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Abstract Social networks often serve as a critical medium

for information dissemination, diffusion of epidemics, and

spread of behavior, by shared activities or similarities be-

tween individuals. Recently, we have witnessed an explosion

of interest in studying social influence and spread dynamics

in social networks. To date, relatively little material has been

provided on a comprehensive review in this field. This brief

survey addresses this issue. We present the current significant

empirical studies on real social systems, including network

construction methods, measures of network, and newly em-

pirical results. We then provide a concise description of some

related social models from both macro- and micro-level per-

spectives. Due to the difficulties in combining real data and

simulation data for verifying and validating real social sys-

tems, we further emphasize the current research results of

computational experiments. We hope this paper can provide

researchers significant insights into better understanding the

characteristics of personal influence and spread patterns in

large-scale social systems.

Keywords social networks, spread dynamics, social influ-

ence, computational experiment

1 Introduction

Social networks are graphs of people and their relationships,

such as Email communication, scientific collaboration, so-

cial tagging, diffusion of innovation, and even epidemic
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spreading. In these graphs, individuals and their relationships

are represented by the nodes and links of the network, re-

spectively. We can understand the structure and dynamic evo-

lution of social systems by analyzing these graphs. In the

past few years, this field has attracted a great deal of interest

[1–6]. Since social influence and information spread in social

systems is easily reproduced in such networks, this field has

been recently addressed in the literature [7–11], as indicated

by the large and rapidly increasing number of papers devoted

to it.

Traditional research on social influence and spread dy-

namics in social networks has been constrained in accuracy,

breadth, and depth due to its reliance on self-report data

[12,13]. These studies generally involve both a small num-

ber of persons and some static time points. The detailed be-

havior of many physiological and psychological processes is

still largely unknown [13]. As a result, the analytical results

have been limited to examining small, well-bounded popula-

tions, involving a small number of snapshots of interaction

patterns [14].

However, this situation has been changing with the rapid

growth of Web 2.0 and mobile communication technologies.

Recently, a large number of mobile-based applications and

online social systems such as Facebook, Myspace, and Twit-

ter have emerged. In these systems, social relationships be-

tween users play an important role in dictating their behav-

ior. Users can induce their friends to behave in a similar way

explicitly or implicitly via their social influence, e.g., shar-

ing interesting ideas and even rumors. This information can

spread through a network just like an infectious disease. Iden-

tifying social influence and understanding the spread patterns
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in social networks are of tremendous interest from an empir-

ical analysis point of view [4,9,12].

Based on these large-scale data sets, researchers have dis-

covered surprising social phenomena including the small-

world effect and scale-free property. These results are differ-

ent to classical hypotheses. The tendency to move toward the

formulation of simplified models and their quantitative anal-

ysis has been instrumental in this change. The classical mod-

els used by scientists to describe social influence and spread

dynamics in social networks are considered too simplified to

describe any real situation [13]. Therefore, a crucial step in

this perspective is the comparison with empirical data which

should be primarily intended as an investigation into whether

the trends seen in real data are compatible to plausible macro-

scopic/microscopic models of the networks, and whether they

are self-consistent or require additional elements. This has in-

spired scientists in this field to develop new reasonable mod-

els.

Traditionally, researchers validate these models through

simple simulation. However, simple simulation cannot solve

all problems due to the complexity of real-world social sys-

tems. As such, computational experimentation is now being

applied more often. This emerging approach can be utilized

to deal with validating the complex social systems.

Despite various reviews on social networks, relatively little

material has provided a comprehensive survey on the network

presentation, characteristic measurement, social modeling,

and computational experiments for identifying the influence

between behaviors and spread patterns in large-scale social

systems. This brief survey addresses precisely this issue.

The framework of this paper is presented in Table 1. Section

2 describes and compares some empirical studies of social

influence and spread dynamics in social networks, including

network construction, measures of network, and some signifi-

cant empirical results. In Section 3, we discuss in detail some

significant social models in this field from the macro- and

micro-level. Section 4 introduces a theoretical framework for

computational experiments. In Section 5, we conclude this

Table 1 The framework of main content in this paper

Main content Section

Introduction Background of this filed 1

Empirical studies Network construction 2.1

Measures of network 2.2

Empirical results 2.3

Social models Macro-level models 3.1

Micro-level models 3.2

Computational experiments Theoretical framework 4

Concluding remarks Conclusions and outlook 5

paper and give an outlook over this field.

2 Empirical studies

Empirical studies can provide critical insight into understand-

ing the characteristics of social influence and spread dynam-

ics in social networks. However, this is largely an empirical

matter, requiring network data combined with information

about the attributes of individuals, group affiliations, sharing

information or ideas and their related activities. In this sec-

tion, we systematically present the methods of existing em-

pirical studies from a network perspective, including network

construction, measures of the network, and some significant

empirical results that we have obtained from real-world so-

cial systems.

2.1 Network construction

Most real-world social systems can be represented as so-

cial networks with a set of nodes representing individuals

and links the relationships between them. In the classical ap-

proach, the method of network construction is very simple.

Nodes in these networks always belong to the same type

and links are often undirected and unweighted. This will

not explain certain real-world phenomena very well, since

significant information is removed in the construction pro-

cess. In the past few years, with the development of the so-

cial network research domain, more complex and feasible

network construction methods have been developed. For in-

stance, we can construct social networks in which nodes be-

long to two different types and links are both directed and

weighted [15–18]. In these networks, nodes may represent

people of different genders, occupations, locations, or ages

and links represent different friendships, communications, or

enmities [3,19,20]. One can also construct social networks

with hyperedges [21]: links that join more than two nodes

together.

According to our investigation, we generally classify ex-

isting networks construction methods into five basic classes:

undirected networks, directed networks, weighted networks,

bipartite graphs, and hypergraphs. These five basic network

construction methods are compared in Table 2.

Table 2 Five basic network construction methods

Types of networks Main characteristics

Undirected network Links are undirected

Directed network Links are directed

Weighted network Links are weighted

Bipartite graph Two different types of node

Hyper-graph Links may join more than two nodes together
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2.2 Measures of network

With the rapid development of graph theories, researchers

have developed several important measures of networks to

quantitatively describe the inherent properties of social net-

works. Examples of these measures include: degree distribu-

tion, clustering coefficient, shortest path length, and commu-

nity structure.

Degree and strength distribution: the degree ki of node i is

defined as the number of links incident with i. The strength

si in a weighted network denotes the sum of weights of the

corresponding links: si =
∑

j wi j, where wi j represents the

weight between node i and j. A large number of previous em-

pirical results demonstrate that not all nodes in a social net-

work have the same degree or strength [5,15,22,23]. For an

unweighted network, this difference can be characterized by

the degree distribution P(k), which gives the probability that

a randomly selected node has exactly k edges. For a weighted

network, we can use the strength distribution P(s) to describe

the probability of selecting a node with strength s.

Clustering coefficient: this is a measure of network tran-

sitivity, which characterizes the fraction of members in cir-

cles of friends or acquaintances that an individual knows. Re-

searchers have given several definitions of the clustering co-

efficient from different perspectives [1,21,24,25]. The most

popular definition of clustering coefficient was developed by

Watts and Strogatz [1]. In this definition, if a node with de-

gree ki is selected randomly in the graph G, then at most

ki(ki − 1)/2 links may exist between them. The clustering co-

efficient Ci of node i is computed as follows:

Ci = 2Ei/[ki(ki − 1)], (1)

where Ei is the number of edges that actually exist be-

tween these ki neighbors of node i. For a weighted network,

we can use the weighted clustering coefficient proposed by

Barthélemy et al. [25]. The weighted clustering coefficient

Cw
i of node i in a weighted network is defined as

Cw
i =

1
si(ki − 1)

∑

j,k

wi j + wik

2
ai jaika jk. (2)

Shortest path length: the shortest path length between node

i and j is the shortest of the possible paths connecting nodes

i and j. The maximum value of di j is called the diameter of

the graph. The average shortest path length L of a network is

defined as the mean of the shortest path lengths over all pairs

of nodes [1]

L =
1

N(N − 1)

∑

i� j
di j, (3)

where N is the number of nodes. To avoid the divergence of L,

researchers have proposed an alternative measure: efficiency

E [26], which is defined as

E =
1

N(N − 1)

∑

i� j
1/di j. (4)

Community structure: a community is also called a group,

cluster, cohesive subgroup, or module [27]. The first network

formalizations of this concept were proposed by Wasserman

and Faust [28]. This measure attempts to obtain some clusters

of groups of nodes that have a high density of connections

within the group, and a lower density of connections between

the groups [29]. In real social networks, we do not know the

number of existing communities. To address this problem,

many researchers [27,30–34] have developed several useful

measures for detecting community structure. These measures

can be utilized to deal with different types of networks such

as heterogeneous networks. The most popular measure, mod-

ularity Q, was proposed by Newman and Girvan [30]. In this

measure, if we want to divide a network into c communities,

we can calculate Q from the symmetric c×c mixing matrix E
whose main diagonal elements eii represent the ratio of links

between nodes in the same community i while other elements

ei j capture the ratio of links between nodes in different com-

munities i and j. The measure can be calculated as follows:

Q =
∑

i

[

eii −
(∑

j
ei j

)2]

= TrE− ‖ E2 ‖ . (5)

Several other measures have also been used, including the

node/edge betweenness (the number of shortest paths going

through a node/edge) [28,30], motif (a pattern of intercon-

nections at a number significantly higher than that of random

graph), and graph spectra (for discovering the presence of co-

hesive subgroups and other local patterns) [29]. These mea-

sures can help us to quantify the key influence factors and

dynamic patterns in our real-world social systems.

2.3 Empirical results

Our real-world social systems embody a large number of in-

teresting phenomena. Most of them have not been perceived

by humans until now. Previous reviews on social networks

[28] or diffusion of innovations [35] have given us some

significant empirical results, including strong/weak ties and

structural holes. However, these results were built on small

social networks. Huge real-world social networks, with mil-

lions of nodes and links, may exhibit different patterns. In this

subsection, we present and compare significant empirical re-

sults.

Small-world effect: the small-word effect is characterized

by small average shortest path lengths between pairs of nodes

and relatively high clustering coefficients. The most famous
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empirical study on small-world phenomenon was conducted

by Milgram [36], who gave us the concept of “six degrees of

separation”. This study concluded that any two randomly se-

lected persons in the USA are on average separated by only

six intermediate individuals. Dodds et al. [37] conducted a

similar worldwide analysis and found that the diameter of

these social networks ranged from 4 to 7. These studies have

some limitations: relying much on individual motivation to

participate [37] or constraining the networks to a specific dy-

namic behavior [38]. To solve this problem, researchers have

recently attempted to use massive already-recorded log data

sets and conducted significant empirical studies. Research

objects of existing studies include auctions [39], movie actors

[1], scientific collaboration [40], citations [41], and commu-

nication [42]. Empirical results have further emphasized that

the small-world effect characterizes most of our real-world

social systems.

Scale-free property: traditional research, until a few years

ago, had always considered that almost all nodes were topo-

logically equivalent: like in regular lattices or in random

graphs. The distribution of the network is binomial or Poisson

at the limit of large graph size. However, recent massive em-

pirical studies on real-world social networks have shown that

the distribution P(k) of these networks follows a power-law

shaped distribution, P(k) ∼ k−α, which significantly deviates

from that of traditional research. Examples include: tradi-

tional epidemic social networks [15], online social networks

[18,43,44], Internet news [45], and mobile communication

networks [46]. This demonstrates that in these networks there

exist a few nodes linking to many other nodes, and a large

number of nodes with poorly connected elements.

Community structure: many real-world social networks

also display a strong community structure [27,34,47,48].

In these networks, there exists a heterogeneous connecting

structure, which is mainly characterized by the presence of

nodes which are more densely interconnected than the rest of

the network. This community structure reflects in general the

self-organization of individuals to achieve some intentions.

Traditional studies mainly focus on static community detec-

tion [34]. However, most real-world social networks tend to

evolve gradually, due to frequent changes in the activity and

interaction of their individuals [49]. The communities inside

a dynamic network may grow or shrink, and the community

membership of the individuals shifts regularly [50]. As such,

a number of researchers pay more interest to identifying criti-

cal events that characterize the evolution of communities and

membership of individuals such as author communities in the

blogosphere [51], mobile subscriber networks [52], and re-

search communities [40]. These studies have determined that

many real-world social networks exhibit self-similar proper-

ties and the community size distribution follows a power-law.

Cascading behavior: cascading behavior is a social phe-

nomenon when an idea or action is widely spread and adopted

through social influence [53]. This has been studied for many

years by large number of researchers from several differ-

ent domains [35,54]. A growing number of empirical studies

suggest that diverse phenomena in physical world, including

obesity [55], happiness [56], ideas [57], and many other be-

haviors and affective states [58,59], can spread from person

to person. Recently some researchers have conducted many

significant empirical studies in cyberspace. Adar et al. [60]

and Gruhl et al. [61] extracted cascades in the blogophere

and found that while information propagates between blogs,

examples of genuine cascading behavior appeared relatively

rarely. Leskovec et al. [62,63] further analyzed cascades in

the blogophere and viral marketing. They find some novel

cascading patterns and observed that a cascade on n nodes

follows a Zipf distribution: P(n) ∝ n−2. Anagnostopoulos et

al. [64] and Aral et al. [65] analyzed the causes of correlation

in social networks and distinguished influence-based conta-

gion from homophily-driven diffusion in dynamic networks.

These findings are essential to both our understanding of the

mechanisms that drive contagion in networks and our knowl-

edge of how to propagate them in diverse domains.

3 Social models

Empirical findings have initiated a revival of network model-

ing, since the models proposed in mathematical graph theory

have turned out be far from the empirical observations. In past

few decades, social modeling for the process of social influ-

ence and spread dynamics in social networks has been studied

in many areas, such as the spread of epidemics, the diffu-

sion of technological innovations, and the effect of “word of

mouth” in the promotion of new products. A large number

of models have been developed. In this section, we classify

these existing models into two types: macro-level models and

micro-level models. The macro-level models mainly encom-

pass SIR (susceptible/infective/removed) model and Bass

model, which mainly focus on capturing the spread behav-

iors at the population level. The micro-level models aim to

reveal the personal behavior integrating with the topological

structure of social networks. These micro-level models in-

clude the famous preferential attachment (PA) model, thresh-

old model, cascade model, and competitive model. The key
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Table 3 Key characteristics and limitations of existing social models

Levels Models Key characteristics Limitations

Macro-level
SIR Dividing populations into three groups

Bass Influence via both mass media and word-of-mouth

These models assume a homogenous mixed population where in-
dividuals have equally probability to be influenced by others.

Micro-level

PA Preferential attachment

Threshold Node specific threshold

Cascade Adopting probability depends on neighbor influence

Competitive Influence maximization game

These models cannot be evaluated easily. More specific issues
such as the influence of correlations and dynamic rewiring
should be further considered.

characteristics and limitations of these models are presented

in Table 3.

3.1 Macro-level models

Macro-level models can help us to evaluate the extent of an

epidemic or information spreading qualitatively at different

spread phases or across diverse groups. This field in the past

few decades has attracted great attention including epidemi-

ologists and economists. Many models have been developed

and applied across diverse domains. Most of these interesting

models are extended or generalized from two basic models:

SIR model and Bass model. In this subsection we mainly fo-

cus on these models and present their specific mechanisms.

SIR models: the most famous and classical SIR model was

originally developed to describe the spread dynamics of epi-

demics and is now applied to several domains. This model

divides the population into three groups: susceptible (S ), in-

fectious (I), and removed (R). S indicates that people who

are not infected by the virus but can be easily infected. I rep-

resents individuals who are infectious and can transmit the

virus to others. R denotes persons in the group who have

recovered from the disease or are now dead. This model is

based on the hypothesis that any person who belongs to S

has the uniform probability β to become infected and infected

people recover and becomes immune at rate γ. In the limit of

populations, this model is represented by the following dif-

ferential equations:

ds
dt
= −βis, di

dt
= βis − γi, dr

dt
= γi, (6)

where s(t), i(t), and r(t) are the fractions of individuals in

S , I,R respectively and the sum of s(t), i(t), and r(t) is equal

to 1.

The classic SIR model described above assumes that the

population is fully mixed and all individuals are in contact

with the others and transmit the disease with same probabil-

ity. Newman [66] improved on this model and made several

modifications. In Newman’s model, the probability Ti j that an

infected node i transmits the virus to node j follows a distri-

bution function, which can be determined by several signifi-

cant parameters [66]. The resulting models are equivalent to

uniform bond percolation on the same network with edge oc-

cupation probability. We can further define a generation func-

tion [24] to obtain the distribution of finite outbreak sizes, the

critical transmittability, and relative final size of an epidemic.

Moreno and Vázquez [67] developed networks with corre-

lations between the degrees of nodes. Ancel et al. [68] and

Newman [66,68] introduced networks with different types of

nodes. Wang et al. [69] also gave a model to describe the

spread behavior with non-uniform transmission. These net-

work models are not only applied to analyze the spread dy-

namics of epidemics, but also to study the social influence of

rumors [8,70].

Bass model: Bass model [71] is another classical macro-

level mathematical model for the underlying diffusion of in-

novation in society. The Bass model assumes that potential

adopters of an innovation are influenced by two means of

communication: mass media and word of mouth [72]. As

such, this model has two key characteristics [72–74]: one

captures the rate of individuals convinced by mass media (ex-

ternal influence), and the other describes the ratio by which

individuals are influenced by word-of-mouth communication

(internal influence).

In the Bass model, at each step t, individuals are convinced

by the mass media with probability p and by word-of-mouth

communication by fraction q. If we assume that the ratio of

individuals who will adopt the innovations or ideas is R(t),

then the differential equation of this model takes the form

R(t) = R(t−1)+ p(1−R(t−1))+qR(t−1)[1−R(t−1)]. (7)

In this form, the first term of the right side presents the ra-

tio of individuals who have adopted the innovations at time

t − 1. The second term describes the fraction of people who

have not yet adopted but have been convinced by the mass

media. The third term captures the rate of the imitation pro-

cess that innovations spread by word-of-mouth communica-

tion. The Bass model can also be represented in a continuous
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time form

dR(t)/dt = (1 − R(t))[p + qR(t)]. (8)

Recently, some extensions of the Bass model have been

applied in several domains such as pricing and advertising

[63,75].

3.2 Micro-level models

The SIR and Bass models described in Section 3.1 both as-

sume a homogeneous mixing population where individuals

have equal probability to be influenced by one another. This

does not accord with many empirical findings in heteroge-

neous networks. Based on previous work, researchers have

developed some reasonable models at the micro-level aiming

to describing the key influence factors and spread patterns of

each individual.

Preferential attachment models: the empirical studies dis-

cussed in Section 2.3 demonstrate that many large networks

are scale-free, that is their degree distribution follows a

power-law. Previous random graph models cannot reproduce

this feature. Barabási and Albert [5] and other researchers

[76–78] introduced their networks and later were gener-

ally called preferential attachment (PA) models due to their

growth mechanisms of preferential attachment.

The network model developed by Barabási and Albert [5]

(BA model) starts with a fixed number of randomly connected

nodes. At each time instant the network grows with the addi-

tion of new nodes. For each newly added node, new edges

are added between it and some old nodes. The nodes to re-

ceive new edges are chosen following a linear preferential

attachment rule, that is, the probability P(k) of an old node

receiving a new edge is proportional to its degree k, that is,

P(k) ∼ k. Replacing the linear preferential attachment of the

BA model, Krapivsky, Redner, and Leyvraz [76] use a non-

linear preferential attachment rule. When choosing the nodes

to which a new node connects, the probability P(k) depends

on kα, P(k) ∼ kα.

Both models discussed above have a common character-

istic: their preferential attachment rules depend only on the

degree of the old node. However, in applications such as ref-

erence networks, aging occurs: the authors rarely cite very

old papers. Dorogovtsev and Mendes [77] proposed an ex-

tended model in which the probability P(k) is dependent not

only on the degree k of the old node but also on its age τ, that

is, P(k) ∼ kτ−β, where β is a tunable parameter.

Threshold models: although they reproduce the scale-free

property well, the PA models described above cannot reflect

the inherent influence behavior between nodes. In this condi-

tion, we should consider another suitable micro-level social

influence and spread models such as the threshold model.

The earliest threshold models were developed by Gra-

novetter [79] and Schelling [80] in 1978; they later became

the foundation for a large body of work in sociology [81–83].

In these models, nodes can be classified into two types: active

or inactive. An inactive node m is influenced by its neighbor

n with a weight wn,m, where
∑

n wn,m � 1. Node m selects a

threshold θm on the uniform interval [0, 1]. Given an initial

set of active nodes, the influence process can be divided into

finite discrete steps: if nodes are active at step t − 1, then

they will still remain active at step t; and if the total weight of

a nodes active neighbors is at least θm:
∑

na
wna,m � θm, then

node m will be activated.

In the threshold models described above, different thresh-

olds θm indicate different potential tendencies of nodes to be

influenced (i.e., accepting a new product or an idea) by their

neighbors. Kempe et al. [84,85] recently introduced a general

threshold model. This model focused more on the cumula-

tive effect of a nodes’ influence than that of previous models.

Each node in this model has a monotone activation function

and a threshold. One node becomes active when the value of

the function is no less that the threshold. Easley and Klein-

berg [86] further gave a heterogeneous threshold model. This

model starts from a set of initial adopters. At each step, each

node evaluates its decision according to its own threshold rule

and switches to one behavior if the value is no less than its

threshold. This model can explain the diversity of spread be-

havior in real-world heterogeneous networks.

Cascade models: many real-world social systems exhibit

cascade behavior. However, previous network models includ-

ing PA models and threshold models cannot capture this char-

acteristic. Due to this, researchers recently have proposed

several cascade models. Of these, the independent cascade

model (ICM) proposed by Goldenberg et al. [87] has been

paid more and more attention. In this model, node m first be-

comes active at step t − 1 and has only one chance to activate

its inactive neighbor n with a constant probability pn(m). If

m succeeds, n will become active at step t. If multiple neigh-

bors of n are active at step t − 1, activation attempts will be

executed randomly.

Based on the ICM, Kempe et al. [84,85] further proposed

a general cascade model (GCM) and a decreasing cascading

model (DCM). In the GCM, the probability that node m suc-

ceeds in activating its neighbor n depends the extent of n’s

neighbors that have already tried to activate it. Specifically,

given an incremental function pn(m, S ) ∈ [0, 1], where S and
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m are disjoint subset of n’s neighbors. m succeeds in acti-

vating n with probability pn(m, S ). Due to the phenomena of

“marketing-saturated”, DCM further defines a non-increasing

function pn(m, S ) in S , i.e., pn(m, S ) � pn(m, T ) whenever

S ⊆ T . This condition indicates that node m’s probability of

succeeding in activating node n decreases with the number of

nodes that have already attempted to activate n.

Competitive models: following the cascade model [85,87]

described above, Bharathi et al. [11] introduced a competitive

model for the influence maximization game. In this model,

each edge is allocated an activation probability Pe and each

node has one of these two states: active or inactive. In the

active state, the node is labeled by a color denoting that it has

been activated.

This model is further augmented by adding the information

of activation time for each activation attempt. When node m

becomes active at time t, it will attempt to activate each first-

level inactive neighbor n. If m succeeds in activating n, n will

become active with the same color as m at time t+Tmn, where

Tmn are independent continuous random variables following

an exponential distribution. Subsequently, the active node n

will attempt to active its first-level inactive neighbors, and so

forth. In this influence maximization game, each player se-

lects a set S i of at most ki nodes. A node selected by multiple

players will be labeled by the color of one of these players.

This process unfolds as described above until no new acti-

vation occurs. Similar models have also been considered re-

cently by Lotker et al. [88] and Dubey et al. [89]. These mod-

els provide specific mechanisms that illustrate how to interact

with each other when multiple objects are competing within

a social network.

4 Computational experiments

Section 3 above presented several types of social models for

social influence and spread dynamics in social networks. Tra-

ditionally, researchers validate these models through simple

simulation. This method may be valuable and ethical when

examining policies dealing with matters of life and death,

such as in epidemiology and terrorism [90]. However, due

to the difficulties of testing real systems that are inherently

open, dynamic, complex, and unpredictable, simple simula-

tions cannot solve all the problems such as how to combine

real data and simulation data for verifying and validating real

social systems.

To deal with these problems, in recent years, computa-

tional experiments with artificial systems and more sophis-

ticated simulation techniques were developed by Wang et al.

[90–92]. Based on this work, Zheng et al. [93] further pro-

posed a theoretical framework of computational experiments

which can be applied in diverse domains such as the science

of team science. This framework shown in Fig. 1 mainly en-

compasses artificial system construction, computational ex-

periment design, observation and evaluation, and feedback

and modification. At the level of artificial systems construc-

tion, the fundamental research issues include agent interac-

tions, the construction of interacting environments and rules.

At the computational experiment design level, we should be

concerned with the specification of objectives, task assign-

ment, and experimental parameter selection. At the obser-

vation and evaluation level, we should focus on emergence-

based observation, validation of objectives, and evaluation of

social models. The feedback and modification of solutions for

complex systems from the observation and evaluation levels

can be used to improve artificial systems.

Fig. 1 The theoretical framework of computational experiments

From an implementation viewpoint, to solve those prob-

lems, such as incomplete or unavailable real-world data [90],

we can utilize parallel execution [91], by executing one or

more artificial systems running in parallel with a real system

and employing adaptive control methods for the experiments.

Through comparison, evaluation, and interaction with artifi-

cial systems, we can provide more perfect strategies for man-

aging the target social systems.

5 Concluding Remarks

This paper has systematically presented existing significant

results in the field of social influence and spread dynamics

in social networks, ranging from empirical studies and social

models to computational experiments. The section on empir-

ical studies mainly focuses on network construction, mea-

sures of networks and significant empirical results. Several
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significant social models in the section of social models have

been introduced and compared at both macro- and micro-

levels. The macro-level models encompass SIR and its gener-

alized models, and Bass models. We have compared the spe-

cific mechanisms of important micro-level models, including

the preferential attachment models, threshold models, cas-

cade models and competitive models. Due to the difficulties

in evaluation and validation of these models, we have also

explained a theoretical framework for computational experi-

ments.
We believe that this paper can help researchers keep up

with the latest results in this field and may offer some in-

sight into understanding related motivations, connections,

and open problems. In the future, the rapid growth of the

Internet, mobile, and cloud computing technologies and their

applications will offer us a great deal of data sources. These

massive network data sets will provide us with more reliable

evidence for studying social influence and spread dynamics

in social networks. Existing theoretical models can then be

validated and more reasonable models will be developed.

These models can be efficiently evaluated on computational

experiment platforms and help us to comprehensively un-

derstand the evolution of real-world social systems and to

make more reasonable strategies for controlling and manag-

ing these social systems.
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