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Social learning strategies modify the effect
of network structure on group performance
Daniel Barkoczi1 & Mirta Galesic1,2

The structure of communication networks is an important determinant of the capacity of

teams, organizations and societies to solve policy, business and science problems. Yet,

previous studies reached contradictory results about the relationship between network

structure and performance, finding support for the superiority of both well-connected

efficient and poorly connected inefficient network structures. Here we argue that under-

standing how communication networks affect group performance requires taking into

consideration the social learning strategies of individual team members. We show that

efficient networks outperform inefficient networks when individuals rely on conformity by

copying the most frequent solution among their contacts. However, inefficient networks are

superior when individuals follow the best member by copying the group member with the

highest payoff. In addition, groups relying on conformity based on a small sample of others

excel at complex tasks, while groups following the best member achieve greatest

performance for simple tasks. Our findings reconcile contradictory results in the literature and

have broad implications for the study of social learning across disciplines.
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T
he trade-off between exploration and exploitation lies at
the heart of many problems faced by individuals, groups
and organizations, who often need to decide whether to

search for new, potentially better solutions (for example, a
technology, social institution or a business strategy) or keep using
an existing solution that works well1–6. The right balance between
exploration (searching for superior novel solutions) and
exploitation (reaping benefits of existing solutions) is thought
to be essential for adaptive behaviour in humans and other
animals4,5,7. When individuals interact through social learning to
solve problems collectively, this trade-off is manifested in
the balance between innovation through individual learning
from the environment and the imitation of existing solutions in
the population8–12. Innovation (exploration) is essential both for
tracking changes in the environment and for introducing novelty
in the population, while imitation (exploitation) serves the
purpose of diffusing good solutions to increase group-level
performance13.

How do different social learning strategies affect the balance of
exploration and exploitation, and the resulting performance? And
how do these strategies interact with the social or organizational
network in which learning takes place? We address these two
questions by modelling different social learning strategies as
algorithms composed of three cognitively plausible building
blocks, previously studied in the literature on individual decision-
making in non-social contexts: rules that guide information
search, stopping search and making a decision14. We study how
groups of individuals using different strategies perform in task
environments characterized by different levels of complexity,
while embedded in social networks varying in structural
properties that have been shown to affect the ease of
information flow in communities8,15–20.

We make two contributions. First, we demonstrate how the
building blocks of social learning strategies can lead to strikingly
different exploration–exploitation patterns and, as a result, to
different levels of performance in simple and complex task
environments. Second, we clarify and reconcile seemingly
contradictory results in the literature by showing how social
learning strategies and network structure interact to affect group
performance. Specifically, a number of studies have found that
network structures that promote slower information diffusion
(are less efficient) enhance group performance because they lead
to higher levels of exploration and increase the chance of finding
better solutions in the population8,15,18,21. In contrast, a recent
study, focusing on the same question, came to the opposite
conclusion, finding that networks promoting faster information
flow (those that are more efficient) lead to better performance16.
Here we show that one can obtain both results for the same type
of problem-solving task. We argue that answering the question of
how network structure affects performance requires studying how
it interacts with the social learning strategies used by individuals.

We develop a model of problem solving, where a group of
individuals are repeatedly searching for solutions that improve
group-level performance. We follow several authors in modelling
this problem as search on rugged landscapes15,16,18,22,23. The
main difficulty encountered by problem solvers searching such
environments is the presence of several local optima (peaks) from
which it is difficult to find better solutions. As a result, groups
face the challenge of finding good solutions without getting stuck
in local optima. We focus on two different environments, a
simple one with a single optimum and a complex one with several
locally optimal solutions (see Methods for further details).

In separate simulations, we vary the structural properties of the
communication networks in which agents are embedded. At the
two extremes, we consider a ‘fully connected network’, where
each individual is connected to everyone else in the population,

and a ‘locally connected lattice’, where individuals are connected
to their d immediate neighbours. In addition, we consider eight
network structures that were proposed in a recent study focusing
on the relationship between network structure and group
performance16. Taken together, these networks cover a broad
spectrum of possible structures and include all of the networks
that were studied in Lazer and Friedman15, Mason and Watts16,
and Derex and Boyd18, the recent studies that reached
incompatible results about the role of network structure on
group performance.

For each network structure and task environment, we assume a
group of 100 agents exploring the problem space through social
and/or individual learning. We formalize the social learning
strategies as algorithms composed of three basic building blocks:
rules that guide information search, stopping search and making
a decision14. Social learning strategies differed in the number of
individuals looked up before stopping search (s¼ 3 or s¼ 9) and
the decision rule (best member, conformity). See Methods for
further details.

For each social learning strategy, we assume that individuals
observe whether the socially acquired solution produces a higher
payoff than their current solution. If yes, they switch to the
socially acquired solution; otherwise they engage in individual
learning. Therefore, these strategies can be seen as a form of
‘critical’ social learning24.

Following several authors15,25,26, we model individual learning
as a hill-climbing strategy, which explores the landscape by
modifying a single digit in the current solution and observing
whether it produces a higher payoff. If yes, individuals switch to
the alternative solution; otherwise they keep their current
solution. As baseline strategies, we consider a group of pure
individual learners, who engage only in exploration (individual
learning) and a group of pure social learners, who engage only in
exploitation through copying a single individual at random and
adopting the individual’s choice if it has a higher payoff (random
copying).

On each time step, individuals first engage in social learning
(as described above) and, conditionally, switch to individual
learning. We iterate the procedure for t¼ 200 time steps, and
record the average payoff in the population on each time step
separately for each combination of strategy, network structure
and task environment. Results reported are averaged across 1,000
repetitions.

As we show next, inefficient network structures outperform
efficient ones when individuals rely on the best member strategy,
while efficient networks outperform inefficient ones when
individuals rely on the conformity strategy. In addition, groups
relying on conformity based on a small sample of other
individuals excel on complex tasks, while groups following the
best member achieve greatest performance for simple tasks.

Results
Performance of different social learning strategies. Figure 1
shows the average payoff achieved by each strategy over time for
two different environments: a simple one with a single optimum
(N¼ 15, K¼ 0, Fig. 1a) and a complex one with several local
optima and a global optimum (N¼ 15, K¼ 7, Fig. 1b) (see
Methods for more details). Results are qualitatively the same for
all other values of K40 and s (see Supplementary Table 1 for
results for other values of K; Supplementary Fig. 1 for a plot of
performance variability across repetitions; Supplementary Table 2
and Supplementary Note 1 for results for other sample sizes).
Here we focus on the performance of different social learning
strategies in a fully connected network, and discuss different
network configurations in the next section.
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Performance in simple environments. In the simple environ-
ments (where K¼ 0), all strategies eventually find the global
optimum; however, strategies differ in the time they need to
converge to this optimum (Fig. 1a). Strategies relying on the best
member lead to the fastest convergence, followed by the
conformity strategies and the pure individual and social learning
strategies. Because simple environments are dominated by only
one optimum, the tension between exploration and exploitation is
not very pronounced, since eventually every individual will end
up finding the best solution. The fact that all individuals converge
on the same solution can also been seen from Fig. 2a, which
shows the number of unique solutions in a population over time.
The number of unique solutions converges to 1 for all strategies,
which in the case of simple environments happens to be the
global optimum.

Performance in complex environments. Figure 1b shows two
striking results. First, the small-sample versions of both strategies
outperform their large-sample versions. This occurs because small
samples provide noisy information about the frequency of dif-
ferent solutions in the population. This noisy information reduces
the chance that individuals can find good solutions early on and,
as a result, makes individuals engage in higher levels of
exploration. This in turn increases the chance that over time they
will find better solutions.

Second, the conformity strategy relying on small samples
(s¼ 3) converges to the highest long-run outcomes, outperform-
ing the best member strategies by a large margin. Best member
strategies reach the highest short-run outcomes, but they quickly
drive the whole population towards locally optimal solutions,
from which individual exploration is no longer able to find better
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Figure 1 | Performance over time for different strategies in a fully connected network. N denotes the number of components of the system and K

represents the number of interdependent components (see Methods); s stands for sample size. (a) Simple environment with a global optimum and

(b) complex environment with multiple local optima. Red dotted lines: best member (s¼ 3); red dashed lines: best member (s¼9); turquoise thin lines:

conformity (s¼ 3); turquoise thick lines: conformity (s¼ 9); black dotted lines: individual learning; grey dashed lines: random copying. Based on n¼ 100

agents and 1,000 repetitions.
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Figure 2 | Number of unique solutions in the population over time. N denotes the number of components of the system and K represents the number of

interdependent components; s stands for sample size. (a) Simple environment with a single optimum and (b) complex environment with multiple local

optima. Red dotted lines: best member (s¼ 3); red dashed lines: best member (s¼ 9); turquoise thin lines: conformity (s¼ 3); turquoise thick lines:

conformity (s¼9); black dotted lines: individual learning; grey dashed lines: random copying. Based on n¼ 100 agents and 1,000 repetitions.
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solutions (see also refs 7,15,25). As a result, the whole population
gets stuck in an inferior state. This can also be seen from Fig. 2b,
which shows that the best member strategies converge to a single
unique solution. In contrast, the conformity strategies converge
more slowly (and to multiple solutions), leading to higher level of
exploration while still allowing the infrequent but superior option
to diffuse through the population.

The superiority of the small-sample conformity (s¼ 3) strategy
stems both from the heightened levels of exploration and from its
capacity for diffusing rare but superior solutions through the
population (see also ref. 27). That heightened exploration alone is
not enough can be seen from the fact that small-sample
conformity outperforms pure individual learning, which relies
exclusively on exploration. This pattern of results was replicated
in all complex landscapes (N4K40, see Supplementary Table 1).

With regards to the pure learning strategies, random copying
engages in high levels of exploitation in the beginning and drives
individuals to a single, locally optimal solution (as can be seen
from Fig. 2). However, since it is a pure social learning strategy
and engages only in exploitation, it can only disseminate
information that is already present in the population. It
outperforms individual learning initially, but reaches worse
performance in the long run. On the flip side, pure individual
learning engages only in exploration, but cannot spread the good
solutions through the population. The low performance of the
two pure learning strategies demonstrate the need to balance
exploration and exploitation4.

Taken together, these results indicate that different social
learning strategies lead to different patterns of explorative and
exploitative behaviour over time. The extent to which different
strategies prove useful depend crucially on their building blocks
(search, stopping and decision rules). Strategies using the best
member decision rule lead to high levels of exploitation and drive
the population towards local optima. Strategies using the
conformity decision rule promote higher levels of exploration
and can enable the population to find higher-payoff solutions
when relying on small samples. We replicate the same finding in
changing environments (Supplementary Fig. 2; Supplementary
Note 2).

Network structure and social learning strategy interact.
We have seen that different strategies can achieve remarkably
different performance within the same network structure. At the
same time, different network structures are also known to affect
performance by changing the relative use of exploration and
exploitation in the group8,15,16,18,21. How does network structure
interact with the social learning strategies?

Previous studies reached contradictory results. For example,
Lazer and Friedman15 used an agent-based simulation to
compare a ‘fully connected network’ with a ‘locally connected
lattice’ and found that the ‘locally connected lattice’ outperformed
the ‘fully connected network’ in the long run (see also refs 8,18).
This result implies that inefficient networks (that lead to slower
information spread) achieve better outcomes. Mason and Watts16

report a behavioural experiment with eight different networks
(Supplementary Table 3; Supplementary Fig. 3; Supplementary
Note 3). In contrast to Lazer and Friedman15, they find that
efficient networks (that are faster at spreading information in the
population) outperform inefficient networks.

What is driving this difference in results? Here we show
that both results can be obtained depending on the social
learning strategies that individuals use in a given network. We
study 10 different networks (Supplementary Table 3;
Supplementary Fig. 3). We focus on the two best performing
social learning strategies in complex task environments, the

best member and conformity strategies with small samples
(s¼ 3).

Figure 3a shows the average payoff achieved by groups in
different networks. The left panel shows the average performance
of the efficient and inefficient networks when individuals use the
best member strategy, while the right panel shows the same
performance when individuals rely on the conformity strategy.
The shaded regions show the area between the best and worst
performing networks in each category. Results in the left panel
replicate the findings of Lazer and Friedman15, who find that
inefficient networks outperform efficient networks. This is
expected given that their simulated agents relied on the best
member strategy. Results in the right panel show the opposite
result, with efficient networks outperforming inefficient networks.
This is in line with the results of Mason and Watts16, who found
the same result, albeit in a different type of landscape (we
replicate these same findings using the landscape of Mason and
Watts16, and report the results in the Supplementary Information
(Supplementary Fig. 4; Supplementary Note 4)). Our results
indicate that this finding would be expected if participants used a
strategy similar to conformity. By comparing the two panels, we
can also see that the conformity strategy outperforms the best
member strategy in each network. The same conclusions can be
drawn from the bottom row of Fig. 3, which shows average
performance at the final time step (t¼ 200) for each network.

We also examine the relationship between the diameter of a
network and the average payoff achieved by individuals. Higher
diameters indicate less efficiency at spreading information.
Figure 4 shows that the relationship between diameter and
average performance is positive for the case when individuals rely
on the best member (s¼ 3) strategy and negative when
individuals rely on the conformity (s¼ 3) strategy, confirming
that network efficiency has opposite effects depending on the
strategy being used (the relationship between clustering coeffi-
cient and average performance shows the same pattern of results).
Note, however, that our analyses are based on an uneven number
of diameter values, since some of the networks have the same
diameter.

Our findings demonstrate that both efficient and inefficient
networks can lead to superior performance, depending on the
social learning strategies used by individuals in the group. They
suggest that network structure and social learning strategies
jointly affect the levels of exploration and exploitation in the
population. If both strategy and network promote high levels of
the same activity (either exploration or exploitation), perfor-
mance is likely to drop; however, if network and strategy
promote opposite behaviours, performance is likely to rise.

Discussion
We asked two questions. First, how do different social learning
strategies affect behaviour and performance in simple and
complex task environments? We found that the best member
strategies reach the highest performance in simple task environ-
ments, but weak conformity, achieved by relying on small
samples, ensures the highest long-run outcomes when task
environments are complex. The intuition underlying these results
is the following. The best member strategies are fast at diffusing
useful information and, therefore, quickly drive the population
towards locally optimal solutions. The conformity strategy leads
to slower convergence and thereby allows the population to
explore more and eventually find solutions that have higher
payoffs. Small samples have a similar effect and help both
strategies in complex environments.

Second, how do these strategies interact with network
structure? Our results indicate that efficient networks promoting
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faster information diffusion outperform the inefficient networks
when individuals use the conformity strategy. However, the
opposite is the case when individuals use the best member
strategy: here inefficient networks outperform efficient ones. This
shows that group performance depends both on the network
structure individuals are embedded in as well as the social
learning strategies they use. We used this insight to clarify and
reconcile seemingly contradictory findings from the literature, by
showing that both well-connected and less well-connected
networks can be beneficial for the same task, depending on the
social learning strategies used by individuals8,15,16,18,21. Our
results are in line with recent analyses showing that, for complex
tasks, there is a trade-off between the probability of adopting
others’ solutions and network connectivity28,29. We show that
such trade-offs can be achieved by cognitively plausible social

learning strategies that are widely observed among human and
other animals30. Recently, Shore et al.20 showed that different
network structures can be better for different types of tasks
involved in problem solving. Here we show that social learning
strategies can change the performance of different networks for
the exact same task.

Our results replicate the findings of both Lazer and Fried-
man15, who studied the best member strategy in agent-based
simulations and found superiority of inefficient networks, as well
as the findings of Mason and Watts16, who conducted
behavioural experiments and found that more efficient
networks are superior. While we do not know the exact
strategies that participants employed in the latter experiments,
Fig. 4 in Mason and Watts16 and the surrounding discussion
suggests that their participants where disproportionately more
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likely to copy a solution if two or all three group members
exhibited it, compared with a solution found by only one of the
three other members. This finding indicates that they relied on
some form of frequency-dependent social learning, similar to our
conformity strategy31. Mason and Watts16 also found that
individuals in efficient networks explored more than those in
inefficient networks, suggesting that network efficiency on its own
should not lead to premature convergence on local optima. Our
results agree with this finding and suggest that the social learning
strategy used by individuals will also influence the speed of
convergence to different optima.

Overall, our findings provide a novel perspective on the
relationship between network structure and group performance,
and raise a number of issues that could be tested in future
empirical studies. While previous experiments have focused on
fixed groups where individuals have access to the choices of all of
their connections, the question of how individuals decide whom
to copy and how many individuals they sample remains
unaddressed. Studies of this question could also provide insights
into how people decide to form network connections and how
network structure evolves during the learning process. For the
sake of clarity and our goal of reconciling existing results in the
literature, we focused on groups that rely on a single form of
social learning in fixed network structures. Future work should
investigate how different mixtures of social learning strategies
both within and across individuals affect performance in
networks32,33, as well as how network structure affects the
selection of different social learning strategies.

It is well known in the evolution of social learning literature
that the performance of a strategy depends crucially on the types
and frequencies of other strategies in the population11,12. In this
study we assume that groups are using a single strategy. While
this is clearly a limitation of the present study, we believe it is
justifiable for two reasons. First, studying the dynamics of
strategies in isolation is a necessary first step towards
understanding how they might affect other properties of the
system (here, network structure). Second, the results gained from
studying populations with mixed strategies can always be
modified by the inclusion or removal of some strategies from
the mixture. A key challenge for future research will be to
empirically estimate the frequencies and forms of different social
learning strategies to inform theoretical models about the variety
and frequency of social learning strategies in real-world

groups33,34. Finally, future studies could employ real-world
networks from large-scale organizations or online platforms.

Our study has broad implications for organizational learning,
technological innovation, cultural evolution and the diffusion of
innovations. Research on technological innovation has high-
lighted the combinatorial nature of innovation with most new
inventions being re-combinations of existing technologies35,36.
Much of this research has focused on how innovation occurs,
whereas there has been very little attention devoted to the
co-evolution of innovation and the simultaneous diffusion of these
innovations. We identify situations where imitation can both help
and hinder the development of technological innovation. In
addition, most studies of exploration and exploitation in
organizations focus on how to design the external environment
to make groups more adaptive8,15,25,37. Our results highlight that
it is also important to consider the social learning strategies used
by individuals and organizations, and show that interventions
aimed at changing the social environment while disregarding these
strategies might not produce the desired effects.

Methods
Generating the task environment. To create a multi-peaked environment, we use
the NK model26, which is a ‘tunably rugged’ landscape determined by N, the
number of components that make up each solution, and K, the number of
interdependencies between these components. N and K together determine the
structure of the task environment where different solutions in the space have
different payoffs (see Supplementary Fig. 5 for an illustration of the landscapes).
To construct the task environment, we represent each solution in the environment
by an N-length vector composed of binary digits, leading to a total of 2N possible
solutions in the task environment. The payoff of each solution is calculated as the
average of the payoff contributions of each element. The payoff contribution of
each element is a random number drawn from a uniform distribution between 0
and 1. In the case of K¼ 0, a simple average of the N elements is taken:

1
N

� �PN
i¼1 Ni , whereas with K41, individual payoff contributions are

determined by values of the K� 1 other, interdependent elements, that is,
f(Ni|Ni,Niþ 1,...,Nk), where f() is the payoff function and the total payoff is
1
N

PN
i¼1 f ðNi jNi;Niþ 1; :::;NkÞ. Which of the K� 1 other components a given

element is interdependent with is determined randomly. In other words, when
K¼ 0, changing any single element of the solution will affect only the contribution
of that element, whereas when K40, changing a single element will change the
payoff contribution of the K� 1 other elements. When K¼ 0, exploration of
solutions through the modification of single components can prove effective,
but as K increases, local exploration becomes less and less effective7.

Following several authors15,37, we normalize the payoffs of different
solutions by dividing them by the maximum obtainable payoff on a landscape
PNorm¼ Pi/max(P). The distribution of normalized payoffs tends to follow a
normal distribution with decreasing variance as K increases. This implies that most
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solutions tend to cluster around very similar payoff values. Following Lazer and
Friedman15, we use a monotonic transformation, raising PNorm to the power of 8
((PNorm)8) to widen the distribution, making most solutions ‘mediocre’ and only a
few solutions ‘very good’.

Generating the networks. All networks were assumed to have n¼ 100 nodes and
a fixed degree of d¼ 19, except for the ‘fully connected’ network where d¼ n� 1.
This produces the same degree-to-node ratio as in the study of Mason and Watts16

(more details about all networks are provided in the Supplementary Information).
For the ‘fully connected network’, we assign each node all other nodes as
neighbours, leading to n� 1 neighbours for each node. For the ‘locally connected
lattice’, we assign each node the d¼ 19 closest consecutive nodes as neighbours,
keeping the degree fixed across nodes. To generate the eight additional networks,
we follow the procedure described in Mason & Watts16. Starting from a random
graph with n¼ 100 nodes and a fixed degree of d¼ 19, we perform degree-
preserving rewirings. After each rewiring, we record the network measure of
interest ((a) closeness centrality, (b) betweenness centrality, (c) clustering
coefficient and (d) network constraint) and accept the rewiring only if it maximizes
or minimizes the network measure of interest. We continue the rewiring process
for 1,000,000 iterations or until we are no longer able to obtain a network with a
lower (higher) network measure. We repeat this process 1,000 times to avoid
getting stuck in local maxima or minima. The topology of the network in the
Supplementary Table 3 indicates the network measure of interest and whether it
was maximized or minimized. For example, for the network ‘Min mean clustering’,
we looked at the average clustering in the network, and kept rewiring it until we
could no longer find networks with a lower (minimum) average clustering score.

Simulation procedure. We assigned random starting solutions to a group of
n¼ 100 individuals. This ensured a high level of initial diversity in solutions. On
each time step, individuals went through the following steps. First, they applied
their social learning strategies consisting of search, stopping and decision rules.
Individuals searched randomly among their contacts in the network; stopped
searching after looking up the solutions of either a relatively small (s¼ 3) or a
relatively large (s¼ 9) sample of other individuals with whom they were connected;
made a decision by either selecting the solution of the best performing agent
(best member) or the most frequent solution in the sample (conformity). In case
each solution was equally frequent, they relied on individual learning (as described
below). After applying their social learning strategies, agent compared the socially
identified option with their current option and decided to switch if it had a higher
payoff. If the socially acquired solution did not produce a higher payoff, they
switched to individual learning, which consisted of examining the resulting payoff
of modifying a single digit of the current solution and adopting it if it had a higher
payoff. These steps were repeated for t¼ 200 time steps for each combination of
strategy, task environment and network structure. Results reported were averaged
across 1,000 repetitions.

Data availability. Simulation code and data files containing simulation output are
available at https://github.com/dnlbrkc/social_learning
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