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ABSTRACT

Social influence determines to a large extent what we adopt
and when we adopt it. This is just as true in the digi-
tal domain as it is in real life, and has become of increas-
ing importance due to the deluge of user-created content on
the Internet. In this paper, we present an empirical study
of user-to-user content transfer occurring in the context of
a time-evolving social network in Second Life, a massively
multiplayer virtual world.

We identify and model social influence based on the
change in adoption rate following the actions of one’s
friends and find that the social network plays a significant
role in the adoption of content. Adoption rates quicken
as the number of friends adopting increases and this effect
varies with the connectivity of a particular user. We further
find that sharing among friends occurs more rapidly than
sharing among strangers, but that content that diffuses
primarily through social influence tends to have a more lim-
ited audience. Finally, we examine the role of individuals,
finding that some play a more active role in distributing
content than others, but that these influencers are distinct
from the early adopters.

Categories and Subject Descriptors

J.4 [Computer Applications]: Social and Behavioral Sci-
ences – Sociology; H.2.8 [Database Applications]: Data
Mining

General Terms

Measurement, Economics, Human Factors
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social influence, diffusion of innovations, virtual worlds, so-
cial networks
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1. INTRODUCTION
In the digital age, the creation and distribution of digital

goods has been democratized. On YouTube, users view mil-
lions of videos created by millions of users, on Flickr users
upload their own photos and view others’, and news are re-
ported on, consumed, and commented on by a distributed
network of bloggers and media sources. Perhaps the purest
example of a market for user-generated content is that of
the virtual world Second Life. The vast majority of the con-
tent, in fact pretty much all of the virtual world itself, from
buildings to objects to fashion, is created, distributed, and
consumed by the users themselves.

The unique property of studying social contagion in Sec-
ond Life is that one can observe not just adoption in the
context of an explicit social network, but also trace direct
transfers of user-contributed content owned by users, which
we will refer to as assets. In Second Life, you can search
for interesting places to visit on your own, or a friend or
business can give you a landmark – a bookmark that allows
you to teleport directly to a location. If upon arriving, you
would like your avatar to dance, wave, or make a certain
sound, you need to retrieve that gesture from your inven-
tory of assets. That gesture may have been given to you by
a friend, or you may have purchased it from a store. Such
transfer of assets and information presents a unique oppor-
tunity to compare diffusion via word-of-mouth to adoption
resulting from broadcasts. Depending on the intellectual
property rules attached to each object, some assets can be
freely copied and shared; one Second Life user can pass on
a gesture, hairstyle, or article of clothing to another.

The paper proceeds as follows. After reviewing related
work and motivating our approach in Section 1.1, in Sec-
tion 1.2 we describe the Second Life data set and the char-
acteristics of information diffusion among Second Life users.
In Section 1.3 we quantify the properties of asset transfer
cascades and their relationship to the social network. We
find that assets that are passed from friend to friend tend
to produce deeper cascades, but the overall popularity of
the asset is lower. We demonstrate that this insight can be
used to predict how many additional individuals will adopt
an asset over a period of time. Section 2 models the rate of
adoption which we find to strongly depend upon the num-
ber of adopting friends a user has at any given time. As
might be expected, when users have no previously adopting
friends, their rate of adoption is related to the popularity of
the asset in the population overall. However, once a friend
has adopted, the adoption rate increases significantly, espe-
cially for less popular, niche assets. In Section 3 we identify



two kinds of individuals, influencers who directly influence
many of their friends to adopt, and early adopters. We find
that early adopters are more likely to adopt without having
to first observe their friends, but that they are not necessar-
ily influential in subsequent adoptions. Section 4 concludes
and discusses future directions.

1.1 Background & Motivation
The context in which our study occurs, Second Life [23]

has been of interest due to the emergence of self-contained
economy [22, 4] rich with social conventions [31, 9] that
mimic aspects of real-world human and social dynamics.
Our study provides a complementary perspective on how
individuals influence one another, while contributing to a
larger body of work in the measurement of large-scale social
phenomena relating to the dynamics of content consumption
in online communities.

In the marketing science literature there is a wealth of
macro-scale studies of new product diffusion [19]. For ex-
ample, the Bass model [3] is a differential equation model
that predicts adoption based on relative populations of “in-
novators” that are not influenced by the decisions of others
and“imitators”whose adoption depends of the total number
of adoptions in the system. Extensions to these models have
traditionally not taken into account social structure, nor the
individual decision making processes of the adopters. Micro-
level studies, such as [6], do model factors that influence
the adoption of a product, but have only been studied in
the context of small laboratory experiments.

Although the theory of information diffusion in social net-
works was developed decades ago [25], social contagion has
only recently been measurable on a large scale through the
digital traces that modern communication leaves behind.
Social contagion can be distinguished from viral, uninten-
tional sharing of e.g. human [24, 20] or electronic [21]
malaises over networks. One feature of social contagion is
that there may be thresholds to infection, with many indi-
viduals waiting for several of their friends to adopt before
taking the plunge themselves [5]. Unlike disease spread,
this diffusion typically has the property that an individual
decides whether to accept the contagious object.

The availability of large scale social network data has lead
to a number of studies quantifying various aspects of social
contagion. Of interest in all these studies is how one might
maximize the spread of influence through a social network
by selecting a subset of influential individuals to initially in-
fect with an idea or product [11]. Another possibility is to
find out early what assets are “hot” by monitoring a sub-
set of individuals that are likely early adopters of popular
assets [16]. Although some have modeled adoption simply
as a function of observing strangers’ actions [26, 30], princi-
pally, these studies measured the likelihood that an individ-
ual takes an action as a result of their friends’ choosing the
same action.

Social network information has successfully been used, for
example, to predict whether a customer will sign up for a
new calling plan once one of their phone contacts does the
same [10]. The photos we view and the stories we “Digg”
are often the ones we observed our friends consuming [13,
14]. LiveJournal bloggers are more likely to join a group
that many of their friends joined, especially if those friends
belong to the same clique [2]. Blogs are likely to link to
content that other blogs have linked to [27]. The insight

that individuals tend to like (or like to have) the same things
that their friends like can be used to improve collaborative
filtering algorithms [32].

While social network information has been commonly uti-
lized, there are relatively few studies that have included di-
rect transfers between users. A study of person-to-person
book and video recommendations found conditions under
which such recommendations are successful [15, 17]. A study
of online chain letters discovered that as messages diffuse
through individuals’ email contact networks, they form cas-
cades that are far deeper than one would expect at ran-
dom [18]. However, information cascades spreading through
email were not studied in the context of an explicit social
network that would allow one to measure both direct or in-
direct influence simultaneously.

In contrast to prior work, in this paper we are able to
analyze social influence not just indirectly through separate
information about the social network and user adoption, but
also by accounting for direct transfer of assets between in-
dividuals. The direct transfers allow us to more precisely
identify influencers who are responsible for a disproportion-
ate fraction of the asset adoptions. Furthermore, we develop
a simple model of adoption rates, as opposed to probabil-
ities, that can incorporate information about the evolving
social network without needing to make arbitrary decisions
about how to subdivide time intervals. This model allows
us to clearly illustrate the importance of network effects in
the adoption of content.

1.2 Description of Data
The data set in this paper includes time-stamped content

ownership data and weekly snapshots of the complete social
network over a 130 day period between September 1, 2008
and January 16, 2009, with the exception of the weeks of
September 19th and November 14th. We do not have the
exact time stamps of when the friendship ties were formed
or dissolved, but by using weekly snapshots, we can approx-
imate the coarse evolution of the social graph. At the user
level, we have information on when the user first joined Sec-
ond Life and how many hours they have played. The data
also includes the social network of users. The data were pro-
vided directly by Linden Lab, the maker of Second Life and
no personally identifying information of Second Life’s users
was shared with the authors.

The social network we observe is made explicit by the
users themselves, who add one another as “friends”. By de-
fault, friends are aware of when their other friends are in
Second Life, and if they grant additional permissions, those
friends can see where in the virtual world they are located.
Some users will even grant each other permission to mod-
ify each others’ objects. This tends to occur among a small
group of users for the purpose of collaboratively creating
content. In other cases, users may not grant one another
any permissions. Friend permissions do not necessarily need
to be reciprocal.

As in many online social networks, the meaning of a
friendship tie is somewhat ambiguous and can denote any-
thing from casual acquaintanceship to a close relationship.
One user may add another as a friend because they met
in Second Life and wished to continue interacting. Or a
Second Life friendship may reflect a “first life” relationship
that has been carried into the virtual realm. While privacy
preferences can vary from user-to-user, we consider the



user’s “social network” to consist of all friendship linkages
that have, at a minimum, reciprocated permissions to see
one another’s online status. Throughout the paper, we will
refer to two users connected in this fashion as “friends” or
“neighbors” in the social graph.

Since the subject of the work is on the diffusion of user-
created content, we focus on studying content that is freely
available, non-trivial to produce, and widely distributed
amongst users. Content that can be carried around by a
user is called an asset and is stored in the user’s inventory.
We chose to study gestures: transferable animations that
allow a user’s avatar to carry out programmed physical
movements or make sounds. The choice of this type of asset
was made because gestures are discrete and simple to trace.
In our analysis, we use Linden Lab’s definition of an active
user: those we have logged in in the 60 days prior to the
last observation date (Jan. 2009) and have used Second
Life for more than six hours. In addition we focus on the
users who have exchanged at least one object with another
user between September 2008 and January 2009. We chose
gesture assets that had at least sixteen unique owners and
were never directly distributed to users by Linden Lab.
The former exclusion rule omitted gestures that had not
diffused, and the latter excludes gestures the users may
have received without opting to. With these restrictions,
our sample population contains 100,229 users and 106,499
assets. Because of the long-tail of asset popularity, this
represents only a small fraction of the unique 5,327,671
gestures.

Most assets in our data set are owned by a relatively small
number of users, and very large assets of size 1,000 or greater
make up less than 10% of all assets. This is the familiar long
tail, shown in Figure 1, of content popularity; a few gestures
are widely adopted by users, while the majority remain of
little or niche interest. Interestingly, none of the content has
saturated the user population, with the largest assets owned
by roughly 10% of the population.
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Figure 1: Cumulative distribution of the number of
unique owners per asset in our sample population.

The content ownership data comes in the form of as-
set transfers, that contain the asset, previous owner, next
owner, and time-stamp. It indicates that the previous user
had given a copy of the asset to the next user. There are a
total of 12,585,298 asset transfers over the observation pe-

riod, 3,409,630 (23%) of which have accurate information
about the previous owner. On average, approximately 43%
of the observations in each asset have previous owner in-
formation. The average is higher than the total percentage
because for larger assets there are more observations without
previous owner information. Information can be lost, for ex-
ample, when a user copies or moves assets in their inventory.
The extent to which individual assets are missing previous
ownership information does not appear to vary systemati-
cally with the owner’s experience level, their connectedness
to others, or how many gestures they own.

The transfers of each asset can be visualized as a cascade
forest, with edges drawn between each owner and the previ-
ous owner, showing an “infection” path that represents the
direct flow of content between users. Where previous owner
information is missing, we start a new tree in the forest.
Figure 2 shows a cascade forest for one particular gesture.
We note a fanning pattern, with some users transferring the
gesture to many others.

Of the assets transfers for which we have accurate previ-
ous ownership information, 1,754,852 (approx. 48%) of the
transfers occurred between friends. This suggests that direct
social influence over the social network plays a considerable
role in the distribution of content. In addition to direct influ-
ence, we find that indirect influence along the social network
also plays a large role in adoption. Of those transfers that
did not occur between friends, 678,908 (approx. 38%) of the
users who had acquired a new asset did so after at least one
of their friends had also adopted.

Figure 2: Example of a cascade forest for the Aero-
smith(916) gesture. Edges denote transfers of the
gesture between users.

1.3 Friend-to-friend vs. one-to-many
Given the above observations on the role of the social

graph in the transfer and adoption of content, an important
question a viral marketer may wish to answer is how much
of a boost one can expect from having customers themselves



advertise to one another and distribute the assets [8]. Pre-
vious work on book and DVD recommendations found that
viral marketing is more effective for niche products as op-
posed to widely popular ones [15]. We find a similar trend
here.

In order to quantify between-user transfers, we look at
the following variables for each asset: the total number of
adopters for the asset (the asset size or popularity), the per-
centage of the transfers that were between friends (% direct),
and the percentage of transfers that resulted in subsequent
transfers by the adopting user (% non-leaf). We find the
percentage of non-leaf nodes, which can be thought of as a
measure of cascade depth, to be correlated with the percent-
age of the adoptions that can be accounted for by the social
graph (ρ = 0.42), indicating that the diffusion along the
social network produces deeper cascades for which a higher
proportion of users actively participate in the transfer of the
asset. But while these cascades tend to be deeper, they are
not wider. The average popularity of the asset falls as the
proportion of non-leaf nodes and social influence increases.
As Figure 3 shows, having more adopters actively trans-
ferring assets is actually indicative of the asset not being
broadly popular.
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Figure 3: Percentage of non-leaf nodes vs. asset size
for assets over the first 90 days of their spread.

One can use the above observation of asset size and the
role of social influence to predict the growth in the number
of adoptions for a particular asset. We differentiate social
influence (having a friend adopt before you do), and direct
influence (obtaining an asset from a friend). Not all assets
can be obtained from a friend, even if the friend has said
asset, because of copy permissions. We therefore separate
the assets where no transfers occur between friends (these
likely cannot be copied), and ones that do.

We observe the number of adoptions in the first 30 days
since the asset is created. We then run a regression to model
the number of adoptions in the following 60 days. Besides
the initial number of adoptions, we also included the follow-
ing statistics from the first 30 days: whether the adoption
occurred after at least one other friend adopted (% social),
the percent of adoptions that are direct transfers along the
social network, and the percent of adoptions occurring di-

Table 1: Regressing the subsequent number of adop-
tions on the initial adoptions and percentage that
can be explained by social influence. d is the re-
stricted set of assets that were observed to have been
transfered on the social network.

all assets all assets d d
log(initial size) 0.362 0.388 0.508 0.476

% social -0.808 -0.897

R2 0.112 0.161 0.164 0.196

rectly through the social network that resulted in further
adoptions. Just two variables yielded the greatest explana-
tory power: the number of initial adoptions, and the per-
centage of initial adoptions that can be explained by the
social network. We further find that using those same two
variables, assets that are transfered from friend-to-friend at
least sometimes are more predictable than those that are
never passed between friends. A possible reason is that if
friends are unable to share assets due to copying restrictions,
then the distribution falls on a limited set of individuals,
making the sharing of the assets more variable. Although
information diffusing through a social network may lead to
unpredictable cascades [28], in this case being able to observe
such diffusion actually makes the cascade more predictable.

As Table 1 shows, unsurprisingly, a higher initial rate of
spread translates to a higher number of subsequent adop-
tions. What is interesting is that the percentage of social
adoptions (those that can be easily attributed to friends’
adoptions) is negatively correlated with the the number of
additional users who adopt. This suggests that assets that
are diffusing through the social network may be of interest
to a smaller subset of individuals. Because of homophily,
the tendency of like to associate with like, these individuals
are more likely to be friends with one another. So while a
niche product may be shared more readily through the so-
cial network because the social network reflects niche tastes,
the product does not have a wide susceptible audience, and
therefore will not be adopted as widely.

While the regression suggests that the overall rate of
spread through the social network is slower than through
alternate paths, we find individual transfers to be more
rapid between friends. Figure 4 shows the distribution
of lags between when an individual becomes infected and
when they infect either a friend, vs. when they infect a
non-friend. First, we note that individuals are most likely
to share a gesture within a short time of receiving it, while
the context and novelty of the asset are still fresh.

Furthermore, we find that friends will more rapidly share
with one another than with strangers: the average time lag
between when a user acquires an asset and when they give
it to a friend is 53.1 days, compared to the 75.6 it takes
them to transfer it to a non-friend. The average time lag
between one friend adopting after another (without sharing
the asset with one another directly) is 105.2 days, compared
to 228.3 days for adopters who are not friends. Although
there is a mild cohort effect (with friends being more likely
to join Second Life around the same time), it alone would
not explain why friends are adopting so closely in time. That
there is variation in speed depending on the relationship type
is of interest because the speed of a interpersonal link can
dramatically effect the fastest route information will take as



it spreads, to the point where some slower links play little
role at all [12]. It is therefore of interest to model the rate
of adoption following a friend’s adoption, and this is what
we undertake in the next section.
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Figure 4: Delays between a users’ adoption and re-
transmission times, for assets with 100-200 adopters.

2. MODELING ADOPTION
As a Second Life user observes others adopting particular

assets, she may not only be more likely to adopt the asset
herself, but the rate at which she does so may quicken as
she observes more and more of her friends adopting. In or-
der to characterize social network effects on user adoption
in Second Life, we utilize a simple model of users’ adoption
rates. We show how with slightly different assumptions the
same model can be applied to adoption rates both at the
asset and at the user levels. Our results are compared to a
Cox proportional hazards model with time-varying covari-
ates that incorporates other possible influences such as the
total number of adopters in the user population. We show
that the estimates produced by the Cox model are consistent
with the results of our simple model.

2.1 Formulation
One way in which this neighbor influence has been mea-

sured before is by computing the probability of adoption
as a function of the number of neighbors who have already
adopted in some time interval [2]. To be more precise, one
counts the number of individuals who have not adopted that
have k neighbors who have adopted at the beginning of the
time interval and then compute the fraction of these indi-
viduals who have adopted at the end of the time interval.

An improved and related approach, used by [1], consid-
ers the probability of adoption within many identical dis-
crete time intervals, rather than just one. Our approach
presents a further refinement by utilizing a continuous time
model of adoption where we have stochastic rates of adop-
tion rather than probabilities of adoption. We consider rates
of adoption from two perspectives: at the level of adopting
a particular asset and at the level of the user. In the former
case, we assume that the rates of adoption are characteristic
of a particular asset, are fixed in time, and the same for all
users. These assumptions are analogous to the assumptions

used in [1] and [2]. At the level of the individual user, we
assume that a particular user’s rates are fixed in time and
equivalent for all assets, but that they differ from user to
user.

We first explain the model formulation from the perspec-
tive of a particular asset computed over the entire popu-
lation of users. A user enters into state k at the moment
that their kth friend adopts the particular asset. The model
assumes that once an individual is in state k, the time un-
til they adopt, Tk, is exponentially distributed, i.e. they
draw an exponentially distributed random variable Tk with
mean 1/λk where λk will be referred to as the adoption rate
for state k. If an avatar’s state changes before they reach
their adoption time, they discard that time and draw a new
time from the next exponential distribution corresponding
to their new state. There are three ways in which a user
can exit state k. If one of their existing neighbor adopts or
they become friends with someone who has already adopted
(adding an edge in the social network), they advance to state
k + 1. If they end a friendship with an adopter (deleting an
edge in the social network), they return to state k − 1.

We use maximum-likelihood to estimate λk from the avail-
able data for each asset. To do this, we have to compute the
probability of observing the data given the model. Let ti

k be
the total amount of time the ith user spent in the k state
and θi be one if the user adopted by the end of our obser-
vation period or zero if the avatar did not adopt. For the
users that did adopt an asset, let ai be the state from which
that avatar adopted. Then the probability (density) of the
data given the model is

Y

i

λ
θi

ai
exp(−

X

k

λkti

k). (1)

We can further simplify the probability of the data given
the model by defining Ak to be the number of individuals
who adopted from state k and Mk =

P

i
ti

k to be the total
amount of time spent in state k over all individuals. Then

Y

k

λ
Ak

k
exp(−λkMk). (2)

Maximizing with respect to the model parameters yields

λk = Ak/Mk, (3)

as the maximum-likelihood estimate of the rates, assuming
a uniform prior over the model.

We make a further distinction based on the population of
measurements used to calculate the characteristic rates in
our model. For a particular asset, it’s unclear whether the
entire population of users should be included in the calcu-
lation. The reason for not including all users is that some
individuals may never want to acquire the asset regardless
of the number of their neighbors that adopt. Including all
users for each asset is what has been done previously, which
carries the assumption that all individuals considered will
adopt if one waits a sufficiently long time. However, a user
may never want to adopt, no matter how long they have
been exposed to it. For example, Aerosmith gestures may
be a taste that a particular user will never acquire. Rather,
individuals are selective in their adoptions, and will resist
both advertising and social influence if an asset does not
match their tastes or interests. Therefore, our alternative
approach is to estimate the rates only using measurements



from the observed user population that has adopted the as-
set. We can be sure that this population wants the asset,
but of course, there may be other individuals who want the
asset but have just not acquired it yet.

Since there are advantages and disadvantages in includ-
ing the non-adopting population in our measurements, we
report our results for both specifications, referring to the re-
spective calculations as utilizing the entire population and
the adopting population of users. We note that our popula-
tion of all users is still restricted to users who have adopted
at least one asset during the time period, which means that
all users were susceptible to adopting in general. To specify
to the adopting population only, we follow the above deriva-
tion only including users that were observed to adopt the
asset. This adjustment again leads to Eq. 3, where now Mk

is the total amount of time spent in state k over individuals
that adopted the asset.

As we mentioned above, one can model many users adopt-
ing the same asset, or one can model a particular user as
they adopt different assets. Calculating adoption rates for
a particular user over the entire population of assets is also
simple. We again use maximum-likelihood to estimate λk

for each individual using every asset. Let ti

k be the total
amount of time a user spent in the k state for the ith asset,
θi be one or zero if the avatar adopted or did not adopt the
ith asset respectively, and ai be the state from which that
user adopted the ith asset. Then the probability (density) of
the data for that individual given the model is again Eq. 1.
Defining Ak to be the number of assets adopted from state
k and Mk =

P

i
ti

k to be the total amount of time the indi-
vidual spent in state k over all assets, and then maximizing
with respect to model parameters leads to Eq. 3. As in the
analysis for particular assets, we also can decide to only in-
clude assets that the user was observed to acquire. This
specification results in Mk being the amount of time that an
individual has spent in state k over all assets that they were
observed to adopt. Again, we report our results for both
cases for each user, which we refer to as either utilizing the
entire population and the adopted population of assets.

We take into account all adoptions that occur before Sept
1, 2008, when we first started receiving weekly social net-
work snapshots. After this point, the adoption times the ti

k

are used to estimate the rate parameters, since our network
data moving forward in time is more accurate.

2.2 Analysis
We first report on the differences in adoption rates as a

function of the number of adopting neighbors for small and
large assets separately. Asset size denotes simply the total
number of adopting users for the asset. We also consider the
trends across all assets, and“new”assets that appeared after
Sept. 1, 2008. Examining new assets helps us avoid con-
founds such as large assets being in the later stages of their
adoption curve. Figure 5 shows that adoption rates increase
with the number of previously adopting neighbors a user
has, whether one considers all users or just the adopters, and
whether one includes all assets or just newer ones. When
one considers all users, the rate increase is initially convex,
suggesting that having two, rather than just one adopting
friend increases the likelihood that a user will adopt at all.
This is in agreement with previous analyses [15, 2, 1], which
found that the probability initially increases steeply with k
but then shows diminishing returns as k increases further.
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Figure 5: The average rate of adoption of assets
as a function of adopting neighbors, k. The black
curve corresponds to assets that are owned by 50-
500 users, and the red curve corresponds to assets
owned by 500 or more users. (a) entire population,
all assets (b) adopting population, all assets (c) en-
tire population, new assets (d) adopting population,
new assets. The rates are in units of inverse days.

Once we consider the population of just the adopting
users, the rates do not show as steep of an initial gain as
they did for all users. This is because now the rates do not
reflect a binary outcome of whether or not the user adopts
at all, but rather how much more quickly a susceptible user
adopts following the adoption of multiple neighbors. For
smaller assets that have between 50 and 500 adopters, the
rate doubles between having no adopting neighbor to having
one, with the increase more pronounced for new assets. It
then increases roughly another 60% when a second neighbor
adopts.

What is most striking, however, is that this rate of adop-
tion as a function of the number of neighbors increases more
rapidly for smaller assets. These plots confirm our intuition
from Section 1.3 concerning the relationship between relative
popularity and channels of influence. The increase in rate
appears most strong for more niche items, whereas neighbor-
hood effects appear to play less of the role for more popular
assets. This suggests that what is driving the adoption of
more popular assets must lie at least partly outside of the
social network. For large assets, those with ≥ 500 adopters,
λ0 is 4.73 times higher than for smaller assets. For newer as-
sets, this ratio is 7.43. Because collectively users spend much
more time in the k = 0 state (having no adopting neighbors)
than in the k > 0 states, a small difference in λ0 can lead
to significant differences in asset size. For example, across
assets with between 50 and 500 adopters, the total length
of time spent by all users in the k = 0 state is a factor of
190 times greater than the total length of time spent with
at least one adopting neighbor. We obtained qualitatively
similar results when we varied the cutoff between small and
large assets.
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Figure 6: The average rate of adoption for users as
function of adopting neighbors, k. The black curve
corresponds to users of low degree that have 15-100
friends, and the green curve corresponds to users
with 100-1000 friends. Left: entire population of
assets. Right: adopted population of assets. The
rates are in units of inverse days.

Table 2: Cox proportional hazards model with time-
varying covariates. All estimates have p < 0.001.
parameter estimate error
mean degree -0.00134 0.00009
log(assets owned) 0.03391 0.00601
cohort 0.62933 0.01176
log(usage) -0.18349 0.00470
adopting neighbors 0.32795 0.00902
log(adopting users) -0.04634 0.00754

We next turn to an analysis of user-characteristic adop-
tion rates. We average the data over all individuals, where
we divide the data into high and low degree, as shown in Fig-
ure 6. Interestingly, the users with high degree tend to adopt
at comparably lower rates than their lower degree counter-
parts. This suggests that individuals may accumulate many
friends, especially in online contexts, but consequently any
individual friend holds less influence.

We can further understand the above results by turning
to a more general approach to adoption rates using a Cox
proportional hazards model with time-varying covariates [7].
This model allows us to include additional fixed covariates
such as average degree of the user observed over the time
period, the number of assets owned, the user’s cohort (from 0
to 5 years, 5 being the most recent), and usage (in days). We
also utilized the number of adopting neighbors and number
of adopting users for each asset as time-varying covariates.
Results from the regression are shown in Table 2.

As in the previous model, we find that the number of
adopting neighbors has a significant and positive effect. We
also see that high average degree does indeed have a negative
effect on the adoption rate. By itself, the overall popularity
of an asset does increase the rate of adoption, as suggested
in Figure 5(d). In combination with the other factors, how-
ever, overall popularity has a weakly negative effect in the
rate of adoption. Finally, we see that users that have signed
up recently tend to adopt friend’s content more rapidly, and
that this effect decreases with experience. The results in-
dicate substantial heterogeneity in user behavior, which we
further investigate in the next section where we look for in-
fluential users and early adopters.

3. INFLUENCERS AND EARLY ADOPTERS
Thus far we have observed social influence from the point

of view of the adopter – finding that the rate of adoption
increases as one observes more and more friends adopting.
This suggests that each friend holds some influence, and
that having more adopters among one’s friends increases the
“hazard” that one will catch the bug and adopt as well. But
one may also pose the question of whether all adopters are
equally contagious to their friends. More specifically, us-
ing data on user-to-user asset transfers among friends, we
can examine whether a few individuals are responsible for
distributing assets.

3.1 Concentration of influence
First, we look at the distributions of transfers per individ-

ual, shown in Figure 7. The distributions are heavy tailed,
indicating that a majority of individuals play a negligible to
small role in distributing assets, while a handful of users dis-
proportionately contribute to the dissemination of content.
Some of the heavy-tailedness may be explained by primary
content providers (i.e. store owners) whose role includes
marketing assets to individuals. While approximately 52%
of the transfers occur between non-neighboring users, many
transfers occur at similar scales between users that are affil-
iated with one another, or more strongly, have at least three
other friends in common.
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Figure 7: Distributions of the number of assets
shared by users with other users with whom they
share a specified number of friends in common.

We can also measure the entropy of users who are respon-
sible for transfers and compare it against a null model where
each subsequent adopter receives the asset from a randomly
chosen previous adopter. The entropy is simply computed
using the proportion of transfers that can be attributed to
each user in the cascade who shared at least one asset. The
null model has two parameters, the total number of own-
ers of the asset n, and the proportion p of missing edges
in the cascade. At each time step, the null model adds a
new owner, who with probability p starts a new tree, and
with probability (1 − p) picks one of the previous owners
uniformly at random as its parent node. The null model
was computed for each asset using the corresponding (n, p).



We find that the distribution of entropies from the data,
measured in bits, has a mean of 2.72, which is significantly
lower than that of the null model (3.48), (t = 97.08, p =
0). This indicates that the actual distribution of assets is
more concentrated than one would expect if every previous
adopter participated with equal probability.

actual cascade forest random growth forest

Figure 8: Comparison between actual growth of cas-
cades and a null model where each previous adopter
is equally likely to be sharing assets.

An obvious distinction between the null model and the
actual cascades is the tendency of the observed cascades to
be concentrated on the social graph, with many users adopt-
ing after their friends do. As we mentioned before, 48% of
the direct transfers occur on the social graph. A null model
that takes just any previous adopter as the source of an asset
would pick a friend 6.6% percent of the time. This is calcu-
lated by computing the fraction of previous adopters who are
friends for each transfer with accurate previous owner infor-
mation and dividing by the total number of such transfers.
Unsurprisingly, direct sharing is more a feature of friendship
ties than simply a desire to share with others.

3.2 Strength of influence
The number of times a user transfers assets is an un-

ambiguous influence measure. However, it doesn’t capture
how successful a user would be in a competition where one’s
friends could obtain assets from others. We propose a sim-
ple measure, γ, that compares the number of times a user
A infected one of its friends B, against the expected num-
ber given the odds that B was not infected by one of their
other adopter friends. For example, if B had 2 other friends
besides A who had previously adopted, and B obtained the
asset through a friend, then the probability that A was the
infector is 1/3. This adds 1/3 to the expected number of
transfers for A.

We measure γ =(transfers - expected)/expected for all
users who had at least 20 instances where one of their
friends acquired an asset through a social tie after they did.
Figure 9 shows what if odds were even that the adopter
receives the asset from any one of their friends, the user’s
γ scores would be narrowly distributed around 0 – they
would be doing no worse or better than odds. In contrast,
the distribution of observed γ scores is highly skewed –
approximately 74%, fall below 0 and while the remaining
26% are more influential than odds. The actual gammas
have a mean of -0.286.

A further question one might have is whether a user can
be influential in distributing many assets or just a few. The
overall correlation between the number of transfers a user

made and the number of assets they were sharing was highly
positive (ρ = 0.63), but still displayed a wide range of be-
haviors. One user influenced 73 transfers to friends involv-
ing just 2 different assets while another made 104 transfers
involving 16 different assets. In yet another case, a user dis-
tributed 46 assets in 47 transfers. This implies that some
users share only a few select items while others share less
discriminately.
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Figure 9: Users’ influence using the γ measure, for
actual and randomized transfers.

Who are these influencers and what are their characteris-
tics? Interestingly, even though users with a higher number
of friends tend to have been around longer (ρ = 0.13), have
more assets (ρ = 0.16), and have made more transfers in
total (ρ = 0.14), a user’s γ score is negatively correlated
with their number of friends (ρ = −0.171). This is likely be-
cause maintaining strong ties with many individuals is more
difficult, hence influencing any single one is less likely. We
observe, for example, that the number of assets shared by
two friends is mildly correlated with the strength of their tie
(ρ = 0.10), as given by the number of friends the two have
in common.

A higher γ is slightly negatively correlated with the num-
ber of assets (ρ = −0.05), but highly positively correlated
with the number of transfers to friends per asset owned
(ρ = 0.35). This means that influencers don’t necessarily
have more assets than others, but the ones that they do
have, they like to share with their friends. Overall, we find
that users who are sharing a higher number of assets and
making more transfers tend to be sharing less popular ones
ρ = −0.15, again suggesting, as in Section 1.2 that assets
shared tend to be niche products.

We also examine whether those who are directly responsi-
ble for their friends’ adoptions tend to acquire assets earlier.
While users who have more transfers per asset tend to be
“earlier” in their adoption (ρ = −0.06), both in terms of ab-
solute rank (they were the rth person to adopt) and relative
rank (they were among the first p% of users to adopt), a
user’s γ score and relative adoption rank are uncorrelated.

1numbers of friends and assets were log-transformed before
their correlation was measured



Altogether, combining the age, number of friends, number of
assets, average adoption rank, and average number of trans-
fers in a linear regression model yields an R2 of 0.17 for a
user’s γ score.

3.3 Early adopters
This still leaves the question of whether the very earliest

adopters might be different as a group from other users. We
select users who have 20 or more gestures and are on average
among the first 5% of adopters for all assets they own. This
corresponds to being the 15th adopter on average across the
assets one owns. For the analysis below we obtained qual-
itatively similar results when we selected an early adopter
group of approximately the same size, but slightly different
criteria: adopting 40 or more gestures, and being among the
first 10% of users to acquire them.

We compare the early adopter group against the group
of 50,000 users who have also acquired 20 or more gestures,
but are on average in the latter half of adopters for those
gestures. We can immediately rule out some factors relat-
ing to whether a user becomes an early adopter. The early
adopters were on average born just 68 days earlier, mean-
ing that joining Second Life earlier yields only a slightly
higher advantage in being one of the first adopters of an
asset. Early adopters have actually had a bit less playtime
than the later adopters (40 hours), and have an average of
8 fewer friends (for an average of 61 and median of 33).
Clearly the early adopters are neither especially early, ac-
tive, nor gregarious.

The very earliest adopters distinguish themselves in other
ways. For the assets that they eventually adopt, the rate
of adoption before any of their friends adopt, λk=0, is twice
as high as that of the laggard group (t = 4.2, p < 0.0001),
as is their rate of adoption under initial social influence,
λk=1, though this difference was not as significant (t =
2.3, p < 0.05). This indicates that they are more susceptible
to adopting assets early (when none or one of their friends
have adopted), although on average they own 20 fewer assets
than late adopting users (t = 10.3, p = 0). Perhaps, being
trendsetters, they resist acquiring assets that have become
too common.

Finally, we examine the direct influence that these early
adopters wield, and find that their γ scores, though closer
to odds (-0.08) than that of the later adopters (-0.22) are
not particularly impressive. The number of transfers they
make is not significantly higher than the laggard group, even
though the assets they adopt eventually grow to be more
popular than those owned by laggard group (t = 5.5, p <
10−7). Previously simulated models of social influence over
social networks have established a negative link between be-
ing an early adopter (easily succumbing to a new trend)
and therefore been less influential [29]. This is not the case
for the most extreme early adopters in Second Life. But
the overall trend for all users is a very slight but statis-
tically significant negative correlation between the proba-
bility that one adopts before one’s friends do, and both γ

(ρ = −0.015, p < 0.001) and number of transfers the user
makes (ρ = −0.02, p < 10−7).

In summary, we identified some users as influential, and
others as early adopters. They don’t appear to be one and
the same, with the early adopters being more easily sus-
ceptible early on, but not being more likely to share their
finds. We were able to identify some characteristics of both

early adopters and influencers, however, these characteris-
tics alone cannot be used reliably to identify such users. The
size of a users’ social network is just one of the variables that
was of little help in identifying influencers, although the so-
cial network itself is responsible for many of the transfers.

4. CONCLUSION AND FUTURE WORK
In this paper we examined the interplay of social net-

works and social influence in the adoption of online content.
Roughly 48% of transfers occur along the social graph, the
remainder occurring between users who are not friends. We
find that assets whose transfers typically occur through the
social graph tend to have deeper transfer cascades measured
as a higher proportion of non-leaf nodes, but tend to grow
more slowly. This suggests that social networks are an im-
portant medium for diffusion of niche information in Second
Life.

We applied models of social contagion that capture the
rate at which users adopt following the adoption by one of
more of their friends. We find that the rate of adoption
increases as more of one’s friends adopt, and that this is
more significant for smaller, niche assets. We also find that
someone who has many friends is less likely to be influenced
by any particular one. A user with many ties would have
difficulty maintaining all of them, increasing the probability
that many of the ties are weak and therefore hold less in-
fluence. Indeed, we found a slight correlation between the
strength of a tie and number of assets that are transferred
between two friends.

We further find that some individuals play a more active
role in the transfer of assets than others. A random cascade
model, where any node is equally likely to cause another
adoption, yields a higher entropy than the empirically ob-
served cascades. But the variability in influence cannot be
attributed to the social network alone: when we measure the
direct influence an individual has on a particular friend, this
influence is negatively correlated with the number of friends.
Finally, the early adopters, while being more susceptible to
adopting content without waiting for many of their friends
to so, do not wield greater influence over others.

In future work we would like to examine the effect of fees
on the transfer of assets. Individuals may behave rather dif-
ferently when assets are costly to acquire. They may either
seek to keep up with the Jonses or be less likely to succumb
to peer influence because of the associated cost. Another
interesting dimension for exploration is that of copyright.
Copyright may inhibit the spread of assets, favoring the
spread of those where users are free to share and modify
the content. The effect of users’ ability to modify content
created by others, and more generally collaborate in this
virtual space, would be a fascinating subject of study.
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