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Abstract

We introduce SOCIAL IQA, the first large-

scale benchmark for commonsense reasoning

about social situations. SOCIAL IQA contains

38,000 multiple choice questions for prob-

ing emotional and social intelligence in a va-

riety of everyday situations (e.g., Q: “Jor-

dan wanted to tell Tracy a secret, so Jor-

dan leaned towards Tracy. Why did Jordan

do this?” A: “Make sure no one else could

hear”). Through crowdsourcing, we collect

commonsense questions along with correct

and incorrect answers about social interac-

tions, using a new framework that mitigates

stylistic artifacts in incorrect answers by ask-

ing workers to provide the right answer to a

different but related question. Empirical re-

sults show that our benchmark is challenging

for existing question-answering models based

on pretrained language models, compared to

human performance (>20% gap). Notably,

we further establish SOCIAL IQA as a re-

source for transfer learning of commonsense

knowledge, achieving state-of-the-art perfor-

mance on multiple commonsense reasoning

tasks (Winograd Schemas, COPA).

1 Introduction

Social and emotional intelligence enables humans

to reason about the mental states of others and

their likely actions (Ganaie and Mudasir, 2015).

For example, when someone spills food all over

the floor, we can infer that they will likely want to

clean up the mess, rather than taste the food off the

floor or run around in the mess (Figure 1, middle).

This example illustrates how Theory of Mind, i.e.,

the ability to reason about the implied emotions

and behavior of others, enables humans to nav-

igate social situations ranging from simple con-

versations with friends to complex negotiations in

courtrooms (Apperly, 2010).

⋆ Both authors contributed equally.

REASONING ABOUT WHAT HAPPENS NEXT

(a) taste the food
(b) mop up ✔
(c) run around in the mess

What will Alex 
want to do next? A

Alex spilled the food she just prepared all over 
the floor and it made a huge mess.

Q

REASONING ABOUT EMOTIONAL REACTIONS

(a) sorry for the villain
(b) hopeful that Robin 

will succeed ✔
(c) like Robin should lose

How would others 
feel afterwards?

In the school play, Robin played a hero in the 
struggle to the death with the angry villain.

AQ

REASONING ABOUT MOTIVATION

Why did Tracy 
do this?

Tracy had accidentally pressed upon Austin in 
the small elevator and it was awkward.

(a) get very close to Austin
(b) squeeze into the 

elevator ✔
(c) get flirty with Austin

AQ

Figure 1: Three context-question-answers triples from

SOCIAL IQA, along with the type of reasoning required

to answer them. In the top example, humans can triv-

ially infer that Tracy pressed upon Austin because there

was no room in the elevator. Similarly, in the bottom

example, commonsense tells us that people typically

root for the hero, not the villain.

While humans trivially acquire and develop

such social reasoning skills (Moore, 2013), this

is still a challenge for machine learning models,

in part due to the lack of large-scale resources

to train and evaluate modern AI systems’ social

and emotional intelligence. Although recent ad-

vances in pretraining large language models have

yielded promising improvements on several com-

monsense inference tasks, these models still strug-

gle to reason about social situations, as shown

in this and previous work (Davis and Marcus,
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2015; Nematzadeh et al., 2018; Talmor et al.,

2019). This is partly due to language models being

trained on written text corpora, where reporting

bias of knowledge limits the scope of common-

sense knowledge that can be learned (Gordon and

Van Durme, 2013; Lucy and Gauthier, 2017).

In this work, we introduce Social Intelligence

QA (SOCIAL IQA), the first large-scale resource

to learn and measure social and emotional intel-

ligence in computational models.1 SOCIAL IQA

contains 38k multiple choice questions regard-

ing the pragmatic implications of everyday, social

events (see Figure 1). To collect this data, we de-

sign a crowdsourcing framework to gather con-

texts and questions that explicitly address social

commonsense reasoning. Additionally, by com-

bining handwritten negative answers with adver-

sarial question-switched answers (Section 3.3), we

minimize annotation artifacts that can arise from

crowdsourcing incorrect answers (Schwartz et al.,

2017; Gururangan et al., 2018).

This dataset remains challenging for AI sys-

tems, with our best performing baseline reaching

64.5% (BERT-large), significantly lower than hu-

man performance. We further establish SOCIAL

IQA as a resource that enables transfer learning

for other commonsense challenges, through se-

quential finetuning of a pretrained language model

on SOCIAL IQA before other tasks. Specifically,

we use SOCIAL IQA to set a new state-of-the-art

on three commonsense challenge datasets: COPA

(Roemmele et al., 2011) (83.4%), the original

Winograd (Levesque, 2011) (72.5%), and the ex-

tended Winograd dataset from Rahman and Ng

(2012) (84.0%).

Our contributions are as follows: (1) We cre-

ate SOCIAL IQA, the first large-scale QA dataset

aimed at testing social and emotional intelligence,

containing over 38k QA pairs. (2) We introduce

question-switching, a technique to collect incor-

rect answers that minimizes stylistic artifacts due

to annotator cognitive biases. (3) We establish

baseline performance on our dataset, with BERT-

large performing at 64.5%, well below human per-

formance. (4) We achieve new state-of-the-art ac-

curacies on COPA and Winograd through sequen-

tial finetuning on SOCIAL IQA, which implicitly

endows models with social commonsense knowl-

edge.

1Available at https://tinyurl.com/socialiqa

SOCIAL IQA

# QA tuples

train 33,410

dev 1,954

test 2,224

total 37,588

Train statistics

Average

# tokens

context 14.04

question 6.12

answers (all) 3.60

answers (correct) 3.65

answers (incorrect) 3.58

Unique

# tokens

context 15,764

question 1,165

answers (all) 12,285

answers (correct) 7,386

answers (incorrect) 10,514

Average freq.

of answers

answers (correct) 1.37

answers (incorrect) 1.47

Table 1: Data statistics for SOCIAL IQA.

2 Task description

SOCIAL IQA aims to measure the social and

emotional intelligence of computational models

through multiple choice question answering (QA).

In our setup, models are confronted with a ques-

tion explicitly pertaining to an observed context,

where the correct answer can be found among

three competing options.

By design, the questions require inferential rea-

soning about the social causes and effects of situa-

tions, in line with the type of intelligence required

for an AI assistant to interact with human users

(e.g., know to call for help when an elderly per-

son falls; Pollack, 2005). As seen in Figure 1,

correctly answering questions requires reasoning

about motivations, emotional reactions, or likely

preceding and following actions. Performing these

inferences is what makes us experts at navigat-

ing social situations, and is closely related to The-

ory of Mind, i.e., the ability to reason about the

beliefs, motivations, and needs of others (Baron-

Cohen et al., 1985).2 Endowing machines with

this type of intelligence has been a longstanding

but elusive goal of AI (Gunning, 2018).

2 Theory of Mind is well developed in most neurotypical
adults (Ganaie and Mudasir, 2015), but can be influenced by
age, culture, or developmental disorders (Korkmaz, 2011).

https://tinyurl.com/socialiqa


ATOMIC

As a starting point for our task creation, we

draw upon social commonsense knowledge from

ATOMIC (Sap et al., 2019) to seed our contexts

and question types. ATOMIC is a large knowledge

graph that contains inferential knowledge about

the causes and effects of 24k short events. Each

triple in ATOMIC consists of an event phrase with

person-centric variables, one of nine inference di-

mensions, and an inference object (e.g., “PersonX

pays for PersonY’s ”, “xAttrib”, “generous”).

The nine inference dimensions in ATOMIC cover

causes of an event (e.g., “X needs money”), its ef-

fects on the agent (e.g., “X will get thanked”) and

its effect on other participants (e.g., “Y will want

to see X again”); see Sap et al. (2019) for details.

Given this base, we generate natural language

contexts that represent specific instantiations of

the event phrases found in the knowledge graph.

Furthermore, the questions created probe the com-

monsense reasoning required to navigate such

contexts. Critically, since these contexts are based

off of ATOMIC, they explore a diverse range of

motivations and reactions, as well as likely pre-

ceding or following actions.

3 Dataset creation

SOCIAL IQA contains 37,588 multiple choice

questions with three answer choices per question.

Questions and answers are gathered through three

phases of crowdsourcing aimed to collect the con-

text, the question, and a set of positive and negative

answers. We run crowdsourcing tasks on Ama-

zon Mechanical Turk (MTurk) to create each of

the three components, as described below.

3.1 Event Rewriting

In order to cover a variety of social situations, we

use the base events from ATOMIC as prompts for

context creation. As a pre-processing step, we

run an MTurk task that asks workers to turn an

ATOMIC event (e.g., “PersonX spills all over

the floor”) into a sentence by adding names, fixing

potential grammar errors, and filling in placehold-

ers (e.g., “Alex spilled food all over the floor.”).3

3.2 Context, Question, & Answer Creation

Next, we run a task where annotators create

full context-question-answers triples. We auto-

matically generate question templates covering

3This task paid $0.35 per event.

Alex spilt food all over the floor and it made a huge mess.

What will Alex 
want to do next?

WHAT HAPPENS NEXT

What did Alex need 
to do before this?

✔mop up
✔give up and order take out

✘ have slippery hands
✘ get ready to eat

✔ have slippery hands
✔ get ready to eat

WHAT HAPPENED BEFORE

Figure 2: Question-Switching Answers (QSA) are col-

lected as the correct answers to the wrong question that

targets a different type of inference (here, reasoning

about what happens before instead of after an event).

the nine commonsense inference dimensions in

ATOMIC.4 Crowdsourcers are prompted with an

event sentence and an inference question to turn

into a more detailed context5 (e.g. “Alex spilled

food all over the floor and it made a huge mess.”)

and an edited version of the question if needed for

improved specificity (e.g. “What will Alex want

to do next?”). Workers are also asked to contribute

two potential correct answers.

3.3 Negative Answers

In addition to correct answers, we collect four in-

correct answer options, of which we filter out two.

To create incorrect options that are adversarial for

models but easy for humans, we use two different

approaches to the collection process. These two

methods are specifically designed to avoid differ-

ent types of annotation artifacts, thus making it

more difficult for models to rely on data biases.

We integrate and filter answer options and validate

final QA tuples with human rating tasks.

Handwritten Incorrect Answers (HIA) The

first method involves eliciting handwritten incor-

rect answers that require reasoning about the con-

text. These answers are handwritten to be similar

to the correct answers in terms of topic, length,

and style but are subtly incorrect. Two of these

answers are collected during the same MTurk task

as the original context, questions, and correct an-

swers. We will refer to these negative responses as

handwritten incorrect answers (HIA).

Question-Switching Answers (QSA) We col-

lect a second set of negative (incorrect) answer

4We do not generate templates if the ATOMIC dimension
is annotated as “none.”

5Workers were asked to contribute a context 7-25 words
longer than the event sentence.



(e.g., What will Kai want to do next?)
(e.g., How would Robin feel 

afterwards?)

(e.g., How would 

you describe Alex?)

(e.g., Why did 

Sydney do this?)

(e.g., What does 

Remy need to 

do before this?)

(e.g., What will 

happen to 

Sasha?)

Figure 3: SOCIAL IQA contains several question types which cover different types of inferential reasoning. Ques-

tion types are derived from ATOMIC inference dimensions.

candidates by switching the questions asked about

the context, as shown in Figure 2. We do this to

avoid cognitive biases and annotation artifacts in

the answer candidates, such as those caused by

writing incorrect answers or negations (Schwartz

et al., 2017; Gururangan et al., 2018). In this

crowdsourcing task, we provide the same context

as the original question, as well as a question au-

tomatically generated from a different but similar

ATOMIC dimension,6 and ask workers to write

two correct answers. We refer to these negative

responses as question-switching answers (QSA).

By including answers to a different question

about the same context, we ensure that these ad-

versarial responses have the stylistic qualities of

correct answers and strongly relate to the con-

text topic, while still being incorrect, making it

difficult for models to simply perform pattern-

matching. To verify this, we compare valence,

arousal, and dominance (VAD) levels across an-

swer types, computed using the VAD lexicon by

Mohammad (2018). Figure 4 shows effect sizes

(Cohen’s d) of the differences in VAD means,

where the magnitude of effect size indicates how

different the answer types are stylistically. Indeed,

QSA and correct answers differ substantially less

than HIA answers (|d|≤.1).7

3.4 QA Tuple Creation

As the final step of the pipeline, we aggregate the

data into three-way multiple choice questions. For

each created context-question pair contributed by

crowdsourced workers, we select a random cor-

rect answer and the incorrect answers that are least

entailed by the correct one, following inspiration

from Zellers et al. (2019a).

For the training data, we validate our QA tu-

ples through a multiple-choice crowdsourcing task

where three workers are asked to select the right

6Using the following three groupings of ATOMIC dimen-
sions: {xWant, oWant, xNeed, xIntent}, {xReact oReact,
xAttr}, and {xEffect, oEffect}.

7Cohen’s |d|<.20 is considered small (Sawilowsky,
2009). We find similarly small effect sizes using other senti-
ment/emotion lexicons.
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Figure 4: Magnitude of effect sizes (Cohen’s d) when

comparing average dominance, arousal and valence

values of different answer types where larger |d| in-

dicates more stylistic difference. For valence (senti-

ment polarity) and dominance, the effect sizes compar-

ing QSA and correct answers are much smaller, indi-

cating that these are more similar tonally. Notably, all

three answer types have comparable levels of arousal

(intensity).

answer to the question provided.8 In order to en-

sure even higher quality, we validate the dev and

test data a second time with five workers. Our final

dataset contains questions for which the correct

answer was determined by human majority vot-

ing, discarding cases without a majority vote. We

also apply a lightweight form of adversarial filter-

ing to make the task more challenging by using a

deep stylistic classifier to remove easier examples

on the dev and test sets (Sakaguchi et al., 2019).9

To obtain human performance, we run a sepa-

rate task asking three new workers to select the

correct answer on a random subset of 900 dev and

900 test examples. Human performance on these

subsets is 87% and 84%, respectively.

3.5 Data Statistics

To keep contexts separate across train/dev/test

sets, we assign SOCIAL IQA contexts to the same

partition as the ATOMIC event the context was

based on. Shown in Table 1 (top), this yields a

8Agreement on this task was high (Cohen’s κ=.70)
9We also tried filtering to remove examples from the train-

ing set but found it did not significantly change performance.
We will release tags for the easier training examples with the
full data.



total set of around 33k training, 2k dev, and 2k

test tuples. We additionally include statistics on

word counts and vocabulary of the training data.

We report the averages of correct and incorrect an-

swers in terms of: token length, number of unique

tokens, and number of times a unique answer ap-

pears in the dataset. Note that due to our three-way

multiple choice setup, there are twice as many in-

correct answers which influences these statistics.

We also include a breakdown (Figure 3) across

question types, which we derive from ATOMIC

inference dimensions.10 In general, questions re-

lating to what someone will feel afterwards or

what they will likely do next are more common

in SOCIAL IQA. Conversely, questions pertaining

to (potentially involuntary) effects of situations on

people are less frequent.

4 Methods

We establish baseline performance on SOCIAL

IQA, using large pretrained language models

based on the Transformer architecture (Vaswani

et al., 2017). Namely, we finetune OpenAI-GPT

(Radford et al., 2018) and BERT (Devlin et al.,

2019), which have both shown remarkable im-

provements on a variety of tasks. OpenAI-GPT

is a uni-directional language model trained on the

BookCorpus (Zhu et al., 2015), whereas BERT is

a bidirectional language model trained on both the

BookCorpus and English Wikipedia. As per pre-

vious work, we finetune the language model rep-

resentations but fully learn the classifier specific

parameters described below.

Multiple choice classification To classify

sequences using these language models, we

follow the multiple-choice setup implementation

by the respective authors, as described below.

First, we concatenate the context, question, and

answer, using the model specific separator tokens.

For OpenAI-GPT, the format becomes start

<context> <question> delimiter

<answer> classify , where start ,

delimiter , and classify are special

function tokens. For BERT, the format is similar,

but the classifier token comes before the context.11

For each triple, we then compute a score l by

10We group agent and theme ATOMIC dimensions to-
gether (e.g., “xReact” and “oReact” become the “reactions”
question type).

11BERT’s format is [CLS] <context> [UNUSED]

<question> [SEP] <answer> [SEP]

Model
Accuracy (%)
Dev Test

Random baseline 33.3 33.3
GPT 63.3 63.0
BERT-base 63.3 63.1
BERT-large 66.0 64.5

w/o context 52.7 –
w/o question 52.1 –
w/o context, question 45.5 –

Human 86.9* 84.4*

Table 2: Experimental results. We additionally perform

an ablation by removing contexts and questions, veri-

fying that both are necessary for BERT-large’s perfor-

mance. Human evaluation results are obtained using

900 randomly sampled examples.

passing the hidden representation from the classi-

fier token hCLS ∈ R
H through an MLP:

l = W2 tanh(W1hCLS + b1)

where W1 ∈ R
H×H , b1 ∈ R

H and W2 ∈ R
1×H .

Finally, we normalize scores across all triples for a

given context-question pair using a softmax layer.

The model’s predicted answer corresponds to the

triple with the highest probability.

5 Experiments

5.1 Experimental Set-up

We train our models on the 33k SOCIAL IQA train-

ing instances, selecting hyperparameters based on

the best performing model on our dev set, for

which we then report test results. Specifically, we

perform finetuning through a grid search over the

hyper-parameter settings (with a learning rate in

{1e−5, 2e−5, 3e−5}, a batch size in {3, 4, 8}, and

a number of epochs in {3, 4, 10}) and report the

maximum performance.

Models used in our experiments vary in sizes:

OpenAI-GPT (117M parameters) has a hid-

den size H=768, BERT-base (110M params)

and BERT-large (340M params) hidden sizes of

H=768 and H=1024, respectively. We train us-

ing the HuggingFace PyTorch (Paszke et al., 2017)

implementation.12

12https://github.com/huggingface/

pytorch-pretrained-BERT

https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT


Context Question Answer

(1)

Jesse was pet sitting for Addison,

so Jesse came to Addison’s

house and walked their dog.

What does Jesse

need to do

before this?

(a) feed the dog

X (b) get a key from Addison

(c) walk the dog

(2)

Kai handed back the computer to

Will after using it to buy a

product off Amazon.

What will Kai

want to do next?

(a) wanted to save money on shipping

X (b) Wait for the package

(c) Wait for the computer

(3)

Remy gave Skylar, the concierge,

her account so that she could

check into the hotel.

What will Remy

want to do next?

(a) lose her credit card

(b) arrive at a hotel

X (c) get the key from Skylar

(4)

Sydney woke up and was ready

to start the day. They put on their

clothes.

What will

Sydney want to

do next?

(a) go to bed

(b) go to the pool

X (c) go to work

(5)

Kai grabbed Carson’s tools for

him because Carson could not

get them.

How would

Carson feel as a

result?

(a) inconvenienced

X (b) grateful

(c) angry

(6)

Although Aubrey was older and

stronger, they lost to Alex in arm

wrestling.

How would

Alex feel as a

result?

(a) they need to practice more

(b) ashamed

X (c) boastful

Table 3: Example CQA triples from the SOCIAL IQA dev set with BERT-large’s predictions ( : BERT’s predic-

tion, X: true correct answer). The model predicts correctly in (1) and (2) and incorrectly in the other four examples

shown here. Examples (3) and (4) illustrate the model choosing answers that might have happened before, or that

might happen much later after the context, as opposed to right after the context situation. In Examples (5) and (6),

the model chooses answers that may apply to people other than the ones being asked about.

5.2 Results

Our results (Table 2) show that SOCIAL IQA is

still a challenging benchmark for existing com-

putational models, compared to human perfor-

mance. Our best performing model, BERT-large,

outperforms other models by several points on the

dev and test set. We additionally ablate our best

model’s representation by removing the context

and question from the input, confirming that rea-

soning over both is necessary for this task.

Learning Curve To better understand the ef-

fect of dataset scale on model performance on

our task, we simulate training situations with lim-

ited knowledge. We present the learning curve

of BERT-large’s performance on the dev set as

it is trained on more training set examples (Fig-

ure 5). Although the model does significantly im-

prove over a random baseline of 33% with only

a few hundred examples, the performance only

starts to converge after around 20k examples, pro-

viding evidence that large-scale benchmarks are

required for this type of reasoning.

Error Analysis We include a breakdown of our

best model’s performance on various question

types in Figure 6 and specific examples of errors

in the last four rows of Table 3. Overall, questions

related to pre-conditions of the context (people’s

motivations, actions needed before the context) are

less challenging for the model. Conversely, the

model seems to struggle more with questions re-

lating to (potentially involuntary) effects, stative

descriptions, and what people will want to do next.

Examples of errors in Table 3 further indicate

that, instead of doing advanced reasoning about

situations, models may only be learning lexical as-

sociations between the context, question, and an-

swers, as hinted at by Marcus (2018) and Zellers

et al. (2019b). This leads the model to select

answers with incorrect timing (examples 3 and

4) or answers pertaining to the wrong partici-

pants (examples 5 and 6), despite being trained on

large amounts of examples that specifically distin-

guish proper timing and participants. For instance,

in (3) and (4), the model selects answers which
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Figure 5: Dev accuracy when training BERT-large with

various number of examples (multiple runs per training

size), with human performance (86.9%) shown in or-

ange. In order to reach >80%, the model would require

nearly 1 million training examples.

are incorrectly timed with respect to the context

and question (e.g., “arrive at a hotel” is some-

thing Remy likely did before checking in with

the concierge, not afterwards). Additionally, the

model often chooses answers related to a person

other than the one asked about. In (6), after the

arm wrestling, though it is likely that Aubrey will

feel ashamed, the question relates to what Alex

might feel–not Aubrey.

Overall, our results illustrate how reasoning

about social situations still remains a challenge for

these models, compared to humans who can triv-

ially reason about the causes and effects for mul-

tiple participants. We expect that this task would

benefit from models capable of more complex rea-

soning about entity state, or models that are more

explicitly endowed with commonsense (e.g., from

knowledge graphs like ATOMIC).

6 SOCIAL IQA for Transfer Learning

In addition to being the first large-scale bench-

mark for social commonsense, we also show that

SOCIAL IQA can improve performance on down-

stream tasks that require commonsense, namely

the Winograd Schema Challenge and the Choice

of Plausible Alternatives task. We achieve state of

the art performance on both tasks by sequentially

finetuning on SOCIAL IQA before the task itself.

COPA The Choice of Plausible Alternatives

task (COPA; Roemmele et al., 2011) is a two-

way multiple choice task which aims to measure

commonsense reasoning abilities of models. The

dataset contains 1,000 questions (500 dev, 500

test) that ask about the causes and effects of a

premise. This has been a challenging task for

68% 68%
67% 66% 66%

63%

60%

65%

70%
acc avg acc

Figure 6: Average dev accuracy of BERT-large on dif-

ferent question types. While questions about effects

and motivations are easier, the model still finds wants

and descriptions more challenging.

computational systems, partially due to the limited

amount of training data available. As done previ-

ously (Goodwin et al., 2012; Luo et al., 2016), we

finetune our models on the dev set, and report per-

formance only on the test set.

Winograd Schema The Winograd Schema

Challenge (WSC; Levesque, 2011) is a well-

known commonsense knowledge challenge

framed as a coreference resolution task. It

contains a collection of 273 short sentences in

which a pronoun must be resolved to one of

two antecedents (e.g., in “The city councilmen

refused the demonstrators a permit because they

feared violence”, they refers to the councilmen).

Because of data scarcity in WSC, Rahman and Ng

(2012) created 943 Winograd-style sentence pairs

(1886 sentences in total), henceforth referred to

as DPR, which has been shown to be slightly less

challenging than WSC for computational models.

We evaluate on these two benchmarks. While

the DPR dataset is split into train and test sets

(Rahman and Ng, 2012), the WSC dataset con-

tains a single (test) set of only 273 instances for

evaluation purposes only. Therefore, we use the

DPR dataset as training set when evaluating on the

WSC dataset.

6.1 Sequential Finetuning

We first finetune BERT-large on SOCIAL IQA,

which reaches 66% on our dev set (Table 2).

We then finetune that model further on the task-

specific datasets, considering the same set of hy-

perparameters as in §5.1. On each of the test sets,



Task Model
Acc. (%)

best mean std
C

O
PA

Sasaki et al. (2017) 71.2 – –

BERT-large 80.8 75.0 3.0

BERT-SOCIAL IQA 83.4 80.1 2.0

W
S

C

Kocijan et al. (2019) 72.5 – –

BERT-large 67.0 65.5 1.0

BERT-SOCIAL IQA 72.5 69.6 1.7

D
P

R

Peng et al. (2015) 76.4 – –

BERT-large 79.4 71.2 3.8

BERT-SOCIAL IQA 84.0 81.7 1.2

Table 4: Sequential finetuning of BERT-large on SO-

CIAL IQA before the task yields state of the art results

(bolded) on COPA (Roemmele et al., 2011), Winograd

Schema Challenge (Levesque, 2011) and DPR (Rah-

man and Ng, 2012). For comparison, we include previ-

ous published state of the art performance.

we report best, mean, and standard deviation of all

models, and compare sequential finetuning results

to a BERT-large baseline.

Results Shown in Table 4, sequential finetun-

ing on SOCIAL IQA yields substantial improve-

ments over the BERT-only baseline (between 2.6
and 5.5% max performance increases), as well as

the general increase in performance stability (i.e.,

lower standard deviations). As hinted at by Phang

et al. (2019), this suggests that BERT-large can

benefit from both the large scale and the QA for-

mat of commonsense knowledge in SOCIAL IQA,

which it struggles to learn from small benchmarks

only. Notably, we find that sequentially finetuned

BERT-SOCIAL IQA achieves state-of-the-art re-

sults on all three tasks, showing improvements of

previous best performing models.13

Effect of scale and knowledge type To bet-

ter understand these improvements in downstream

task performance, we investigate the impact on

COPA performance of sequential finetuning on

less SOCIAL IQA training data (Figure 7), as well

as the impact of the type of commonsense knowl-

edge used in sequential finetuning. As expected,

the downstream performance on COPA improves

when using a model pretrained on more of SO-

CIAL IQA, indicating that the scale of the dataset

13Note that OpenAI-GPT was reported to achieve 78.6%
on COPA, but that result was not published, nor discussed in
the OpenAI-GPT white paper (Radford et al., 2018).
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Figure 7: Effect of finetuning BERT-large on varying

sizes of the SOCIAL IQA training set on the dev ac-

curacy of COPA. As expected, the more SOCIAL IQA

instances the model is finetuned on, the better the accu-

racy on COPA.

is one factor that helps in the fine-tuning. How-

ever, when using SWAG (a similarly sized dataset)

instead of SOCIAL IQA for sequential finetuning,

the downstream performance on COPA is lower

(76.2%). This indicates that, in addition to its

large scale, the social and emotional nature of the

knowledge in SOCIAL IQA enables improvements

on these downstream tasks.

7 Related Work

Commonsense Benchmarks: Commonsense

benchmark creation has been well-studied by

previous work. Notably, the WinoGrad Schema

Challenge (WSC; Levesque, 2011) and the

Choice Of Plausible Alternatives dataset (COPA;

Roemmele et al., 2011) are expert-curated collec-

tions of commonsense QA pairs that are trivial

for humans to solve. Whereas WSC requires

physical and social commonsense knowledge to

solve, COPA targets the knowledge of causes

and effects surrounding social situations. While

both benchmarks are of high-quality and created

by experts, their small scale (150 and 1,000

examples, respectively) poses a challenge for

modern modelling techniques, which require

many training instances.

More recently, Talmor et al. (2019) intro-

duce CommonsenseQA, containing 12k multiple-

choice questions. Crowdsourced using Concept-

Net (Speer and Havasi, 2012), these questions

mostly probe knowledge related to factual and

physical commonsense (e.g., “Where would I not

want a fox?”). In contrast, SOCIAL IQA explicitly

separates contexts from questions, and focuses on

the types of commonsense inferences humans per-

form when navigating social situations.



Commonsense Knowledge Bases: In addition

to large-scale benchmarks, there is a wealth of

work aimed at creating commonsense knowledge

repositories (Speer and Havasi, 2012; Sap et al.,

2019; Zhang et al., 2017; Lenat, 1995; Espinosa

and Lieberman, 2005; Gordon and Hobbs, 2017)

that can be used as resources in downstream rea-

soning tasks. While SOCIAL IQA is formatted as

a natural language QA benchmark, rather than a

taxonomic knowledge base, it also can be used as

a resource for external tasks, as we have demon-

strated experimentally.

Constrained or Adversarial Data Collection:

Various work has investigated ways to circumvent

annotation artifacts that result from crowdsourc-

ing. Sharma et al. (2018) extend the Story Cloze

data by severely restricting the incorrect story end-

ing generation task, reducing the sentiment and

negation artifacts. Rajpurkar et al. (2018) create

an adversarial version of the extractive question-

answering challenge, SQuAD (Rajpurkar et al.,

2016), by creating 50k unanswerable questions.

Instead of using human-generated incorrect an-

swers, Zellers et al. (2018, 2019b) use adversarial

filtering of machine generated incorrect answers to

minimize surface patterns. Our dataset also aims

to reduce annotation artifacts by using a multi-

stage annotation pipeline in which we collect neg-

ative responses from multiple methods including a

unique adversarial question-switching technique.

8 Conclusion

We present SOCIAL IQA, the first large-scale

benchmark for social commonsense. Consisting

of 38k multiple-choice questions, SOCIAL IQA

covers various types of inference about people’s

actions being described in situational contexts.

We design a crowdsourcing framework for col-

lecting QA pairs that reduces stylistic artifacts of

negative answers through an adversarial question-

switching method. Despite human performance

of close to 90%, computational approaches based

on large pretrained language models only achieve

accuracies up to 65%, suggesting that these so-

cial inferences are still a challenge for AI systems.

In addition to providing a new benchmark, we

demonstrate how transfer learning from SOCIAL

IQA to other commonsense challenges can yield

significant improvements, achieving new state-of-

the-art performance on both COPA and Winograd

Schema Challenge datasets.
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José H. Espinosa and Henry Lieberman. 2005. Event-
net: Inferring temporal relations between common-
sense events. In MICAI.

MY Ganaie and Hafiz Mudasir. 2015. A Study of So-
cial Intelligence & Academic Achievement of Col-
lege Students of District Srinagar, J&K, India. Jour-
nal of American Science, 11(3):23–27.

Travis Goodwin, Bryan Rink, Kirk Roberts, and
Sanda M Harabagiu. 2012. UTDHLT: Copacetic
system for choosing plausible alternatives. In
NAACL workshop on SemEval, pages 461–466. As-
sociation for Computational Linguistics.

Andrew S Gordon and Jerry R Hobbs. 2017. A Formal
Theory of Commonsense Psychology: How People
Think People Think. Cambridge University Press.

Jonathan Gordon and Benjamin Van Durme. 2013. Re-
porting bias and knowledge acquisition. In Proceed-
ings of the 2013 Workshop on Automated Knowledge
Base Construction, AKBC ’13, pages 25–30, New
York, NY, USA. ACM.

David Gunning. 2018. Machine common sense con-
cept paper.

https://doi.org/10.1145/2509558.2509563
https://doi.org/10.1145/2509558.2509563
http://arxiv.org/abs/1810.07528
http://arxiv.org/abs/1810.07528


Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel R. Bowman, and
Noah A. Smith. 2018. Annotation artifacts in nat-
ural language inference data. In NAACL-HLT.

Vid Kocijan, Ana-Maria Cretu, Oana-Maria Camburu,
Yordan Yordanov, and Thomas Lukasiewicz. 2019.
A surprisingly robust trick for the winograd schema
challenge. In ACL.

Baris Korkmaz. 2011. Theory of mind and neurodevel-
opmental disorders of childhood. Pediatr Res, 69(5
Pt 2):101R–8R.

Douglas B Lenat. 1995. Cyc: A large-scale investment
in knowledge infrastructure. Communications of the
ACM, 38(11):33–38.

Hector J. Levesque. 2011. The winograd schema chal-
lenge. In AAAI Spring Symposium: Logical Formal-
izations of Commonsense Reasoning.

Li Lucy and Jon Gauthier. 2017. Are distributional
representations ready for the real world? evaluating
word vectors for grounded perceptual meaning. In
RoboNLP@ACL.

Zhiyi Luo, Yuchen Sha, Kenny Q Zhu, Seung-won
Hwang, and Zhongyuan Wang. 2016. Common-
sense causal reasoning between short texts. In Fif-
teenth International Conference on the Principles of
Knowledge Representation and Reasoning.

Gary Marcus. 2018. Deep learning: A critical ap-
praisal. CoRR, abs/1801.00631.

Saif Mohammad. 2018. Obtaining reliable human rat-
ings of valence, arousal, and dominance for 20,000
english words. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 174–184.

Chris Moore. 2013. The development of commonsense
psychology. Psychology Press.

Aida Nematzadeh, Kaylee Burns, Erin Grant, Alison
Gopnik, and Thomas L. Griffiths. 2018. Evaluating
theory of mind in question answering. In EMNLP.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.
In NIPS-W.

Haoruo Peng, Daniel Khashabi, and Dan Roth. 2015.
Solving hard coreference problems. In HLT-
NAACL.

Jason Phang, Thibault Févry, and Samuel R. Bowman.
2019. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks. CoRR,
abs/1811.01088.

Martha E. Pollack. 2005. Intelligent technology for an
aging population: The use of ai to assist elders with
cognitive impairment. AI Magazine, 26:9–24.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative Pre-Training.

Altaf Rahman and Vincent Ng. 2012. Resolving
complex cases of definite pronouns: The winograd
schema challenge. In EMNLP, EMNLP-CoNLL
’12, pages 777–789, Stroudsburg, PA, USA. Asso-
ciation for Computational Linguistics.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. arXiv preprint arXiv:1806.03822.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy S. Liang. 2016. Squad: 100, 000+ questions
for machine comprehension of text. In EMNLP.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S. Gordon. 2011. Choice of plausible alter-
natives: An evaluation of commonsense causal rea-
soning. In AAAI Spring Symposium: Logical For-
malizations of Commonsense Reasoning.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-
vatula, and Yejin Choi. 2019. Winogrande: An
adversarial winograd schema challenge at scale.
ArXiv, abs/1907.10641.

Maarten Sap, Ronan Le Bras, Emily Allaway, Chan-
dra Bhagavatula, Nicholas Lourie, Hannah Rashkin,
Brendan Roof, Noah A Smith, and Yejin Choi. 2019.
Atomic: An atlas of machine commonsense for if-
then reasoning. In AAAI.

Shota Sasaki, Sho Takase, Naoya Inoue, Naoaki
Okazaki, and Kentaro Inui. 2017. Handling multi-
word expressions in causality estimation. In IWCS.

Shlomo S. Sawilowsky. 2009. New effect size rules of
thumb. Journal of Modern Applied Statistical Meth-
ods, 8(2):597–599.

Roy Schwartz, Maarten Sap, Ioannis Konstas, Li Zilles,
Yejin Choi, and Noah A Smith. 2017. The effect
of different writing tasks on linguistic style: A case
study of the ROC story cloze task. In CoNLL.

Rishi Kant Sharma, James Allen, Omid Bakhshandeh,
and Nasrin Mostafazadeh. 2018. Tackling the story
ending biases in the story cloze test. In ACL.

Robyn Speer and Catherine Havasi. 2012. Represent-
ing general relational knowledge in conceptnet 5. In
LREC.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In NAACL.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.



Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin
Choi. 2019a. From recognition to cognition: Visual
commonsense reasoning. In CVPR.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and
Yejin Choi. 2018. SWAG: A large-scale adversar-
ial dataset for grounded commonsense inference. In
EMNLP.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019b. Hellaswag: Can
a machine really finish your sentence? In ACL.

Sheng Zhang, Rachel Rudinger, Kevin Duh, and Ben-
jamin Van Durme. 2017. Ordinal common-sense in-
ference. Transactions of the Association of Compu-
tational Linguistics, 5(1):379–395.

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan R.
Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning books and movies:
Towards story-like visual explanations by watching
movies and reading books. 2015 IEEE International
Conference on Computer Vision (ICCV), pages 19–
27.


