

tion (SGO)-based Kapur’s entropy (KE) or SGO-

KE, K-Means Clustering (KMC)-based separation,

morphology-based segmentation to accurately extract

COVID-19 infection from lung CTI.

A comparison of the extracted COVID-19 infection

information from the CTI using the proposed pipeline with

the ground truth (GT) images confirms the segmentation

accuracy of the proposed method. The proposed pipeline

achieves mean segmentation and classification accuracy of

more than 91% and 87% respectively using 78 images from

a benchmark dataset.

This research is arranged as follows; Section “Motivation”

presents the motivation, Section “Methodology” represents

the methodological details of the proposed scheme.

Section “Results and Discussion” outlines the attained

results and discussions. Section “Conclusion” depicts the

conclusion of the present research work.

Motivation

The proposed research work is motivated by the former

image examination works existing in literature [35–38].

During the mass disease screening operation, the existing

medical data amount will gradually increase and reduce the

data burden; it is essential to employ an image segregation

system to categorize the existing medical data into two or

multi-class, and to assign the priority during the treatment

implementation. The recent works in the literature confirm

that the feature-fusion–based methods will improve the

classification accuracy without employing the complex

methodologies [39–41]. Classification task implemented

using the features of the original image and the region-

of-interest (ROI) offered superior result on some image

classification problems and this procedure is recommended

when the similarity between the normal and the disease

class images is more [24, 26, 31, 42, 43]. Hence, for the

identical images, it is necessary to employ a segmentation

technique to extract the ROI from the disease class image

with better accuracy [26]. Finally, the fused features of

the actual image and the ROI are fused to attain enhanced

classification accuracy.

Methodology

This section of the work presents the methodological details

of the proposed scheme. Like the former approaches, this

work also implemented two different phases to improve the

detection accuracy.

1012 Cogn Comput (2020) 12:1011–1023



Proposed Pipeline

This work consists of the following two stages as depicted

in Fig. 1. These are:

– Implementation of an image segmentation method to

extract the COVID-19 infection,

– Execution of a ML scheme to classify the considered

lung CTI database into normal/COVID-19 class.

The details of these two stages are given below:

Stage 1: Figure 2 depicts the image processing system

proposed to extract the pneumonia infection in the lung due

to COVID-19. Initially, the required 2D slices of the lung

CTI are collected from an open-source database [44]. All the

collected images are resized into 256 × 256 × 1 pixels and

the normalized images are then considered for evaluation.

In this work, SGO-KE–based tri-level threshold is initially

applied to enhance the lung section (see “Social Group

Optimization and Kapur’s Function” for details). Then,

KMC is employed to segregate the thresholded image into

background, artifact, and the lung segment. The unwanted

lung sections are then removed using a morphological

segmentation procedure and the extracted binary image of

the lung is then compared with its related GT provided in

the database. Finally, the essential performance measures

are computed and based on which the performance of the

proposed COVID-19 system is validated.

Stage 2: Figure 3 presents the proposed ML scheme to

separate the considered lung CTI into normal/COVID-19

class. This system is constructed using two different images,

such as (i) the original test image (normal/COVID-19 class)

and (ii) the binary form of the COVID-19 section. The
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Feature extractor

Lung CT Image

Feature selection

Morphological segmentation
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Stage 1 Stage 2

K-means clustering

Fig. 1 The number of image processing stages implemented in the

proposed work

various procedures existing in the proposed ML scheme are

depicted in Fig. 3.

Segmentation of COVID-19 Infection

This procedure is implemented only for the CTI associated

with the COVID-19 pneumonia infection. The complete

details on various stages involved in this process are

depicted in Fig. 1. The series of procedures implemented in

this figure are used to extract the COVID-19 infection from

the chosen test image with better accuracy. The pseudo-code

of the implemented procedure is depicted in Algorithm 1.

Image Thresholding Initially, the enhancement of the

infected pneumonia section is achieved by implementing

a tri-level threshold based on SGO and the KE. In this

operation, the role of the SGO is to randomly adjust

the threshold value of the chosen image until KE is

maximized. The threshold which offered the maximized KE

is considered as the finest threshold. The related information

on the SGO-KE implemented in this work can be found in

[45]. The SGO parameters discussed in Dey et al. [46] are

1013Cogn Comput (2020) 12:1011–1023
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Fig. 2 Image segmentation framework to extract COVID-19 infection

from 2D lung CT scan image

considered in the proposed work to threshold the considered

CTI.

Social Group Optimization and Kapur’s Function SGO is a

heuristic technique proposed by Satapathy and Naik [47]

by mimicking the knowledge sharing concepts in humans.

This algorithm employs two phases, such as (i) enhancing

phase to coordinate the arrangement of people (agents) in a

group, and the (ii) knowledge gaining phase: which allows

the agents to notice the finest solution based on the task. In

this paper, an agent is considered a social population who is

generated based on the features/parameters.

The mathematical description of the SGO is defined

as: let XI denote the original knowledge of agents of a

group with dimension I = 1, 2, ..., N . If the number of

variables to be optimized is represented as D, then the initial

knowledge can be expressed as XI = (xI1, xI2,... xID). For

a chosen problem, the objective function can be defined as

FJ , with J = 1, 2, ..., N .

The updated function in SGO is;

XnewI,J
= XoldI,J

ζ + R(gbestJ − XoldI,J
) (1)

where Xnewi,j
is the original knowledge, Xoldi,j

is the

updated knowledge, ζ denotes self-introspection parameter

(assigned as 0.2), R is the random number [0,1], and gbestj

is the global best knowledge.

In this work, the SGO is employed to find the optimal

threshold by maximizing the KE value and this operation is

defined below:

Entropy in an image is the measure of its irregularity and

for a considered image, Kapur’s thresholding can be used

to identify the optimal threshold by maximizing its entropy

value.

Let T h = [t1, t2, ..., tn−1] denote the threshold vector

of the chosen image of a fixed dimension and assume this

image has L gray levels (0 to L − 1) with a total pixel value

of Z. Iff () represents the frequency of j -th intensity level,

then the pixel distribution of the image will be:

Z = f (0) + f (1) + ... + f (L − 1). (2)

If the probability of j -th intensity level is given by:

Pj = f (j)/Z. (3)

Then, during the threshold selection, the pixels of image

are separated into T h + 1 groups according to the assigned

threshold value. After disconnection of the images as per the

selected threshold, the entropy of each cluster is separately

computed and combined to get the final entropy as follows:

The KE to be maximized is given by Eq. 14:

KEmax = FKE(T h) =
n

∑

i=1

GC
i . (4)

For a tri-level thresholding problem, the expression will be

given by Eq. 5:

f (t1, t2, t3) =
3

∑

i=1

GC
i . (5)

where Gi is the entropy given by:

GC
1 =

t1
∑

j=1

P C
j

wC
0

ln

(

P C
j

wC
0

)

, (6)

GC
2 =

t2
∑

j=t1

P C
j

wC
1

ln

(

P C
j

wC
1

)

, (7)

GC
3 =

t3
∑

j=t2

P C
j

wC
2

ln

(

P C
j

wC
2

)

, (8)

where,

P C
j is the probability distribution for intensity, C is the

image class (C = 1 for the grayscale image), and wC
i−1 is

the probability occurrence.

During the tri-level thresholding, a chosen approach is

employed to find the FKE(T h) by randomly varying the

thresholds (T h = {t1, t2, t3} ). In this research, the SGO is

employed to adjust the thresholds to find the FKE(T h).

Segmentation Based on KMC and Morphological Process

The COVID-19 infection from the enhanced CTI is then

separated using the KMC technique and this approach helps

segregate the image into various regions [48]. In this work,

the enhanced image is separated into three sections, such

as the background, normal image section, and the COVID-

infection. The essential information on KMC and the

morphology-based segmentation can be found in [49]. The

extracted COVID-19 is associated with the artifacts; hence,

morphological enhancement and segmentation discussed

in [49, 50] are implemented to extract the pneumonia

infection, with better accuracy.
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Fig. 3 Proposed ML scheme to

detect COVID-19 infection
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KMC helps split u-observations into K-groups. For a

given set of observations with dimension “d,” KMC will try

to split them into K-groups; Q(Q1, Q2, ..., QK) for (K ≤
u) to shrink the within-cluster sum of squares as depicted

by Eq. 9:

arg min
Q

K
∑

i=1

||Oi − μi ||2 = arg min
Q

K
∑

i=1

|Qi |V ar(Qi) (9)

where O is the number of observations, Q is the number

of splits, and μj is the mean of points in Qi .

Performance Computation The outcome of the morpholog-

ical segmentation is in the form of binary and this binary

image is then compared against the binary form of the GT

and then the essential performance measures, such as accu-

racy, precision, sensitivity, specificity, and F1-score, are

computed. A similar procedure is implemented on all the

78 images existing in the benchmark COVID-19 database

and the mean values of these measures are then consid-

ered to confirm the segmentation accuracy of the proposed

technique. The essential information on these measures is

clearly presented in [51, 52].

Implementation of Machine Learning Scheme

The ML procedure implemented in this research is briefed

in this section. This scheme implements a series of

procedures on the original CTI (normal/COVID-19 class)

and the segmented binary form of the COVID-19 infection

as depicted in Fig. 2. The main objective of this ML

scheme is to segregate the considered CTI database into

normal/COVID-19 class images. The process is shown in

algorithm 2.

Initial Processing This initial processing of the considered

image dataset is individually executed for the test image and

the segmented COVID-19 infection. The initial processing

involves extracting the image features using a chosen

methodology and formation of a one-dimensional FV using

the chosen dominant features.

Feature Vector 1 (FV1): The accuracy of disease detection

using the ML technique depends mainly on the considered

1015Cogn Comput (2020) 12:1011–1023



image information. In the literature, a number of image

feature extraction procedures are discussed to examine a

class of medical images [35–37, 39–42]. In this work, the

well-known image feature extraction methods, such as

Complex-Wavelet-Transform (CWT) and Discrete-

Wavelet-Transform (DWT) as well as Empirical-Wavelet-

Transform (EWT) are considered in 2-D domain to extract

the features of the normal/COVID-19 class grayscale

images. The information on the CWT, DWT, and EWT are

clearly discussed in the earlier works [52]. After extracting

the essential features using these methods, a statistical eval-

uation and Student’s t test–based validation is implemented

to select the dominant features to create the essential FVs,

such as FVCWT (34 features), FVDWT (32 features), and

FVEWT (3 features) which are considered to get the prin-

ciple FV1 set (FV1=69 features) by sorting and arranging

these features based on its p value and t value. The feature

selection process and FV1 creation are implemented as

discussed in [52].

– CWT: This function was derived from the Fourier

transform and is represented using complex-valued

scaling function and complex-valued wavelet as defined

below;

ψC(t) = ψR(t) + ψI (t) (10)

where ψC(t), ψR(t), and ψI (t) represent the complex,

real, and image parts respectively.

– DWT: This approach evaluates the non-stationary

information. When a wavelet has the function ψ(t) ∈
W 2(r), then its DWT (denoted by DWT (a, b)) can be

written as:

DWT (a, b) =
1

√
2a

∫ ∞

−∞
x(t)ψ∗

(

t − b2a

2a

)

dt (11)

where ψ(t) is the principle wavelet, the symbol

∗ denotes the complex conjugate, a and b (a, b ∈
R) are scaling parameters of dilation and transition

respectively.

– EWT: The Fourier spectrum of EWT of range 0 to π

is segmented into M regions. Each limit is denoted as

ωm (where m = 1, 2, ..., M) in which the starting limit

is ω0 = 0 and final limit is ωM = π . The translation

phase Tm centered around ωm has a width of 2�m where

�m = λωm for 0 < λ < 1. Other information on EWT

can be found in [53].

Feature Vector 2 (FV2): The essential information from the

binary form of COVID-19 infection image is extracted using

the feature extraction procedure discussed in Bhandary et al.

[35] and this work helped get the essential binary features

using the Haralick and Hu technique. This method helps

get 27 numbers of features (FHaralick = 18 features and

FHu = 9 features) and the combination of these features

helped get the 1D FV2 (FV2 = 27 features).

– Haralick features: Haralick features are computed using

a Gray Level Co-occurrence Matrix (GLCM). GLCM

is a matrix, in which the total rows and columns depend

on the gray levels (G) of the image. In this, the matrix

component P(i, j |�x, �y) is the virtual frequency

alienated by a pixel space (�x, �y). If μx and μy

represent the mean and σx and σy represent the standard

deviation of Px and Py , then:

μx =
G−1
∑

i=0

iPx(i),

μy =
G−1
∑

j=0

jPy(j),

σx =
G−1
∑

i=0

(Px(i) − μx(i))

σy =
G−1
∑

j=0

(Py(j) − μy(j)). (12)

where Px(i) and Py(j) matrix components during

the i-th and j -th entries, respectively.

These parameters can be used to extract the

essential texture and shape features from the considered

grayscale image.

– Hu moments: For a two-dimensional (2D) image, the

2D (i + j)-th order moments can be defined as;

Mij =
∫ ∞

−∞

∫ ∞

−∞
xiyjf (x, y)dxdy (13)

for i, j = 0, 1, 2,... If the image function f (x, y) is

a piecewise continuous value, then the moments of all

order exist and the moment sequence Mij is uniquely

determined. Other information on Hu moments can be

found in [35].

Fused Feature Vector (FFV:) In this work, the original test

image helped get the FV1 and the binary form of the

COVID-19 helps get the FV2. To implement a classifier, it

is essential to have a single feature vector with a pre-defined

dimension.

In this work, the FFV based on the principle component

analysis (PCA) is implemented to attain a 1D FFV (69 +
27 = 96 features) by combining the FV1 and FV2, and this

feature set is then considered to train, test, and validate the

classifier system implemented in this study. The complete

information on the feature fusion based on the serial fusion

can be found in [35, 54].

1016 Cogn Comput (2020) 12:1011–1023



Classification Classification is one of the essential parts

in a verity of ML and deep learning (DL) techniques

implemented to examine a class of medical datasets. The

role of the classifier is to segregate the considered medical

database into two-class and multi-class information using

the chosen classifier system. In the proposed work, the

classifiers, such as Random-Forest (RF), Support Vector

Machine-Radial Basis Function (SVM-RBF), K-Nearest

Neighbors (KNN), and Decision Tree (DT), are considered.

The essential information on the implemented classifier

units can be found in [35, 36, 45, 52]. A fivefold cross-

validation is implemented and the best result among the trial

is chosen as the final classification result.

Validation From the literature, it can be noted that the

performance of the ML and DL-based data analysis is nor-

mally confirmed by computing the essential performance

measures [35, 36]. In this work, the common performance

measures, such as accuracy (4), precision (15), sensitivity

(16), specificity (17), F1-score (18), and negative predictive

value (NPV) (19) computed.

The mathematical expression for these values is as

follows:

Accuracy =
(TP + TN )

(TP + TN + FP + FN )
(14)

Precision =
TP

(TP + FP )
(15)

Sensitivity =
TP

(TP + FN )
(16)

Specificity =
TN

(TN + FP )
(17)

F1-Score =
2TP

(2TP + FN + FP )
(18)

NPV =
TN

(TN + FN )
(19)

where TP = true positive, TN = true negative, FP = false

positive, and FN =false negative.

COVID-19 Dataset

The clinical-level diagnosis of the COVID-19 pneumonia

infection is normally assessed using the imaging procedure.

In this research, the lung CTI are considered for the

examination and these images are resized into 256×256×1

pixels to reduce the computation complexity. This work

considered 400 grayscale lung CTI (200 normal and 200

COVID-19 class images) for the assessment. This research

initially considered the benchmark COVID-19 database of

[44] for the assessment. This dataset consists of 100 2D

lung CTI along with its GT; and in this research, only 78

images are considered for the assessment and the remaining

22 images are discarded due to its poor resolution and the

associated artifacts. The remaining COVID-19 CTI (122

images) are collected from the Radiopaedia database [55]

from cases 3 [56], 8 [57], 23 [58], 10 [59], 27 [60] 52 [61],

55 [62], and 56 [63].

The normal class images of the 2D lung CTI have

been collected from The Lung Image Database Consortium-

Image Database Resource Initiative (LIDC-IDRI) [64–66]

and The Reference Image Database to Evaluate therapy

Response-The Cancer Imaging Archive (RIDER-TCIA)

[66, 67] database and the sample images of the collected

dataset are depicted in Figs. 4 and 5. Figure 4 presents

the test image and the related GT of the benchmark

CTI. Figure 5 depicts the images of the COVID-19

[55] and normal lung [64, 67] CTI considered for the

assessment.

Results and Discussion

The experimental results obtained in the proposed work

are presented and discussed in this section. This developed

system is executed using a workstation with the configu-

ration: Intel i5 2.GHz processor with 8GB RAM and 2GB

VRAM equipped with the MATLAB (www.mathworks.

com). Experimental results of this study confirm that this

scheme requires a mean time of 173 ± 11 s to process

the considered CTI dataset and the processing time can be

improved by using a workstation with higher computational

capability. The advantage of this scheme is it is a fully auto-

mated practice and will not require the operator assistance

during the execution. The proposed research initially exe-

cutes the COVID-19 infection segmentation task using the

benchmark dataset of [44]. The results attained using a cho-

sen trial image are depicted in Fig. 6. Figure 6a depicts the

sample image of dimension 256 × 256 × 1 and Fig. 6b and

c depict the actual and the binary forms of the GT image.

The result attained with the SGO-KE-based tri-level thresh-

old is depicted in Fig. 6d. Later, the KMC is employed

to segregate Fig. 6d into three different sections and the

separated images are shown in Fig. 6e–g. Finally, a morpho-

logical segmentation technique is implemented to segment

1017Cogn Comput (2020) 12:1011–1023
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Fig. 7 Mean performance measure attained with the proposed

COVID-19 segmentation procedure

the COVID-19 infection from Fig. 6g and the attained result

is presented in Fig. 6h. After extracting the COVID-19

infection from the test image, the performance of the pro-

posed segmentation method is confirmed by implementing

a comparative examination between the binary GT exist-

ing in Fig. 6c with Fig. 6h and the essential performance

values are then computed based on the pixel information

of the background (0) and the COVID-19 section (1). For

this image, the values attained are TP = 5865 pixels,

FP = 306, TN = 52572, and FN = 1949, and these values

offered accuracy = 96.28%, precision = 95.04%, sensitivity

= 75.06%, specificity = 99.42%, F1-score = 83.88%, and

NPV = 96.43%.

A similar procedure is implemented for other images of

this dataset and means performance measure attained for the

whole benchmark database (78 images) is depicted in Fig. 7.

From this figure, it is evident that the segmentation accuracy

attained for this dataset is higher than 91%, and in the future
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Fig. 8 Detection accuracy attained in the proposed system with

various classifiers

the performance of the proposed segmentation method can

be validated against other thresholding and segmentation

procedures existing in the medical imaging literature.

The methodology depicted in Fig. 3 is then implemented

by considering the entire database of the CTI prepared in

this research work. This dataset consists of 400 grayscale

images with dimension 256 × 256 × 1 pixels and the

normal/COVID-19 class images have a similar dimension

to confirm the performance of the proposed technique.

Initially, the proposed ML scheme is implemented by

considering only the grayscale image features (FV1) with

a dimension 1 × 69 and the performance of the considered

classifier units, such as RF, KNN, SVM-RBF, and DT,

is computed. During this procedure, 70% of the database

(140 + 140 = 280 images) are considered for training and

30% (60 + 60 = 120 images) are considered for testing.

After checking its function, each classifier is separately

validated by using the entire database and the attained

Table 1 Disease detection performance attained with the proposed ML scheme

Features Classifier TP FN TN FP Acc. (%) Prec. (%) Sens. (%) Spec. (%) F1-Sc. (%) NPV (%)

FV1 (1×69) RF 163 37 172 28 83.75 85.34 81.50 86.00 83.37 82.30

KNN 159 41 177 23 84.00 87.36 79.50 88.50 83.24 81.19

SVM-RBF 161 39 179 21 85.00 88.46 80.50 89.50 84.29 82.11

DT 160 40 168 32 82.00 83.33 80.00 84.00 81.63 80.77

FFV (1×96) RF 169 31 178 22 86.75 88.48 84.50 89.00 86.45 85.17

KNN 178 22 173 27 87.75 86.83 89.00 86.50 87.90 88.72

SVM-RBF 172 28 177 23 87.25 88.20 86.00 88.50 87.09 86.34

DT 174 26 172 28 86.50 86.14 87.00 86.00 86.57 86.89

TP, true positive; FN, false negative; TN, true negative; FP, false positive; Acc., accuracy; Prec., precision; Sens., sensitivity; Spec., specificity;

F1-Sc., F1-score; NPV, negative predictive value, italicized values indicate the best performance.
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results are recorded. Here, a fivefold cross-validation is

implemented for each classifier and the best result attained

is considered as the final result. The obtained results are

depicted in Table 1 (the first three rows). The results reveal

that the classification accuracy attained with SVM-RBF

is superior (85%) compared with the RF, KNN, and DT.

Also, the RF technique helped get the better values of the

sensitivity and NPV compared with other classifiers.

To improve the detection accuracy, the feature vector size

is increased by considering the FFV (1 × 96 features) and

a similar procedure is repeated. The obtained results (as

in Table 1, bottom three rows) with the FFV confirm that

the increment of features improves the detection accuracy

considerably and the KNN classifier offers an improved

accuracy (higher than 87%) compared with the RF, SVM-

RBF, and DT. The precision and the F1-score offered

by the RF are superior compared with the alternatives.

The experimental results attained with the proposed ML

scheme revealed that this methodology helps achieve better

classification accuracy on the considered lung CTI dataset.

The accuracy attained with the chosen classifiers for FV1

and FFV is depicted in Fig. 8. The future scope of the

proposed method includes (i) implementing the proposed

ML scheme to test the clinically obtained CTI of COVID-

19 patients; (ii) enhancing the performance of implemented

ML technique by considering the other feature extraction

and classification procedures existing in the literature;

and (iii) implementing and validating the performance

of the proposed ML with other ML techniques existing

in the literature; and (iv) implementing an appropriate

DL architecture to attain better detection accuracy on the

benchmark as well as the clinical grade COVID-19 infected

lung CTI.

Conclusion

The aim of this work has been to develop an automated

detection pipeline to recognize the COVID-19 infection

from lung CTI. This work proposes an ML-based system

to achieve this task. The proposed system executed a

sequence of procedures ranging from image pre-processing

to the classification to develop a better COVID-19 detection

tool. The initial part of the work implements an image

segmentation procedure with SGO-KE thresholding, KMC-

based separation, morphology-based COVID-19 infection

extraction, and a relative study between the extracted

COVID-19 sections with the GT. The segmentation assisted

to achieve an overall accuracy higher than 91% on a

benchmark CTI dataset. Later, an ML scheme with essential

procedures such as feature extraction, feature selection,

feature fusion, and classification is implemented on the

considered data, and the proposed scheme with the KNN

classifier achieved an accuracy higher than 87%.

Acknowledgments The authors of this paper would like to thank Med-

icalsegmentation.com and Radiopaedia.org for sharing the clinical-

grade COVID-19 images.

Author Contributions This work was carried out in close collaboration

between all co-authors. ND, VR, MSK, and MM first defined the

research theme and contributed an early design of the system. ND and

VR further implemented and refined the system development. ND,

VR, SJF, MSK, and MM wrote the paper. All authors have contributed

to, seen, and approved the final manuscript.

Compliance with Ethical Standards

Conflict of Interest All authors declare that they have no conflict of

interest.

Ethical Approval All procedures reported in this study were in

accordance with the ethical standards of the institutional and/or

national research committee and with the 1964 Helsinki declaration

and its later amendments or comparable ethical standards.

Informed Consent This study used secondary data; therefore, the

informed consent does not apply.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in

this article are included in the article’s Creative Commons licence,

unless indicated otherwise in a credit line to the material. If material

is not included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds

the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://

creativecommonshorg/licenses/by/4.0/.

References

1. WHO. WHO, editor. Coronavirus. WHO; 2020. Last accessed:

10th April 2020. Available from: https://www.who.int/

emergencies/diseases/novel-coronavirus-2019.

2. (ALA) ALA. ALA, editor. Coronavirus update- Worldometer.

ALA; 2020. Available from: https://www.worldometers.info/

coronavirus/.

3. WHO. WHO, editor. WHO/Europe | Coronavirus disease

(COVID-19) outbreak - WHO announces COVID-19 outbreak a

pandemic. WHO; 1948. Last access date: 22-04-2020. Available

from: https://bit.ly/3bvuX8S.

4. Li Q et al. Early transmission dynamics in Wuhan, China,

of novel coronavirus–infected pneumonia. Engl J Med.

2020;382(13):1199–1207.

5. Bai HX, et al. Performance of radiologists in differentiating

COVID-19 from viral pneumonia on chest CT. Radiology. 2020;

p. 200823. [epub ahead of print.]

1020 Cogn Comput (2020) 12:1011–1023

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.worldometers.info/coronavirus/
https://www.worldometers.info/coronavirus/
https://bit.ly/3bvuX8S


6. Chua F, Armstrong-James D, Desai SR, Barnett J, Kouranos

V, Kon OM, et al. The role of CT in case ascertainment and man-

agement of COVID-19 pneumonia in the UK: insights from high-

incidence regions. The Lancet Respiratory Medicine. 2020;0(0).

EPub ahead of print. https://doi.org/10.1016/S2213-2600(20)301

32-6.
7. Santosh KC. AI-driven tools for coronavirus outbreak: need

of active learning and cross-population train/test models on

multitudinal/multimodal data. Journal of Medical Systems.

2020;44:93.
8. Rajinikanth V, et al. Harmony-Search and Otsu based system for

coronavirus disease (COVID-19) detection using lung CT scan

images. CoRR. 2020; Available from: 2004.03431.
9. Liu K, Xu P, Lv WF, Qiu XH, Yao JL, Gu JF, et al.

CT manifestations of coronavirus disease-2019: a retrospective

analysis of 73 cases by disease severity. Eur J Radiol.

2020;126:108941.
10. Yang R, Li X, Liu H, Zhen Y, Zhang X, Xiong Q, et al. Chest CT

severity score: an imaging tool for assessing severe COVID-19.

Radiol Cardioth Imaging. 2020;2(2):e200047.

11. Fong SJ. Finding an accurate early forecasting model from small

dataset: a case of 2019-nCoV novel coronavirus outbreak. Int J

Interact Multimed Artif Intell. 2020;6(1):132–140.

12. Fong SJ, Li G, Dey N, Crespo RG, Herrera-Viedma E.

Composite Monte Carlo decision making under high uncertainty

of novel coronavirus epidemic using hybridized deep learning and

fuzzy rule induction. Applied Soft Computing. 2020; p. 106282.

13. Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai

N, et al. Estimates of the severity of coronavirus disease 2019: a

model-based analysis. The Lancet Infectious Diseases. 2020; 0(0).

Publisher: Elsevier.

14. Fang Y, et al. Sensitivity of chest CT for COVID-19: comparison

to RT-PCR. Radiology. 2020;0(0):200432.

15. Zhou Z, Guo D, Li C, Fang Z, Chen L, Yang R, et al. Coro-

navirus disease 2019: initial chest CT findings. European Radiol-

ogy. 2020; EPub ahead of print. https://doi.org/10.1007/s00330-

020-06816-7.

16. Yoon SH, Lee KH, Kim JY, Lee YK, Ko H, Kim KH, et al.

Chest radiographic and CT findings of the 2019 novel coronavirus

disease (COVID-19): analysis of nine patients treated in Korea.

Korean J Radiol. 2020;21(4):494–500.

17. Li K, Fang Y, Li W, Pan C, Qin P, Zhong Y, et al. CT

Image visual quantitative evaluation and clinical classification

of coronavirus disease (COVID-19). European Radiology. 2020;

EPub ahead of print https://doi.org/10.1007/s00330-020-06817-6.

18. Chung M, Bernheim A, Mei X, Zhang N, Huang M,

Zeng X, et al. CT imaging features of 2019 novel coronavirus

(2019-nCoV). Radiology. 2020;295(1):202–207.

19. RSNA. healthcare-in-europe com, editor. CT outperforms lab

diagnosis for coronavirus infection. healthcare-in-europe.com;

2020. Last accessed date: 22-04-2020. Available from: https://bit.

ly/3aoTQBD.

20. Borges do Nascimento IJ, Cacic N, Abdulazeem HM, von

Groote TC, Jayarajah U, Weerasekara I, et al. Novel coronavirus

infection (COVID-19) in humans: a scoping review and meta-

analysis. Journal of Clinical Medicine. 2020;9(4):941. Number: 4

Publisher: Multidisciplinary Digital Publishing Institute.

21. Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N,

et al. Chest CT findings in coronavirus disease-19 (COVID-19):

relationship to duration of infection. Radiology. 2020; p. 200463.

22. Wang Y, Dong C, Hu Y, Li C, Ren Q, Zhang X, et al. Temporal

changes of CT findings in 90 patients with COVID-19 pneumonia:

a longitudinal study. Radiology. 2020; p. 200843.

23. Shan F, Gao Y, Wang J, Shi W, Shi N, Han M, et al. Lung

infection quantification of COVID-19 in CT images with deep

learning. CVPR. 2020.

24. Mahmud M, Kaiser MS, Hussain A, Vassanelli S. Applications

of deep learning and reinforcement learning to biological

data. IEEE Trans Neural Netw Learn Syst. 2018;29(6):2063–

2079.

25. Mahmud M, Kaiser MS, Hussain A. Deep learning in mining

biological data. [cs, q-bio, stat]. 2020; p. 1–36. Available from:

arXiv: http://arxiv.org/abs/2003.001082003.00108.

26. Ali HM, Kaiser MS, Mahmud M. Application of convolutional

neural network in segmenting brain regions from MRI data. Brain

Informatics. Lecture Notes in Computer Science. In: Liang P, Goel

V, and Shan C, editors. Cham: Springer International Publishing;

2019. p. 136–146.

27. Orojo O, Tepper J, McGinnity TM, Mahmud M. A multi-

recurrent network for crude oil price prediction. In: 2019 IEEE

Symposium Series on Computational Intelligence (SSCI); 2019.

p. 2940–2945.

28. Arifeen MM et al. Hidden Markov model based trust management

model for underwater wireless sensor networks. In: Proceedings

Of The International Conference On Computing Advancements;

2020. p. 1–5. https://doi.org/10.1145/3377049.3377054.

29. Yahaya SW, Lotfi A, Mahmud M. A consensus novelty detection

ensemble approach for anomaly detection in activities of daily

living. Appl Soft Comput. 2019;105613:83.

30. Yahaya SW, Lotfi A, Mahmud M, Machado P, Kubota N.

Gesture recognition intermediary robot for abnormality detection

in human activities. In: 2019 IEEE Symposium Series on

Computational Intelligence (SSCI); 2019. p. 1415–1421.

31. Noor MBT, Zenia NZ, Kaiser MS, Mahmud M, Al Mamun

S. Detecting neurodegenerative disease from MRI: a brief review

on a deep learning perspective. Brain Informatics. Lecture Notes

in Computer Science. In: Liang P, Goel V, and Shan C, editors.

Cham: Springer International Publishing; 2019. p. 115–125.

32. Miah Y, Prima CNE, Seema SJ, Mahmud M, Kaiser

MS. Performance comparison of machine learning techniques

in identifying dementia from open access clinical datasets.

In: Proceedings of ICACIN 2020. Springer; 2020. p. 69–

78.

33. Rabby G, Azad S, Mahmud M, Zamli KZ, Rah-

man MM. A flexible keyphrase extraction technique for

academic literature. Procedia Comput Sci. 2018;135:553–63.

https://doi.org/10.1016/j.procs.2018.08.208.

34. Silver D, et al. Mastering the game of Go with deep neural

networks and tree search. Nature. 2016;529(7587):484.

35. Bhandary A, Prabhu GA, Rajinikanth V, Thanaraj KP,

Satapathy SC, Robbins DE, et al. Deep-learning framework to

detect lung abnormality – a study with chest X-ray and lung CT

scan images. Pattern Recogn Lett. 2020;129:271–278.

36. Pugalenthi R, Rajakumar MP, Ramya J, Rajinikanth

V. Evaluation and classification of the brain tumor MRI

using machine learning technique. J Control Eng Appl Inf.

2019;21(4):12–21.
37. Celik Y, Talo M, Yildirim O, Karabatak M, Acharya UR.

Automated invasive ductal carcinoma detection based using deep

transfer learning with whole-slide images. Pattern Recogn Lett.

2020;133:232–239.
38. Sharif M, Amin J, Raza M, Anjum MA, Afzal H,

Shad SA. Brain tumor detection based on extreme learning.

Neural Computing and Applications. 2020; EPub ahead of print

https://doi.org/10.1007/s00521-019-04679-8.
39. Amin J, Sharif M, Raza M, Mussarat Y. Detection of brain

tumor based on features fusion and machine learning. Journal of

Ambient Intelligence and Humanized Computing. 2018.

40. Amin J, Sharif M, Gul N, Yasmin M, Shad SA.

Brain tumor classification based on DWT fusion of MRI

sequences using convolutional neural network. Pattern Recogn

Lett. 2020;129:115–122.

1021Cogn Comput (2020) 12:1011–1023

https://doi.org/10.1016/S2213-2600(20)30132-6
https://doi.org/10.1016/S2213-2600(20)30132-6
https://arxiv.org/abs/2004.03431
https://doi.org/10.1007/s00330-020-06816-7
https://doi.org/10.1007/s00330-020-06816-7
https://doi.org/10.1007/s00330-020-06817-6
https://bit.ly/3aoTQBD
https://bit.ly/3aoTQBD
http://arxiv.org/abs/2003.00108
https://doi.org/10.1145/3377049.3377054
https://doi.org/10.1016/j.procs.2018.08.208
https://doi.org/10.1007/s00521-019-04679-8


41. Sharif M, Amin J, Nisar MW, Anjum MA, Nazeer M, Shad

SA. A unified patch based method for brain tumor detection using

features fusion. Cogn Syst Res. 2020;59:273–286.

42. Das A, Acharya RU, Panda SS, Sabut SK. Deep learning based

liver cancer detection using watershed transform and Gaussian

mixture model techniques. Cogn Syst Res. 2019;54:165–175.

43. Wu YH, Gao SH, Mei J, Xu J, Fan DP, Zhao CW, et al. JCS:

an explainable COVID-19 diagnosis system by joint classification

and segmentation. [cs, eess]. 2020;p. 1–11. . Available from:

arXiv:2004.07054.

44. Artificial Intelligence AS. MedSeg, editor. CT Dataset for

COVID-19. MedSeg; 2020. Last access date 22-04-2020. Avail-

able from: http://medicalsegmentation.com/covid19/.

45. Dey N, Rajinikanth V, Shi F, Tavares JMRS, Moraru L, Karthik

KA, et al. Social-group-optimization based tumor evaluation tool

for clinical brain MRI of FLAIR/diffusion-weighted modality.

Biocybern Biomed Eng. 2019;39(3):843–856.

46. Dey N, Rajinikanth V, Ashour AS, Tavares JMRS. Social

group optimization supported segmentation and evaluation of skin

melanoma images. Symmetry. 2018;10(2):51.

47. Satapathy S, Naik A. Social group optimization (SGO): a

new population evolutionary optimization technique. Compl Intell

Syst. 2016;2(3):173–203.

48. Kowsalya N, Kalyani A, Chalcedony CJ, Sivakumar R, Janani

M, Rajinikanth V. An approach to extract optic-disc from retinal

image using K-means clustering. In: 2018 Fourth International

Conference on Biosignals, Images and Instrumentation (ICBSII);

2018. p. 206–212.

49. Tian Z, Dey N, Ashour AS, McCauley P, Shi F.

Morphological segmenting and neighborhood pixel-based locality

preserving projection on brain fMRI dataset for semantic feature

extraction: an affective computing study. Neural Comput Appl.

2018;30(12):3733–3748.

50. Wang Y, Shi F, Cao L, Dey N, Wu Q, Ashour AS, et al.

Morphological segmentation analysis and texture-based support

vector machines classification on mice liver fibrosis microscopic

images. Curr Bioinform. 2019;14(4):282–294.

51. Chaki J, Dey N. Texture feature extraction techniques for image

recognition, Voice In Settings. SpringerBriefs in Computational

Intelligence. Springer Singapore; 2020.

52. Acharya UR, Fernandes SL, WeiKoh JE, Ciaccio EJ, Fabell

MKM, Tanik UJ, et al. Automated detection of Alzheimer’s

disease using brain MRI images– a study with various feature

extraction techniques. J Med Syst. 2019;43(9):302.

53. Maheshwari S, Pachori RB, Acharya UR. Automated diagnosis

of glaucoma using empirical wavelet transform and correntropy

features extracted from fundus images. IEEE J Biomed Health Inf.

2017;21(3):803–813.

54. Kala S, Ezhilarasi M. Comparative analysis of serial and parallel

fusion on texture features for improved breast cancer diagnosis.

Curr Med Imaging Rev. 2018;14(6):957–968.

55. Moore CM, et al. Radiopaedia, editor. COVID-19 | Radiology

Reference Article | Radiopaedia.org. Radiopaedia; 2020. Last

access date: 22-04-2020. Available from: https://radiopaedia.org/

articles/covid-19-3.

56. Bahman R. Radiopaedia, editor. Cases by R. Bahman: Radiopae-

dia.org rID: 74560. Radiopaedia; 2020. Last access date:

22-04-2020. Available from: https://radiopaedia.org/cases/

covid-19-pneumonia-3.

57. Hosseinabadi F. Radiopaedia, editor. Case courtesy of Dr Fateme

Hosseinabadi: Radiopaedia.org rID: 74868. Radiopaedia; 2020.

Last access date: 22-04-2020. Available from: https://radiopaedia.

org/cases/covid-19-pneumonia-8.

58. Smith D. Radiopaedia, editor. Case courtesy of Dr Derek Smith:

Radiopaedia.org rID: 75249. Radiopaedia; 2020. Last access

date: 22-04-2020. Available from: https://radiopaedia.org/cases/

covid-19-pneumonia-23.

59. Bahman R. Radiopaedia, editor. Cases by R. Bahman: Radiopae-

dia.org rID: 74879. Radiopaedia; 2020. Last access date:

22-04-2020. Available from: https://radiopaedia.org/cases/

covid-19-pneumonia-10.

60. Cetinoglu K. Radiopaedia, editor. Case courtesy of Dr Kenan

Cetinoglu: Radiopaedia.org rID: 75281. Radiopaedia; 2020. Last

access date: 22-04-2020. Available from: https://radiopaedia.org/

cases/covid-19-pneumonia-27.

61. Feger J. Radiopaedia, editor. Case courtesy of Dr Joachim Feger:

Radiopaedia.org rID: 75541. Radiopaedia; 2020. Last access

date: 22-04-2020. Available from: https://radiopaedia.org/cases/

covid-19-pneumonia-52.

62. TaghiNiknejad M. Radiopaedia, editor. Case 55, courtesy of

Dr Mohammad TaghiNiknejad: Radiopaedia.org rID: 75606.

Radiopaedia; 2018. Last access date: 22-04-2020. Available from:

https://radiopaedia.org/cases/covid-19-pneumonia-55.

63. TaghiNiknejad M. Radiopaedia, editor. Case courtesy of

Dr Mohammad TaghiNiknejad: Radiopaedia.org rID: 75607.

Radiopaedia; 2020. Last access date: 22-04-2020. Available from:

https://radiopaedia.org/cases/covid-19-pneumonia-56.

64. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, et al.

The Cancer Imaging Archive (TCIA): maintaining and operating a

public information repository. J Digit Imaging. 2013;26(6):1045–

1057.

65. Armato SG et al. The Lung Image Database Consortium (LIDC)

and Image Database Resource Initiative (IDRI): a completed

reference database of lung nodules on CT scans: The LIDC/IDRI

thoracic CT database of lung nodules. Med Phys. 2011;38(2):915–

931.

66. Zhao B, et al. Evaluating variability in tumor measurements from

same-day repeat CT scans of patients with non-small cell lung

cancer. Radiology. 2009;252(1):263–272.

67. Zhao B, Schwartz LH, Kris MG. Archive TCI, editor. Data From

RIDER Lung CT. The Cancer Imaging Archive; 2015. Last access

date: 17-06-2020. Available from: https://doi.org/10.7937/K9/

TCIA.2015.U1X8A5NR.

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

1022 Cogn Comput (2020) 12:1011–1023

http://arxiv.org/abs/2004.07054
http://medicalsegmentation.com/covid19/
https://radiopaedia.org/articles/covid-19-3
https://radiopaedia.org/articles/covid-19-3
https://radiopaedia.org/cases/covid-19-pneumonia-3
https://radiopaedia.org/cases/covid-19-pneumonia-3
https://radiopaedia.org/cases/covid-19-pneumonia-8
https://radiopaedia.org/cases/covid-19-pneumonia-8
https://radiopaedia.org/cases/covid-19-pneumonia-23
https://radiopaedia.org/cases/covid-19-pneumonia-23
https://radiopaedia.org/cases/covid-19-pneumonia-10
https://radiopaedia.org/cases/covid-19-pneumonia-10
https://radiopaedia.org/cases/covid-19-pneumonia-27
https://radiopaedia.org/cases/covid-19-pneumonia-27
https://radiopaedia.org/cases/covid-19-pneumonia-52
https://radiopaedia.org/cases/covid-19-pneumonia-52
https://radiopaedia.org/cases/covid-19-pneumonia-55
https://radiopaedia.org/cases/covid-19-pneumonia-56
https://doi.org/10.7937/K9/TCIA.2015.U1X8A5NR
https://doi.org/10.7937/K9/TCIA.2015.U1X8A5NR


Affiliations

Nilanjan Dey1
· V. Rajinikanth2

· Simon James Fong3,4
· M. Shamim Kaiser5

· Mufti Mahmud6

V. Rajinikanth

v.rajinikanth@ieee.org

Simon James Fong

fong simon@yahoo.com

M. Shamim Kaiser

mskaiser@juniv.edu

1 Department of Information Technology, Techno India College

of Technology, Kolkata 700156, West Bengal, India
2 Department of Electronics and Instrumentation Engineering,

St. Joseph’s College of Engineering, Chennai 600119, India
3 Department of Computer and Information Science, University

of Macau, Taipa, China
4 DACC Laboratory, Zhuhai Institutes of Advanced Technology

of the Chinese Academy of Sciences, Zhuhai, China
5 Institute of Information Technology, Jahangirnagar University,

Savar, 1342 Dhaka, Bangladesh
6 Department of Computing & Technology, Nottingham Trent

University, Clifton Lane, Nottingham, NG11 8NS, UK

1023Cogn Comput (2020) 12:1011–1023

http://orcid.org/0000-0002-2037-8348
mailto: v.rajinikanth@ieee.org
mailto: fong_simon@yahoo.com
mailto: mskaiser@juniv.edu

	SGO-KE and Morphological Segmentation for Automated Detection of COVID-19 Infection
	Abstract
	Introduction
	Motivation
	Methodology
	Proposed Pipeline
	Stage 1:
	Stage 2:

	Segmentation of COVID-19 Infection
	Image Thresholding
	Social Group Optimization and Kapur's Function
	Segmentation Based on KMC and Morphological Process
	Performance Computation

	Implementation of Machine Learning Scheme
	Initial Processing
	Feature Vector 1 (FV1):
	Feature Vector 2 (FV2):
	Fused Feature Vector (FFV:)
	Classification
	Validation


	COVID-19 Dataset

	Results and Discussion
	Conclusion
	References
	Affiliations


