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Abstract—(To be considered for an IEEE Jack Keil Wolf
ISIT Student Paper Award). This paper considers the problem
of distributed hypothesis testing and social learning. Suppose
individual nodes in a network receive noisy (private) obser-
vations whose distribution is parameterized by one of M

parameters (hypotheses). The distributions are known locally
at the nodes, but the true parameter/hypothesis is not known. If
the local observations are insufficient to recover the underlying
parameter (for example, low dimensional measurements of a
higher-dimensional parameter), individuals must share and learn
from each other in order to accurately infer the true parameter.

Inspired by recent non-Bayesian social learning algorithms,
the updating of opinions of each node is broken down into
two steps: a local-Bayesian update, which incorporates the
noisy observations and the known parametric distribution of
the noise, and a new non-Bayesian update rule which merges
the nodes’ opinions. It is shown that each node’s opinion/belief
about any hypothesis whose truth is inconsistent with the overall
network-wide observations vanishes to zero exponentially fast.
In other words, each node’s opinion converges to the true
underlying parameter exponentially fast. This new method of
merging opinions allows for a concise proof of the convergence
and a closed form characterization of rate of convergence.
Furthermore, the exponential rate of learning is shown to be
both a function of the nodes’ collective ability to discriminate
among the hypotheses set as well as the social structure of the
network.

I. INTRODUCTION

How do we learn what television shows are popular or

which pastry shop has the best cupcake? Most people do not

watch all their available options, nor do they carefully read

the Nielsen ratings, but instead infer the answers through a

combination of channels: their own experience, their friends’

opinion, or social media. Social communication helps indi-

viduals form opinions and gain knowledge about a variety

of unknown parameters. In other words, people transcend the

limitations of their local view by incorporating the “wisdom

of the crowd” to construct a “crowd within” themselves, ben-

efitting from the richness and diversity of others’ experience.

This paper proposes and analyzes a very simple model of

social learning in the context of distributed hypothesis testing.

Learning in a distributed setting is more than a phenomenon

of social networks; it is also an engineering challenge for

networked system designers. For instance, in today’s data

networks, many applications need estimates of certain pa-

rameters: file-sharing systems need to know the distribution

of (unique) documents shared by their users, internet-scale

information retrieval systems need to deduce the criticality

of various data items, and monitoring networks need to

compute aggregates in a duplicate-insensitive manner. Finding

a scalable, efficient, and accurate method of computing such

metrics (e.g. number of documents in the network, sizes of

database relations, distributions of data values) is of critical
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Fig. 1. Example of a parameter space in which no node can identify the
true parameter. There are 4 parameters, {θ1, θ2, θ3, θ4}, and 2 nodes. The
node 1 has f1 (·; θ1) = f1 (·; θ3) and f1 (·; θ2) = f1 (·; θ4), and the node
2 has f2 (·; θ1) = f2 (·; θ2) and f2 (·; θ3) = f2 (·; θ4).

value to a broad set of network applications.

We study a model in which a network of individuals can

sample local observations governed by an unknown global

parameter θ∗. The observations are given by conditional

distribution {fi (·; θ)} (or local observation channels, from

a communication perspective). When these local channels are

not sufficient to recover the underlying parameter locally,

individuals must share and learn from each other in order to

accurately estimate the parameter. Even though each individ-

ual cannot identify the parameter through local observations

alone, the parameter may be collectively identifiable. A simple

two-node example is illustrated in Figure 1 – one node can

only identify the column in which the parameter lies, and the

other can only identify the row.

Jadbabaie et. al. [1] have recently shown that in such a

setting, a combination of local Bayesian updating combined

with a linear consensus strategy on the beliefs [2] can lead

to all nodes in the network identifying the true parameter.

Moreover, they show an exponential rate of convergence of

the estimate to the true parameter. In this paper we propose

a different strategy based on a reweighted local averaging of

the log beliefs of nodes. We show that the rate of convergence

of this strategy is related to the sum of weighted Kullback-

Leibler divergences between likelihood of the true parameter

and the likelihood of any other parameter. The sum is over

the nodes in the network, and the weights are a function of

a weight or influence vector associated to the algorithm. We

also show that the rate of convergence under our newly pro-

posed strategy can be significantly better than the convergence

rate of the consensus strategy [1].

Olfati-Saber et. al. [3] studied an algorithm for distributed

one-shot hypothesis testing using belief propagation – nodes

perform average consensus on the log likelihoods under a

single observation per node model. The nodes can achieve

a consensus on the product of their local likelihoods – that



is, they can compute the likelihood of their joint observation

under each hypothesis. By contrast, we consider a dynamic

setting in which observations are made as messages and are

passed in the network. A side benefit of our approach is that

nodes do not need to know each other’s likelihood functions,

or indeed even the space from which their observations are

drawn.

Notation: A random variable is denoted by an upper case

letter (e.g. X) and its realization is denoted by a lower case

letter (e.g. x). Similarly, a random vector and its realization

are denoted by bold face symbols (e.g. X and x). The i-th

element of vector v is denoted by vi. The set of integers

{1, 2, . . . , n} is denoted by [n]. Throughout the paper, for a

given set E, we use notation P(E) to be set of probability

distribution on E. Let Ber(p) denote the Bernoulli distribution

with parameter p. Also, the Kullback–Leibler (KL) divergence

between two probability distributions PZ and P ′
Z is defined

as D(PZ ||P
′
Z) :=

∑

z∈Z PZ(z) log
PZ(z)
P ′

Z
(z) with the convention

0 log a
0 = 0 and b log b

0 = ∞ for a, b ∈ [0, 1] with b 6= 0.

II. PROBLEM STATEMENT

We consider a network with n nodes. In particular, one can

define social neighborhood of i as N (i) := {j : Wij > 0},

where W denotes the n × n matrix of fixed and known

weights Wij ∈ [0, 1] representing the social interaction of

nodes in the network. the We study a simple model for

parametric inference of a global parameter θ ∈ Θ, where

Θ is a finite set and θ∗ is time-invariant, static, and unknown.

At every time instant t = 1, 2, . . . every node draws a noisy

observation X
(t)
i ∈ Xi, where Xi is defined as the observation

space of node i. Every node’s observation sequence (in

time) are conditionally independent and identically distributed

(i.i.d.); in other words, each node has a corresponding set

of probability distributions {fi (·; θ) : θ ∈ Θ)}, where each

fi (·; θ) is a distribution on a space Xi. fi (·; θ) and describes

the conditional distribution of node i’s observations given the

true parameter is θ.

The true parameter θ∗ is fixed, the nodes draw observations,

exchange messages, and update estimates. At each time step,

the each node draws an observation X
(t)
i according to the

distribution fi (·; θ
∗) and then computes a message to send

based on its existing estimate and the observation. The nodes

then exchange these messages with their neighbors and update

their estimate of θ∗ based on their previous estimate, obser-

vation, and messages from their neighbors. Detailed rules for

forming the belief and determining the estimate are discussed

in the next subsection.

A. Bayesian updating with log-belief consensus

Here we present the algorithm according to which the

beliefs are updated and estimates are obtained. Let each node

i start with a estimate in the q
(0)
i

∈ P(Θ), i.e. a probability

distribution on Θ. At each time t = 1, 2, . . . the following

events happen:

1) Each node i draws an observation X
(t)
i ∼ fi (·; θ

∗).

2) Each node i forms a Bayesian update of its belief b
(t)
i

,

using the following rule. For each θ ∈ Θ,

b
(t)
i (θ) =

fi

(

X
(t)
i ; θ

)

q
(t−1)
i (θ)

∑

θ′∈Θ fi

(

X
(t)
i ; θ′

)

q
(t−1)
i (θ′)

. (1)

3) Each node i sends the message Y
(t)
i

= b
(t)
i

to its

neighbors.

4) Each node i forms an estimate of θ, q
(t)
i (θ), via linear

consensus on the log beliefs of itself and its neighbors

as below. For any θ ∈ Θ,

q
(t)
i (θ) =

exp
(

∑n

j=1 Wji log b
(t)
j (θ)

)

∑

θ′∈Θ exp
(

∑n

j=1 Wji log b
(t)
j (θ′)

) . (2)

B. Mathematical Assumptions

The following assumptions are required to establish our

main result in the later section.

Assumption 1. The matrix W is stochastic and irreducible.

This assumption ensures that all the nodes are connected

to every other node in the network by at least one multi-hop

path. In other words, in the long run, every node influences

and is influenced by every other node in the network. This

assumption is natural because it enables social learning even

in the case that only one node in the network can distinguish

the true parameter. It is intuitive that the rate of social learning

enabled by such a node depends on the social influence of

node i, given the matrix W , where social influence is often

measured by the left eigenvector of W corresponding to the

eigenvalue 1. This is rigorously characterized in Section III

and numerically illustrated in Section IV.

The following fact follows from Assumption 2 and will be

used in our analysis.

Fact 1 (Section 2.5 in [4]). Let v = [v1, v2, . . . , vn] be the

left eigenvector of stochastic matrix W associated with the

eigenvalue 1. Whenever W is a positive irreducible stochastic

matrix, all components of v are strictly positive.

Assumption 2. For k ∈ [n], X ∈ Xk, and for any given

θi, θj ∈ Θ such that θi 6= θj ,
fk(·;θi)
fk(·;θj) is bounded, i.e., there

exists a positive constant Ck,θi,θj such that,

sup
X∈Xi

(

fk (X; θi)

fk (X; θj)

)

≤ Ck,θi,θj (3)

This is a purely technical assumption which simplifies

our analysis and proof. We will discuss this assumption and

relaxing it in Section V.

Assumption 3. For every pair θ 6= θ∗, the KL-divergence

D (fi (·; θ
∗)‖ fi (·; θ)) is positive for at least one i ∈ [n].

This final assumption guarantees that for each “wrong”

hypothesis θ 6= θ∗, there exists at least one node in the

network that can statistically distinguish between θ and θ∗.

Note that this does not require the existence of a a single

node that can distinguish θ∗ from all other hypotheses. See

the example in Figure 1.

III. ANALYSIS

In this section provide the main results of the paper.

Theorem 1. Let θ∗ be the true parameter and for every

i ∈ [n], the initial estimate q
(0)
i (θ∗) > 0. Then under

Assumptions 1-3, each node’s estimate converges to the true

parameter θ∗. Mathematically, for all θ 6= θ∗ and for every



node i ∈ [n],

limsup
t→∞

1

t
log q

(t)
i (θ) ≤ −

W i

v
¯

K(θ, θ∗), (4)

where,

v
¯
= min

i
vi, (5)

W i = max
j

Wji, (6)

and

K(θ, θ∗) =
n
∑

i=1

viD (fi (·; θ
∗)‖ fi (·; θ)) . (7)

Proof: We begin by obtaining a recursion in terms of the

logarithm of the ratio of the estimates q
(t)
i at different values

of θ.

log
q
(t)
i (θ)

q
(t)
i (θ∗)

(8)

=
n
∑

j=1

Wji log
b
(t)
j (θ)

b
(t)
j (θ∗)

=

n
∑

j=1

Wji



log
fj

(

X
(t)
j ; θ

)

fj

(

X
(t)
j ; θ∗

) + log
q
(t−1)
j (θ)

q
(t−1)
j (θ∗)



 (9)

where the first and the third equalities follow from (2) and (1),

respectively.

Let us define

L
(t)
θ,θ∗ :=

n
∑

i=1

vi log
q
(t)
i (θ)

q
(t)
i (θ∗)

. (10)

From (9), we have that

L
(t)
θ,θ∗ =

n
∑

j=1

vj log
fj

(

X
(t)
j ; θ

)

fj

(

X
(t)
j ; θ∗

) + L
(t−1)
θ,θ∗ (11)

Let Ft be the σ-algebra induced by
{

X
(τ)
i : i ∈ [n], τ ≤ t

}

.

Taking expectation of both sides of equation (11) and using

the definition of KL divergence, we have

E

[

n
∑

i=1

vi log
q
(t)
i (θ)

q
(t)
i (θ∗)

∣

∣

∣

∣

∣

Ft−1

]

= −
n
∑

i=1

viD (fi (·; θ
∗)‖ fi (·; θ)) +

n
∑

i=1

vi log
q
(t−1)
i (θ)

q
(t−1)
i (θ∗)

.

In other words,

E

[

L
(t)
θ,θ∗ − L

(t−1)
θ,θ∗

∣

∣

∣
Ft−1

]

= −K(θ, θ∗). (12)

Assumptions 1 and 3 imply that K(θ, θ∗) is a positive

constant. This, together with (12) means that for every θ 6= θ∗,

L
(t)
θ,θ∗ forms a supermartingale with respect to filtration Ft

with a negative drift equal to −K(θ, θ∗). Furthermore,
∣

∣

∣L
(t)
θ,θ∗ − L

(t−1)
θ,θ∗

∣

∣

∣ < Aθ,θ∗ := max
k

Ck,θ,θ∗ . (13)

From Lemma 1 in the appendix, we have that for any ǫ > 0

P
(

L
(t)
θ,θ∗ ≥ −(K(θ, θ∗)− ǫ)t

)

≤ exp

(

−ǫ2t

2A2
θ,θ∗

)

. (14)

Let {Ωt} be a sequence of events defined as

Ωt =

{

ω :
1

t
L
(t)
θ,θ∗(ω) ≥ −(K(θ, θ∗)− ǫ)

}

. (15)

From (14) we obtain that
∑∞

t=1 P (Ωt) < ∞. This together

with Borel-Cantelli Lemma implies that

P

(

limsup
t→∞

Ωt

)

= 0. (16)

where

limsup
t→∞

Ωt =

∞
⋂

t=1

∞
⋃

n=t

{ω :
1

n
L
(n)
θ,θ∗(ω) ≥ −(K(θ, θ∗)− ǫ)}.

(17)

Rewriting this, we have that for any arbitrary ǫ > 0

P

(

limsup
t→∞

1

t
L
(t)
θ,θ∗ ≥ −(K(θ, θ∗)− ǫ)

)

= 0 (18)

In other words,

lim inf
t→∞

1

t
L
(t)
θ,θ∗ ≤ limsup

t→∞

1

t
L
(t)
θ,θ∗ ≤ −K(θ, θ∗) a.s. (19)

This means that for every ǫ′ > 0, there exists t0 such that for

all t ≥ t0, 1
t
L
(t)
θ,θ∗ ≤ −K(θ, θ∗) + ǫ′, i.e.

v
¯

n
∑

i=1

log
q
(t)
i (θ)

q
(t)
i (θ∗)

≤
n
∑

i=1

vi log
q
(t)
i (θ)

q
(t)
i (θ∗)

≤ (−K(θ, θ∗) + ǫ′)t.

(20)

On the other hand, from (9) and Assumption (2), we have

log
q
(t)
i (θ)

q
(t)
i (θ∗)

≤
n
∑

j=1

Wji

(

logCj,θ,θ∗ + log
q
(t−1)
j (θ)

q
(t−1)
j (θ∗)

)

≤
n
∑

j=1

Wji logCj,θ,θ∗ +W i log
q
(t−1)
j (θ)

q
(t−1)
j (θ∗)

≤
n
∑

j=1

Wji logCj,θ,θ∗ +
W i

v
¯

(−K(θ, θ∗) + ǫ′)t.

(21)

where the last inequality follows from (20).

Since q
(t)
i (θ∗) ≤ 1, we can rewrite the above equation as

q
(t)
i (θ) ≤ exp

(

−
W i

v
¯

(K(θ, θ∗) + ǫ′)t+ δ(i, θ, θ∗)

)

(22)

where δ(i, θ, θ∗) =
∑n

j=1 Wji logCj,θ,θ∗ and ǫ′ > 0 is any

arbitrary positive scalar.

Hence, for every i and θ 6= θ∗, we have that q
(t)
i (θ) goes

to zero exponentially fast, i.e.

limsup
t→∞

1

t
log q

(t)
i (θ) ≤ −

W i

v
¯

K(θ, θ∗) + ǫ′. (23)

Since the choice of ǫ′ is arbitrary, we have the assertion of

the lemma.

IV. EXAMPLES

To illustrate our proposed scheme and how the rate of

convergence depends on various parameters, we look at a few

simple examples. The first example, shown in Figure 1 earlier

in the paper, is a two-node network in which neither node can

identify the parameter locally. The second example is shown

in Figure 2 and is a star network with 3 satellite nodes around

a single central node.
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Fig. 2. A star network in which a central node (node 1) is connected to
other satellite nodes. The network topology and distribution of nodes’ local
power to identify the hypotheses affects the rate of convergence.

Fig. 3. Estimates of node 2 in the example of Figure 1 vs. iterations when no
communication is allowed. Neither node can converge on the true parameter
θ∗ = θ1 without communication.

A. Communication is necessary for convergence

In the two-node network of Figure 1, the parameter space

Θ = {θ1, θ2, θ3, θ4}. Node 1 has f1 (·; θ1) = f1 (·; θ3) and

f1 (·; θ2) = f1 (·; θ4), and the node 2 has f2 (·; θ1) = f2 (·; θ2)
and f2 (·; θ3) = f2 (·; θ4). Thus node 1 can identify the

column containing θ∗, and node 2 the row.

For this example, we will assume that for node 1,

f1 (·; θ1) = f1 (·; θ3) ∼ Ber( 34 ) and f1 (·; θ2) = f1 (·; θ4) ∼
Ber( 13 ), and for node 2, f2 (·; θ1) = f2 (·; θ2) ∼ Ber( 23 ) and

f2 (·; θ3) = f2 (·; θ4) ∼ Ber( 14 ). Let the true parameter be

θ∗ = θ1, and assume that the nodes all begin with a uniform

prior on the parameter space.

First consider the case where there is no communication,

i.e. the matrix W = I . Because neither node can identify

the true parameter on the basis of their own observations,

their estimates do not converge to the true parameter θ∗. For

example, for node 1 the estimates converge to (0.5, 0, 0.5, 0)
and for node 2 they converge to (0.5, 0.5, 0, 0). This is

illustrated in Figure 3, which shows the non-convergence.

Suppose now that we set the weight matrix to W =
(

0.6 0.4
0.4 0.6

)

, so the nodes do communicate after each

iteration. Figure 4 shows the rapid convergence of the node

estimates to the true parameter as a function of the number of

iterations. It is clear that communicating helps significantly

in this setting where the parameter is not identifiable locally.

Figure 5 compares the empirical convergence rate of our

method with that of Jadbabaie et al. [1], which uses linear

consensus on the updated beliefs, as opposed to the reweighed

average of log-beliefs that we propose here. In this simple

two-node example we see that the our new method converges

significantly faster than the previous algorithm.

Fig. 4. Estimates of node 2 in the example of Figure 1 vs. iterations when
communication is allowed. Node 2 very rapidly distinguishes between θ1
and θ2 using the information communicated by node 1.

Fig. 5. A comparison of the non-Bayesian learning algorithm of Jadbabaie
et al. [1] using linear consensus on beliefs (upper line) and the algorithm
of this paper, which uses linear consensus on log-beliefs (lower line). The
estimates converge must faster using log beliefs.

B. Topology and rate of convergence

We now turn to the star network in in Figure 2 to address

the interplay between the network topology and the rate

of convergence. From the analysis, the rate of convergence

depends on two factors: the KL-divergences at each node, and

the weighting factor from the eigenvector of the weight matrix

W . We consider a binary hypothesis test with Θ = {θ1, θ2},

and consider the weight matrix

W =









0.25 0.25 0.25 0.25
0.5 0.5 0 0
0.5 0 0.5 0
0.5 0 0 0.5









.

That is, the satellite nodes average their estimate with the cen-

tral node’s estimate, and the central node averages all nodes.

The corresponding left eigenvector is v = [ 2√
7

1√
7

1√
7

1√
7
],

assigning a weight (social influence) to the first node that is

twice as much as that of the other nodes.

We consider the scenario where only one node (“the

informed node”) can identify the parameter. We expect that

if that central node is the informed node, then the rate of

convergence will be much faster, since the the contribution

to K(θ, θ∗) will be zero for the nodes that cannot identify

the parameter. In particular, let us consider the case where

the informed node has observations fi (·; θ1) ∼ Ber( 34 )
and fi (·; θ2) ∼ Ber( 13 ), whereas uninformed nodes have

fj (·; θ1) = f2 (j; θ2) ∼ Ber( 12 ).



Fig. 6. The rate of convergence for two assignments in the star network of
Figure 2. In both cases, all nodes but one have useless observations, where
fi (·; θ) is the same for all θ. The lower line shows the case where the
center node (node 1) can identify true parameter. The upper line shows the
case where a satellite node can identify the true parameter.

Figure 6 shows the convergence of estimates for two

scenarios. In the first, the informed node is node 1, the central

node. In the second, the informed node is node 2, a satellite

node. The rate of convergence is clearly better when the

central node is informed. This makes sense because the net

impact of informative observations of the informed node can

more easily reach the other nodes in the network.

For a given influence or weight matrix W , the corre-

sponding left eigenvector gives a measure of the influence

of different nodes in the network. Our analysis supports the

natural conclusion that faster convergence comes from as-

signing more influence to the informed nodes in the network.

Conversely, the rate of convergence appears to be slower when

the informed nodes are not central to the network. However,

our theoretical results say that the network will still learn the

parameter in this case, albeit at a slower rate.

V. DISCUSSION AND FUTURE WORK

In this paper we examined a network in which nodes

take observations whose distribution depends on a global

parameter and communicate in order to collectively estimate

the parameter. We demonstrate a protocol which alternates

local Bayesian updating with a weighted-averaging step and

demonstrated exponential converge of the estimates to the

true parameter. Our approach is similar in structure to a

previously proposed scheme [1], but the second update step

is significantly different.

Our algorithm converges under mild assumptions on the

observation model. The irreducibility of W in Assumption 1

is clearly necessary. To see this, consider a matrix F which is

not irreducible. If there exists a pair (i, j) such that there is no

path from i to j, then it is possible to assign local observation

models such that only node i can distinguish the true param-

eter and all other nodes cannot distinguish any parameter. In

this setting, node j cannot converge to the true parameter.

Assumption 3 says that for each incorrect hypothesis θ 6= θ∗,

there must exist one node which distinguishes θ from θ∗.

If not, then no node can distinguish θ from θ∗, preventing

convergence. In particular, Assumptions 1 and 3 are necessary

to ensure that K(θ, θ∗) > 0.

Assumption 2 is purely technical. It guarantees that the

likelihood ratio at each node between any two hypotheses is

bounded from above. This assumption is commonly used in

hypothesis testing and allows us to use Azuma’s inequality in

the proof of Theorem 1. We believe the assumption can be

relaxed significantly; extending our work to a less stringent

technical assumption (similar to that established by Naghshvar

and Javidi [5]) is an area of future work.

An interesting question for future investigation is to find the

optimal exponent for estimation in this setting. For the scheme

proposed here, the optimal rate of convergence is achieved

when the weighted sum of the KL divergences, i.e. K(θ, θ∗),
is largest. Proving a lower bound on the rate of convergence

in terms of the local divergences may shed some light on

the fundamental limits of hypothesis testing from distributed

observations using local communication.

APPENDIX

Lemma 1. Assume that the sequence {ξ(t)}, t = 0, 1, 2, . . .
forms a supermartingale with respect to a filtration {F(t)}.

Furthermore, assume there exist positive constants K1 and

K2 such that

E[ξ(t+ 1)|F(t)] ≤ ξ(t)−K1 (24)

|ξ(t+ 1)− ξ(t)| ≤ K2. (25)

Then, for any ǫ > 0,

P {ξ(t) ≥ ξ(0)−K1t+ ǫt} ≤ exp
−ǫ2t

2K2
2 .

Proof. Define V (t) = ξ(t) +K1t. From (24), we have

E [ξ(t) +K1t− ξ(t− 1) +K1(t− 1)| Ft−1] ≤ 0. (26)

Hence, V (t) is also a supermartingale. We also have that

|V (t)− V (t− 1)| is bounded. From Azuma’s inequality [6],

we have that for all positive δ,

P (ξ(t)− ξ(0) +K1t ≥ δ) ≤ exp

(

−δ2

2
∑t

i=1 K2
2

)

. (27)

Setting δ = ǫt, we have the assertion of the lemma.
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