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Abstract Planning travel to unfamiliar regions is a difficult

task for novice travelers. The burden can be eased if the

resident of the area offers to help. In this paper, we pro-

pose a social itinerary recommendation by learning from

multiple user-generated digital trails, such as GPS trajec-

tories of residents and travel experts. In order to recom-

mend satisfying itinerary to users, we present an itinerary

model in terms of attributes extracted from user-generated

GPS trajectories. On top of this itinerary model, we present

a social itinerary recommendation framework to find and

rank itinerary candidates. We evaluated the efficiency of our

recommendation method against baseline algorithms with a

large set of user-generated GPS trajectories collected from

Beijing, China. First, systematically generated user queries

are used to compare the recommendation performance in

the algorithmic level. Second, a user study involving current

residents of Beijing is conducted to compare user percep-

tion and satisfaction on the recommended itinerary. Third,

we compare mobile only approach with Mobile+Cloud ar-

chitecture for practical mobile recommender deployment.

Lastly, we discuss personalization and adaptation factors in

social itinerary recommendation throughout the paper.
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1 Introduction

Despite the increased number of travelers, international and

inexperienced travelers still face many difficulties in plan-

ning their trip. A dilemma travelers faces is related to the ef-

ficient use of the limited time. Since there are many possible

locations to visit, travelers want to maximize the travel ex-

perience, i.e., visit many interesting locations without wan-

dering around. In this regard, many recommendation tech-

niques are researched and being developed in the tourism

industry [5][8][17][23].

Especially, inexperienced travelers can take a social ap-

proach to ask people who know about the area to be ex-

plored. Travelers can ask travel experts who have already

traveled through the area or local residents for recommenda-

tion. The advantage is that the recommendation is up-to-date

with accurate and timely information. However, the qual-

ity of recommendation varies depending on different people

and it takes time for users to digest and put collected infor-

mation together for use.

In our approach, we want to enhance itinerary recom-

mendation by incorporating knowledge of socially relevant

experts such as travel experts and active residents of the re-

gion. To extract meaningful knowledge, we data mine user-

generated digital trails such as GPS trajectories for finding

interest locations, inter-related locations in sequence, and

time to stay and travel. Such data mined knowledge enables

many interesting application scenarios. This work is an ex-

tension to [25], we made further contributions in personal-

ization factors of social itinerary recommendation and adap-

tation to practical mobile development and deployment.

Consider a researcher is attending a conference in Bei-

jing, China. At the end of the conference, he has 8 hours

to spend before catching up his flight. Being a newcomer

to this area, he uses Social Itinerary Recommendation Ser-

vice. He starts from his current location which is automat-
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ically recognized with his GPS-enabled phone. He marks

the Beijing Capital International Airport in the map as the

destination, inputs 8 hours for travel duration and sends the

query. Then he receives an itinerary recommendation visu-

alized on the map which shows interesting locations to visit,

how long to stay in each location and estimation of traveling

time. With these information at hand, he gets a good picture

of where he will go and able to manage his time in advance.

As explained in this application scenario, we can rec-

ommend new travelers an itinerary that makes the efficient

use of the given duration by considering multiple users’ ac-

cumulated travel routes and experiences. If user-generated

GPS trajectories from travel experts and active residents in

the region are accumulated as good examples and processed

properly, we can extract many features to produce collective

social knowledge and aid new users in building an efficient

travel itinerary. Figure 1 illustrates the concept of our work.
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Fig. 1 Social itinerary recommendation service

Our contribution in this paper is as follows.

(1) Social Attributes. We data mine and extract social

attributes from multiple user-generated GPS trajectories to

incorporate social collective knowledge which is used in the

recommendation framework.

(2) Itinerary Modeling. We model and define what a

good itinerary is in terms of attributes detected in the dig-

ital trails and present a quality evaluation approach of an

itinerary.

(3) Recommendation Framework. We present a so-

cial itinerary recommendation framework consisted of of-

fline data mining and online recommendation with a simpli-

fied user query.

(4) Evaluation. We evaluate our method using a large

GPS dataset collected from 125 users, and compare against

baseline methods both in simulation level and through user

study. Also the performance of Mobile+Cloud architecture

is measured for practical mobile application adaptation and

deployment.

The rest of the paper is organized as follows. Section

2 reviews related works on itinerary recommendation and

GPS data mining. Section 3 describes the proposed itinerary

modeling. Section 4 presents detail description of social itin-

erary recommendation processes. In Section 5, we present

experiment results and provide discussions followed by con-

clusion in Section 6.

2 Related Work

2.1 Itinerary Recommendation

In itinerary recommendation, there are two branches of re-

lated work. One branch deals with high user intervention for

an interactive recommendation system and the other branch

aims for less user intervention for an automated recommen-

dation system.

Dunstall et al. [5] presented an automated but more of

an interactive travel itinerary planning system where a user

defines which places to visit and avoid. Similarly, Ardissono

et al. [1] developed an interactive system where a user spec-

ifies general constraints such as time and attraction items to

be included in the itinerary. Kim et al. [12] also presented

an interactive system that starts by a user selecting the first

location to get recommendation on similar types of places.

The advantage of such interactive recommendation systems

is that more the user knows about the traveling area, the

more accurate and detailed itinerary is prepared by the user.

However, this assumption is not practical for novice travel-

ers without any prior knowledge.

In more automated approach, Huang and Bian [11] build

a travel recommendation system based on heterogeneous on-

line travel information such as tourism ontology and esti-

mated travel preferences by the Bayesian network. Kumar

et al. [14] presented GIS-based Advanced Traveler Infor-

mation System (ATIS) for Hyderabad City in India which

includes a site-tour module based on the shortest distance

calculation. Chodhury and colleagues [4] used Flickr photo

stream as digital trails where location and time information

are extracted from individual photo streams and turned into

a Place of Interest (POI) to generate itineraries.

Compared to the related works, our approach is more

of an automated approach which requires a simplified query

composed of two points and duration to recommend an au-

tomatically generated itinerary. Unlike other approaches, we

also focus on the realistic and social knowledge preparation

required for itinerary recommendation through the use of

user-generated GPS trajectories.
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2.2 GPS Data Mining Applications

GPS data has been used to link geographical location with

time stamp and people involved. Through data mining or

post-processing multiple GPS data, many applications ex-

tract meaningful information for various uses. Simply, GPS

trajectory can be analyzed to find patterns within [7][16] and

predict the repeating pattern [13]. Through post-processing,

the raw GPS can be turned into a more usable form such as

routable road map [3]. Regarding travel and tourism appli-

cations, GPS data has been used to find locations of interest

[2], integrated into a mobile tour guide [19][20][22], and

combined with other resources such as geo-tagged photos

[21]. In GeoLife [29][32][36], many GPS related applica-

tions and scenarios are introduced. Zheng and Xie used GPS

traces for travel recommendations [37] to recommend both

generalized and personalized interesting locations [33]. GPS

data is also used to classify different categories of trans-

portation modes, such as driving, walking, bus, and bike

[30][31][35]. Different approaches use location history to

recommend geographic locations such as shops or restau-

rants by mining correlated locations [34] and also reflect

user similarity considering the travel sequence and hierar-

chical structure of geographical spaces [15]. The user simi-

larity is also used in [38] as a user-centric collaborative fil-

tering model for recommending friends and locations. Fur-

thermore, Zheng et al. recommended similar users [28] and

recommended activity related locations or location related

activities with user-generated comments [27].

Our work in this paper, extends location level recom-

mendation to an itinerary level recommendation and pro-

poses an efficient itinerary recommendation algorithm con-

sidering a multiple number of social attributes. We also eval-

uate and validate our method with a large set of real user-

generated GPS trajectories to confirm the efficiency found

in algorithmic level to the real use cases and adapt to mobile

settings.

3 Proposed Itinerary Model

An itinerary outlines which locations to visit and leave when

and in what order. Moreover, it shows an estimated traveling

time from one location to a subsequent location. Therefore,

well-constructed itineraries give users a good indication of

what to expect next and where they stand in their trip.

When building an itinerary, the duration is the most im-

portant constraint. The goal of providing a usable itinerary

is to provide a sequence of visiting locations accurately with

traveling time and staying time under the given duration. It is

easy to make an itinerary that maximizes the number of vis-

iting locations, yet the task becomes difficult when time con-

straint is introduced. On the other hand, time constraint is

applied as a stopping condition for simplifying recommen-

dation complexity. Additionally, we consider the following

four factors collectively to determine quality of an itinerary.

1) Elapsed Time Ratio (ETR): Simply, available time

should be used fully. If the total time needed for an itinerary

is much shorter than available time, then the remaining time

is wasted unless used for a part of travel. ETR measures

the overall use of the available time. Generally this factor

is also related to the number of locations visited, since vis-

iting more places requires more time. It is unlikely that an

itinerary with shorter duration yields more locations than an

itinerary with longer duration. Therefore we aim to maxi-

mize the elapsed time in an itinerary as close as the maxi-

mum duration specified in a query.

2) Stay Time Ratio (STR): We also consider how the

available time is spent. We model travel itinerary in a way

that travelers spend more time on the locations compared to

the traveling time. An itinerary with more staying time is

considered to be a better choice. STR depicts the balance

between visiting time on-site and transferring time. Higher

STR means that a user is spending more time on visiting

actual places than spending time on transferring between lo-

cations. This is also a desirable and typical factor that we

assume to be true. For example, given 10 hours duration, we

treat an itinerary with 8 hours of stay time and 2 hours of

traveling time better than another itinerary with 2 hours of

stay time and 8 hours of traveling time.

3) Interest Density Ratio (IDR): In an itinerary, it is

important what types of locations are included. General as-

sumption is that new visitors like to visit as many highly in-

teresting locations as possible, i.e., popular locations and lo-

cations with cultural importance. If an itinerary is composed

of many locations of high interests (greater interest density),

than it is considered to be a better itinerary than another

itinerary with locations of less interest. IDR shows the over-

all degree of popularity for the included locations. For the

simplicity of illustration, if ETR and STR are the same for

two different itinerary, then higher IDR is preferred, since

the only difference is that the visited locations differ in pop-

ularity or interest level.

4) Classical Travel Sequence Ratio (CTSR): In our

itinerary model, we incorporate social aspects as well. We

value travel sequences frequently used by people more im-

portant than other random sequences. An itinerary that con-

tains classical travel sequence of previous users is better,

more realistic and practical as well. Since we socially rec-

ommend itineraries based on previous users’ experiences,

we generate itineraries that revisit good patterns of previous

users. For example, if two itineraries have similar ETR, STR

and IDR, what we consider further is how practical each

itinerary is. If one itinerary revisits and includes patterns

found from other users, namely classical travel sequence or
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visiting pattern between locations, we choose this itinerary

over another itinerary that does not have this pattern.
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Fig. 2 Trip candidates for a good itinerary

We use the first three characteristics to find potential

quality trips that surpass some thresholds shown as a cube

in Figure 2. In theory, the best itinerary would have values

equal to 1 in all three dimensions which is depicted as a

black dot in Figure 2. The trips falling into the cube are con-

sidered a high quality itinerary since it performs well in all

three factors. The selected trips in the cube are re-ranked

according to classical travel sequence to differentiate candi-

dates further.

For a generic recommender, all four factors are consid-

ered equal by assigning the same weight value, because we

have not found any evidence or support of the dominating

attribute yet. However, there is different personal preference

on these four factors, so as a personalization factor, we al-

low the weight to be changed if a user’s preference is known

or the user chooses to modify it in a personalized recom-

mender. The assignment of different weight for these four

attributes is empirically decided or varied with applications

by design choice.

4 Social Itinerary Recommendation

4.1 Architecture

For the itinerary recommendation, we configure our archi-

tecture into offline tasks for processing time-consuming and

static information and online tasks for processing variable

user queries as depicted in Figure 3.

In offline processing, the user-generated GPS trajecto-

ries are analyzed to build a Location-Interest Graph (G) with

location and interest information, this is quite time consum-

ing process which needs to be done initially. Then G is to be

built again only after a significant amount of user-generated

GPS trajectories are updated. In online processing, we use

the G built in offline to recommend an itinerary based on a

user-specified query.
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Fig. 3 Architecture of social itinerary recommender

Our recommendation method is consisted of the follow-

ing six modular tasks. First two operations are carried out in

offline and the latter four operations are performed online.

Here we briefly describe each task and details are presented

in following sections.

1) Stay Points Extraction and Clustering (4.2.1, 4.2.2)

2) Location Interest and Sequence Mining (4.2.3, 4.2.4)

3) Query Verification (4.3.1)

4) Trip Candidate Selection (4.3.2)

5) Trip Candidate Ranking (4.3.3)

6) Re-ranking by Travel Sequence (4.3.4)

Stay Points Extraction and Clustering: From multiple

user-generated GPS trajectories, we extract stay points using

certain distance and time thresholds. Then these stay points

are clustered into locations which become candidate loca-

tions to be included in an itinerary and connected locations

are checked to form an edge. This operation ensures that

only locations with significant activity (many people visiting

and staying at certain location) and relevance (connected lo-

cations) are chosen. For each location cluster of stay points,

we calculate arrival time, leaving time and typical stay time

which are used to estimate the duration of an itinerary. We

find the median for staying time by subtracting arrival time

from leaving time of each location to represent how long a

typical visitor spends in that location.

Location Interest and Sequence Mining: Locations can

be characterized by its popularity which we call location in-

terest, and some locations are typically visited in a certain

sequence, i.e., one location after another. These characteris-

tics are inferred in this operation and details are presented

in [33]. These inferred information provides check points
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and measurements toward how realistic and practical rec-

ommended itineraries are. After calculating these properties

for all locations, we build a G. G is composed of locations

as vertexes and traveling time between two connected loca-

tions as edges, also each location is assigned an interest and

classical sequence value.

Query Verification: When a user sends a query to re-

ceive an itinerary recommendation, we first check and verify

the query. For extreme cases, a user might have queried with

such a short duration that it is impossible to even go straight

from the start location to the end location. These impractical

queries can be filtered out by checking the distance between

start and end location with respect to the duration. Also start

and end points may not fall into one of locations in G. In this

case, we adjust the user query by finding the nearest location

and updating the query.

Trip Candidate Selection: Using G, traveling time be-

tween locations and a user query are used to generate and

select n candidate trips. As a personalization factor for a re-

visiting user, G can be further refined by excluding locations

of previous visit to generate itinerary composed of new loca-

tions. Then the only constraint we check for this step is that

the generated trips adhere to the given duration constraint

and to start and end as specified in the user query. Among

these n trips, some trips are not worth considering which are

eliminated in subsequent steps.

Trip Candidate Ranking: From the generated and se-

lected n trips, we rank trips according to elapsed time ra-

tio, stay time ratio and interest density ratio. We consider

trips with higher ratio of elapsed time a better itinerary, pre-

fer trips with higher stay time ratio meaning that the user

stays longer at locations rather than traveling, and look for

trips with higher interest density for visiting many locations

of greater interest. We rank each trip according to the Eu-

clidean distance of trip in three dimensions of elapsed time

ratio, stay time ratio and interest density ratio. The top− k

trips ranked out of n candidates by the Euclidean distance

are selected as further itinerary candidates.

Re-ranking by Travel Sequence: Among top−k candi-

dates, we score and rank each trip again considering classi-

cal travel sequence. This strengthens the resulting itinerary

to be practical and realistic to revisit many previous users’

sequence of choice.

4.2 Offline Data Mining

In this section, we describe offline itinerary recommendation

processes. We describe how G is generated and describe the

involved data mining procedures. From multiple users’ GPS

trajectories, we detect stay points (Definition 3) and cluster

them into locations (Definition 5). Further, location interest

is calculated (Definition 7) and classical travel sequence is

mined by considering hub scores, authority scores and prob-

ability of taking this specific sequence (Definition 8). De-

tails of mining interesting locations and classical travel se-

quences are presented in [33]. With these information, we

build G offline (Definition 9). The definitions of terminolo-

gies are adopted from [25].

4.2.1 Stay Point Detection

Definition 1: Trajectory. A user’s trajectory Traj is a se-

quence of time-stamped points, Tra j = 〈p1, p2, ..., pk〉. Each

point is represented by pi = (lati, lngi, ti),(i = 1,2, ...,k); ti
is a time stamp, ∀1 ≤ i < k, ti < ti+1 and (lati, lngi) are GPS

coordinates of points.

Definition 2: Distance and Interval. Dist(pi, p j) is the

geospatial distance between two points pi and p j and the

time interval between two points is denoted Int(pi, p j) =

|ti − t j|.
Definition 3: Stay Point. A stay point s is a geographical

region where a user stayed over a time threshold Tr within a

distance threshold of Dr. In a user’s trajectory, s is charac-

terized by a set of consecutive points P = 〈pm, pm+1, ..., pn〉,

where ∀m < i ≤ n, Dist(pm, pi) ≤ Dr, Dist(pm, pn+1) > Dr

and Int(pm, pn)≥ Tr. Then, s = (slat,slng,at, lt,st) where

slat =
∑

n
i=m lati

|P|
,slng =

∑
n
i=m lngi

|P|
(1)

respectively stands for the average lat and lng coordinates

of the collection P; at = tm is the user’s arriving time on s

and lt = tn represents the user’s leaving time.

4.2.2 Location Clustering

Definition 4: Location History. An individual’s location hi-

story h is represented as a sequence of stay points they vis-

ited with corresponding arrival: at, leaving times: lt and time

interval from si to s j: ∆ ti, j = at j − lt i where ∀1 < i < j ≤ n

h = 〈s1

∆ t1,2
→ s2

∆ t2,3
→ s3, ... , sn−1

∆ tn−1,n
−→ sn〉 (2)

We put together the stay points detected from all users’

trajectories into a dataset S, and employ a clustering algo-

rithm to partition this dataset into some clusters. Thus, the

similar stay points from various users will be assigned into

the same cluster.

Definition 5: Locations. L= {l1, l2, ..., ln} is a collection

of Locations. Between any two locations, there is no over-

lapping stay points (s ∈ S) detected from multiple users’ tra-

jectories: i 6= j, li ∩ l j = /0.

After the clustering operation, we can substitute a stay

point in a user’s location history with the cluster ID the stay

point pertains to. Supposing s1 ∈ li,s2 ∈ l j,s3 ∈ lk,sn−1 ∈

ll ,sn ∈ lm, Equation (2) can be replaced with

h = 〈li
∆ ti, j
→ l j

∆ t j,k
→ lk, ... , ll

∆ tl,m
−→ lm〉 (3)
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Thus, different users’ location histories become comparable

and can be integrated to recommend a single location.

Definition 6: Typical Stay Time and Time Interval. For

each location li ∈ L with m stay points that pertain to this

location, typical stay time of location (li), st i is defined as

median of stay time (stk = ltk −atk) of stay point (sk) where

∀sk ∈ li, ∀1 ≤ k ≤ m.

st i = Median(stk) (4)

For n location histories (h1, ...,hn) with a sequence li
∆ ti, j
→ l j

where li, l j ∈ L and li 6= l j, typical time interval ∆Ti, j from li
to l j is defined as in Equation (5) and all typical time inter-

vals are put into a dataset ∆T where ∀1 ≤ k ≤ n.

∆Ti, j = Median(hk
∆ ti, j

) (5)

4.2.3 Location Interest

Definition 7: Location Interest. We utilize HITS (Hyper-

text Induced Topic Search) idea that a good hub points to

many good authorities, and a good authority is pointed to

by many good hubs to represent location interest. In HITS-

based inference model, a hub is a user who has accessed

many places, and an authority is a location which has been

visited by many users [33]. I j represents location interest at

l j which has a mutual reinforcement relationship with user

travel experience. Figure 4 depicts this relationship using

HITS-based inference model.

l5

l1
l2

l3

l4

Locations Interest

User  Experience

u1 u2 u3 u4

Fig. 4 User experience and location interest relationship

For example, a user with greater travel expertise would

visit many interesting locations and interesting locations are

visited by many users with much travel experiences. More

specifically, a user’s travel experience can be represented by

the sum of the interests of the locations they accessed; in

turn, the interest of a location can be calculated by integrat-

ing the experiences of the users visiting it [33]. The mutual

relationship of location interest I j and travel experience ei

are represented as Equation 6 and 7. An item ri j stands for

the times that user ui has stayed in location l j.

I j = ∑ui∈U
r ji × ei (6)

ei = ∑l j∈L
ri j × I j (7)

4.2.4 Classical Travel Sequence

Definition 8: Classical Travel Sequences. The classical tra-

vel sequence integrates three aspects, the authority score of

going in and out and the hub scores, to score realistic and

practical travel sequences [33].

l2

l1 l5

l3

l4

2 3

4

45

6
3

2 1

Fig. 5 Demonstration of classical travel sequence

Figure 5 demonstrates the calculation of the classical

score for a 2-length sequence l1 → l3. The connected edges

represent people’s transition sequence and the values on the

edges show the times users have taken the sequence. Equa-

tion 8 shows the calculation based on the following parts. 1)

The authority score of location l1 (al1 ) weighted by the prob-

ability of people moving out from this sequence (Outl1,l3 ).

In this demonstration, Outl1,l3 = 5/7. 2) The authority score

of location l3 (al3 ) weighted by the probability of people’s

moving in by this sequence (Inl1,l3 ). 3) The hub scores hb

of the users (Ul1,l3 ) who have taken this sequence. Classical

travel sequence scores are stored in a k-by-k adjacent matrix

M between locations.

cl1,l3 = ∑
uk∈Ul1 ,l2

(al1 ×Outl1,l2 +al3 × Inl1,l3 +hb
k) (8)

4.2.5 Location-Interest Graph

Definition 9: Location-Interest Graph (G). Formally, a G

is a graph G = (V,E). Vertex set V is Locations (Definition

5) L, V = L = {l1, l2, ..., lk}. Edge set E is replaced by ∆T

where ∆Ti, j stands for a travel sequence from li to l j where

1 ≤ i < j ≤ k with typical time interval as its value. So if

there exists an edge between li and l j, then there is a non-

zero travel time in corresponding ∆Ti, j.

In summary, G contains information on 1) Location it-

self (interest, typical staying time) and 2) relationship be-

tween locations (typical traveling time, classical travel se-

quence).

4.3 Online Recommendation

In this section, we describe online itinerary recommendation

processes. We describe how G is utilized and describe the

involved recommendation procedures. For a user-supplied
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query, trip candidates are first selected considering the user

query constraints. Then trip candidates are ranked accord-

ing to three attributes defined in our itinerary modeling, and

further re-ranked with classical travel sequence.

4.3.1 Query Verification

Definition 10: User Query. A user-specified input with three

tuple attributes (start point, end point and duration) is de-

fined as a user query, Q = {qs,qd ,qt}.

We first verify user query Q in the online process by cal-

culating the distance between the start point and end point.

Note that the query uses points as unit for specifying start

and end point which is different from unit of location which

is a cluster of stay points. There are two approaches we

can estimate the distance, Dist(qs,qd). First, we can use the

haversine formula [9] or the spherical law of cosines [18]

with the raw GPS coordinates of start point and end point.

Once we have an estimated distance, we estimate the trav-

eling time by dividing the estimated distance by an average

traveling speed of car in the region, i.e., 30km/h.

Alternatively, we can use Web service such as Microsoft

Bing Map to find traveling distance between two specified

locations and traveling time. Since we only have traveling

time between the two locations, we multiply the estimated

time by a factor of w, which is empirically determined for

different applications.

After confirming the duration, we attempt to locate the

start point and the end point in G. If we can successfully lo-

cate the specified point qd as in Figure 6(a), then the point

is adjusted to l2. However, if the specified point in the query

does not belong to any locations in G as in qs in Figure 6(a),

then we find the nearest location l1 among others by check-

ing the distance to the location’s mid-point. To speed up the

process of finding nearest location, we employ a grid based

indexing and searching. For grid-based indexing, we put all

locations according to its latitude and longitude ranges into

n grids, in Figure 6(b) n = 25. Then we find the grid cell

that contains the specified point. We start from that grid cell,

and if the grid cell do not contain any location, then we in-

crease one level to increase the searching window. The Fig-

ure 6(b) depicts searching windows for different levels when

the specified point belongs to the 7th grid. To support the

round trip cases where the start point and end point are the

same, we find nearest locations that do not overlap between

the start and end points. Then we connect the start point to

the start location and connect the end point to the end loca-

tion. As the final step, we find the traveling time from the

specified location to the nearest location found using Bing

Map, and subtract the traveling time to update Dur. The

original query Q = {qs,qd ,qt} becomes Q′ = {ls, ld ,qt ′},

then the query is sent.

Location l1

Location l2

qs

qd

Dist(qs,l1.mp)

Dist(qs,l2.mp)

Mid Point

Mid Point

(a) Finding nearest location

2 2 2 3 4

2 1 2 3 4

2 2 2 3 4

3 3 3 3 4

4 4 4 4 4

(b) Grid index for search

Fig. 6 Adjusting locations in user query

4.3.2 Trip Candidate Selection

With the verified user query, we select trip candidates from

the starting location ls to the end location ld .

Definition 11: Trip. A trip Trip is a sequence of loca-

tions with corresponding typical time intervals,

Trip = 〈l1
∆T1,2
→ l2

∆T2,3
→ l3, ... ,

∆Tk−1,k
−→ lk〉 (9)

where ∀1 ≤ i < j ≤ k, ∆Ti, j ∈ ∆T and li, l j ∈ L are locations.

Trip has four attributes, 1) the total staying time for visiting

locations tstay, 2) the total traveling time ttrav, 3) the duration

of the trip tdur and 4) the interest density of the trip iden de-

fined by the total sum of interest of locations divided by the

number of locations.

tstay = ∑
k

i=1
sti (10)

ttrav = ∑
k−1

i=1
∆Ti,i+1 (11)

tdur = tstay + ttrav (12)

iden = (∑
k

i=1
Ii)/k (13)

The only restriction we impose in this stage is time con-

straint so that the candidate trips do not exceed the given

duration qt . The candidate selection process is shown in Al-

gorithm 1.

Algorithm 1 CandidateSelection(G,ls,ld ,qt ,Lv)

Input: A Location-Interest Graph G, a start location ls, a destination

ld , duration qt , and a visited location set Lv

Output: A set of candidate trips Tr

1: for all i such that 1 ≤ i ≤ k do

2: if (!Lv.Contains(li)) then

3: if (qt ≥ ∆Ts,i > 0) then

4: Ln.Add(Lv)
5: Ln.Add(li)
6: Durn ⇐ qt − st i −∆Ts,i

7: if Ln[0] == ls then

8: Durn ⇐ Durn − sts

9: if li == end and Durn ≥ 0 then

10: Tr.Add(Ln)
11: else if Durn > 0 then

12: CandidateSelection(G, li, ld ,Durn,Ln)
13: return Tr
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We first start from a path which includes the start loca-

tion ls as the sole location. Then we check other locations

not in this path but are feasible to visit with the remaining

duration recursively. The constraint of duration and visited

location information are used as heuristics to select the next

location (refer to Lines 2-3). As we add a new location for

the path, we also add them to Lv, so that this location is

not checked in the next recursive call (refer to Line 5). For

a personalization factor for revisiting users, Lv can be up-

dated with previous visiting history to exclude previously

visited locations, so it is not included again in the generated

itinerary. For each location added to the path, we subtract the

stay time of the location and traveling time to the location to

yield a new remaining time (refer to Line 6). Once the path

reaches at the end location, we add the generated path as a

candidate trip (refer to Line 10). When all the candidates are

added, it returns an array of n trip candidates Tr as results.

4.3.3 Trip Candidate Ranking

After selecting n trip candidates from previous step, we rank

each trip with factors from Section 3. The factors used to

rank each trip tri ∈ Tr, 1 ≤ i ≤ k are,

1) Elapsed Time Ratio (ETR) = tdur/qt

2) Stay Time Ratio (STR) = tstay/qt

3) Interest Density Ratio (IDR) = iden/imax

Here, we can use some thresholds value to quickly reject un-

desirable candidates, i.e., reject candidates with elapsed time

ratio less than 0.5. Then we find the Euclidean distance of

each trip using these 3 dimensions as in Equation 14. Here

imax refers to a maximum interest density value in all of can-

didate trips which we use for normalization. We can assign

different weight values for the factors by setting α1, α2, and

α3. For our system we treat three factors equally important

by setting α1 =α2 =α3 = 1 for a generic recommender, but

with the user preference value, this setting can be changed

for personalization.

ED =
√

α1(ETR)2 +α2(STR)2 +α3(IDR)2 (14)

As described in Algorithm 2, for each trip, three factors

are calculated to yield the Euclidean distance value. The al-

gorithm returns an array of top− k trips in decreasing order

of the Euclidean distance value.

4.3.4 Re-ranking by Travel Sequence

We have cut down the number of candidate trips from n to k.

These k trips will likely have similar Euclidean distance val-

ues. So how can we differentiate between candidates, and

recommend one over another? Our solution is to examine

each trip’s travel sequence and score them for any classical

travel sequences (Definition 8). When two trips have similar

values in Euclidean distance after the first ranking, however

Algorithm 2 CandidateRanking(G,Tr,qt )

Input: A Location-Interest Graph G, a set of trips Tr, and the duration

qt

Output: A set of top-k trips Tr′, sorted by Euclidean distance

1: for all Trip tr ∈ Tr do

2: for all Location loc ∈ tr do

3: ttrav ⇐ ttrav +∆TprevLoc,loc

4: tstay ⇐ tstay + stloc

5: iden ⇐ iden + Iloc

6: prevLoc ⇐ loc

7: tdur ⇐ ttrav + tstay

8: if iden > imax then

9: imax ⇐ iden

10: tr.SetEucDist(tdur/qt , tstay/qt , iden/imax)
11: Tr′ ⇐ SortByED(Tr)
12: return Tr′

they will have different classical travel sequence score. We

give preference toward trips with higher classical travel se-

quence score, which means that we recommend trips to re-

visit previous visitors’ practical travel sequences. Using the

classical travel sequence accumulation using classical travel

sequence matrix M, we can score any travel sequence,

c(l1 → l2 → l3) = c1,2 + c2,3 (15)

Once we have classical travel sequence score of tri by

calculating c(tri), we normalize it by the maximum classi-

cal travel sequence score MaxC found of all candidates.

Classical Travel Score Ratio (CTSR) = c(tri)/MaxC.

Then we once again use the Euclidean distance, this time

including classical travel sequence score to re-rank k can-

didates. We use equal weights for all four factors as shown

in Equation 16, but with the user preference value or user

interaction, this settings can be changed for personalization.

The first itinerary with the highest Euclidean distance value

is recommended to user, and the user can view alternative

itineraries in the order of the Euclidean distance.

ED′ =
√

α1(ETR)2 +α2(STR)2 +α3(IDR)2 +α4(CTSR)2 (16)

Definition 12: Itinerary. An itinerary It is a trip recom-

mendation based on user’s start point qs and destination qd

constrained by trip duration threshold qt in a query.

It = 〈qs ∈ ls
∆Ts,1
→ l1

∆T1,2
→ l2, ... , lk−1

∆Tk−1,k
→ lk

∆Tk,d
−→ qd ∈ ld〉(17)

This means that the resulting itinerary starts from qs and

end in qd where the duration of trip tdur does not exceed

available qt , tdur ≤ qt while maximizing the Euclidean dis-

tance of four attributes.

4.4 User Interface

Figure 7 shows the user interface of social itinerary recom-

mendation system. Our user interface has three components.

The upper-left input panel is for specifying a start, an end lo-

cation and duration for querying. User can mark locations by
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clicking on the map or by searching with keywords. User can

also set the start and end location same for the round-trip.

The lower-left is an output panel for showing step-by-step

instructions in text and on the right an itinerary is visualized

on the map.

Query Interface 

Browsing 

Interface 

Itinerary 

Visualization 

Fig. 7 User interface of itinerary recommender

5 Experiments

In this section, we explain the experiment settings, evalua-

tion approaches, and present the experiment results.

5.1 Settings

To collect user-generated GPS trajectories, we have used

stand-alone GPS receivers as well as GPS phones. Using

these devices, 125 users recorded 17,745 GPS trajectories in

Beijing from May 2007 to Aug. 2009. 125 volunteers are re-

cruited from Microsoft employees, employees of other com-

panies, government staff and college students. These volun-

teers are motivated by payment-based incentives to log their

outdoor movements as much as possible since more GPS

trajectory collected by them would yield more money. In

this experiment, time threshold Tr and distance threshold Dr

are set to 20 minutes and 200 meters respectively. With these

parameters, we detected 35,319 stay points from the dataset

and excluded work/home spots. For clustering these stay

points into unique locations, we used a density-based clus-

tering algorithm OPTICS (Ordering Points To Identify the

Clustering Structure) which resulted in 119 locations as de-

picted in Figure 8(a). For the grid-based indexing and near-

est location search, we divided Beijing area into 25 grid cells

as shown in Figure 8(a). Note that there are some grids with

no locations or very few locations. Among these 119 loca-

tions, typical traveling time is assigned for the connected lo-

cations which serves as an edge set for G. Figure 8(b) shows

the visualization of edges, representing travel connections in

our data set. The data set has been made public for research

use [6][30][33].

(a) Locations (b) Edges

Fig. 8 Locations and edges of Gr

5.2 Evaluation Approaches

In the experiment, we use three evaluation approaches to

evaluate our itinerary recommendation methods. First ap-

proach is based on a large amount of simulated user queries

for the algorithmic level comparison. Using this synthetic

data set, we evaluate the quality of the generated itineraries

quantitatively compared to other baseline methods. Second

approach is based on a user study where real users evalu-

ate the generated itineraries by our method and baselines

methods. In second approach, we observe how user’s per-

ceived quality of itineraries compare by different methods.

Lastly, we evaluate our recommendation methods on Mo-

bile+Cloud architecture for practical mobile adaptation and

application deployment.

5.2.1 Simulation

We simulated a large quantity of user queries to evaluate

the effectiveness of our method. For our simulation to cover

most general cases of user input, we used four different lev-

els for duration, 5 hours, 10 hours, 15 hours and 20 hours.

Duration longer than 20 hours is not simulated, since it is un-

likely to travel for that long duration continuously. Nonethe-

less, user can break down a longer travel to a number of

shorter trips of manageable length. Also the duration length

seems reasonable for Beijing, China where all the GPS tra-

jectories are exclusively collected, since it covers an area

of about 16,000km2. For each duration level, we generated

1,000 queries. Since user query Q= {qs,qd ,qt} is composed

of two points, we generate two sets of GPS coordinates ran-

domly. Here we put some constraints so that the generated

queries follow normal distribution in terms of the distance

between the start and end points. Figure 9 shows that the

1,000 queries generated for each level follows a normal dis-

tribution.
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Fig. 9 Distribution of distance in simulated queries

The maximum distance between two points is set to 2×
qt , to increase chances for some round-trip like itineraries

(shorter distance between) and to guarantee enough loca-

tions are added for comparison. For instance, we limit the

distance between start and end points for duration 20 hours

to 40km, so that the query may return results by providing

enough time for traveling and staying.

5.2.2 User Study

In user study, we recruited 10 participants who are currently

active residents and have lived in Beijing for preferably at

least 3 years (average of 3.8 years), since our GPS logs are

exclusively collected from the past three years. We asked

each participant to use our system to generate itineraries

by selecting a start location, an end location and duration

of their choice. The recruited participants knew the Bei-

jing area well, and generated queries in their choice of lo-

cations which they were familiar with. Each user submit-

ted 3 queries and gave ratings to 3 itineraries generated by

our method and two other baseline methods. They carefully

reviewed locations and sequences in the itinerary without

knowing about the methods that produced results. Partici-

pants took about 30 minutes to completely review 3 sets of

3 itineraries where they were allowed to browse through 3

different itineraries for the query to give relative ratings af-

ter comparison. We asked participants following questions

to give scores for each generated itinerary in different as-

pects (score of 1 being the lowest and 5 represents the high-

est score for better performance) as shown in Table 1. Also

users rated itineraries according to relevance score presented

in Table 2.

Criteria Question

Elapsed Time How efficient is the itinerary in terms of the

duration? (1-5)

Stay & Travel Time How reasonable/appropriate are staying

time and traveling time? (1-5)

Interest How interesting/popular and representative

are the included locations? (1-5)

Table 1 Questions for itinerary evaluation

Ratings Explanation

2 This itinerary is realistic and I like most of directional

instructions.

1 I would take this itinerary with minor changes.

0 I would have taken different directions, but don’t op-

pose the given itinerary.

-1 This itinerary is unrealistic and poorly constructed.

Table 2 User’s rating on the overall itinerary

5.2.3 Baselines

We compared the result of our recommendation with two

other baseline methods, Rank-by-Time (RbT) and Rank-by-

Interest (RbI). RbT recommends an itinerary with the high-

est elapsed time usage. Ideally, it recommends an itinerary

with the elapsed time equal to the duration in the query, if

there is such candidate exists. Similarly, RbI ranks the can-

didates in the order of total interest of locations included in

the itinerary. So the candidate with the highest interest den-

sity ratio is recommended.

5.2.4 Mobile+Cloud Configuration

For practical mobile application deployment, we adopted

Mobile+Cloud architecture. In the mobile part, we keep the

number of tasks to minimal and include processes that are

light and essential which cannot be processed elsewhere.

In the cloud, it takes care of social itinerary recommenda-

tion and data mining. Figure 10 shows the Mobile+Cloud

architecture. We show the performance advantage in Mo-

bile+Cloud architecture since the recommendation process

is time consuming for mobile device. For implementation,

we used a commercial mobile phone, Samsung SCH-M490

running Windows Mobile 6.1 at CPU clock of 806MHz. For

implementing the cloud side, we used a server PC running

Intel Xeon CPU clock of 2.40GHz with 2 processors, main

memory of 4.00GB and Windows Vista Enterprise Service
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Pack 2. For the communication between the mobile device

and the cloud service, we used Microsoft Windows Com-

munication Foundation (WCF) for mobile as a client and

the cloud service as a WCF service.

 Cloud

 Mobile

Location Detection

User Query Input

 Offline

 Online

Stay Points 

Extraction and Clustering

Location Interest and 

Sequence Mining

Trip Candidate Ranking

Query Verification

Re-ranking by 

Travel Sequence

Itinerary

Location-Interest 

Graph

GPS TrajN

Trip Candidate Selection

Itinerary Presentation

Fig. 10 Mobile+Cloud architecture

5.3 Results

5.3.1 Simulation

We generated 1,000 queries for each time level (5, 10, 15

and 20) and ran through 3 algorithms. For the duration of 5

hours, only 452 itinerary results were retrieved. For the du-

ration of 10 hours, 15 hours and 20 hours, 935, 961, and 973

itinerary results are acquired respectively. There are three

reasons that not all queries returned results. First reason is

that simply there was not enough time to go from a start

location to an end location. Even though the queries would

pass initial query verification, there may be very few or no

shorter directions to the end location while consuming the

specified duration. Second reason is that as shown in Fig-

ure 8(a), there are areas with very few or no locations at

all. So when the given time is short and the user starts from

one of these empty areas, the most of time is used up to

go to a nearby location, yielding no results. Third reason

is that user starts at a location which has very few outgo-

ing edges, in that case, user might end up in dead end early

even though there are plenty of remaining time. For the rec-

ommended itineraries, we looked closely at the average of

0
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Fig. 11 Simulation results showing the average quality of itinerary

generated by different methods

elapsed time, stay time, interest, classical sequence and Eu-

clidean distance. Figure 11 shows the result for four differ-

ent time levels. As expected, the baseline algorithm RbT and

RbI yields best results in the aspect of elapsed time and in-

terest respectively. However, the difference is minimal in the

5 hours level. All three algorithms produced similar quality

results. If the duration is very short then there are not many

candidates to consider and then many of them would over-

lap anyway. This explains almost identical graphs in Fig-

ure 11(a). The difference gets larger and noticeable as the

duration gets longer. Still baseline algorithms successfully

recommend itineraries that perform well in only one aspect.

RbT has lower average of interest score compared to RbI

and our algorithm. Also RbI has lower average of elapsed

time compared to RbT and ours. Furthermore, both base-

line algorithms produce itineraries that are poor in classi-

cal sequence aspect as defined in Definition 8. The result

shows that both RbT and RbI fail to produce itineraries re-

visiting classical sequence, which means that locations vis-

ited in sequence are not practical nor realistic. So we can

observe on the average, RbT and RbI will produce a bi-

ased or skewed itinerary focusing on only one attribute in a

long term. On the other hand, our algorithm produces well-

balanced itineraries in all four aspects. The Euclidean dis-

tance value gives a good indication that our algorithm pro-

duces balanced itinerary overall and even the recommended

itineraries are comparable in other factors that are special-

ized by baseline algorithms. By looking at the Euclidean

distance value, we observe that the performance of our algo-

rithm increases with time whereas two baseline algorithms

suffer from performance degradation.
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5.3.2 User Study

Itinerary at equilibrium: For 10 participants’ 30 queries

over Beijing area, we observed the equilibrium of different

itinerary attributes in our algorithm compared to the base-

line algorithms. As we observed from the simulation, our

algorithm produces an itinerary that is well-balanced in the

four attributes. So in this user study, we show that our al-

gorithm produces results that are nearly equal to the base-

lines which specialize in a certain single attribute. For in-

stance, we check how our result compares with RbT pro-

duced itinerary in terms of elapsed time, stay time and travel

time. Since RbT produces results that maximize the time

use, we wanted to check whether the difference user per-

ceives is significant compare to our result which produces

well-balanced and nearly close result. Table 3 shows the

comparison between our algorithm and RbT in terms of time

use. As the T-test reveals that there is no significant advan-

tage in perceived elapsed time, stay time, and travel time

from using RbT over ours. Actually, in 30 queries in our

user study, itineraries recommended by our algorithm re-

ceived higher scores compared to that of RbT. Similarly, we

compared our result in terms of locations interest included

in the itinerary as shown in Table 3. Here again our results

scored higher and the T-test reveals that there is no signif-

icant advantage in perceived interest from using RbI over

ours.

Attributes Ours Rank-by-Time T-test

Elapsed Time 3.97 3.67 p 6≤ 0.01

Stay and Travel Time 3.60 3.27 p 6≤ 0.01

Attribute Ours Rank-by-Interest T-test

Interest 3.27 2.92 p 6≤ 0.01

Table 3 Comparison of temporal and location interest attributes

Ranking ability: Table 4 shows the ranking ability of

different methods measured by MAP (Mean Average Preci-

sion). MAP for a set of queries is the mean of the average

precision scores for each query.

MAP =
∑

Q
q=1 AveP(q)

Q
(18)

where Q is the number of queries. We treat 30 recommended

itineraries as a ranked retrieval run. In our experiment, MAP

stands for the mean of the precision score after each relevant

itinerary is retrieved, which is determined by users. We con-

sider an itinerary relevant, if its relevance score is 1 or 2 as

shown in Table 2. For 30 itineraries generated for three dif-

ferent methods, the result is shown in Table 5. Our method

showed a better performance compared to other baselines.

Measurement Ours Rank-by-Time Rank-by-Interest

MAP 0.684 0.622 0.645

Table 4 Ranking ability of different methods

5.3.3 Mobile+Cloud Configuration

We compared the time it takes to recommend an itinerary in

standard-alone mobile approach (Mobile Only) and cloud

approach (Mobile+Cloud). In Mobile Only, recommenda-

tion is operated fully in the mobile phone. Mobile+Cloud

has distributed tasks between the mobile and the cloud. All

collected trajectories are data mined in offline in a sepa-

rate server and the resulting Location-Interest Graph (G) is

used in both Mobile Only and Mobile+Cloud modes. The

data size of Location-Interest Graph (G) is small which only

contains information on 1) location itself (interest, typical

staying time) and 2) relationship between locations (typical

traveling time, classical travel sequence). We measured the

processing time for three durations (5 hours, 10 hours and

15 hours). We did not test with 20 hours, since it took unrea-

sonable long time to measure on the mobile side. For each

duration level, 10 unique test queries are used. Figure 12

shows the experiment results. ��������������	�
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In 5 hours, Mobile Only was faster than Mobile+Cloud.

This can be explained by the fact that the finding trip can-

didate process in shorter duration does not take much time.

Since we cannot add many locations nor travel further given

shorter duration. In Mobile Only, it took less than 1 second

to find candidate trips and get the recommended itinerary for

5 hours duration. However, in Mobile+Cloud it took couple

of seconds. So even though the actual processing was done

much faster in the cloud, the time needed for binding the

mobile client with the WCF service took some time and it
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also took more time for communication. So in our obser-

vation, the cloud approach had at least couple of seconds

for communication. The performance gap is noticeable for

time duration of 10 hours and 15 hours. The longer dura-

tion means that there are more number of candidate trips

to find and rank. As shown in Figure 12 (b), the process-

ing time for Mobile Only takes about three times longer

than Mobile+Cloud. For some queries, Mobile Only was

faster, this is due to the fact that the result contains only a

small number of candidates. In 15 hours, the high computa-

tion burden on Mobile Only is clear. As shown in Figure 12

(c), Mobile Only takes at least few minutes to recommend

an itinerary whereas Mobile+Cloud can handle the request

within a minute. In comparison, Mobile Only failed to pro-

duce results in neither real-time nor interactive time. Some

test queries lasted for over 15 minutes, which is unbearable

in real use cases.

5.4 Discussions

Temporal aspects: The length of duration is an interesting

attribute to look at. Many participants used duration between

6 to 12 hours. It supports our initial assumption that people

would not have such a long journey and keep them in a man-

ageable size. For shorter duration, the measured quality of

itineraries were less for our algorithm based on Euclidean

distance of attributes. Conversely, two baseline algorithms

produced the best quality at the shorter duration and recom-

mended less efficient itineraries with longer duration. In ex-

treme cases though, it was possible for baseline algorithms

such as RbI to recommend an itinerary that only contains a

couple of interesting locations without spending all available

time. However, since duration was used as a stopping condi-

tion in selecting candidates, most recommended itineraries

spend good ratio of available time in simulation and in real

user queries alike. Also users were more judgmental of and

interested in traveling time (on average, less than 1 hour)

than staying time at locations (on average, greater than 1

hour). Therefore, it would be interesting research direction

to give a good projection on traveling time including many

options of transportation modes.

Location interest and classical sequence. As shown in

Figure 11, our algorithm produced a balanced itinerary with

higher classical sequence scores. In algorithmic level, our al-

gorithm showed a great performance advantage in terms of

the four attributes including classical travel sequence. How-

ever, in real queries by users it was difficult to measure lo-

cation interest and classical travel sequences from the rec-

ommended itinerary. Even though an itinerary is composed

of many locations and sequences, we only asked the partici-

pants to give ratings for the overall location interest and clas-

sical sequence. So they gave high score for classical travel

sequences they could find, and gave lower score for any ab-

normal sequences that sometimes balances each other out.

So this is different from our simulation where each location

interest and classical travel sequences were accumulated to

give the overall score. In our current algorithm, we only con-

sider increment of score for location interest and any clas-

sical travel sequences found, yet in the real situation, we

might need to decrease score or give penalties for totally

uninteresting locations and awkward sequences. This is an-

other research direction that can help recommend a better

itinerary by avoiding (possibly known) bad sequences in the

first place.

Mobile deployment. Table 5 shows performance com-

parison results for 15 hours duration. When we closely ob-

serve the query that took the longest time to process, we can

notice that those queries resulted in a very large number of

initial candidates. Also the query with the shortest process-

ing time deals with a very small number of initial candidates.

So we have two heuristics that we can use to choose between

Mobile Only and Mobile+Cloud.

Mobile Only Mobile+Cloud Candidates

Q1 367.658 15.847 6472

Q2 449.245 20.988 1165

Q3 267.207 13.545 4603

Q4 1081.038 (L) 27.489 (L) 30734 (L)

Q5 460.502 20.242 6375

Q6 174.044 10.200 45

Q7 123.984 6.181 17899

Q8 291.448 15.292 789

Q9 1.647(S) 2.517(S) 21 (S)

Q10 19.958 3.472 503

Table 5 Recommendation processing time(sec) comparison for 15

hours, (L) indicates the longest/largest and (S) indicates the short-

est/smallest.

(1) If the time duration is large (qt > 5 hr), we are better

off to use Mobile+Cloud. Only use Mobile Only for a very

short duration, since Mobile+Cloud approach has a reason-

ably low lower-bound around 2 seconds to match the perfor-

mance of mobile approach.

(2) If we know that the query will generate many candi-

date trips, then we should use Mobile+Cloud. We can sim-

ply check this by counting the number of outgoing edges of

start location and incoming edges of end location. If these

numbers are large then the number of candidate trips will be

large also.

Alternative sources of digital trails. In our work we

used GPS trajectories as the primary means of digital trails

generated by users. Taking this idea further, different combi-

nations of digital trails can be incorporated for cross check-

ing and improving accuracy of the work proposed here. The

notable and relevant research domain deals with many re-
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sources found on the web, especially with user comments

[27], geo-tagged multimedia such as Flickr photo streams

[4][10] and social network services. For end-user side, [24]

proposed mashup paradigm in ubiquitous computing envi-

ronment through augmented reality where users can pro-

duce content and services attached to real world objects. Re-

cently Zhang et al. proposed ”social and community intelli-

gence (SCI)” to learn from different patterns of individual,

group and societal behaviors detected pervasive sensing and

context-aware computing environment [26].

Limitation. There are number of limitations in our ap-

proach. Since our method relies on user-generated GPS tra-

jectories, it is important to collect a good data set. Our data

is collected by highly motivated and active volunteers as a

trusted source, but in real case including different Web 2.0

check-in sites, many user-generated GPS trajectories need

to be validated. In our current setting, we use stay point

detection, stay point clustering and location clustering to

remove much noise, but stronger means of detecting ab-

normities in the source are required. One of our goal in

itinerary recommendation was to minimize user interven-

tion and automate the process with a simple query. However,

to get a more personalized and accurate itinerary beyond

itinerary recommendation for new travelers, we need to con-

sider various contextual information such as different trans-

portation modes and ranges of itineraries. In our previous

works[30][31] transportation mode is considered, but these

are not fully incorporated with itinerary recommendation.

Also our itinerary recommendation is tested in city-level,

but scalability is another direction for future work. Lastly,

semantic aspects need to be combined with locations, since

some locations have opening and closing hours and may be

affected by the contextual situations such as weather con-

ditions, traffic jams, festivities, and crowded holiday peri-

ods. Our current itinerary recommendation framework can

be improved by considering these issues.

6 Conclusion

In this paper, user-generated digital trails such as GPS trajec-

tories are collected and data mined to extract collective so-

cial intelligence. Specifically we used GPS trajectories from

125 users to build Location-Interest Graph which reflects

travel history and experience of travel experts and active res-

idents. By using Location-Interest Graph and the proposed

itinerary model, itinerary is recommended according to a

user-supplied query. To recommend an efficient itinerary, we

collectively used four attributes mined from out data set to

generate balanced and practical itineraries. When compared

to baselines RbT and RbI, our proposed method was com-

petitive in both time use and interest level and outperformed

baselines in classical travel sequence aspect in both simula-

tion mode and through user study. Especially, the best per-

formance of our method was observed in the longer dura-

tion. Also we found that computation intensive task such

as social itinerary recommendation can be distributed ef-

fectively in Mobile+Cloud architecture for practical mobile

adaptation and application deployment.

For future work, we would like to give better indications

in traveling time between locations by differentiating use

of transportation modes. Also hybrid itinerary recommen-

dation based on other sources of digital trails and contextual

information such as geo-tagged multimedia and check-ins

are potential works.
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