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Abstract Social group optimization (SGO), a population-

based optimization technique is proposed in this paper. It is

inspired from the concept of social behavior of human toward

solving a complex problem. The concept and the mathe-

matical formulation of SGO algorithm is explained in this

paper with a flowchart. To judge the effectiveness of SGO,

extensive experiments have been conducted on number of

different unconstrained benchmark functions as well as stan-

dard numerical benchmark functions taken from the IEEE

Congress on Evolutionary Computation 2005 competition.

Performance comparisons are made between state-of-the-

art optimization techniques, like GA, PSO, DE, ABC and

its variants, and the recently developed TLBO. The inves-

tigational outcomes show that the proposed social group

optimization outperforms all the investigated optimization

techniques in computational costs and also provides opti-

mal solutions for most of the functions considered in our

work. The proposed technique is found to be very simple

and straightforward to implement as well. It is believed that

SGO will supplement the group of effective and efficient opti-

mization techniques in the population-based category and

give researchers wide scope to choose this in their respective

applications.
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Introduction

Population-based optimization algorithms motivated from

nature commonly locate near-optimal solution to optimiza-

tion problems. Every population-based algorithm has the

common characteristics of finding out global solution of

the problem. A population begins with initial solutions and

gradually moves toward a better solution area of search

space based on the information of their fitness. Over the last

few decades, numbers of successful population-based algo-

rithms have been emerged for solving complex optimization

problems. Some of the well-known population-based opti-

mization techniques are comprehensively cited below, and

readers can refer details in the respective papers. Genetic

algorithms (GAs) [1], being the most popular ones, are based

on genetic science and natural selection operators. The dif-

ferential evolution (DE) [2] is based on similar concept of

GA but it offers all solutions an equal chance irrespective

of their fitness to get selected as parents, unlike GA, and

has found to be recently very well known to optimization

researchers. Bacteria foraging (BF) [3] based on the social

foraging behavior of Escherichia coli, shuffled frog leap-

ing (SFL) [4] inspired by natural memetics providing beauty

of local search and global information exchange, simulated

annealing (SA) [5] based on steel annealing process, and ant

colony optimization (ACO) [6] motivated from the manners

of real ant colony. A technique based on swarm behavior

such as fish schooling and bird flocking in nature known

as Particle Swarm Optimization (PSO) [7] has been widely

researched and applied to various fields of engineering-allied

subjects. Artificial bee colony (ABC) [8] algorithm based

on the intelligent foraging behavior of honeybee swarm,

the gravitational search algorithm (GSA) [9] based on the

law of gravity and notions of mass interactions, cuckoo

search [10] inspired by the obligate brood parasitism of
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some cuckoo species by laying their eggs in the nests of other

host birds (of other species) are gaining popularity as well

among users. Biogeography-based optimization (BBO) [11]

based on the idea of the migration strategy of animals or other

species for solving optimization problems, the intelligent

water drops (IWDs) [12] algorithm enthused from observ-

ing natural water drops that flow in rivers and find almost

optimal paths to their destination, the firefly algorithm (FA)

[13] inspired by the flashing behavior of fireflies in nature, the

honey bee mating optimization (HBMO) [14,15] algorithm

inspired by the process of marriage in real honey bees, the bat

algorithm (BA) [16] inspired by the echolocation behavior of

bats are few more population-based techniques in this cate-

gory. The harmony search (HS) [17] optimization algorithm

inspired by the improvising process of composing a piece of

music, the big bang–big crunch (BB-BC) optimization [18]

based on one of the theories of the evolution of the universe

[18], black hole (BH) [19] optimization inspired by the black

hole phenomenon have also been extensively tried success-

fully for solving various problems in engineering. Recently,

teaching–learning-based optimization (TLBO) [20] based on

the effect of the influence of a teacher on the output of learn-

ers in a class is being extensively studied by researchers to

solve a variety of optimization problems in engineering appli-

cations. Even though all these algorithms are good enough

for solving optimization problems, however, issues like find-

ing optimal solutions, providing fast convergence without

over fitting (computational efforts), choosing and controlling

algorithm parameters, algorithm stability and robustness,

consistency in providing solutions, adaptability to wide vari-

ety of applications, etc., have been the subjects of extensive

research in optimization community. To address the afore-

mentioned issues, researchers have developed many variants

of the above-mentioned optimization algorithms, and even

hybridization of several algorithms has also been attempted.

In an attempt to address few challenges like computa-

tional efforts, optimal solutions and consistency in providing

optimal solutions, this paper proposes a new optimization

technique named social group optimization (SGO) based on

the human behavior of learning and solving complex prob-

lems.

In this work, we have done extensive study to further inves-

tigate the performance of our proposed SGO algorithm on

many simple benchmark functions as well as benchmark

functions from CEC 2005 competitions. Many advanced

versions of state-of-the art algorithms like PSO, DE and

ABC etc., and their variants are simulated to compare the

performances with SGO. Also, the performance of SGO

is compared with recently developed TLBO algorithms.

Convergence characteristics of SGO are presented in plots.

Results are reported in Tables with the mean and standard

deviation values for each algorithm on each function over

several simulation runs. To compare the significance of the

proposed algorithm, we have done Wilcoxon’s rank-sum sta-

tistical tests.

The remaining of the paper is organized as follows: in

“Social Group Optimization”, we give a comprehensive

description of SGO algorithm. The next section “Implemen-

tation of SGO for optimization” discusses the implementa-

tion of SGO for optimization followed by discussion about

“Experimental results”. The paper concludes with further

research in “Conclusion”.

Social group optimization (SGO)

There are many behavioral traits such as honesty, dishonesty,

caring, compassion, courage, fear, justness, fairness, toler-

ance or respectfulness etc., lying dormant in human beings,

which need to be harnessed and channelized in the appropri-

ate direction to enable him/her to solve complex tasks in life.

Few individuals might have required level of all these behav-

ioral traits to be capable of solving, effectively and efficiently,

complex problems in life. But very often, complex problems

can be solved with the influence of traits from one person

to other or from one group to other groups in the society. It

has been observed that human beings are great imitators or

followers in solving any task. Group solving capability has

emerged to be more effective than individual capability in

exploiting and exploring different traits of each individual in

the group to solve a given problem. Based upon this concept,

a new optimization technique is proposed which is named as

social group optimization (SGO).

In SGO, each person (a candidate solution) is empow-

ered with some sort of knowledge having a level of capacity

for solving a problem. SGO is another population-based

algorithm similar to other algorithms discussed in the pre-

vious section. For SGO, the population is considered as a

group of persons (candidate solutions). Each person acquires

knowledge and, thereby, possesses some level of capacity for

solving a problem. This is corresponding to the ‘fitness’. The

best person is the best solution. The best person tries to prop-

agate knowledge amongst all persons, which will, in turn,

improve the knowledge level of the entire members in the

group.

The procedure of SGO is divided into two parts. The

first part consists of the ‘improving phase’; the second part

consists of the ‘acquiring phase’. In ‘improving phase,’ the

knowledge level of each person in the group is enhanced

with the influence of the best person in the group. The best

person in the group is the one having the highest level of

knowledge and capacity to solve the problem. And in the

‘acquiring phase,’ each person enhances his/her knowledge

with the mutual interaction with another person in the group

and the best person in the group at that point in time. The
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basic mathematical interpretation of this concept is presented

below.

Let X j , j = 1, 2, 3, . . .N be the persons of social group,

i.e., social group contains N persons and each person X j is

defined by X j = (x j1, x j2, x j3, . . . , x j D), where D is the

number of traits assigned to a person which determines the

dimensions of a person and f j , j = 1, 2, . . .N are their

corresponding fitness values, respectively.

Improving phase

The best person (gbest) in each social group tries to propagate

knowledge among all persons, which will, in turn, help others

to improve their knowledge in the group.

Hence, gbestg = min{ fi , i = 1, 2, . . . N}
at generation g for solving minimization problem.

(1)

In the improving phase, each person gets knowledge

(here knowledge refers to change of traits with the influ-

ence of the best person’s traits) from the group’s best (gbest)

person. The updating of each person can be computed as

follows:

For i = 1 : N

For j=1:D

Xnewi j =c ∗ Xoldi j +r ∗ (gbest( j)−Xoldi j )

End for

End for

where r is a random number, r ∼ U (0, 1)

Accept Xnew if it gives a better fitness than Xold.

(2)

where c is known as self-introspection parameter. Its value

can be set from 0 < c < 1.

Acquiring phase

In the acquiring phase, a person of social group interacts

with the best person (gbest) of that group and also inter-

acts randomly with other persons of the group for acquiring

knowledge. A person acquires new knowledge if the other

person has more knowledge than him or her. The best knowl-

edgeable person (here known as person having ‘gbest’) has

the greatest influence on others to learn from him/her. A

person will also acquire something new from other per-

sons if they have more knowledge than him or her in the

group.

The acquiring phase is expressed as given below:

gbest = min{ f (X i ), i = 1, 2, . . . N } (3)

(X i ’s are updated values at the end of the improving phase)

For i = 1 : N

Randomly select one person Xr , where i �= r

If f (X i ) < f (Xr )

For j = 1 : D

Xnewi, j = Xoldi, j + r1 ∗
(

X i, j − Xr, j

)

+ r2 ∗ (gbest j − X i, j )

End for

Else

For j = 1 : D

Xnewi,: = Xoldi,: + r1 ∗
(

Xr,: − X i,:
)

+r2 ∗ (gbest j − X i j )

End for

End If

Accept Xnew if it gives a better fitness function value.

End for

(4)

where r1 and r2 are two independent random sequences, r1 ∼
U (0, 1) and r2 ∼ U (0, 1) . These sequences are used to

affect the stochastic nature of the algorithm as shown above

in Eq. (4).

For further clarity and ease of implementation, the entire

process is now presented in an easy-to-understand flowchart

(Fig. 1)

Implementation of SGO for optimization

The step-wise procedure for the implementation of SGO is

given in this section.

Step 1: Enumeration of the problem and Initialization of

parameters

Initialize the population size (N), number of gen-

erations (g), number of design variables (D), and

limits of design variables (UL , L L). Define the

optimization problem as: Minimize f (X). Sub-

ject to = (x1, x2, x3, . . . . . . , xD), so that X j =
(x j1, x j2, x j3, . . . . . . , x j D), where f (X) is the objec-

tive function, and X is a vector for design variables

such that L L ,i ≤ x,i ≤ UL ,i .

Step 2: Initialize the population

A random population is generated based on the

features (number of parameters) and the size of pop-

ulation chosen by user. For SGO, the population size

indicates the number of persons and the features indi-

cate the number of traits of a person. This population

is articulated as:

Population =

⎡

⎢

⎣

x1,1 x1,2 x1,3 · · · x1,D
...

. . .
...

xN ,1 xN ,2 xN ,3 · · · xN ,D

⎤

⎥

⎦
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Fig. 1 Flow Charts of SGO
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Calculate the fitness of the population f (X).

Step 3: Improving Phase

Then, determine gbestg using Eq. (1), which is the

best solution for that iteration. As in the improv-

ing phase, each person gets knowledge from their

group’s best, i.e., gbest

For i = 1 : N

For j = 1 : D

Xnewi j =c ∗ Xoldi j +r ∗ (gbest ( j)−Xoldi j )

End for

End for

The value of c is self-introspection factor. The value

of c can be empirically chosen for a given problem.

We have set it to 0.2 in this work after thorough

study of our investigated problems and r is a random

number, r ∼ U (0, 1).

Accept Xnew if it gives better function value.

Step 4: Acquiring phase

As explained above, in the acquiring phase, a person

of social group interacts with the best person, i.e.,

gbest of the group and also interacts randomly with

other persons of the group for acquiring knowledge.

The mathematical expression is defined in “Acquir-

ing phase”.

Step 5: Termination criterion

Stop the simulation if the maximum generation num-

ber is achieved; otherwise, repeat from Steps 3–4.

Experimental results

In this paper, the performance of SGO is compared with

many classical population-based optimization techniques as

well as their advanced variants using some basic benchmark

functions and 25 test functions proposed in the CEC2005 spe-

cial session on real-parameter optimization. A description of

some basic benchmark functions is given in Appendix, and

others are referred from their respective papers, and a detailed

description of these 25 CEC2005 test functions can be found

in [21]. In “Experiment 1:SGO vs. GA, PSO, DE, ABC,

and TLBO” to “Experiment 8. SGO vs FIPS-PSO, CPSO-H,

DMSPSO-LS, CLPSO, APSO, SSG-PSO, SSG-PSO-DFP,

SSG-PSO-BFGS, SSG-PSO-NM, SSG-PSO-PS”, we have

described the experimentation on basic benchmark func-

tions; in “Experiment 9: SGO vs. jDE, SaDE, EPSDE,

CoDE, MPEDE , CLPSO, CMA-ES,GL-25 and TLBO”,

CEC2005 test functions are experimented; and experiments

on composite test functions are discussed and experimented

in “Experiment 10: SGO vs. PSO, CPSO, CLPSO, CMA-ES,

G3-PCX, DE, and TLBO using Composite functions”. To

have statistically sound conclusions, Wilcoxon’s rank-sum

test at a 0.05 significance level was conducted on the experi-

mental results, and the last three rows of each respective table

summarize the experimental results.

For comparing the speed of the algorithms, the first thing

we require is a fair time measurement. The number of iter-

ations or generations cannot be accepted as a time measure,

since the algorithms perform different amount of works in

their inner loops, and they have different population sizes.

Hence, we choose the number of fitness function evalu-

ations(FEs) as a measure of computation time instead of

generations or iterations. Since the algorithms are stochas-

tic in nature, the results of two successive runs usually do

not match. Hence, we have taken different independent runs

(with different seeds of the random number generator) of

each algorithm.

Finally, we would like to point out that all the experiment

codes are implemented in MATLAB 7. The experiments are

conducted on a Pentium 4, 1 GB memory desktop in Win-

dows XP 2002 environment.

Experiment 1:SGO vs. GA, PSO, DE, ABC, and TLBO

In this section, for fair comparison of the performances of

algorithms, the results are directly gained form [22] for GA,

PSO, DE and ABC algorithms. However, the simulations

have been carried out by us for TLBO and our proposed

SGO algorithm. The common parameter such as population

size is set to 20 for both TLBO and SGO. The maximum

number for function evaluation is set to 2000 for TLBO and

1000 for SGO. The other specific parameters of algorithms

are given below:

TLBO settings For TLBO, there is no such constant to set.

SGO settings For SGO, there is only one constant self-

introspection factor for optimum self-effort c. The value of c

is empirically set to 0.2 for better results.

The 25 benchmark functions which are considered for

simulations include many different kinds of problems such

as unimodal, multimodal, regular, irregular, separable, non-

separable and multidimensional. All problems are divided

into four categories such as US, MS, UN, MN, and the

range, formulation, characteristics and the dimensions of

these problems are described in Appendix.

Each of the experiments for TLBO and SGO is repeated

30 times (we have taken the same number of experimenta-

tions which have been done in [22] to make the comparison

fair) with different random seeds, and the best mean values

produced by the algorithms have been recorded. Comparison

criteria are the mean solution and the standard solution for

different independent runs. The mean solution describes the

average ability of the algorithm to find the global solution,

and the standard deviation describes the variation in solution
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from the mean solution. To make the comparison clear, the

values below 10−12 are assumed to be 0. Also, to have sta-

tistically sound conclusions, Wilcoxon’s rank-sum test at a

0.05 significance level has been conducted on the experimen-

tal results, and the last three rows of Table 1 summarize the

results. The results for GA, PSO, DE and ABC are taken from

the paper [22]. The Table 1 presents the comparison of fitness

values of GA, PSO, DE and ABC gained from [22] and for

TLBO and SGO computed by us. In Table 1, “NA” stands

for experiment is not conducted for that particular function.

The best optimal values are shown in bold face.

From Table 1, it is clear that SGO provides better opti-

mal results in as many as 12 functions compared to GA, 5

functions compared to PSO, 4 functions compared to DE,

3 functions compared to ABC and 2 functions compared to

TLBO. It can be arrived at a conclusion here that SGO is very

competitive compared to ABC and especially with TLBO.

However, we have noted that SGO is faster when compared to

other algorithms. It takes 1/500th function evaluations com-

pared to GA, PSO, DE and ABC for all functions except for

Rosenbrock wherein it takes 1/50th of total function evalua-

tions. And it is computing almost in half of the total function

evaluations compared to TLBO except for Rosenbrock for

which SGO takes 1/5th number of function evaluation as

against TLBO. From the above findings, we may arrive at

a conclusion that our proposed algorithm not only performs

better compared to many state-of-the art algorithms like GA,

PSO, DE but also very competitive with ABC and TLBO

in providing optimal solutions. Importantly, SGO takes less

computation efforts compared to all other algorithms inves-

tigated in this section.

Experiment 2: SGO vs. HS, IBA, ABC, and TLBO

In this experiment, five different benchmark problems from

Karaboga and Akay [23] are considered, and comparison

is carried out between SGO, the harmony search algorithm

(HS), improved bee algorithm (IBA), artificial bee colony

optimization (ABC) and teaching–learning-based optimiza-

tion (TLBO) [24]. To compare the results, the mean solution

and the standard solution for different independent runs are

taken. In our simulation, we run TLBO for maximum 2000

FEs with 10 as the population size for all functions except

Rosenbrock, whereas HS, IBA and ABC run for 50,000 FEs

with 50 as population size. For Rosenbrock function, TLBO

takes 50,000 FEs with population size of 50. For our opti-

mization algorithm, i.e., SGO, maximum FEs are set to 1000

with 10 as the population size for all functions except Rosen-

brock for which it is set to 50,000 FEs with population size

of 50. The results are gathered for different independent runs

in each case, and the mean and standard deviation are calcu-

lated for the results obtained in different runs. Description of

the functions is given in Appendix.

In this simulation, different dimensions (D) of the bench-

mark functions are chosen for study. Values starting from as

small as 5 to 1000 are taken. The results for dimensions 5,

10, 30, 50, 100 are directly lifted from [24] for all inves-

tigated algorithms and put in Table 2. For SGO algorithm,

we have computed results for all dimensions and generated

results for two large-scale dimensions, such as 500 and 1000,

to investigate the performance of SGO for large-dimension

problems. The maximum number of FEs for SGO is set

1/50th of maximum FEs taken for HS, IBA and ABC for

all functions except Rosenbrock. And, for Rosenbrock, it is

1/5th of HS, IBC and ABC. However, it is exactly half that

of TLBO in all functions [24,25]. It may be emphasized here

that the reduced value of maximum number of FEs for SGO

is deliberately chosen to investigate the effectiveness and

efficiency over other algorithms. Table 2 shows the results

for this experiment. In Table, “NA” stands for experiment is

not conducted for that particular function. The best optimal

values are shown in bold face. To have statistically sound

conclusions, Wilcoxon’s rank-sum test at a 0.05 significance

level has been conducted on the experimental results, and

the last three rows of Table summarize the results. It can

be seen from Table 2 that SGO has outperformed than all

the algorithms for all the functions in almost all dimensions.

This experiment shows that SGO is effective in finding the

optimum solution with increase in dimensions. However, the

performance of other algorithms in higher dimensions has

not been ascertained in this work. Our preliminary litera-

ture study reveals that they do not perform well in higher

dimensions.

Experiment 3: SGO vs OEA, HPSO-TVAC, CLPSO,

APSO, OLPSO-L and OLPSO-G

In this section, comparisons of SGO versus OEA, HPSO-

TVAC (Self-organizing hierarchical particle swarm opti-

mizer with time-varying acceleration coefficients) [26],

APSO (adaptive particle swarm optimization) [27], CLPSO

(comprehensive learning particle swarm optimization) [28],

OLPSO (orthogonal learning particle swarm optimization)-L

[29] and OLPSO-G [29] on nine benchmarks listed in Appen-

dix are carried out. OEA uses 3.0 × 105 FEs, HPSO-TVAC,

CLPSO, APSO, OLPSO-L and OLPSO-G use 2.0×105 FEs,

whereas SGO runs for 3 × 103 FEs for sphere, schwefel 1.2,

schwefel 2.22 function, 1.0×102 FEs for step, 4.0×102 FEs

for rastrigin, noncontinuous rastrigin and griwank, 1.0×103

FEs for Ackley and quartic function. The results of OEA,

HPSO-TVAC, CLPSO and APSO are gained from [28] and

[27] directly, and for OLPSO-L and OLPSO-G, results are

gained from [29] directly and put in Table 3. In Table, “NA”

stands for experiment is not conducted for that particular

function. The best optimal values are shown in bold face. To

have statistically sound conclusions, Wilcoxon’s rank-sum
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Table 1 Performance comparisons of results of 30 runs obtained by GA, PSO, DE, ABC, TLBO, and SGO algorithms in terms of mean and Std

Name of the functions GA PSO DE ABC TLBO SGO

Step

Mean 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Std (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ 0.00e+00

Sphere

Mean 1.11e+03 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Std (7.41e+01)− (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ 0.00e+00

Sum Squares

Mean 1.48e+02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Std (1.24e+01)− (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ 0.00e+00

Quartic

Mean 1.81e−01 1.16e−03 1.36e−03 3.00e−02 1.20e−03 3.77e−04

Std (2.71e−02)− (2.76e−04)− (4.17e−04)− (4.87e−03)− (3.1134e−04)− 1.46e−04

Beale

Mean 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Std (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ 0.00e+00

Easom

Mean −1 −1 −1 −1 −1 −1

Std (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ 0.00e+00

Matyas

Mean 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Std (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ 7(0.00e+00)≈ 0.00e+00

Zakharov

Mean 1.36e−02 0.00e+00 0.00e+00 2.48e−04 0.00e+00 0.00e+00

Std (4.53e−03)− (0.00e+00)≈ (0.00e+00)≈ (1.83e−04)− (0.00e+00)≈ 0.00e+00

Powell

Mean 9.70e+00 1.10e−04 2.17e−07 3.13e−03 0.00e+00 0.00e+00

Std (1.55e+00)− (1.60e−04)− (1.36e−07)− (5.03e−04)− (0.00e+00)≈ 0.00e+00

Schwefel 1.2

Mean 7.40e+03 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Std (1.14e+03)− (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ 0.00e+00

Schwefel 2.21

Mean NA NA NA NA 0.00e+00 0.00e+00

Std (0.00e+00)≈ 0.00e+00

Schwefel 2.22

Mean 1.1.0e+01 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Std (1.39e+00)− (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ 0.00e+00

Bohachevsky1

Mean 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Std (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ 0.00e+00

Bohachevsky2

Mean 6.83e−02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Std (7.82e−02)− (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ 0.00e+00

Bohachevsky3

Mean 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Std (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ 0.00e+00

Booth

Mean 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Std (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ 0.00e+00
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Table 1 continued

Name of the functions GA PSO DE ABC TLBO SGO

Rastrigin

Mean 5.29e+01 4.39e+01 1.17e+01 0.00e+00 0.00e+00 0.00e+00

Std (4.56e+00)− (1.17e+01)− (2.54e+00)− (0.00e+00)≈ (0.00e+00)≈ 0.00e+00

Noncontinous rastrigin

Mean NA NA NA NA 0.00e+00 0.00e+00

Std (0.00e+00)≈ 0.00e+00

Six Hump Camel back

Mean −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316

Std (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ 0.00e+00

Griewank

Mean 1.06e+01 1.74e−02 1.48e−03 0.00e+00 0.00e+00 0.00e+00

Std (1.16e+00)− (2.08e−02)− (2.96e−03)− (0.00e+00)≈ (0.00e+00)≈ 0.00e+00

Ackley

Mean 1.47e+01 1.65e−01 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Std (1.78e−01)− (4.94e−01)− (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ 0.00e+00

Multimod

Mean NA NA NA NA 0.00e+00 0.00e+00

Std (0.00e+00)≈ 0.00e+00

Weierstrass

Mean NA NA NA NA 0.00e+00 0.00e+00

Std (0.00e+00)≈ 0.00e+00

Elliptic

Mean NA NA NA NA 0.00e+00 0.00e+00

Std (0.00e+00)≈ 0.00e+00

Rosenbrocks

Mean 1.96e+05 1.51e+01 1.82e+01 8.88e−02 2.71e+01 2.70e+01

Std (3.85e+04)− (2.411e+01)+ (5.03e+00)+ (7.74e−02)+ (1.14e+00)− 1.76e−01

− 12 05 04 03 02

+ 00 01 01 01 00

≈ 08 14 15 16 23

Wilcoxon’s rank-sum test at a 0.05 significance level is performed between SGO and each of GA, PSO, DE, ABC and TLBO. “−”, “+”, and “≈”

denote that the performance of the corresponding algorithm is worse than, better than, and similar to that of SGO, respectively

test at a 0.05 significance level has been conducted on the

experimental results, and the last three rows of Table sum-

marize the results. According to Wilcoxon’s rank-sum test,

SGO performs superior than OEA in seven test functions

and comparable to one test function out of eight test func-

tions, improved than HPSO-TVAC in eight test functions and

equivalent to one test function out of nine test functions. It is

also found to be better than APSO in eight test functions and

equivalent to one test function out of nine test functions. In

our work, we observe that compared to OLPSO-L, our pro-

posed SGO is better in two OLPSO-G in four test functions

and equivalent to one test function out of five test functions.

Hence, it can be claimed that even though the maximum

number of fitness evaluations for SGO is less than the other

algorithms, still SGO is either better than or equivalent to

other algorithms for each benchmark function according to

the Wilcoxon’s rank-sum test.

Experiment 4: SGO vs JADE, jDE, SaDE, CoDE and

EPSDE

The experiments in this section constitute the comparison of

the SGO algorithm versus SaDE [30], jDE [31], JADE [32],

CoDE [33] and EPSDE [34] on nine benchmark functions

which are listed in Appendix. The results of JADE, jDE and

SaDE are gained from [32] directly and put in Table 4. For

CoDE and EPSDE, we have generated results using codes

given in website Q. Zhang’s homepage:http://dces.essex.ac.
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Table 2 Performance comparisons of results of 30 runs obtained by HS, IBA, ABC, TLBO and SGO algorithms in terms of mean and Std

Name of function D HS IBA ABC TLBO SGO

Mean Mean Mean Mean Mean

Sphere 5 3.20e−10 3.91e−17 4.30e−17 5.03e−33 1.58e−67

(2.89e−10)− (1.24e−17)− (1.07e−17)− (1.27e−32)− 1.93e−67

10 6.45e−08 4.95e−17 7.36e−17 2.26e−29 2.01e−66

(3.07e−08)− (2.30e−17)− (4.43e−17)− (3.61e−29)− 7.99e−67

30 7.21e+00 2.92e−16 4.69e−16 6.90e−26 9.19e−66

(3.62e+00)− (6.77e−17)− (1.07e−16)− (3.18e−25)− 9.21e−67

50 5.46e+02 5.39e−16 1.19e−15 8.71e−26 1.66e−65

(1.78e+03)− (1.07e−16)− (4.68e−16)− (1.86e−25)− 1.80e−66

100 1.90e+04− 1.45e−15 1.99e−06 9.42e−26 3.65e−65

(1.78e+03)− (1.63e−16)− (2.26e−06)− (3.70e−25)− 1.58e−66

500 NA NA NA NA 1.96e−64

9.88e−66

1000 NA NA NA NA 4.01e−64

1.69e−65

Rosenbrock 5 5.94e+00 4.55e−01 2.33e−01 1.80e−01 4.20e−06

(6.71e+00)− (1.54e+00)− (2.24e−01)− (8.04e−02)− 2.30e−06

10 6.52e+00 1.10e+01 4.62e−01 5.58e+00 4.15e−02

(8.16e+00)− (2.55e+01)− (5.44e−01)− (6.18e−01)− 1.82e−01

30 3.82e+02 7.57e+01 9.98e−01 2.71e+01 2.30e+01

(5.29e+02)− (1.16e+02)− (1.52e+00)+ (1.14e+00)− 6.76e−01

50 2.47e+04 6.30e+02 4.33e+00 4.78e+01 4.42e+01

(1.02e+04)− (1.20e+03)− (5.48e+00)+ (1.01e+00)− 5.01e−01

100 1.45e+07 6.42e+02 1.12e+02 9.81e+01 9.50e+01

(2.16e+06)− (8.20e+02)− (6.92e+1)− (3.61e−01)− 6.01e−01

500 NA NA NA NA 4.92e+02

6.67e−01

1000 NA NA NA NA 9.89+02

2.12e−01

Ackley 5 2.68e−05 6.35e−10 9.64e−17 0.00e+00 −8.88e−16

(1.24e−05)− (9.77e−11)− (5.24e−17)+ (0.00e+00)+ 0.00e+00

10 2.76e−04 6.71e−02 3.51e−16 0.00e+00 −8.88e−16

(7.58e−05)− (3.61e−01)− (6.13e−17)≈ (0.00e+00)+ 0.00e+00

30 9.43e−01 1.75e+00 3.86e−15 7.11e−16 0.00e+00

(5.63e−01)− (9.32e−01)− (3.16e−15)− (1.82e−15)≈ 0.00e+00

50 5.28e+00 8.43e+00 4.38e−08 1.24e−15 −8.88e−16

(4.03e−01)− (7.70e+00)− (4.65e−08)− (1.95e−15)− 0.00e+00

100 1.32e+01 1.89e+01 1.32e−02 2.13e−15 −8.88e−16

(4.90e−01)− (8.50e−01)− (1.30e−02)− (1.19e−15)− 0.00e+00

500 NA NA NA NA −8.88e−16

0.00e+00

1000 NA NA NA NA −8.88e−16

0.00e+00
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Table 2 continued

Name of function D HS IBA ABC TLBO SGO

Mean Mean Mean Mean Mean

Griwank 5 2.60e−02 3.14e+00 4.04e−17 0.00e+00 0.00e+00

(1.38e−02)− (1.41e+00)− (1.12e−17)− (0.00e+00)≈ 0.00e+00

10 1.02e+00 1.04e+00 6.96e−17 0.00e+00 0.00e+00

(3.02e−02)− (1.13e+00)− (4.06e−17)− (0.00e+00)≈ 0.00e+00

30 1.09e+00 6.68e+00 5.82e−06 0.00e+00 0.00e+00

(3.92e−02)− (6.43e+00)− (3.13e−05)− (0.00e+00)≈ 0.00e+00

50 5.81e+00 1.34e+02 5.72e−01 0.00e+00 0.00e+00

(9.16e−01)− (2.41e+01)− (9.22e−01)− (0.00e+00)≈ 0.00e+00

100 1.78e+02 7.93e+02 1.31e+01 0.00e+00 0.00e+00

(1.98e+01)− (7.96e+01)− (6.30e+00)− (0.00e+00)≈ 0.00e+00

500 NA NA NA NA 0.00e+00

0.00e+00

1000 NA NA NA NA 0.00e+00

0.00e+00

Rastrigin 5 6.07e−08 4.58e+00 4.34e−17 0.00e+00 0.00e+00

(5.52e−08)− (2.31e+00)− (1.10e−17)− (0.00e+00)≈ 0.00e+00

10 1.05e−05 2.20e+01 5.77e−17 0.00e+00 0.00e+00

(5.23e−06)− (7.46e+00)− (2.98e−17)− (0.00e+00)≈ 0.00e+00

30 7.40e−01 1.28e+02 4.80e−05 0.00e+00 0.00e+00

(7.00e−01)− (2.49e+01)− (2.43e−04)− (0.00e+00)≈ 0.00e+00

50 3.76e+01 2.72e+02 4.72e−01 0.00e+00 0.00e+00

(4.87e+00)− (3.27e+01)− (4.92e−01)− (0.00e+00)≈ 0.00e+00

100 3.15e+02 6.49e+02 1.46e+01 0.00e+00 0.00e+00

(2.33e+01)− (4.52e+01)− (4.18e+00)− (0.00e+00)≈ 0.00e+00

500 NA NA NA NA 0.00e+00

0.00e+00

1000 NA NA NA NA 0.00e+00

0.00e+00

− 25 25 21 12

+ 00 00 3 02

≈ 00 00 01 11

Wilcoxon’s rank-sum test at a 0.05 significance level is performed between SGO and each of HS, IBA, ABC, and TLBO. “−”, “+”, and “≈” denote

that the performance of the corresponding algorithm is worse than, better than, and similar to that of SGO, respectively

D dimension

uk/staff/qzhang/. For CoDE, EPSDE and SGO, we have

considered population size as 20. The maximum number of

fitness evaluations for each function is different, and FEs are

noted in bracket of each cell in Table 4. Fitness values are

shown in Table 4 in means and standard deviations. In Table,

“NA” stands for experiment is not conducted for that particu-

lar function. The best optimal values are shown in bold face.

To have statistically sound conclusions, Wilcoxon’s rank-

sum test at a 0.05 significance level has been conducted on

the experimental results, and the last three rows of Table

summarize the results. According to Wilcoxon’s rank-sum

test, it can be noted that the performance of SGO is always

better than all other algorithms except EPSDE in reporting

the optimal value, where SGO performs better than EPSDE

in five test functions and equivalent to three test functions

out of eight test functions. So, it is interesting to note that

even though the maximum number of fitness evaluations for

SGO is less than the other algorithms, still SGO is better

than or equivalent with all variants of DE algorithm in this

experiment according to Wilcoxon’s rank-sum test.

Experiment 5: SGO vs. CABC, GABC, RABC and

IABC

In this section, we compare SGO with CABC [35], GABC

[36], RABC [37] and IABC [38] on eight benchmark func-
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Table 3 Performance comparisons of SGO, OEA, HPSO-TVAC, CLPSO, APSO, OLPSO-L and OLPSO-G

Function OEA HPSO-TVAC CLPSO APSO OLPSO-L OLPSO-G SGO

Sphere

Mean 2.48e−30 3.38e−41 1.89e−19 1.45e−150 1.11e−38 4.12e−54 1.46e−205

Std (1.13e−29)− (8.50e−41)− (1.49e−19) (5.73e−150)− (1.28e−38)− (6.34e−54)− 0

Schwefel 2.22

Mean 2.07e−13 6.9e−23 1.01e−13 5.15e−84 7.67e−22 9.85e−30 1.85e−103

Std (2.44e−12)− (6.89e−23)− (6.54e−14)− (1.44e−83)− (5.63e−22)− (1.01e−29)− 2.03e−104

Schwefel 1.2

Mean 1.88e−09 2.89e−07 3.97e+02 1.0e−10 NA NA 4.31e−201

Std (3.726e−9)− (2.97e−07)− (1.42e+02)− (2.13e−10)− 0

Step

Mean 0 0 0 0 NA NA 0

Std (0)≈ (0)≈ (0)≈ (0)≈ 0

Rastrigin

Mean 5.43e−17 2.39 e+00− 2.57e−11 5.8e−15 0 1.07e+00 0

Std (1.68e−16)− (3.71e+00)− (6.64e−11)− (1.01e−14)− (0) ≈ (9.90e−01)− 0

Noncontinuous rastrigin

Mean NA 1.83e+00 1.67e−01 4.14e−16 NA NA 0

Std (2.65e+00)− (3.79e−01)− (1.45e−15)− 0

Ackley

Mean 5.35e−14 2.06e−10 2.01e−12 1.11e−14 4.14e−15 7.98e−15 −8.88e−16

Std (2.94e−13)− (9.45e−10)− (9.22e−13)− (3.55e−15)− (0)≈ (2.03e−15)≈ 1.01e−31

Griewank

Mean 1.32e−02 1.07e−02 6.45e−13 1.67e−02 0 4.83e−03 0

Std (1.56e−02)− (1.14e−02)− (2.07e−12)− (2.41e−02)− (0)≈ (8.63e−03)− 0

Quartic

Mean 3.29e−03 5.54e−02 3.92e−03 4.66e−03 NA NA 5.37e−04

Std (1.09e−03)− (2.08e−02)− (1.14e−03)− (1.70e−03)− 3.91e−05

− 7 8 8 8 2 4

+ 00 00 00 00 00 00

≈ 1 1 1 1 3 1

Wilcoxon’s rank-sum test at a 0.05 significance level is performed between SGO and each of OEA, HPSO-TVAC, CLPSO, APSO, OLPSO-L,

OLPSO-G. “−”, “+”, and “≈” denote that the performance of the corresponding algorithm is worse than, better than, and similar to that of SGO,

respectively

tions. The parameters of the algorithms are identical to [36].

The maximum number of fitness evaluations for each func-

tion is different, and FEs are noted in bracket of each cell

in Table 5. The results have been summarized in Table 5.

The fitness value in terms of mean and standard deviation is

reported. The best optimal values are shown in bold face. To

have statistically sound conclusions, Wilcoxon’s rank-sum

test at a 0.05 significance level has been conducted on the

experimental results, and the last three rows of Table sum-

marize the results. It can be observed from Table 5 that SGO

performs better in comparison to all algorithms. So, we can

say that even though the maximum number of fitness evalu-

ations for SGO is less than the other algorithms, still SGO is

better than all variants of ABC algorithm in this experiment.

Experiment 6: SGO vs. TLBO

In this experiment, we compare only TLBO and SGO

algorithms. As TLBO is relatively new compared to other

algorithms investigated in our work, we have devoted a

special section to compare our approach with TLBO. In

this experiment, our main objective is to see how SGO

performs against TLBO in terms of optimal solution and

computational costs. The common parameter such as pop-

ulation size is taken as 20 and maximum number fitness

function evaluation is taken as 1,000 for both TLBO and

SGO.

We used 25 benchmark problems to test the performance

of the TLBO and our proposed SGO algorithms. The ini-
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Table 5 Performance comparisons of SGO, CABC, GABC, RABC and IABC

Function CABC GABC RABC IABC SGO

Sphere

Mean 2.3e−40 (1.5 × 105) 3.6e−63 (1.5 × 105) 9.1e−61 (1.5 × 105) 5.34e−178 (1.5 × 105) 0 (5.0 × 103)

Std (1.7e−40)− (5.7e−63)− (2.1e−60)− (0)− 0

Schwefel 2.22

Mean 3.5e−30 (2.0 × 105) 4.8e−45 (2.0 × 105) 3.2e−74 (2.0 × 105) 8.82e−127 (2.0 × 105) 0 (5.0 × 103)

Std (4.8e−30)− (1.4e−45)− (2.0e−73)− (3.49e−126)− 0

Schwefel 1.2

Mean 8.4e+02 (5.0 × 105) 4.3e+02 (5.0 × 105) 2.9e−24 (5.0 × 105) 1.78e−65 (5.0 × 105) 0 (5.0 × 103)

Std (9.1e+02)− (8.0e+02)− (1.5e−23)− (2.21e−65)− 0

Step

Mean 0 (1.0×104) 0 (1.0×104) 0 (1.0×104) 0 (1.0×104) 0 (1.0 × 102)

Std 0≈ 0≈ 0≈ 0≈ 0

Rastrigin

Mean 1.3e−00 (5.0 × 104) 1.5e−10 (5.0 × 104) 2.3e−02 (5.0 × 104) 0 (5.0 × 104) 0 (4.0 × 102)

Std (2.7e−00)− (2.7e−10)− (5.1e−01)− 0≈ 0

Schwefel 2.21

Mean 6.1e−03 (5.0 × 105) 3.6e−06 (5.0 × 105) 2.8e−02 (5.0 × 105) 4.98e−38 (5.0 × 105) 0 (5.0 × 103)

Std (5.7e−03)− (7.6e−07)− (1.7e−02)− (8.59e−38)− 0

Ackley

Mean 1.0e−05 (5.0 × 104) 1.8e−09 (5.0 × 104) 9.6e−07 (5.0 × 104) 3.87e−14 (5.0 × 104) 2.47e−15 (1.0 × 103)

Std (2.4e−06)− (7.7e−10)− (8.3e−07)− (8.52e−15)− 1.82e−15

Griewank

Mean 1.2e−04 (5.0 × 104) 6.0e−13 (5.0 × 104) 8.7e−08 (5.0 × 104) 0 (5.0 × 104) 0 (4.0 × 102)

Std (4.6e−04)− (7.7e−13)− (2.1e−08)− 0≈ 0

− 07 07 07 05

+ 00 00 00 00

≈ 01 01 01 04

Wilcoxon’s rank-sum test at a 0.05 significance level is performed between SGO and each of CABC, GABC, RABC and IABC. “−”, “+”, and

“≈” denote that the performance of the corresponding algorithm is worse than, better than, and similar to that of SGO, respectively

tial range, formulation, characteristics and the dimensions of

these problems are listed in Appendix. Each simulation runs

for 30 times. The simulation is terminated on attaining max-

imum number of evaluations or obtaining global minimum

values with different random seeds. The mean value and stan-

dard deviations of fitness value produced by the algorithms

have been recorded in Table 6. At the same time, mean value

and standard deviations of number of fitness evaluation pro-

duced by the algorithms have also been recorded in Table

7. The best optimal values are shown in bold face. To have

statistically sound conclusions, Wilcoxon’s rank-sum test at

a 0.05 significance level has been conducted on the experi-

mental results, and the last three rows of Table summarize

the results. It is observed that SGO performs better in 23 test

functions and equivalent in 2 test functions.

From Tables 6 and 7, it is clear that except step and six-

hump camel-back function, in all cases, SGO has shown

better result than TLBO, and the maximum number of fit-

ness evaluations for easom, bohachevsky1, bohachevsky2,

bohachevsky3, rastrigin, noncontinuous rastrigin, multimod

and for weierstrass function is less than that of TLBO

algorithm and all these functions have reached to optimal

solution. In both step and six-hump camel-back function

cases, both TLBO and SGO algorithms have performed

equivalently and given optimal result, however, in both cases,

SGO reaches optimum value with lesser number of fitness

evaluations than TLBO. So, we can say that SGO is better

than TLBO algorithm in all cases in this experiment. The con-

vergence characteristics of both algorithms have been shown

in the graphs below (Fig. 2).

Experiment 7: SGO vs. SAABC, GABC, IABC,

ABC/Best1, GPSO, DBMPSO, TCPSO and VABC

In this section, we compare SGO with both ABC and PSO

variants of algorithm such as GABC(Gbest-guided artificial
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Table 6 Performance

comparisons of SGO and TLBO
Function no. TLBO SGO TLBO SGO

Step Bohachevsky1

Mean 0 0 Mean 6.97e−06 0

Std (0)≈ 0 Std (3.78e−06)− 0

Sphere Bohachevsky2

Mean 3.20e−03 7.82e−031 Mean 5.16e−06 0

Std (2.50e−03)− 1.20e−031 Std (3.44e−06)− 0

Sum Squares Bohachevsky3

Mean 1.20e−03 1.12e−31 Mean 3.13e−06 0

Std (1.50e−03)− 1.25e−33 Std (2.78e−06)− 0

Quartic Booth

Mean 1.46 e−02 2.98e−04 Mean 1.20e−09 5.55e−13

Std (8.90e−03)− 5.67e−05 Std (1.17e−09)− 1.93e−16

Beale Rastrigin

Mean 2.87e−08 2.11e−09 Mean 1.86e+02 0

Std (1.24e−09)− 3.88e−11 Std (3.50e+01)− 0

Easom Noncontinous rastrigin

Mean −9.94e−01 −1 Mean 1.61e+02 0

Std 3.40e−03 −0 Std (2.69e+01)− 0

Matyas Six Hump Camel Back

Mean 8.08e−12 4.91e−41 Mean −1.0316 −1.0316

Std (5.22e−12)− 6.83e−42 Std (6.79e−16)− 6.79e−16

Zakharov Griewank

Mean 7.29e−05 1.24e−33 Mean 1.14e−02 0

Std (4.98e−05)− 1.92e−35 Std (9.50e−03)− 0

Powell Ackley

Mean 6.41e−04 3.72e−32 Mean 3.14e−02 −8.88e−16

Std (3.37e−04)− 4.08e−34 Std (3.11e−02)− 1.01e−31

Schwefel 1.2 Multimod

Mean 3.62e+02 1.15e−26 Mean 9.34e−49 0

Std (1.34e+02)− 2.67e−29 Std (1.31e−48)− 0

Schwefel 2.21 Weierstass

Mean 5.31e−02 2.05e−16 Mean 5.18e−01 0

Std (5.60e−03)− 5.90e−19 Std (1.89e−01)− 0

Schwefel 2.22 Elliptic

Mean 2.25e−02 4.56e−16 Mean 6.69e+02 2.01e−26

Std (2.13e−02)− 1.91e−19 Std (4.56e+02)− 3.34e−29

Rosenbrocks

Mean 29.1979 28.6819

Std (1.1425)− 0.4319

− 11 − 12

+ 00 + 00

≈ 01 ≈ 01

Wilcoxon’s rank-sum test at a 0.05 significance level is performed between SGO and TLBO. “−”, “+”, and

“≈” denote that the performance of the TLBO algorithm is worse than, better than, and similar to that of

SGO, respectively

bee colony algorithm) [36], IABC [38], ABC/Best1 [39],

SAABC(simulated annealing-based artificial bee colony)

[40], VABC(velocity-based artificial bee colony algorithm)

[41], CPSO(Chaotic particle swarm optimization) [42],

DBMPSO(particle swarm optimization with double-bottom

chaotic maps) [43], TCPSO(two-swarm cooperative particle
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Table 7 Fitness comparisons of SGO and TLBO

Function no. TLBO SGO TLBO SGO

Step Bohachevsky1

Mean 880 160 Mean 1000 520

Std 80 40 Std 1000 20.2715

Sphere Bohachevsky2

Mean 1000 1000 Mean 1000 560

Std 0 0 Std 0 19.1231

Sum Squares Bohachevsky3

Mean 1000 1000 Mean 1000 560

Std 0 0 Std 0 18.2715

Quartic Booth

Mean 1000 1000 Mean 1000 1000

Std 0 0 Std 0 0

Beale Rastrigin

Mean 1000 1000 Mean 1000 520

Std 0 0 Std 0 0

Easom Noncontinous rastrigin

Mean 1000 640 Mean 1000 560

Std 0 0 Std 0 22.3312

Matyas Six Hump Camel Back

Mean 1000 1000 Mean 680 360

Std 0 0 Std 80 23.5634

Zakharov Griewank

Mean 1000 1000 Mean 1000 600

Std 0 0 Std 0 0

Powell Ackley

Mean 1000 1000 Mean 1000 1000

Std 0 0 Std 0 0

Schwefel 1.2 Multimod

Mean 1000 1000 Mean 1000 640

Std 0 0 Std 0 0

Schwefel 2.21 Weierstass

Mean 1000 1000 Mean 1000 840

Std 0 0 Std 0 33.1231

Schwefel 2.22 Elliptic

Mean 1000 1000 Mean 1000 1000

Std 0 0 Std 0 0

Rosenbrocks

Mean 1000 1000

Std 0 0

swarms optimization) [44] on 23 benchmark functions out of

which 15 are multidimensional and 8 are fixed-dimensional

benchmark functions. All functions are described in [41]. The

maximum number of fitness evaluations is taken as 40,000,

and population size is 40, and the parameters of the algo-

rithms are identical to [41]. The results of SAABC, GABC,

IABC, ABC/Best1, VABC, CPSO, DBMPSO and TCPSO

are gained from [41] for comparison with SGO. The com-

parison results are shown in Tables 8, 9, 10 in terms of means

and standard deviations (Std) of the solutions in the 30 inde-

pendent runs. Tables 8, 9 show the results for 60 and 100

dimensions, respectively, on multidimensional functions,

and Table 10 reports the results on the fixed-dimensional

functions. The best optimal values are shown in bold

face.

As seen from the Tables 8, 9 results, SGO found the

global optimal values for all the functions except F6, F7,

F9, F12, F14 and F15 function for both 60 and 100 dimen-

sion. On the other hand, for test functions F9, F12, F14 and

F15, the objective values obtained by SGO are extremely

close to global optima. Again, as seen from Table 10

results, SGO found the global optimal values for the func-

tions F16, F17 and F21 of fixed-dimensional functions. On

the other hand, for test functions F19 and F20, the objec-

tive values obtained by SGO are extremely close to global

optima.

To have statistically sound conclusions, Wilcoxon’s rank-

sum test at a 0.05 significance level has been conducted on

the experimental results, and the last three rows of Table

summarize the results. In 60-dimensional case, according

to Wilcoxon’s rank-sum test, SGO performs superior than

SAABC in 14 test functions and comparable to one test func-

tion out of a 5 test functions, improved than GABC in all

15 test functions. It is also found to be better than IABC,

ABC/Best1, CPSO, DBMPSO and TCPSO in all 15 test func-

tions. In our work, we observe that compared to VABC, our

proposed SGO is better in 11 test functions and equivalent to

2 test functions out of 15 test functions.

In 100-dimensional case, according to Wilcoxon’s rank-

sum test, SGO performs superior than all algorithms except

VABC algorithm in all 15 multidimensional test functions.

Compared to VABC, our proposed SGO is better in 12 test

functions and equivalent to 1 test functions out of 15 test

functions.

In fixed-dimensional case, according to Wilcoxon’s rank-

sum test, SGO performs superior than SAABC in four test

functions and equivalent with three test functions out of eight

test functions, improved than GABC in five test functions and

equivalent with two test function out of eight test functions.

It is also found to be better than IABC, ABC/Best1, VABC,

CPSO, DBMPSO, TCPSO in seven, five, three, two, three

and seven test functions, respectively, out of eight test func-

tions and similarly equivalent with one, two, four, five, four

and zero test functions, respectively, out of eight test func-

tions.

So, it is interesting to note that the performance of SGO is

better than other algorithms according to Wilcoxon’s rank-

sum test.
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Fig. 2 Convergence

characteristics of SGO Vs

TLBO
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Experiment 8: SGO vs. GPSO, LPSO, FIPS, SPSO,

CLPSO, OLPSO and SLPSOA

In this section, the comparison of SGO versus GPSO(global

PSO) [45], LPSO(local PSO) [46], FIPS(fully informed

particle swarm) [47],SPSO(standard for particle swarm

optimization) [48], CLPSO [28], OLPSO [29] and CLP-

SOA(scatter learning particle swarm optimization Algo-

rithm) [49], on 14 benchmark functions described in paper

[49]. The maximum number of fitness evaluations is taken

as 200,000, and population size is 40, and the parameters

of the algorithms are identical to [49]. The comparison
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Fig. 2 continued
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results are shown in Table 11 in terms of means and

standard deviations (Std) of the solutions in the 25 inde-

pendent runs. The results of GPSO, LPSO, FIPS, SPSO,

CLPSO, OLPSO and SLPSOA are gained from [49]. As

seen from Table 11 results, SGO found the global optimal

solution for the functions sphere, schwefel 2.22, rastrigin,

griewank, rotated rastrigin and rotated griewank. On the

other hand, for the test functions noise, Ackley, generalized

penalized, generalized penalised1, and rotated Ackley, the

objective values obtained by SGO are extremely close to

global optima. The best optimal values are shown in bold

face.

To have statistically sound conclusions, Wilcoxon’s rank-

sum test at a 0.05 significance level has been conducted on

the experimental results, and the last three rows of Table

summarize the results. According to Wilcoxon’s rank-sum

test, SGO performs superior than GPSO, LPSO, FIPS, SPSO,

CLPSO, OLPSO and SLPSOA in 13, 14, 13, 12, 12, 6, and 7
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Fig. 2 continued
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test functions, respectively, out of 14 test functions. The SGO

algorithm is equivalent with OLPSO in four test functions

and with SLPSOA in two test functions. So, it is interesting

to tell according to this experiment that SGO is better than

other algorithms according to Wilcoxon’s rank-sum test.

Experiment 8. SGO vs FIPS-PSO, CPSO-H,

DMSPSO-LS, CLPSO, APSO, SSG-PSO,

SSG-PSO-DFP, SSG-PSO-BFGS, SSG-PSO-NM,

SSG-PSO-PS

To comprehensively compare the performance of SGO with

the performance of SSG-PSO (Superior solutions guided

PSO with the individual level based mutation operator)

and its several variants with different local search tech-

niques, 21 test benchmark functions of different types were

used, including unimodal functions, multimodal functions,

miscalled functions and rotated functions. The detailed infor-

mation of test functions is displayed in [50]. Here, the

popular PSO variants are FIPS-PSO (fully informed PSO),

CPSO-H (cooperative based PSO), DMSPSO-LS (dynamic

multi-swarm particle swarm optimizer with local search),

CLPSO (comprehensive learning PSO), APSO (adaptive par-

ticle swarm optimization), and different variants of SSG-PSO

with different local search techniques are SSG-PSO-DFP

(SSG-PSO with Davidon–Fletcher–Powell method), SSG-

PSO-BFGS (SSG-PSO with Broyden–Fletcher–Goldfarb–

Shanno method), SSG-PSO-NM (SSG-PSO with Nelder–

Mead simplex search), SSG-PSO-PS (SSG-PSO with Pattern

Search).

The maximum number of fitness evaluations is taken as

300,000, and population size is 40, and the parameters of the

algorithms are identical to [50]. The comparison results are

shown in Table 12 in terms of means and standard deviations

(Std) of the solutions in the 30 independent runs. The results

of all PSO variants and different variants of SSG-PSO with

different local search techniques are gained from [50].
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Table 12 Experimental results of FIPS-PSO, CPSO-H, DMSPSO-LS, CLPSO APSO, SSG-PSO, SSG-PSO-DFP, SSG-PSO-BFGS, SSG-PSO-

NM, SSG-PSO-PS, and SGO over 30 independent runs on 21 test functions of 30 variables with 300,000 FEs

Algorithm Sphere Rosenbrock Schwefel 12 Schwefel 2.21 Schwefel 2.22 Rastrigin Noncontinous rastrigin −/+ /≈
Mean

Std

Mean

Std

Mean

Std

Mean

Std

Mean

Std

Mean

Std

Mean

Std

FIPS-PSO 0.00e+00 2.52e+01 2.08e+02 6.25e−02 1.64e−09 6.39e+01 5.44e+01 06/00/01

(0.00e+00)≈ (9.08−01)− (8.98e+01)− (4.34e−03)− (5.59e−10)− (1.12e+01)− (2.63e+01)−
CPSO-H 2.49e−15 2.77e+01 2.79e+03 5.14e−03 3.92e−08 3.32e−02 2.56e−09 07/00/00

(1.55e−15)− (2.86e+01)− (5.98e+03)− (4.49e−03)− (4.25e−09)− (1.82e−01)− (7.43e−09)−
CLPSO 0.00e+00 2.34e+01 1.34e+02 6.61e−03 7.52e−20 0.00e+00 0.00e+00 04/00/03

(0.00e+00)≈ (3.79e+00)− (2.44e+02)− (4.21e−03)− (5.69e−19)− (0.00e+00)≈ (0.00e+00)≈
APSO 0.00e+00 2.38e+01 9.91e−03 2.24e−01 4.25e−23 4.52e+00 3.21e+00 06/00/01

(0.00e+00)≈ (7.05e+01)− (5.03e−02)− (6.85e−01)− (7.44e−21)− (1.35e+00)− (6.32e+00)−
DMSPSO-LS 0.00e+00 8.99e−11 9.59e−10 4.67e−05 1.09e−18 1.32e+01 3.41e+01 05/01/01

(0.00e+00)≈ (3.54e−11)+ (5.33e−10)− (1.75e−05)− (1.04e−18)− (1.93e+00)− (5.02e+00)−
SSG-PSO 0.00e+00 2.12e+01 1.24e+01 2.77e−02 2.75e−25 0.00e+00 0.00e+00 04/00/03

(0.00e+00)≈ (1.84e+00)− (1.35e+01)− (1.47e−02)− (1.96e−25)− (0.00e+00)≈ (0.00e+00)≈
SSG-PSO-DFP 0.00e+00 1.84e−01 1.30e−03 1.60e−04 9.65e−25 0.00e+00 0.00e+00 03/01/03

(0.00e+00)≈ (4.35e−01)+ (2.12e−03)− (2.92e−06)− (6.08e−25)− (0.00e+00)≈ (0.00e+00)≈
SSG-PSO-BFGS 0.00e+00 5.73e−11 2.57e−14 3.77e−06 1.04e−26 0.00e+00 0.00e+00 03/01/03

(0.00e+00)≈ (8.08e−12)+ (4.58e−14)− (1.63e−06)− (7.54e−26)− (0.00e+00)≈ (0.00e+00)≈
SSG-PSO-NM 0.00e+00 8.34e+00 2.46e−02 2.12e−02 1.93e−24 0.00e+00 0.00e+00 03/01/03

(0.00e+00)≈ (2.83e+00)+ (4.14e−02)− (1.11e−02)− (1.21e−24)− (0.00e+00)≈ (0.00e+00)≈
SSG-PSO-PS 0.00e+00 6.90e+00 4.16e+01 1.23e−15 9.33e−22 0.00e+00 0.00e+00 03/01/03

(0.00e+00)≈ (1.25e+00)+ (2.31e+00)− (3.25e−16)− (1.23e−22)− (0.00e+00)≈ (0.00e+00)≈
SGO 0.00e+00 1.52e+01 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

0.00e+00 1.31e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Ackley Griewank Scaled

Rosenbrock 100

Scaled

rastrigin 10

Scaled

rastrigin 1000

Rotated

sphere

Rotated

Rosenbrock

FIPS-PSO 1.39e−08 2.72e−07 7.37e+04 7.37e+04 4.59e+01 7.54e−13 2.89e+01 07/00/00

(2.98e−09)− (1.18e−06)− (3.14e+05)− (9.23e+00)− (2.38e+01)− (3.26e−13)− (4.15e+00)−
CPSO-H 2.44e−05 1.20e−01 3.71+06 1.23e+07 5.65e−05 8.10e−08 1.62e+02 07/00/00

(1.35e−05)− (2.18e−01)− (4.38e+06)− (1.86e−07)− (2.44e−04)− (1.02e−07)− (3.78e+02)−
CLPSO 7.77e−14 0.00e+00 4.94e+01 0.00e+00 0.00e+00 4.21e−17 2.64e+01 03/01/03

(1.49e−18)− (0.00e+00)≈ (4.32e+01)− (0.00e+00)≈ (0.00e+00)≈ (6.18e−18)− (1.21e+00)+
APSO 6.34e−02 1.42e−02 4.06e+06 1.98e+00 1.49e+01 3.24e−20 7.83e+01 07/00/00

(1.43e+00)− (7.24e−02)− (5.42e+06)− (2.44e+01)− (5.24e+01)− (5.45e−19)− (8.24e+01)−
DMSPSO-LS 7.81e−15 0.00e+00 2.56e+01 2.17e+01 3.06e+01 2.59e−30 3.98e−03 05/01/01

(2.80e−15)− (0.00e+00)≈ (1.02e+01)− (6.70e+00)− (6.41e+00)− (1.87e−30)− (2.35e−03)+
SSG-PSO 7.25e−15 0.00e+00 3.59e+01 0.00e+00 0.00e+00 5.28e−22 2.53e+01 03/01/03

(1.74e−16)− (0.00e+00)≈ (3.22e+01)− (0.00e+00)≈ (0.00e+00)≈ (8.71e−22)− (6.91e−01)+
SSG-PSO-DFP 5.68e−15 0.00e+00 3.19e+01 0.00e+00 0.00e+00 1.91e−23 1.06e−05 03/01/03

(1.78e−15)− (0.00e+00)≈ (3.18e+01)− (0.00e+00)≈ (0.00e+00)≈ (3.04e−23)− (7.88e−04)+
SSG-PSO-BFGS 4.97e−15 0.00e+00 2.21e+01 0.00e+00 0.00e+00 2.29e−27 3.98e−10 03/01/03

(1.73e−15)− (0.00e+00)≈ (3.07e+01)− (0.00e+00)≈ (0.00e+00)≈ (3.74e−27)− (1.22e−10)+
SSG-PSO-NM 6.85e−15 0.00e+00 3.43e+01 0.00e+00 0.00e+00 5.32e−24 2.40e+01 03/01/03

(3.23e−15)− (0.00e+00)≈ (3.03e+01)− (0.00e+00)≈ (0.00e+00)≈ (4.11e−24)− (1.36e+01)+
SSG-PSO-PS 1.25e−14 0.00e+00 1.81e+00 0.00e+00 0.00e+00 1.97e−24 2.50e+01 02/02/03

(6.32e−15)− (0.00e+00)≈ (1.05e+00)+ (0.00e+00)≈ (0.00e+00)≈ (8.65e−25)− (1.41e+01)+
SGO −8.88e−16 0.00e+00 1.68e+01 0.00e+00 0.00e+00 0.00e+00 2.82e+01

0.00e+00 0.00e+00 2.45e−01 0.00e+00 0.00e+00 0.00e+00 1.26e−02
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Table 12 continued

Algorithm Sphere Rosenbrock Schwefel 12 Schwefel 2.21 Schwefel 2.22 Rastrigin Noncontinous rastrigin −/+ /≈
Mean

Std

Mean

Std

Mean

Std

Mean

Std

Mean

Std

Mean

Std

Mean

Std

Rotated

schwefel 2.21

Rotated

rastrigin

Rotated

Ackley

Rotated

griewank

Rotated

ellipse

Rotated

tablet

Rotated

diff pow

FIPS-PSO 1.36e−04 1.75e+02 2.24e−08 1.14e−03 1.51e+03 8.45e+02 4.54e+10 07/00/00

(4.89e−05)− (8.79e+00)− (5.60e−09)− (3.00e−03)− (7.14e+02)− (2.14e+02)− (9.01e+10)−
CPSO-H 5.43e+01 3.77e+02 1.76e+01 1.66e+00 7.63e+03 1.65e+05 1.6e+10 07/00/00

(7.52e+00)− (1.10e+02)− (3.96e+00)− (2.10e−01)− (6.69e+03)− (4.61e+04)− (4.71e+10)−
CLPSO 1.51e−02 1.08e+02 2.76e−03 2.66e−03 4.88e+03 3.35e+02 3.74e+07 07/00/00

(4.64e−03)− (1.36e+01)− (3.25e−03)− (2.12e−03)− (1.38e+03)− (1.34e+02)− (3.45e+07)−
APSO 8.05e−01 1.02e+02 3.62e−10 1.72e−02 1.25e+03 7.41e+02 2.91e+07 07/00/00

(1.24e−01)− (1.24e+03)− (9.94e−10)− (2.41e−01)− (2.12e+04)− (8.44e+02)− (4.22e+08)−
DMSPSO-LS 1.18e−04 3.10e+01 2.48e−14 7.39e−04 1.27e−09 1.37e−07 1.28e−08 07/00/00

(1.09e−04)− (4.54e+00)− (5.84e−15)− (2.33e−03)− (1.13e−09)− (1.47e−07)− (6.28e−09)−
SSG-PSO 7.25e−04 4.65e+01 5.86e−14 1.02e−05 7.72e+02 3.02e+02 5.42e+06 07/00/00

(3.02e−04)− (1.12e+01)− (1.55e−13)− (4.86e−05)− (8.86e+02)− (1.10e+02)− (7.17e+06)−
SSG-PSO-DFP 5.38e−06 5.08e+01 4.79e−15 1.11e−16 2.54e−07 1.30e−11 1.45e−06 07/00/00

(8.59e−06)− (1.16e+01)− (1.73e−15)− (3.02e−16)− (1.07e−06)− (4.44e−11)− (9.86e−07)−
SSG-PSO-BFGS 8.15e−06 4.10e+01 4.59e−15 1.47e−16 2.44e−16 2.23e−12 8.87e−10 07/00/00

(7.15e−06)− (1.43e+01)− (2.64e−15)− (3.03e−16)− (4.38e−16)− (2.40e−12)− (5.79e−10)−
SSG-PSO-NM 4.94e−04 5.38e+00 7.12e−14 1.10e−08 6.17e−01 4.91e−11 7.73e+03 07/00/00

(1.96e−04)− (1.05e+01)− (1.67e−13)− (2.70e−08)− (8.93e−01)− (2.10e−10)− (1.44e+04)−
SSG-PSO-PS 4.40e−04 4.44e+01 6.16e−14 1.52e−06 5.13e+01 2.14e−02 3.26e+04 07/00/00

(2.31e−04)− (6,43e+01)− (1.95e−13)− (2.84e−06)− (3.24e+01)− (6.54e−02)− (2.16e+04)−
SGO 0.00e+00 0.00e+00 −8.88e−16 0.00e+00 0.00e+00 0.00e+00 0.00e+00

0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Wilcoxon’s rank-sum test at a 0.05 significance level is performed between SGO and each FIPS-PSO, CPSO-H, CLPSO,APSO, DMSPSO-LS, SSG-

PSO, SSG-PSO-DFP, SSG-PSO-BFGS,SSG-PSO-NM, and SSG-PSO-PS. “−”, “+”, and “≈” denote that the performance of the corresponding

algorithm is worse than, better than, and similar to that of SGO, respectively

As seen from Table 12 results, SGO found the global

optimal solution for all the test functions except Rosen-

brock, Ackley, scaled Rosenbrock 100, rotated Rosenbrock

and rotated Ackley. On the other hand, for the test functions

Ackley and rotated Ackley, the objective values obtained by

SGO are extremely close to global optima. The best optimal

values are shown in bold face. To have statistically sound

conclusions, Wilcoxon’s rank-sum test at a 0.05 significance

level has been conducted on the experimental results, and

the last three rows of Table summarize the results. Accord-

ing to Wilcoxon’s rank-sum test, SGO performs superior than

FIPS-PSO, CPSO-H, DMSPSO-LS, CLPSO, APSO, SSG-

PSO, SSG-PSO-DFP, SSG-PSO-BFGS, SSG-PSO-NM, and

SSG-PSO-PS in 20, 21, 17, 14, 20, 14, 13, 13, 13 and 12 test

functions, respectively, and equivalent with 1, 0, 2, 6, 1, 6, 6,

6, 6 and 6 test functions, respectively, out of 21 test functions.

So, it is interesting to tell according to this experiment that

SGO is better than other algorithms according to Wilcoxon’s

rank-sum test.

Experiment 9: SGO vs. jDE, SaDE, EPSDE, CoDE,

MPEDE, CLPSO, CMA-ES,GL-25 and TLBO

To study the performance of proposed SGO, 25 test func-

tions proposed in the 2005 special session on real parameter

optimization were used. A detailed description of these test

functions can be found in [21]. The number of decision vari-

ables or dimension of the function was set to 30 for all

test functions. For each algorithm and each test function,

25 independent runs were conducted with 300,000 function

evaluations (FEs) as the termination.

SGO was compared with six DE variants, i.e., JADE

[32], jDE [31], SaDE [30], EPSDE [34], CoDE [33] and

MPEDE[51] and four other approaches, i.e., CLPSO [28],

CMA-ES [52], GL-25 [53] and TLBO [24]. In our exper-

iments, the parameter settings of these methods were the

same as their original papers. The number of FFs in all these

methods was 300,000, and each method was run 25 times

on each test function. For the proposed SGO algorithm, we
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Table 13 Experimental results of JADE, jDE, SaDE, EPSDE, CoDE, MPEDE and SGO over 25 independent runs on 25 test functions of 30

variables with 300,000 FEs

Function JADE jDE SaDE EPSDE CoDE MPEDE SGO

Mean error

Std

Mean error

Std

Mean error

Std

Mean error

Std

Mean error

Std

Mean error

Std

Mean error

Std

F1 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

(0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)≈ (0.00e+00)

F2 1.07e−28 1.11e−06 8.26e−06 4.23e−26 1.69e−15 1.01e−26 6.79e−09

(1.00e−28)+ (1.10e−06)− (1.65e−05)− (4.07e−26)+ (3.95e−15)+ (2.05e−26)+ (4.79e−09)

F3 8.42e+03 1.98e+05 4.27e+05 8.74e+05 1.05e+05 1.01e+01 1.65e+05

(7.26e+03)+ (1.10e+05)− (2.08e+05)− (3.28e+06)− (6.25e+04)+ (8.32e+00)+ (9.07e+04)

F4 1.73e−16 4.40e−02 1.77e+02 3.49e+02 5.81e−03 6.61e−16 2.06e+01

(5.43e−16)+ (1.26e−01)+ (2.67e+02)− (2.23e+03)− (1.38e−02)+ (5.68e−16)+ (1.26e+01)

F5 8.59e−08 5.11e+02 3.25e+03 1.40e+03 3.31e+02 7.21e−06 2.08e+03

(5.23e−07)+ (4.40e+02)+ (5.90e+02)− (7.12e+02)+ (3.44e+02)+ 5.12e−06+ (4.81e+02)

F6 1.02e+01 2.35e+01 5.31e+01 6.38e−01 1.60e −01 9.65e+00 2.63e+00

(2.96e+01)− (2.50e+01)− (3.25e+01)− (1.49e+00)+ (7.85e−01)+ (4.65e+00)− (1.74e+00)

F7 8.07e−03 1.18e−02 1.57e−02 1.77e−02 7.46e−03 2.36e−03 7.00e−03

(7.42e−03)− (7.78e−03)− (1.38e−02)− (1.34e−02)− (8.55e−03)− (1.15e−03)+ (5.60e−03)

F8 2.09e+01 2.09e+01 2.09e+01 2.09e+01 2.01e+01 2.09e+01 2.08e+01

(1.68e−01)− (4.86e−02)− (4.95e−02)− (5.81e−02)− (1.41e−01)+ (5.87e−01)− (5.83e−03)

F9 0.00e+00 0.00e+00 2.39e−01 3.98e−02 0.00e+00 0.00e+00 9.27e+01

(0.00e+00)+ (0.00e+00)+ (4.33e−01)+ (1.99e−01)+ (0.00e+00)+ (0.00e+00)+ (2.15e+01)

F10 2.41e+01 5.54e+01 4.72e+01 5.36e+01 4.15e+01 1.52e+01 9.60e+01

(4.61e+00)+ (8.46e+00)+ (1.01e+01)+ (3.03e+01)+ (1.16e+01)+ (2.98e+00)+ (1.18e+01)

F11 2.53e+01 2.79e+01 1.65e+01 3.56e+01 2.71e+01 2.58e+01 1.72e+01

(1.65e+00)− (1.61e+00)− (2.42e+00)− (3.88e+00)− (1.57e+00)− (3.11e+00)− (1.54e+00)

F12 6.15e+03 8.63e+03 3.02e+03 3.58e+04 3.05e+03 1.17e+03 4.50e+02

(4.79e+03)− (8.31e+03)− (2.33e+03)− (7.05e+03)− (3.80e+03)− (8.66e+02)− (2.12e+01)

F13 1.49e+00 1.66e+00 3.94e+00 1.94e+00 1.57e+00 2.92e+00 3.26e+00

(1.09e−01)+ (1.35e−01)+ (2.81e−01)− (1.46e−01)+ (3.27e−01)+ (6.33e−01)+ (4.57e−01)

F14 1.23e+01 1.30e+01 1.26e+01 1.35e+01 1.23e+01 1.23e+01 1.17e+01

(3.11e−01)− (2.00e−01)− (2.83e−01)− (2.09e−01)− (4.81e−01)− (4.22e−01)− (3.29e−01)

F15 3.51e+02 3.77e+02 3.76e+02 2.12e+02 3.88e+02 3.78e+02 2.75e+02

(1.28e+02)− (8.02e+01)− (7.83e+01)− (1.98e+01)+ (6.85e+01)− (6.32e+01)− (6.56e+01)

F16 1.01e+02 7.94e+01 8.57e+01 1.22e+02 7.37e+01 3.77e+01 1.12e+02

(1.24e+02)+ (2.96e+01)+ (6.94e+01)+ (9.19e+01)− (5.13e+01)+ (5.22e+00)+ (6.22e+01)

F17 1.47e+02 1.37e+02 7.83e+01 1.69e+02 6.67e+01 4.36e+01 1.62e+02

(1.33e+02)− (3.80e+01)+ (3.76e+01)+ (1.02e+02)− (2.12e+01)+ (6.35e+00)+ (5.91e+00)

F18 9.04e+02 9.04e+02 8.68e+02 8.20e+02 9.04e+02 9.04e+02 9.00e+02

(1.03e+00)− (1.08e+01)− (6.23e+01)+ (3.35e+00)+ (1.04e+00)− (1.21e+00)− (0.00e+00)

F19 9.04e+02 9.04e+02 8.74e+02 8.21e+02 9.04e+02 9.04e+02 9.00e+02

8.40e+01 1.11e+00 6.22e+01 (3.35e+00)+ (9.42e−01)− (1.24e+00)− (0.00e+00)

F20 9.04e+02 9.04e+02 8.78e+02 8.22e+02 9.04e+02 9.04e+02 9.00e+02

(8.47e−01)− (1.10e+00)− (6.03e+01)+ (4.17e+00)+ (9.01e−01)− (1.18e+00)− (0.00e+00)

F21 5.00e+02 5.00e+02 5.52e+02 8.33e+02 5.00e+02 5.00e+02 4.79e+02

(4.67e−13)− (4.80e−13)− (1.82e+02)− (1.00+02)− (4.88e−13)− (3.54e−14)− (2.03e+01)

F22 8.66e+02 8.75e+02 9.36e+02 5.07e+02 8.63e+02 8.72e+02 4.68e+02

(1.91e+01)− (1.91e+01)− (1.83e+01)− (7.26e+00)− (2.43e+01)− (2.98e+01)− (2.12e+01)
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Table 13 continued

Function JADE jDE SaDE EPSDE CoDE MPEDE SGO

Mean error

Std

Mean error

Std

Mean error

Std

Mean error

Std

Mean error

Std

Mean error

Std

Mean error

Std

F23 5.50e+02 5.34e+02 5.34e+02 8.58e+02 5.34e+02 5.34e+02 5.00e+02

(8.05e+01)− (2.77e−04)− (3.57e−03)− (6.82e+01)− (4.12e−04)− (3.87e−04)− (6.98e+01)

F24 2.00e+02 2.00e+02 2.00e+02 2.13e+02 2.00e+02 2.00e+02 2.00e+02

(2.85e−14)≈ (2.85e−14)≈ (6.20e−13)≈ (1.52e+00)− (2.85e−14)≈ (2.21e−14)≈ (0.00e+00)

F25 2.11e+02 2.11e+02 2.14e+02 2.13e+02 2.11e+02 2.09e+02 2.00e+02

(7.92e−01)− (7.32e−01)− (2.00e+00)− (2.55e+00)− (9.02e−01)− (3.32e−01)− (0.00e+00)

− 15 16 16 14 12 13

+ 8 7 7 10 11 10

≈ 2 2 2 1 2 2

Wilcoxon’s rank-sum test at a 0.05 significance level is performed between SGO and each of JADE, jDE, SaDE, EPSDE, CoDE and MPEDE. “−”,

“+”, and “≈” denote that the performance of the corresponding algorithm is worse than, better than, and similar to that of SGO, respectively

Table 14 Experimental results of CLPSO, CMA-ES, GL-25, TLBO and SGO over 25 independent runs on 25 test functions of 30 variables with

300,000 FEs

Function CLPSO CMA-ES GL-25 TLBO SGO

Mean error ± Std Mean error ± Std Mean error ± Std Mean error ± Std Mean error ± Std

F1 0.00e+00 ± 0.00e+00≈ 1.58e−25 ± 3.35e−26− 5.60e−27 ± 1.76e−26− 0.00e+00 ± 0.00e+00≈ 0.00e+00 ± 0.00e+00

F2 8.40e+02 ± 1.90e+02− 1.12e−24 ± 2.93e−25+ 4.04e+01 ± 6.28e+01− 0.00e+00 ± 0.00e+00+ 6.79e−09 ± 4.79e−09

F3 1.42e+07 ± 4.19e+06− 5.54e−21 ± 1.69e−21+ 2.19e+06 ± 1.08e+06− 1.82e+05 ± 4.58e+03≈ 1.65e+05 ± 9.07e+04

F4 6.99e+03 ± 1.73e+03− 9.15e+05 ± 2.16e+06− 9.07e+02 ± 4.25e+02− 0.00e+00 ± 0.00e+00+ 2.06e+01 ± 1.26e+01

F5 3.86e+03 ± 4.35e+02− 2.77e−10 ± 5.04e−11+ 2.51e+03 ± 1.96e+02− 4.60e+03 ± 1.98e+03− 2.08e+03 ± 4.81e+02

F6 4.16e+00 ± 3.48e+00− 4.78e−01 ± 1.32e+00+ 2.15e+01 ± 1.17e+00− 3.47e+01 ± 2.42e+01− 2.63e+00 ± 1.74e+00

F7 4.51e−01+8.47e−02− 1.82e−03 ± 4.33e−03+ 2.78e−02 ± 3.62e−02− 1.63e−02 ± 1.89e−02− 7.00e−03 ± 5.60e−03

F8 2.09e+01 ± 4.41e−02− 2.03e+01 ± 5.72e−01≈ 2.09e+01 ± 5.94e−02− 2.08e+01 ± 4.90e−02≈ 2.08e+01 ± 5.83e−03

F9 0.00e+00± 0.00e+00+ 4.45e+02 ± 7.12e+01− 2.45e+01 ± 7.35e+00+ 2.30e+01 ± 1.14e+00+ 9.27e+01 ± 2.15e+01

F10 1.04e+02 ± 1.53e+01− 4.63e+01 ± 1.16e+01+ 1.42e+02 ± 6.45e+01− 1.09e+02 ± 4.02e+01− 9.60e+01 ± 1.18e+01

F11 2.60e+01 ± 1.63e+00− 7.11e+00 ± 2.14e+00+ 3.27e+01 ± 7.79e+00− 1.77e+01 ± 2.71e+00− 1.72e+01 ± 1.54e+00

F12 1.79e+04 ± 5.24e+03− 1.26e+04 ± 1.74e+04− 6.53e+04 ± 4.69e+04− 1.84e+04 ± 2.17e+04− 4.50e+02 ± 2.12e+01

F13 2.06e+00± 2.15e−01+ 3.43e+00 ± 7.60e−01− 6.23e+00 ± 4.88e+00− 3.01e+00 ± 1.02e+00+ 3.26e+00 ± 4.57e−01

F14 1.28e+01 ± 2.48e−01− 1.47e+01 ± 3.31e−01− 1.31e+01 ± 1.84e−01− 1.30e+01 ± 4.27e−01− 1.17e+01 ± 3.29e−01

F15 5.77e+01± 2.76e+01+ 5.55e+02 ± 3.32e+02− 3.04e+02 ± 1.99e+01− 2.80e+02 ± 7.48e+01− 2.75e+02 ± 6.56e+01

F16 1.74e+02 ± 2.82e+01− 2.98e+02 ± 2.08e+02− 1.32e+02 ± 7.60e+01− 2.31e+02 ± 1.17e+02− 1.12e+02 ± 6.22e+01

F17 2.46e+02 ± 4.81e+01− 4.43e+02 ± 3.34e+02− 1.61e+02 ± 6.80e+01− 2.73e+02 ± 1.21e+01− 1.62e+02 ± 5.91e+00

F18 9.13e+02 ± 1.42e+00− 9.04e+02 ± 3.01e−01− 9.07e+02 ± 1.48e+00− 9.08e+02 ± 4.90e−01− 9.00e+00 ± 0.00e+00

F19 9.14e+02 ± 1.45e+00− 9.16e+02 ± 6.03e+01− 9.06e+02 ± 1.24e+00− 9.09e+02 ± 8.00e−01− 9.00e+00 ± 0.00e+00

F20 9.14e+02 ± 3.62e+00− 9.04e+02 ± 2.71e−01− 9.07e+02 ± 1.35e+00− 9.07e+02 ± 2.24e+00− 9.00e+00 ± 0.00e+00

F21 5.00e+02 ± 3.39e−13≈ 5.00e+02 ± 2.68e−12≈ 5.00e+02 ± 4.83e−13≈ 5.01e+02 ± 1.96e+00− 4.79e+02 ± 2.03e+01

F22 9.72e+02 ± 1.20e+01− 8.26e+02 ± 1.46e+01− 9.28e+02 ± 7.04e+01− 8.89e+02 ± 1.76e+01− 4.68e+02 ± 2.12e+01

F23 5.34e+02 ± 2.19e−04− 5.36e+02 ± 5.44e+00− 5.34e+02 ± 4.66e−04− 5.39e+02 ± 8.45e+00− 5.00e+02 ± 6.98e+01

F24 2.00e+02 ± 1.49e−12≈ 2.12e+02 ± 6.00e+01− 2.00e+02 ± 5.52e−11≈ 2.01e+02 ± 4.00e−01− 2.00e+02 ± 0.00e+00

F25 2.00e+02 ± 1.96e+00− 2.07e+02 ± 6.07e+00− 2.17e+02 ± 1.36e−01− 2.00e+02 ± 0.00e+00≈ 2.00e+02 ± 0.00e+00

− 16 16 22 17

+ 6 7 1 4

≈ 3 2 2 4

Wilcoxon’s rank-sum test at a 0.05 significance level is performed between SGO and each of CLPSO, CMA-ES and GL-25. “−”, “+”, and “≈”

denote that the performance of the corresponding algorithm is worse than, better than, and similar to that of SGO, respectively
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have considered population size to 100, and FEs is same with

other methods and is 300,000. The best optimal values are

shown in bold face. To have statistically sound conclusions,

Wilcoxon’s rank-sum test at a 0.05 significance level has been

conducted on the experimental results, and the last three rows

of Tables 13 and 14 summarize the experimental results.

According to Wilcoxon’s rank-sum test, it is clear that

SGO performs better than JADE in 15 test functions and

equivalent to 2 test functions out of 25 test functions. It is

better than jDE in 16 test functions and equivalent to 2 test

functions out of 25 test functions. It can be seen that com-

pared to SaDE, it performs better in 16 test functions and

equivalent to 2 test functions out of 25 test functions. SGO

is better than EPSDE in 14 test functions and equivalent to

1 test function out of 25 functions. From the table, it can be

verified that SGO is better than CoDE in 12 test functions and

equivalent to 2 test functions out of 25 test functions, again

better than MPEDE in 13 test functions and equivalent to 2

test functions out of 25 test functions and better than CLPSO

in 16 test functions and equivalent to 3 test functions out of

25 test functions. Compared to CMA-ES, our proposed tech-

nique is better in 16 test functions and equivalent to 2 test

functions out of 25 test functions. We have verified that SGO

is better than GL-25 in 22 test functions and equivalent to 2

test functions out of 25 functions, and better than TLBO in 17

test functions and equivalent to 4 test functions out of 25 test

functions. So, it is interesting to note that the performance of

SGO is better than other algorithms according to Wilcoxon’s

rank-sum test.

Experiment 10: SGO vs. PSO, CPSO, CLPSO,

CMA-ES, G3-PCX, DE, and TLBO using composite

functions

In this experiment, we have considered six composite test

functions and eight novel algorithms, particle swarm opti-

mizer (PSO) [7], cooperative PSO (CPSO) [54], comprehen-

sive learning PSO (CLPSO) [28], evolution strategy with

covariance matrix adaptation (CMA-ES) [55], G3 model

with PCX crossover (G3-PCX) [56], differential evolution

(DE) [2], teaching–learning-based optimization [24] and pro-

posed SGO for testing their performances. The detailed

descriptions of these functions are given in papers [57] and

[25], and the algorithms in their respective papers. Parameter

settings for the composite functions are as in [25].

Table 15 shows the results obtained using the eight algo-

rithms on six composite functions. For each test function,

each algorithm is run 20 times, and the maximum fitness eval-

uations are 50,000 for all algorithms. For our proposed algo-

rithm, we have considered population size as 100. The mean

values of the results are recorded in Table 15. The best opti-

mal values are shown in bold face. To have statistically sound

conclusions, Wilcoxon’s rank-sum test at a 0.05 significance

level has been conducted on the experimental results, and the

last three rows of Table summarize the experimental results.

According to Wilcoxon’s rank-sum test, it is clear that

SGO performs better than PSO in six test functions out of

all six test functions, better than CPSO in six test functions

out of all six test functions but better than CLPSO in three

test functions out of six test functions. SGO is better than

CMA-ES in six test functions out of all six functions, better

than G3-PCX in five test functions out of six test functions

but better than DE in three test functions and equivalent to

one test function out of six test functions; whereas it is better

than TLBO in three test functions out of six test functions.

So, from Table 15, it is clear that out of seven algorithms, in

all cases except CLPSO and TLBO, SGO is showing better

result; however, with CLPSO and TLBO, SGO is showing

equivalent result. From the last column of Table 15, it is also

clear that SGO sometimes reaches to optimal solution.

Conclusion

This paper proposes a new efficient optimization algorithm

that is inspired by the social behavior of humans toward

solving a complex problem. Whenever a problem/task has

been solved by a single person, it becomes too difficult to

solve or the problem may remain unsolvable. But when

the same problem has been solved by a group of persons,

the difficulty becomes easy and the unsolvable problem

may become solvable. In a social group, people are influ-

enced by the characteristics (i.e., traits) of the successful

person, and eventually, they also change/modify their traits

accordingly and become capable to solve/address complex

problems/situations. This concept has motivated us to pro-

pose a new optimization algorithm known as social group

optimization (SGO). The concept and the mathematical for-

mulation of SGO algorithm are explained in this paper with

a flowchart. To judge the effectiveness of SGO, extensive

experiments have been conducted on number of different

unconstrained benchmark functions as well as 25 stan-

dard numerical benchmark functions taken from the IEEE

Congress on Evolutionary Computation 2005 competition.

Performance comparisons are made with state-of-the-art

optimization techniques like GA, PSO, DE, ABC and its

variants and the recently developed TLBO. Different vari-

ants of the popular evolutionary optimization techniques are

also taken into consideration for comparing them with SGO.

The experimental results show that the proposed social group

optimization outperforms all investigated optimization tech-

niques in computational costs and also provides optimal

solutions for most of the considered functions. One of the

best things in this algorithm is that it is easier to understand

and to implement in comparison to other algorithms and their

variants. It remains to see how SGO works for multi-objective

optimization problems in future.

123



200 Complex Intell. Syst. (2016) 2:173–203

T
a
b

le
1
5

P
er

fo
rm

an
ce

co
m

p
ar

is
io

n
o
f

al
g
o
ri

th
m

s
P

S
O

,
C

P
S

O
,

C
L

P
S

O
,
C

M
A

-E
S

,
G

3
-P

C
X

,
D

E
,

T
L

B
O

an
d

S
G

O
u
si

n
g

co
m

p
o
si

te
fu

n
ct

io
n
s

C
o
m

p
o
si

te
fu

n
ct

io
n
s

P
S

O
C

P
S

O
C

L
P

S
O

C
M

A
-E

S
G

3
-P

C
X

D
E

T
L

B
O

S
G

O
B

es
t

v
al

u
e

in
S

G
O

C
F

1 M
ea

n
1
.0

0
e+

0
2
−

1
.5

6
e+

0
2
−

5
.7

3
e−

0
8
−

1
.0

0
e+

0
2
−

6
.0

0
e+

0
1
−

6
.7

5
e−

0
2
−

3
.1

1
e−

0
1
−

1
.5

4
e−

2
5

0

S
td

8
.1

7
e+

0
2

1
.3

4
e+

0
2

1
.9

2
e+

0
1

1
.8

9
e+

0
2

6
.9

9
e+

0
1

1
.1

1
e−

0
1

3
.0

4
e−

0
1

1
.5

1
e−

2
5

C
F

2 M
ea

n
1
.5

6
e+

0
2
−

2
.4

2
e+

0
2
−

1
.9

2
e+

0
1
+

1
.6

2
e+

0
2
−

9
.2

6
e+

0
1
−

2
.8

7
e+

0
1
+

1
.7

0
e+

0
1
+

4
.1

3
e+

0
1

0

S
td

1
.3

2
e+

0
2

1
.4

9
e+

0
2

1
.4

7
e+

0
1

1
.5

1
e+

0
2

9
.9

1
e+

0
1

8
.6

2
e+

0
1

7
.2

2
e+

0
0

4
.3

8
e+

0
1

C
F

3 M
ea

n
1
.7

2
e+

0
2
−

3
.6

3
e+

0
2
−

1
.3

3
e+

0
2
+

2
.1

4
e+

0
2
−

3
.2

0
e+

0
2
−

1
.4

4
e+

0
2
≈

1
.2

4
e+

0
2
+

1
.4

0
e+

0
2

0

S
td

3
.2

9
e+

0
1

1
.9

6
e+

0
2

2
.0

0
e+

0
1

7
.4

2
e+

0
1

1
.2

5
e+

0
2

1
.9

4
e+

0
1

6
.0

4
e+

0
1

4
.0

7
e+

0
1

C
F

4 M
ea

n
3
.1

4
e+

0
2
−

5
.2

2
e+

0
2
−

3
.2

2
e+

0
2
−

6
.1

6
e+

0
2
−

4
.9

3
e+

0
2
−

3
.2

5
e+

0
2
−

2
.9

4
e+

0
2
−

2
.8

2
e+

0
2

2
.2

3
e+

0
2

S
td

2
.0

0
e+

0
1

1
.2

2
e+

0
2

2
.7

5
e+

0
1

6
.7

2
e+

0
2

1
.4

2
e+

0
2

1
.4

7
e+

0
1

3
.1

5
e+

0
1

2
.9

0
e+

0
1

C
F

5 M
ea

n
8
.3

5
e+

0
1
−

2
.5

6
e+

0
2
−

5
.3

7
e+

0
0
−

3
.5

9
e+

0
2
−

2
.6

0
e+

0
1
−

1
.0

8
e+

0
1
−

5
.1

8
e+

0
0
−

2
.3

9
e+

0
0

0

S
td

1
.0

0
e+

0
2

1
.7

6
e+

0
2

2
.6

0
e+

0
0

1
.6

9
e+

0
2

4
.1

6
e+

0
1

2
.6

0
e+

0
0

1
.6

2
e+

0
0

1
.0

7
e+

0
0

C
F

6 M
ea

n
8
.6

1
e+

0
2
−

8
.5

3
e+

0
2
−

5
.0

1
e+

0
2
+

9
.0

0
e+

0
2
−

7
.7

2
e+

0
2
+

4
.9

1
e+

0
2
+

2
.3

0
e+

0
2
+

7
.4

4
e+

0
2

4
.0

1
e+

0
2

S
td

1
.2

6
e+

0
2

1
.2

8
e+

0
2

7
.7

8
e−

0
1

8
.3

2
e−

0
2

1
.8

9
e+

0
2

3
.9

5
e+

0
2

4
.8

4
e+

0
1

1
.8

9
e+

0
2

−
0
6

0
6

0
3

0
6

0
5

0
3

0
3

+
0
0

0
0

0
3

0
0

0
1

0
2

0
3

≈
0
0

0
0

0
0

0
0

0
0

0
1

0
0

W
il

co
x
o
n
’s

ra
n
k
-s

u
m

te
st

at
a

0
.0

5
si

g
n
ifi

ca
n
ce

le
v
el

is
p
er

fo
rm

ed
b
et

w
ee

n
S

G
O

an
d

ea
ch

o
f

P
S

O
,
C

P
S

O
,
C

L
P

S
O

,
C

M
A

-E
S

,
G

3
-P

C
X

,
D

E
,
T

L
B

O
.
“−

”,
“+

”,
an

d
“≈

”
d
en

o
te

th
at

th
e

p
er

fo
rm

an
ce

o
f

th
e

co
rr

es
p
o
n
d
in

g
al

g
o
ri

th
m

is
w

o
rs

e
th

an
,

b
et

te
r

th
an

,
an

d
si

m
il

ar
to

th
at

o
f

S
G

O
,

re
sp

ec
ti

v
el

y

123



Complex Intell. Syst. (2016) 2:173–203 201

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

Appendix: Benchmark functions

All problems are divided into four categories such as US,

MS, UN, MN, and its range, formulation, characteristics and

the dimensions of these problems are listed in the following

Table 16.

Table 16 Benchmark functions used in experiments 1

Sl. no. Function D C Range Formulation Value

1 Step 30 US [−100, 100] f (x) =
∑D

i=1(⌊xi + 0.5⌋)2 fmin = 0

2 Sphere 30 US [−100, 100] f (x) =
∑D

i=1 x2
i fmin = 0

3 Sum Squares 30 US [−10, 10] f (x) =
∑D

i=1 i x2
i fmin = 0

4 Quartic 30 US [−1.28, 1.28] f (x) =
∑D

i=1 i x4
i + random(0, 1) fmin = 0

5 Beale 2 UN [−4.5, 4.5] f (x) = (1.5 − x1 + x1x2)
2 + (2.25 − x1

+ x1x2
2 )2 + (2.625 − x1 + x1x3

2 )2
fmin = 0

6 Easom 2 UN [−100, 100] f (x) = −cos(x1)cos(x2)exp(−(x1 − π)2

− (x2 − π)2)

fmin = −1

7 Matyas 2 UN [−10, 10] f (x) = 0.26 (x2
1 + x2

2 ) − 0.48x1x2 fmin = 0

8 Zakharov 10 UN [−5, 10] f (x) =
∑D

i=1 x2
i + (

∑D
i=1 0.5i xi )

2

+ (
∑D

i=1 0.5i xi )
4

fmin = 0

9 Powell 24 UN [−4, 5] f (x) =
∑D/4

i=1 (x4i−3 + 10x4i−2)
2

+ 5 (x4i−1 − x4i )
2 + (x4i−2 − x4i−1)

4

+ 10 (x4i−3 − x4i )
4

fmin = 0

10 Schwefel 1.2 30 UN [−100, 100] f (x) =
∑D

i=1(
∑i

j=1 x j )
2 fmin = 0

11 Schwefel 2.21 30 UN [−100, 100] f (x) = max

i
{|xi |, 1 ≤ i ≤ D} fmin = 0

12 Schwefel 2.22 30 UN [−10, 10] f (x) =
∑D

i=1 |xi | +
∏D

i=1 |xi | fmin = 0

13 Bohachevsky1 2 MS [−100, 100] f (x) = x2
1 + 2x2

2 − 0.3 cos(3πx1)

− 0.4 cos (4πx2) + 0.7

fmin = 0

14 Bohachevsky2 2 MS [−100, 100] f (x) = x2
1 +2x2

2 −0.3 cos(3πx1)∗cos(4πx2)

+ 0.3

fmin = 0

15 Bohachevsky3 2 MS [−100, 100] f (x) = x2
1 +2x2

2 −0.3 cos((3πx1)+ (4πx2))

+ 0.3

fmin = 0

16 Booth 2 MS [−10, 10] f (x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 fmin = 0

17 Rastrigin 30 MS [−5.12, 5.12] f (x) =
∑D

i=1[x2
i − 10 cos(2πxi ) + 10] fmin = 0

18 Noncontinuous

rastrigin

30 MS [−5.12, 5.12] f (x) =
∑D

i=1[y2
i − 10 cos(2πyi ) + 10]

where yi =
{

xi |xi | < 0.5
round(2xi )

2
|xi | ≥ 0.5

.

fmin = 0

19 Six Hump Camel

Back

2 MN [−5, 5] f (x) = 4x2
1 −2.1x4

1 + 1
3

x6
1 +x1x2 −4x2

2 +4x4
2 fmin = −1.03163

20 Griewank 30 MN [−600, 600] f (x) = 1
4000

∑D
i=1 x2

i −
∏D

i=1 cos( xi√
i
) + 1 fmin = 0

21 Ackley 30 MN [−32, 32] f (x) = −20 exp(−0.2

√

1
D

∑D
i=1 x2

i )

− exp( 1
n

∑D
i=1 cos(2 ∗ pi ∗ xi ))

+ 20 + e

fmin = 0

22 Multimod 30 [−10, 10] f (x) =
∑′D

i=1 |xi |
∏D

i=1 |xi | fmin = 0

23 Weierstrass 30 [−0.5, 0.5] f (x) =
∑D

i=1(
∑kmax

k=0 [acos(2πb2(xi + 0.5))])
− D

∑kmax

k=0 [acos(2πb(xi + 0.5))],
where a = 0.5, b = 3, kmax = 20

fmin = 0

24 Elliptic 30 [−100, 100]
∑D

i=1(106) i−1
D−1

x2
i fmin = 0

25 Rosenbrocks 30 UN [−30, 30]
∑D−1

i=1 [100(xi+1 − x2
i )2 + (xi − 1)2] fmin = 0

D dimension, C characteristic, U unimodal, M multimodal, S separable, N non-separable
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