
Journal of Digital Forensics, Journal of Digital Forensics, 

Security and Law Security and Law 

Volume 16 Article 1 

2-16-2021 

Social Media User Relationship Framework (SMURF) Social Media User Relationship Framework (SMURF) 

Anne David 
Cranfield University, a.david@cranfield.ac.uk 

Sarah Morris 
Cranfield University, s.l.morris@cranfield.ac.uk 

Gareth Appleby-Thomas 
Cranfield University, g.thomas@cranfield.ac.uk 

Follow this and additional works at: https://commons.erau.edu/jdfsl 

 Part of the Computer Law Commons, Evidence Commons, Information Security Commons, and the 

Social Media Commons 

Recommended Citation Recommended Citation 

David, Anne; Morris, Sarah; and Appleby-Thomas, Gareth (2021) "Social Media User Relationship 

Framework (SMURF)," Journal of Digital Forensics, Security and Law: Vol. 16 , Article 1. 

DOI: https://doi.org/10.15394/jdfsl.2021.1698 

Available at: https://commons.erau.edu/jdfsl/vol16/iss1/1 

This Article is brought to you for free and open access by 
the Journals at Scholarly Commons. It has been 
accepted for inclusion in Journal of Digital Forensics, 
Security and Law by an authorized administrator of 
Scholarly Commons. For more information, please 
contact commons@erau.edu. 

(c)ADFSL 

http://commons.erau.edu/jdfsl
http://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl/vol16
https://commons.erau.edu/jdfsl/vol16/iss1/1
https://commons.erau.edu/jdfsl?utm_source=commons.erau.edu%2Fjdfsl%2Fvol16%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fjdfsl%2Fvol16%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/601?utm_source=commons.erau.edu%2Fjdfsl%2Fvol16%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol16%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1249?utm_source=commons.erau.edu%2Fjdfsl%2Fvol16%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.15394/jdfsl.2021.1698
https://commons.erau.edu/jdfsl/vol16/iss1/1?utm_source=commons.erau.edu%2Fjdfsl%2Fvol16%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/


SMURF JDFSL 2021

SOCIAL MEDIA USER RELATIONSHIP

FRAMEWORK (SMURF)
Anne David1, Sarah Morris2, Gareth Appleby-Thomas3

1,2Centre for Electronic Warfare, Information, and Cyber
3Centre for Defence Engineering

Cranfield University, Shrivenham, UK
{a.david,s.l.morris,g.thomas}@cranfield.ac.uk

ABSTRACT

The use of social media has spread through many aspects of society, allowing millions of individuals,
corporate as well as government entities to leverage the opportunities it affords. These opportunities
often end up being exploited by a small percentage of the user community who use it for objectionable
or unlawful activities; for example, trolling, cyber bullying, grooming, luring. In some cases, these
unlawful activities result in investigations where the swift retrieval of critical evidence is required in
order to save a life. This paper presents a proof of concept (PoC) framework for social media user
attribution. The framework aims to provide digital evidence that can be used to substantiate user
activity in live triage investigations. This paper highlights the use of live triage as a viable technique
for the investigation of social media activity, contextualizing user activity and attributing actions to
users. It discusses the reliability of artefacts other than the communication content as a means of
drawing inferences about user social media activity, taking into account.

Keywords: digital forensics, digital investigation, digital investigation framework, live triage,
relationship attribution, social media

1. INTRODUCTION

Social media presents investigators with a
plethora of useful digital evidence as shown by a
range of criminal prosecutions and convictions
as well as civil investigations with outcomes such
as disciplinary measures. Thus, the timely recov-
ery of these artefacts is considered of interest to
investigators during a live triage.

Triage as a practice emerged in the field of
medicine where it was used to assess hospital
patients in order to establish the order of priori-
tization of treatment Robertson-Steel (2006). In
digital forensics however, triage is a fast-growing
practice with two streams; live and post-mortem
triage.

In time sensitive investigations, the need to
quickly obtain actionable intelligence, in a usable
format from a live system Wiles and Reyes (2007)

may take precedence over waiting to conduct a
detailed forensic analysis. This paper proposes
a proof of concept (PoC) framework for social
media user attribution, to support investigators
through the automated, targeted recovery arte-
facts from social media activity in a live triage.

This paper is focused on social media access
through a web browser and aims to highlight the
potential in using artefacts other than commu-
nication content to infer and contextualise user
activity, and to attribute actions to a user. The
proposed framework is intended to be applicable
and generalisable to other triage investigations.
The web browser(s) referenced in this paper is a
demonstration for the framework.

1.1 Contribution

The key contributions of this paper are as follows:

© 2021 JDFSL Page 1



JDFSL 2021 SMURF

⇒ the proposal of a PoC framework for live
triage investigations involving social media

⇒ defines a baseline for the artefacts of interest
as a method for grouping social media arte-
facts based on the perceived user activity.
This can be used in the prioritization of live
triage data analysis

⇒ a demonstration to test its applicability, gen-
eralisability and reliability through the iden-
tification of how SMURF can extend or com-
plement existing triage tools

1.2 Paper Structure

The rest of this paper is structured as follows:
related work is discussed in Section 2; SMURF
is introduced in Section 3, discussing the prob-
lem definition, characteristics and development.
Section 4 discusses the build process and how
SMURF works. In Section 5, the PoC imple-
mentation is discussed including data generation,
analysis and the PoC deployment. Section 6
presents a case study and reliability assessment.
Section 7 contains the discussion, and Section 8
presents the conclusion and future work.

2. LITERATURE REVIEW

This section provides a background on related
work in the investigation of social media activ-
ity, the rules and reliability of digital evidence,
and live triage investigations. It discusses the
challenges faced by practitioners in the course
of investigating user social media activity, and
acquiring digital evidence that can be used for
the attribution of actions and relationships to a
user.

2.1 Social Media and Digital
Evidence

Social media provides an opportunity for users
to connect with others of similar interests, form
personal or business relationships, and to commu-
nicate in real time through sharing multimedia
files, instant messaging, microblogging, advertis-
ing etc.

It also provides investigators with valuable
evidence that can be used to connect a suspect
(or suspects) to a criminal activity of interest or
to other persons of interest.

Social media has been described by Zeng et al.
(2010) as a distributed mode of generating, dis-
seminating content and communication among
communities. Its use as a source of digital evi-
dence has been recognised as an area of interest
Arshad et al. (2019) deserving of further research
in the digital forensics community.

There have been a number of approaches taken
by researchers and practitioners exploring social
media activity. For example, Shaw et al. (2016)
takes a network forensics approach, reviewing the
vulnerabilities of social media platforms. Hubert
(2014) presents techniques that can be applied
to non-criminal investigations such as employee
misconduct.

To understand social media communication
within the context of this paper, it is necessary
to define communication in a ‘traditional’ sense
and how social media fits into the concept of
communication. Communication, according to
Dance (1967) has been described as “the elici-
tation of a response from another, without
making a distinction between the interaction of
animate and inanimate matter, or the interaction
between humans and animals”. Littlejohn (1992)
suggests that communication can be defined by
“looking at the conceptual components of
the act, for example, speech, symbols, interac-
tion, and intention”.

These definitions outline, in a simplistic way,
what communication entails i.e. “eliciting a re-
sponse from another” through writing, speaking,
the use of signs or symbols. It is also worthy
to note that Littlejohn includes ‘intention’ as
one of the conceptual components of the act of
communicating.

Viewing these from a digital forensics per-
spective, communication on social media occurs
through interactions/exchanges (action) that
‘elicit a response’ from other users, and these
interactions tend to involve the use of textual,
graphic, audio content amongst others. These
exchanges to a degree, often reflect the ‘intent’
of the user initiating the interaction and may
be used to form associations (relationships) on
social media platforms.

This could be considered as useful evidence
to digital forensics investigators. The content

Page 2 © 2021 JDFSL



SMURF JDFSL 2021

shared, when recovered can be submitted as dig-
ital evidence while the nature of the interaction
when contextualised may be used to infer the
user’s intent (motive) for example, the user may
intend to provoke other users, commit a criminal
act, or incite another user into committing a
criminal act.

2.1.1 Challenges Posed by Social Media
Communication

Although it can be a valuable source of digital
evidence, as with every technology, social media
also presents challenges to investigators. Some of
which include the use of proprietary data formats
across supported devices, the type of artefacts
written to disk, and the ability of a portion of the
platform’s user community to engage in unde-
sirable or unlawful activities Bello and DiBlasio
(2013); Moore (2014); Select Committee on Com-
munications (2014).

There has been several social media related
prosecutions and convictions over the years, high-
lighting cases where social media has been used
for activities such as trolling, murder, drug traf-
ficking, and fraud Haroon and Carter (2010);
Bello and DiBlasio (2013).

There is also the lack of standardisation
Cusack and Son (2012) which often results in
social media investigations being approached as
a web browser focused investigation when the
social media platform is accessed through a web
browser. Self-contained social media applica-
tions may handle things differently but were not
explored as they were deemed out of scope. It
has been suggested that ACPO Guidelines can
be used as a starting point when investigating
social media activity in the UK.

Other challenges associated with the investi-
gation of social media activity include communi-
cation content not being immediately available
or accessible on disk David et al. (2020) with-
out additional measures/efforts to retrieve it for
example, the use of file carving scripts; there
are also possible privacy implications as high-
lighted by Casey (2013) because some artefacts
may contain information about unrelated users
or activities.

2.1.2 Requirements of Admissibility of
Digital Evidence

Digital evidence has been defined in different
ways depending on the context of the investi-
gation (i.e. criminal or non-criminal). Casey
(2004) defines digital evidence as “data stored or
transmitted using a computer, which supports or
refutes a theory on how an event occurred ”; thus
addressing the critical elements of a crime such
as determining the intent of a suspect.

Mukasey et al. (2008) defines digital evidence
as “information or data of investigative value
that is stored on, received or transmitted by a
computer ”; highlighting the role of digital evi-
dence - its “investigative value” in criminal
(or non-criminal) proceedings.

Digital evidence is known to exhibit a number
of characteristics e.g.:

⇒ Latency: the evidence must be processed in
order to derive meaningful and usable data
from it.

⇒ Fidelity: the original evidence is not nec-
essarily required. A copy of the original
would suffice provided that the copying pro-
cess does not invalidate the evidence.

⇒ Volatility: digital evidence is at risk of inten-
tional or unintentional alteration or deletion.
Intentional changes may be an attempt by
an individual to corrupt and invalidate the
evidence McKemmish (2008) however, this
can be addressed by maintaining an audit
trail and a comprehensive log of the evidence
recovery process.

In order to be considered valuable to an in-
vestigation, and to be admissible in a court of
law, digital evidence needs to meet certain re-
quirements which include being relevant to the
case, reliable, authentic, complete (i.e. paints an
understandable, full picture), believable and the
recovery method must be repeatable and should
produce the same results when conducted by an
independent third party ACPO (2012).

These requirements complement the charac-
teristics of digital evidence and guide its admissi-
bility in court. It is important to note that there
may be circumstances where changes to digital
evidence in the course of an investigation is un-

© 2021 JDFSL Page 3



JDFSL 2021 SMURF

avoidable; this can be managed by maintaining a
comprehensive record of the interactions between
the investigator and the target device and also
the possible implications of those interactions.

2.2 Live Triage Investigations

Triage, historically has been in practice in the
medical field and has been defined as “the pro-
cess of quickly examining patients who are taken
to a hospital in order to decide which ones are
the most seriously ill and must be treated first”
Cambridge University Press (2019). In digital
forensics however, this definition can be used to
describe two scenarios: an on-site/live triage or
an off-site/post-mortem triage, depending on the
type of investigation. Post-mortem triage is out
of scope for this paper, for more information, see
Garfinkel (2013); Jusas et al. (2017); Parsonage
(2009); Roussev and Quates (2012).

Live (on-site) triage is a technique used by
investigators to quickly retrieve actionable intel-
ligence at a crime scene. It is implemented in
time sensitive investigations such as kidnapping,
missing persons; where there is an imminent
threat to life; the use of encryption on a device;
the need to extract and preserve volatile arte-
facts Bashir and Khan (2013) or the practicality
of seizing a device.

Live triage is appropriate when the require-
ment for actionable intelligence outweighs the
need to perform a lab-based, detailed forensic
analysis on all potential sources of digital ev-
idence discovered at a crime scene Wiles and
Reyes (2007). The data recovered during a live
triage can be used to guide the investigation by
highlighting possible areas or persons of inter-
est prior to a full forensic analysis of the digital
storage media.

Existing research has proposed a number of
techniques in the use of live triage in digital foren-
sics investigations Gielen and Bolzoni (2014);
Montasari (2016). These highlight live triage as
a viable means of recovering intelligence that can
be used to generate new leads and to assess the
severity of a crime. The Computer Forensic Field
Triage Process Model (CFFTPM) developed by
Rogers et al. (2006) can be applied to a wide
spectrum of investigations and is considered a

foundation for modelling the live triage process.
It is focused on on-site analysis of digital devices,
to obtain information that can be used during
the “search and execution” stage of the investiga-
tion or during a suspect’s interview. CFFTPM
highlights the need to consider live triage as part
of the digital forensics process.

The CFFTPM is not automated and is de-
signed to be used by competent users. This
requirement for examiner competency presents
some challenges as additional resources may be
expended on-site where the on-site investigation
takes priority over existing cases Hitchcock et al.
(2016), resulting in the creation of backlogs in
the forensic lab as existing cases may need to be
put on hold.

Hitchcock et al. however, in the Digital Field
Triage Model (DFT) proposed that providing
non-specialists with training on the skills re-
quired to supplement/support investigators and
analysts on-site would help digital forensics units
maximize resources and would also provide the
information required during a live triage. This
will ensure that analysts required in the lab are
able to focus on lab-based work.

Cantrell et al. (2012); Cantrell and Dampier
(2012) in the Digital Triage Process Model, also
addressed the challenges of appropriately man-
aging resources and the utilization of non-digital
forensics specialists during live triage investi-
gations by introducing and implementing semi-
automated steps in the proposed process model.
Semi-automation, it was argued, would make it
easier for non-specialists to use; speed up the
live triage process and make it possible for these
processes to be scripted into a case-specific frame-
work.

There are concerns around the use of live triage
during investigations, specifically highlighting
the possibility of data being written to the de-
vice being investigated. This is often dependent
on the type of investigation. For example, during
an incident response investigation, the objective
is usually business continuity and ensuring that
compromised systems are returned to a ‘good
working state’ thus, creating files or writing to
the target device is not often considered a prob-
lem Gielen and Bolzoni (2014).

Page 4 © 2021 JDFSL



SMURF JDFSL 2021

During digital forensics investigations, the
state of digital data is to remain unmodified
where possible. Thus, in compliance with the
relevant jurisdictional guidance and best prac-
tice, (e.g., ACPO Principle #2 as UK Guidance),
all actions taken during a live triage including
any possible impact must be documented and
justified.

There are also concerns that a live triage may
overlook pertinent evidence Casey (2013) how-
ever, this can be addressed by conducting a de-
tailed forensic analysis of the device, building
on the evidence recovered during the live triage.
The detailed analysis may be conducted on-site
or in the lab as appropriate.

In addition to the on-going research into the
use of and applicability of live triage processes
in digital forensics, further work is required to
capture and address how triage tools can be used
to:

⇒ supplement the limitations of existing tools
and processes.

⇒ manage targeted capture of specific volatile
or case-based artefacts that can provide in-
vestigators with actionable intelligence.

2.3 Digital Evidence: Challenges

Digital evidence aims to link an offender to a
crime or to exonerate a suspect. A number of
factors however, pose a challenge to the recovery
and use of digital evidence. For example, differ-
ences in operating systems, applications and stor-
age methods; the use of concealment and crypto-
graphic techniques DFRWS (2001); the complex-
ity of digital devices 7safe (2014); TWGECSI
(2001); the volume of data to be analysed ACPO
(2012); data compression and the storage capac-
ity of the digital devices McKemmish (2008);
Sommer (1999); spoliation techniques Marcella
and Menendez (2007).

Evidence from user Internet activity may
change with little or no notice for example,
changes to the browser data storage format (e.g.
proprietary compression format) and the type
of data stored (e.g. cookies, history) could in-
fluence the type of data available for recovery.
This often means that it takes longer to under-

stand and decode the data in order to extract
meaningful information from it.

Marcella and Menendez (2007) suggests re-
viewing and assessing new technologies from an
offender’s perspective in order to understand how
it can be used to hinder an investigation. This is
because technology often ends up being used in
a manner that deviates from its original purpose.
Encryption and evidence eliminating tools are
widely available, often for free on the Internet
and can be used to attempt to evade detection
or prosecution.

2.4 The Reliability of Digital
Evidence

In a generic sense, reliability has been defined as
“the quality of being able to be trusted or believed
because of working or behaving well ” Cambridge
University Press (2019).

Digital evidence could be user or system gener-
ated David et al. (2020) thus when determining
its reliability, it is important to assess how trust-
worthy it is. This is because a number of system
activities outside the control of the user may
create artefacts that appear related to a case but
may not be for example, background processes
such as web browser caching.

Casey (2011) suggests that an effective way of
assessing the reliability of digital evidence is to
focus on the evidence itself (e.g. checking the
evidence for signs of tampering/damage), rather
than the process through which it was created.

Due to the nature of live triage investigations,
where repeated access to a target device is not
advisable, reliability can be assessed by:

⇒ logging and detailed documentation of the
recovery process.

⇒ how believable the evidence is;
⇒ and how accurately such evidence can be

correlated, corroborated and attributed to
specific events. For example, artefact ‘A’
infers that the user ‘Bob’ added user ‘Chuck ’
as a friend and has visited ‘Chuck’s ’ profile
‘X ’ times; this inference is supported by
JSON and cache artefacts which provide
context and imply that ‘Bob’ and ‘Chuck ’
have a social relationship.

© 2021 JDFSL Page 5



JDFSL 2021 SMURF

2.4.1 Relationship Attribution

Attribution in digital forensics is used to show
a link between a suspect to the artefacts found
on a digital device. In the context of this paper,
relationship attribution is aimed at determining
the degree to which a specific artefacts can be
attributed to a specific event, using the artefacts
recovered during a live triage.

This includes leveraging corroborating arte-
facts such as browser cached content, system
generated artefacts etc. David et al. (2020) to
show the connection between a user and social
media activity or social relationships and associ-
ations. This would facilitate the prompt identifi-
cation of persons of interest to an investigation
prior to a detailed forensic analysis.

3. SMURF

SMURF is a framework built from a collection
of components, and designed for live triage in-
vestigations focused on user activity on social
media in digital forensics.

SMURF is a command-line interface (CLI)
tool designed to automate the recovery of arte-
facts that can be used by investigators to infer
and attribute actions to a user.

This section discusses the characteristics and
development of SMURF. It also discusses how
SMURF can be used by investigators to effec-
tively and quickly build and deploy triage tools
during an investigation.

3.1 Framework Problem Definition

David et al. (2020) presented results from a man-
ual analysis of user activity on Twitter. This
was done as a “dead disk” forensic analysis and
provided some examples of the type of artefacts
that an investigator may expect to find on digi-
tal storage media where a user has engaged in
activity on Twitter.

In some time sensitive cases, digital forensic
investigators are required to perform a live triage
in order to obtain actionable intelligence that will
help save the life of an individual (e.g. missing
person). In such instances, this immediate need
for actionable intelligence takes precedence over
a full disk analysis which can be conducted later.

SMURF intends to address the need for a
generalisable, reusable, and adaptable technique
for automated evidence recovery from a variety
of usage scenarios, providing a reusable design
with multiple levels of functionality. To do this,
SMURF is designed for:

I. use in a live triage investigation
II. the furtherance of the automated recovery,

categorising recovered artefacts based on
possible usage scenarios and the enabling
the attribution of actions or relationships to
a user.

III. the provision of quick and usable informa-
tion that would enable investigators define
the initial stages of an investigation, gener-
ate new leads, and highlight possible areas
of interest to be looked at during a detailed
forensic analysis.

3.2 Framework Characteristics

The development process for SMURF involved
considering the characteristics that would define
its functionality. This includes determining the
availability and location of artefacts of interest,
determining the types of artefacts that can be
used to provide context to user activity.

This process also includes understanding that
certain types of artefacts such as the contents of
communication (e.g. text, multimedia files) may
not be readily available to view or accessible
on disk as they may be in unallocated space.
Thus, it may be necessary to recover and use
other artefacts that could be used in making
inferences about user activity.

It is also important to understand how these
artefacts can be used to attribute actions and
relationships to a user based on the amount and
usefulness of the actionable intelligence SMURF
provides an investigator. This will enable an
investigator to understand the context of the
artefact, how it came to be, and what possible
usage scenario could have created it. It will also
assist the investigator when making a judgement
on how to proceed.

3.3 Framework Development

The limitations observed with the ability to re-
cover artefacts from social media activity (Sec-

Page 6 © 2021 JDFSL



SMURF JDFSL 2021

tion 3.2, i.e. communications content in un-
allocated space) highlights the need to identify
and define the artefacts that may be of interest
during a triage investigation.

Examples of these artefacts include browser
history data such as presented in David et al.
(2020) i.e. URLs, authentication credentials, ses-
sion information, cached data etc. as well as
system artefacts that provide context about the
user accounts, programs and applications run-
ning on their digital storage media.

3.3.1 Components

This stage of the framework development process
involved identifying and defining the major parts
that constitute the framework. It involved evalu-
ating the artefacts recovered during the manual
investigation of the disk image and determin-
ing whether the artefacts would provide quick,
easy to assimilate information for an investigator
during a live triage.

The manual artefacts were subsequently cate-
gorised into context and case specific artefacts;
then they were broken down into specific arte-
facts from which the framework components were
derived.

Examples include:

I. a component that recovers artefacts contain-
ing user account information, such as the
number of user accounts on the computer,
the user Security Identifier (SID), and lo-
gon/logoff information

II. component for the recovery of user data
from social media activity

As SMURF is intended for live triage investiga-
tions, it was determined that a component would
be required for logging the interaction between
the deployment device and the target device in
compliance with ACPO #2.

3.3.2 Development Environment

This stage of the framework involved identifying
a suitable programming language for the proof of
concept (PoC). It also involved reviewing existing
work with open source live triage tools to enable
a gap analysis as part of this research. The gap
analysis identified the capabilities of existing
tools and how SMURF augments them.

The development environment setup is as fol-
lows:

⇒ Windows 10 Education (Local Machine)
⇒ Python 3
⇒ PyCharm Professional Edition with Ana-

conda Plugin

Scripting Individual Components Each
component of the framework (as described in
Section 3.3.1) was scripted to recover specific
artefacts. In addition to the artefact-specific
components, a ‘core’ component was also scripted
to collate the recovered artefacts, and present
them in a HTML report for the investigator.
This approach can be described as a “practi-
tioner friendly” approach to automated evidence
recovery in a live triage.

This process is described further in Section 4.2
where a graphical illustration of the components
is presented.

4. BUILDING THE SMURF

FRAMEWORK

This section discusses at a high level, the theo-
retical aspects of SMURF. The intention was to
build a linear, modular investigative tool, with
the potential to extend and mature its functional-
ity. SMURF’s modularity allows for the addition
or exclusion of components based on the use
case.

Figure 1 is a graphical representation of how
SMURF works. The components used to achieve
these are discussed in Section 5.

4.1 Capture

This stage involves recovering data from a live
machine. As this is the stage that initiates inter-
action between the triage device and the target
device, it was necessary to first programmati-
cally record the triage device details, the date
and time it was connected to the target device
before proceeding with the data collection.

The data collection at this stage focused on
system generated and user generated artefacts
(e.g. web browser artefacts).

© 2021 JDFSL Page 7



JDFSL 2021 SMURF

Figure 1: An illustration of how SMURF works

4.2 Identify

This stage involves segregating the data collected
during the capture. The artefacts are grouped
based on type and the location found. For exam-
ple, if the data contains the social media platform
name or an associated name, and it is a URL
(type), put it in the “visited places group” for
further processing.

4.3 Process

The artefacts recovered and grouped at the “Iden-
tify” stage are processed to highlight the type
of activity that could have created them. For
example, user account registration, viewing and
sharing content etc.

This stage also involves the use of pattern
matching techniques as presented in David et al.
(2020) to extract features of interest.

4.4 Present

The data from preceding stages feed into the
“Present” stage. Here, the results from the pro-
cessing stage are parsed and returned in a text
based HTML report. Following the theme of a
live triage, this report provides the investigator
with a quick view of the data recovered, in a
usable manner.

5. CREATING A POC

SMURF IMPLEMENTATION

This section presents the data generation and
analysis methodology for a PoC.

5.1 Data Generation

The data set used in this paper was generated
from previous experiments conducted as part of
the work presented in David et al. (2020). It
involved the simulation of a range of normal
user activity on Twitter, some of which include
a variety of the activities listed below:

⇒ Power on and log in to the experimental
VM

⇒ Launch the web browser (Google Chrome
and Firefox were used)

⇒ Login to test user account on Twitter via
the browser

⇒ Search for users to follow (publicly accessible
accounts e.g. @bbcgoodfood)

⇒ Sending tweets (text, images, links)
⇒ Reply and retweet messages
⇒ Viewing and sending Direct Messages (DMs)
⇒ Sending photos via DM
⇒ Retweets via DM
⇒ Send follow requests to other test user ac-

count
⇒ Viewing and accepting follow requests
⇒ Updating the account privacy settings

Page 8 © 2021 JDFSL



SMURF JDFSL 2021

⇒ Scrolling through the test user account time-
lines and that of its followers

5.2 Data Analysis

The data analysis for this paper was conducted
in a Windows 10 desktop environment using the
PoC framework - SMURF. This section discusses
how individual components of the SMURF were
used for data analysis; it includes code extracts
with several lines removed for brevity.

A graphical illustration of SMURF is shown in
Figures 2 and 3. It shows the components that

make up the framework and how they feed data
into the core component enabling the generation
of a report with the relevant information required
by an investigator.

5.2.1 Component: device_identifier

This component was used to retrieve the identi-
fying information for the triage device on which
SMURF was running. This includes the Vendor
ID (VID) and Product ID (PID) of the device.

This information is written to the report to
account for the interaction between the triage
device and the target device being investigated.

Extracts from device_id.py

# Path to log file = "C:\ Windows\INF"

windows_dir = os.path.abspath(os.sep)

path_to_logfile = pathlib.Path(windows_dir).joinpath('Windows ', 'INF')

# Read data from setupapi.dev.log to get

# 'Device Install ' Events for USB Devices

def get_devices ():

# Check that the setupapi.dev.log file exists on this machine

if pathlib.Path(path_to_logfile).joinpath('setupapi.dev.log').is_file ():

# Read lines in setupapi file and search for device identifiers

try:

device_list = []

with open(os.path.join(path_to_logfile ,'setupapi.dev.log'),'r') as

log_file:

# Get the OS info from the first 6 lines of the log file (currently in

Win 10).

# This may change in the future if it does , amend the number of lines

to read in.

for i in range(6):

os_info = str(log_file.__next__ ().strip(""))

device_list.append(os_info)

5.2.2 Component: predefined_paths

This component was written to support artefact
recovery from Windows Registry. It contains
known paths of interest in the SAM, SECURITY,
SOFTWARE, SYSTEM, NTUSER.DAT and Us-
rClass.dat hives and was used as a global settings
file for the registry parsers.

The paths held in this component can be
used to provide context to user activity in a
live triage. For example, identifying applications
(e.g. browsers) installed by the user, mounted
devices (e.g. shared network drives used for shar-

ing files on social media). See Appendix A.1 for
extracts.

5.2.3 Component: app_config

This component is made up of individual parsers
for the registry hives. It is important to note
that the SAM and SECURITY hives are locked
and inaccessible when the device is powered on.
This is because Windows locks the file and pre-
vents read/write activity from any accounts other
than the SYSTEM. To address this limitation,
the parsers used the Python subprocess module
to call the reg.exe save hklm\x command (e.g.

© 2021 JDFSL Page 9



JDFSL 2021 SMURF

Figure 2: Part 1
A “practitioner friendly” illustration of SMURF components and how data is fed into the main

component

reg.exe save hklm\sam). This was used to dump
the SAM and SECURITY hives. The HARD-
WARE hive was also dumped to grab the current
state of the system hardware information as this
hive is volatile and is lost when the device is
powered off.

The winreg module was used to access the
Windows registry API in read-only mode to min-
imise any possible impact on the target device.
See Appendix A.2 for extracts.

5.2.4 Component: system_info

This component was used for the recovery of sys-
tem generated artefacts from Prefetch and Event
Logs. This was used to provide corroborating
information on application installation and ac-
cess times; and also to provide context to user
activity.

This component was used to demonstrate the
ability to use third party command-line interface
(CLI) tools within SMURF. For example:

⇒ PECmd Zimmerman (2019) is a CLI tool
that was used to process the Prefetch files
and return the contents in JSON format.

⇒ python-evt Ballenthin (2019), a Python
parser for Windows event logs (post-
Windows XP), was used to process the Ap-
plication and Security event logs. The out-
put was saved as an XML file and a function
was written to parse the XML file to display
the content in an “easy to digest” format in
the report.

⇒ SysInternals tools Russinovich (2016, 2018)
were used to recover additional/corroborat-
ing system related and generated artefacts

Page 10 © 2021 JDFSL



SMURF JDFSL 2021

Figure 3: Part 2
A “practitioner friendly” illustration of SMURF components and how data is fed into the main

component

such as processes, registered owner, system
uptime etc.

The subprocess module was used to call these
third party tools from the system_info compo-
nent. See Appendix A.3 for extracts.

5.2.5 Component: session_info

This component was used to recover artefacts
from the browser session files. For this paper, two
types of session related artefacts were recovered.
Extracts can be found in Appendix A.4.

I. sessionstore.mozlz4: this is used by Firefox
to store session data. Artefacts from this

file were recovered using a Python script
derived from Blumenbach (2015)’s mozlz4a
script.

II. Current/Last Session; Current/Last Tabs:
these are used by Google Chrome, and as
implied by the file names, the window and
tab activities of the user are stored here.
When Chrome is running, these files are
locked by the host and are inaccessible, so
it was necessary to use the psutil module
to programmatically terminate chrome.exe.

© 2021 JDFSL Page 11



JDFSL 2021 SMURF

The output was saved in text files for subse-
quent processing using RegEx.

5.2.6 Component: browser_history

This component was used to recover artefacts
related to user browser activity. It is also de-
signed to be extensible, allowing for the recovery
of artefacts from multiple browsers and for ses-
sion information to be fed into the framework
to support browser history artefacts. It calls
third party tools such as chromagnon Bancel,
Jean-Rémy (2015) which was used to parse the
Chrome History file, and to facilitate the recov-
ery of session artefacts.

For the purposes of this paper, artefacts from
Firefox and Chrome were analysed. See Ap-
pendix A.5 for extracts.

5.2.7 Component: browser_cache

This component was used to recover data in the
browser cache that can be used for the corrobo-
ration of other browser artefacts.

The manual analysis conducted by David et
al. (2020), observed and highlighted that content

may be cached independent of user interaction.
The cache returns a sizeable volume of data thus,
for a live triage use case, this component focuses
on the recovery of URL related cached content
to reduce the amount of time and effort required
to process cache information.

This component also demonstrates the exten-
sibility and flexibility of SMURF. It calls third
party tools such as Hindsight by Obsidian Foren-
sics Benson (2019), which was used to facilitate
the parsing of the browser cache artefacts. See
Appendix A.6 for extracts.

5.2.8 Component: smurf_main

This is the main component of the framework.
It was used to collate, manage the data ingested
from the artefacts from the other components.

It was designed to format the data recovered
and to generate a HTML report that was used
to display the results in an ‘easy to assimilate’
format for the investigators (see Appendix A.7
for the HTML template extracts).

Extracts from smurf_main.py

# SMURF Main

def smurf ():

# read content of output files from framework components

# write data of interest to SMURF Report.html

# Content to be published

title = "Triage Report"

devices = "SMURF deployed from: "

[...]

# Rename existing template and load the new report template

sys.stdout.write("Creating report template ... \n")

suffix = "smurf_report/" + str(dt.datetime.now().strftime("%Y%m%d-%H%M%S")) + "-

smurf_report.html"

html_template = "smurf_report/report_template.html"

if os.path.exists(html_template):

os.rename("smurf_report/smurf_report.html", suffix)

shutil.copy2(html_template , "smurf_report/smurf_report.html")

[...]

with open(url_feats , 'r') as uf:

twitter_url = []

for line in uf:

twitter_feats = uf.readlines ()

for item in twitter_feats:

if "twitter" in item:

url_data = twitter_url.append(item)

Page 12 © 2021 JDFSL



SMURF JDFSL 2021

twitter_url_data = twitter_url[-50:] # negative indexing , enumerate from

tail

else:

if len(twitter_feats) == 0:

url_data = twitter_url.append("No Twitter URLs found ...")

twitter_url_data = twitter_url[:1]

[...]

5.3 Method of Deployment

Being a collection of components, some of which
call third party tools/utilities, a number of op-
tions were considered as possible methods of
deployment. This was done to ensure:

⇒ good ethical conduct and compliance with
the legal use of the third party tools (i.e.
adherence to potential licence ramifications
or legal implications);

⇒ respect for the authors and their licences
by using the tool in the way author consent
implies.

Some of the utilities explored as a method
of deployment can be used to bundle a python
script and its dependencies into an executable file;
however these were deemed impractical for the
purposes of demonstrating the extensibility and
adaptability of SMURF and ensuring that third
party tools are used as intended as mentioned
above.

WinPython WinPython (2019) a free, portable
scientific distribution of Python for Windows was
deployed to a USB device and used to test the
PoC in a live Windows 10 VM.

6. CASE STUDY: SMURF

ON TWITTER

This section discusses the framework testing pro-
cess, using Twitter as a case study. The results
discussed in this section are grouped based on
potential user activity. The weighting scale used
to determine the feasibility of SMURF is also
discussed in this section.

6.1 Twitter as a Case Study

Twitter is a very popular, real-time information
network with a global user base. It has been
described as “a service for friends, family and
coworkers to communicate and stay connected

through the exchange of quick, frequent messages.
People post Tweets, which may contain photos,
videos, links and text. These messages are posted
to your profile, sent to your followers, and are
searchable on Twitter search” Twitter Help Cen-
ter (2019).

Twitter in its FAQs for new users, provides
a description of how the platform can be used.
This information was used as a guidance to ex-
trapolate the basic activities that can be carried
out on Twitter. These activities were placed into
categories and the weighting scale shown in Fig-
ure 4 was derived from the analysis conducted
in David et al. (2020).

In the context of a live triage investigation,
the following is proposed:

⇒ Strongly expect to find: these are a
range of artefacts that should generally be
available to the investigator e.g. username,
email address.

⇒ May expect to find: these are a range of
artefacts that may often be available but
not always e.g. login/logout activity, profile
IDs of other users.

⇒ Corroborates other artefacts: these are
artefacts that validates previously recovered
artefacts e.g. search parameters in a URL.

⇒ Needs to be contextualized: this refers
to any artefact that could be interpreted
to mean different things and thus needs to
be put in context of the previously recov-
ered artefacts to verify its relevance to the
case e.g. the user’s email address, email
addresses of other users.

⇒ Requires corroboration: this refers to
any artefact that could mean something else
and cannot be validated on its own. It needs
to be supported by existing artefacts (e.g.,
communication content, text extracts, im-
ages).

© 2021 JDFSL Page 13



JDFSL 2021 SMURF

Figure 4: An illustration of the weighting scale

It is important to note that there may be
overlaps when weighting the availability and rel-
evance of artefacts recovered during a live triage
investigation. For example, an investigator may
expect to find the username of another user
but would need to corroborate that informa-
tion and put it in context to determine if it
occurred as a result of direct user interaction or
background processes on the social media plat-
form.

6.1.1 Registration/Authentication
Activities

Users can access Twitter in a ‘read-only’ mode
if they are not registered or logged in i.e. they
are able to view content but cannot respond or
interact with other users. In order to get the full
benefits of the platform, a registered account is
required.

Creating an account allows a user to person-
alise the account by amending the account set-
tings to allow or restrict the public from viewing
tweets; and adding profile photos and banners.

Figure 5 shows the range of artefacts asso-
ciated with user registration/authentication on
Twitter as recovered by SMURF as part of the
first stage of the framework testing. The results
indicate that there is a strong possibility of re-
covering artefacts such as the email address that
was used for account registration.

Subsequent to that, URLs indicating login/lo-
gout activity can also be recovered and used to
infer user account authentication activity.

There are other artefacts that may be used to
support account activity. These include finding
the usernames, profile names, user/profile IDs
for other users. This may occur during the reg-
istration process where Twitter suggests people
the user may like to follow.

Figure 5: User registration/authentication arte-
fact weighting

Page 14 © 2021 JDFSL



SMURF JDFSL 2021

In the context of user activity, to infer/confirm
possible account ownership, ‘strongly expect
to find’ provides stronger evidence to validate
the assumption. Table 1 shows the possible lo-
cations of these types of artefacts from Firefox
and Google Chrome.

Table 1: Possible locations of registration/au-
thentication artefacts

Chrome Firefox
Last/Current Tabs formhistory.sqlite
Last/Current Session places.sqlite
Login Data sessionstore.mozlz4
Web Data login.json

6.1.2 Search and View Contents

As mentioned in Section 6.1.1, it is possible for
users who are not logged in or registered to
search for and view content in Twitter. This
may be through typing in a Twitter URL with
the @handle of a Twitter user e.g. twitter.com/
joebloggs or through a search engine e.g. “joe
bloggs twitter”.

The second stage of the framework testing
involved the identification and recovery of arte-
facts that can be used to infer ‘search and view’
activities. This applies to both registered and
unregistered users; the main difference being the
availability of artefacts indicating that the user
has a Twitter account for example, the presence
of the artefacts described in Section 6.1.1.

Using the weighting matrix, the PoC was used
to recover artefacts such as user/profile names
and IDs in the ‘strongly expect to find’ cate-
gory. Other artefacts that can be used to build
context were recovered in the ‘may expect to
find’ category. For example, where a Twitter
user profile has been searched for by email ad-
dress; the search parameters (may expect to
find) can be used to contextualise the profile ID
(strongly expect to find) and thus the profile
visit/view.

Regular Expressions (RegEx) were used at this
stage to parse the output files from the frame-
work components to extract artefacts inferring
a range of search and view activities that oc-
curred on Twitter during the experiments. Ta-

Figure 6: User search and view artefact weighting

ble 2 shows the possible locations of these types
of artefacts from Firefox and Google Chrome.

Table 2: Possible locations of artefacts inferring
search and view activity

Chrome Firefox
Last/Current Tabs places.sqlite
Last/Current Session sessionstore.mozlz4
Cache Cache
Cookies Cookies

6.1.3 Share Content

Twitter is used for content dissemination through
“Tweeting” or “Retweeting” content - images,
videos, text, and/or audio. As part of content
sharing, users may also choose to communicate
privately by exchanging direct messages (DMs).

Content exchanged on Twitter (tweets,
retweets, DMs) may be accompanied by hash-
tags to highlight trending i.e. currently popular
topics; the keyword(s) referencing the topic is
prefixed with the hash symbol (#) for example,
#fitness, #freebies, #LatestNews.

© 2021 JDFSL Page 15



JDFSL 2021 SMURF

Social media communication in the context of
this paper has been described in Section 2.1 as
the messages exchanged between two (or more)
users, which may contain text, audio, video or
image files.

As discussed in Section 2.1.1 some of the afore-
mentioned may not be readily available or acces-
sible on disk during a live triage investigation
thus, it may be necessary to use other artefacts
to build a picture of the user’s activity.

SMURF was used to search for evidence of
these activities to determine the reliability of the
weighting matrix applied to the manual analysis
of the artefacts presented in David et al. (2020).

Figure 7 shows the range of user artefacts
that may be used to infer content sharing on
Twitter. For example, user/profile names and
IDs, in addition to URLs parameters such as
file names can be used in conjunction with page
titles and login/logout URLs to infer a user was
logged and possibly shared the file.

The framework did not focus on or attempt
the recovery of the exact contents of communi-
cation as the goal of a live triage is the timely
and efficient provision of reliable intelligence, for
the intended audience (e.g. investigators), in a
usable and easy to understand format. However,
the recovered artefacts will need to be corrobo-
rated.

It is important to note that non-registered
users cannot share but are able to view publicly
available content (Section 6.1.2) so context is
necessary in order to draw inferences.

Table 3 shows the possible locations of these
types of artefacts from Firefox and Google
Chrome.

Table 3: Possible locations of artefacts inferring
content sharing activity

Chrome Firefox
Last/Current Tabs places.sqlite
Last/Current Session sessionstore.mozlz4
Cache Cache

6.1.4 Associations/Relationships

On Twitter, users can choose to subscribe and
be notified of another user’s tweets. This is de-

Figure 7: User shared content artefact weighting

scribed as “following” Twitter Help Center (2019)
and is designed as a two-way process where users
follow each other. However, there are instances
where one user does not reciprocate for example,
a corporate entity would have several, perhaps
thousands of followers but will not follow all its
followers.

"Followership" may be used to determine a
user’s interests, infer associations and relation-
ships.

Figure 8 shows a range of artefacts recovered
by SMURF and their weighting. These artefacts
can be used to draw inferences about a user’s
associations and by extension relationships on
Twitter.

In order to determine the relationship(s) be-
tween users on Twitter, it is important to put
the evidence inferring contact in context. This is
because it is possible to form associations with-
out a direct relationship. Examples include but
are not limited to where a user has connections
with or follows Government or Commercial en-
tities with a Twitter profile; following celebrity

Page 16 © 2021 JDFSL



SMURF JDFSL 2021

Figure 8: User association/relationship attribu-
tion

fan pages or profiles or following other users with
similar interests (photography, hiking etc.).

It may also be possible to use Twitter search
and query parameters to aid the attribution of
associations and relationships to a user. This
may be useful in highlighting where particular
user profiles were searched for and then added
as a social connection.

Table 4 shows the possible locations of these
types of artefacts from Firefox and Google
Chrome.

Table 4: Possible locations of artefacts inferring
associations/relationships

Chrome Firefox
Last/Current Tabs formhistory.sqlite
Last/Current Session places.sqlite
Login Data sessionstore.mozlz4
Cache Cache

6.2 SMURF: Assessing Artefact

Reliability with AUTOPSY®

As part of assessing the reliability of the artefacts
recovered by the framework, and to highlight its
contributions to the digital forensics community,
SMURF was tested against Autopsy® 4.15.0
Carrier (2020); an open source, peer reviewed,
in-use digital forensics tool.

Autopsy® is a digital forensics platform and
graphical interface to The Sleuth Kit® and other
digital forensics tools Carrier (2020). It has a
broad range of features including “Communica-
tions Visualization” which provides a consoli-
dated view of events of interest and allows the
investigator to visualize communication based
on commonly used accounts and the timeframe
of an event of interest.

The process consists of the following activities:

⇒ Download Autopsy 4.15.0 from GitHub
⇒ Install Autopsy and create a new case
⇒ Add the experimental VM as a “Data

Source”
⇒ Select and run relevant ingest modules (“Re-

cent Activity”, “Keyword Search”)
⇒ Review results

A comparison of the artefacts inferring user
activities as recovered by SMURF and the web
browser activities recovered by Autopsy showed
that SMURF was able to capture these activities
as shown in Figures 9 and 10.

An attempt was made to visualise social media
activities through the “Communications Visual-
ization” feature, based on the Twitter URLs re-
covered by Autopsy however, it appears that web
history visualisation is currently not supported
although it works well with accounts found in
the Data Source e.g. email accounts (PST, EML,
MBOX), call logs and accounts from mobile de-
vices. These were out of scope and not explored
further.

In May 2020, Brian Carrier through Basis
Technology Basis Technology (2020) offered free
Autopsy training. The feedback from the digital
forensics community evidenced the value of the
tool. It was suggested that users can leverage
the extensibility of Autopsy by adding plugins
to the tool.

© 2021 JDFSL Page 17



JDFSL 2021 SMURF

Figure 9: Social media URL artefacts recovered by SMURF

Figure 10: Social media URL artefacts recovered by Autopsy

Page 18 © 2021 JDFSL



SMURF JDFSL 2021

This research has identified the possibility of
enhancing the “Communications Visualization”
feature in Autopsy to allow the identification
and inclusion of social media artefacts from web
browsers as discussed in Section 8.

7. DISCUSSION

This paper was focused on developing and demon-
strating a framework that can be used for the
recovery of artefacts from social media activity
during a live triage investigation and Twitter
has been used as a case study to demonstrate
the feasibility of deploying SMURF as a live
triage investigative tool, as shown by the results
presented in this paper.

Communication was defined in Section 2, pro-
viding context to the type of artefacts that can
be created and their recoverability. This was
used as a means of defining what ‘communica-
tion content’ is in the context of this paper; thus
creating a relationship between an action and
the resultant artefact.

A baseline for defining the framework func-
tionality based on perceived user activity and
artefacts created was introduced as it was neces-
sary to establish constraints for the purposes of
testing the PoC.

Using the weighting matrix described in Sec-
tion 6, this paper has highlighted some possible
use cases for Twitter activities and the type of
artefacts that can be recovered and has shown
that context is important when attributing ac-
tions to a user. For example, distinguishing use
cases where:

⇒ a user logs in and interacts with others
⇒ a user has an account but doesn’t login (at

least not on the device being investigated)
⇒ a user doesn’t have an account but frequents

Twitter

Although the data set used in the creation of
the framework can be said to be a subset of real
world user activity, this paper demonstrates that
it is possible to recover a wider range of arte-
facts created as a result of social media activity.
This was confirmed by the results from Autopsy
showing that the same category of artefacts were
recoverable in both Autopsy and SMURF.

While discussing context, when it comes to the
availability or non-availability of communication
content, this paper demonstrated the possibil-
ity of recovering enough information to allow
inferences to be drawn about the communication
(see Figure 9); thus, allowing the investigator to
identify and prioritize areas for further analysis.

There are certain caveats to be aware of during
the investigation of social media activity. For
example, artefacts may exist as a result of back-
ground processes on the social media platform;
a web browser’s caching mechanism and/or web
storage of content the user has not interacted
with; hence the need for context and corrobora-
tion when assessing relevance and reliability.

It is important to highlight that evidence from
live triage may not necessarily be court bound
but may end up being used as supporting ev-
idence; thus, it is important to adhere to the
relevant jurisdictional guidelines for handling ev-
idence in a live triage.

8. CONCLUSION AND

FUTURE WORK

This paper has demonstrated a PoC for a Social
Media User Relationship Framework (SMURF).
It has demonstrated through the results recov-
ered the possibility of using SMURF in a live
triage, to obtain quick, actionable intelligence
that can be used to guide or progress an investi-
gation.

It has been shown that communication content
can be inferred from other sources such as the
page title. This is useful in a live triage where
it may not be possible to conduct an extensive
keyword search or file carving.

For attribution, a user account can be linked to
specific searches enabling an investigator to build
a timeline of contact and subsequent activity
with a person of interest or a victim.

This paper has presented a PoC with the po-
tential for improvement and the extensibility of
its existing functions. A number of opportunities
for future work have been identified. These in-
clude implementing an automated process for the
categorisation of potential artefacts of interest
for example the categories discussed in Section 6

© 2021 JDFSL Page 19



JDFSL 2021 SMURF

and extending the current functionality for other
triage investigations.

It is important to note that additional cache
data such as image files were not recovered as
part of the framework however, in the event that
image files are required as part of a live triage
investigation, further work would be required to
implement the recovery of image and video files
using a range of techniques including known file
hashes and skin tone detection.

No machine learning (ML) or artificial intelli-
gence (AI) techniques were implemented. This
is an avenue for future work. With ML, the
components can be trained to adapt to specific
scenarios using pre-set case information thus im-
proving and extending the current functionality.

As mentioned in Section 6.2, SMURF (or ele-
ments of it) could be added as a plugin to Au-
topsy or other live triage tools. This will extend
its current functionality and allow for the visual-
ization of social media activity from browsers.

As this demonstration was carried out on Win-
dows 10, there is the potential for testing SMURF
on other operating systems and on a variety of
web browsers.

REFERENCES

7safe. (2014). The ACPO Good Practice Guide
for Managers of e-Crime investigation
(Tech. Rep.). Retrieved from
www.7safe.com

ACPO. (2012, March). Good Practice Guide for
Digital Evidence. Retrieved from
http://library.college.police.uk/

docs/acpo/digital-evidence-2012.pdf

(Version: 5.0)

Arshad, H., Jantan, A., & Omolara, E. (2019).
Evidence collection and forensics on social
networks: Research challenges and
directions. Digital Investigation, 28 ,
126–138.

Ballenthin, W. (2019). python-evtx. Retrieved
from https://github.com/

williballenthin/python-evtx

Bancel, Jean-Rémy. (2015). Chromagnon
(SNSS Branch). GitHub. Retrieved from
https://github.com/JRBANCEL/

Chromagnon/tree/SNSS (Latest commit
2cbecb1 on 28 Mar 2018)

Bashir, M. S., & Khan, M. N. A. (2013). Triage
in Live Digital Forensic Analysis. The
International Journal of Forensic
Computer Science, 1 , 35–44. doi:
10.5769/J201301005

Basis Technology. (2020). Free Autopsy
Training. Retrieved from https://

www.autopsy.com/support/training/

covid-19-free-autopsy-training/

Bello, M., & DiBlasio, N. (2013, sep). Twitter:
The new face of crime. USA Today.
Retrieved from
http://www.usatoday.com/story/news/

nation/2013/09/29/

twitter-crime-dark-side/2875745/

Benson, R. (2019). Hindsight. Retrieved from
https://github.com/

obsidianforensics/hindsight

Blumenbach, T. (2015). mozlz4a.py. Retrieved
from https://gist.github.com/Tblue/

62ff47bef7f894e92ed5

Cambridge University Press. (2019). Cambridge
Dictionary [Online]. Retrieved from
http://dictionary.cambridge.org/

Cantrell, G., Dampier, D., Dandass, Y. S., Niu,
N., & Bogen, C. (2012). Research toward
a Partially-Automated, and Crime
Specific Digital Triage Process Model.
Computer and Information Science, 5 (2).
Retrieved from
www.ccsenet.org/cisURL:http://

dx.doi.org/10.5539/cis.v5n2p29 doi:
10.5539/cis.v5n2p29

Cantrell, G., & Dampier, D. A. (2012).
Implementing the Automated Phases of
the Partially-automated Digital Triage
Process Model. Journal of Digital
Forensics, Security and Law , 7 (4).
Retrieved from https://

commons.erau.edu/jdfsl/vol7/iss4/5/

Carrier, B. (2020). Autopsy 4.15.0. GitHub.
Retrieved from https://github.com/

sleuthkit/autopsy/releases/

Casey, E. (2004, jan). Digital evidence and
computer crime: Forensic Science,

Page 20 © 2021 JDFSL



SMURF JDFSL 2021

Computers and the Internet. Elsevier
Academic Press , 215.

Casey, E. (2011). Digital Evidence and
Computer Crime, Forensic Science,
Computers and the Internet. In (Third
Edition ed., chap. 1: Foundations of
Digital Forensics). Elsevier Inc.

Casey, E. (2013). Triage in digital forensics.
Digital Investigation, 10 , 85–86.

Cusack, B., & Son, J. (2012). Evidence
Examination Tools for Social Networks.
In 10th australian digital forensics
conference (pp. 33–40). SRI Security
Research Institute, Edith Cowan
University, Perth, Western Australia. doi:
10.4225/75/57b3afc1fb861

Dance, F. E. X. (1967). Towards a Theory of
Human Communication (In Human
Communication Theory: Original Essays).
Holt, Rinehart and Winston, New York.

David, A., Morris, S., & Appleby-Thomas, G.
(2020). A Two-Stage Model for Social
Network Investigations in Digital
Forensics. Journal of Digital Forensics,
Security and Law , 15 (1). Retrieved from
https://commons.erau.edu/jdfsl/

vol15/iss2/1

DFRWS. (2001). A Road Map for Digital
Forensic Research: DFRWS Technical
Report (Tech. Rep. No. DTR - T001-01).
DFRWS: Digital Forensic Research
Workshop.

Garfinkel, S. L. (2013, feb). Digital media
triage with bulk data analysis and
bulk_extractor. Computers & Security ,
32 , 56–72. Retrieved from https://

www.sciencedirect.com/science/

article/pii/S0167404812001472 doi:
10.1016/J.COSE.2012.09.011

Gielen, M., & Bolzoni, D. (2014). Prioritizing
Computer Forensics Using Triage
Techniques (Tech. Rep.). Retrieved from
https://essay.utwente.nl/65671/1/

Gielen_MA_EWI.pdf

Haroon, S., & Carter, H. (2010, mar). Facebook
security measures criticised after Ashleigh
Hall murder. The Guardian. Retrieved
from http://www.theguardian.com/uk/

2010/mar/09/ukcrime-facebook

Hitchcock, B., Le-Khac, N.-A., & Scanlon, M.
(2016). Tiered forensic methodology
model for Digital Field Triage by
non-digital evidence specialists. Digital
Investigation, 16 (Supplement), S75–S85.
Retrieved from http://dx.doi.org/

10.1016/j.diin.2016.01.010 doi:
10.1016/j.diin.2016.01.010

Hubert, K. (2014). Evidence Collection From
Social Media Sites. SANS Institute
Information Security Reading Room.
Retrieved from https://www.sans.org/

reading-room/whitepapers/legal/

evidence-collection-social-media

-sites-35647

Jusas, V., Birvinskas, D., & Gahramanov, E.
(2017, mar). Methods and Tools of Digital
Triage in Forensic Context: Survey and
Future Directions. Multidisciplinary
Digital Publishing Institute (MDPI), 9 (4),
49. Retrieved from http://

www.mdpi.com/2073-8994/9/4/49 doi:
10.3390/sym9040049

Littlejohn, S. W. (1992). Theories of Human
Communication. Belmont, Calif.:
Wadsworth Pub. Co.

Marcella, A. J., & Menendez, D. (2007). Cyber
Forensics: A Field Manual for Collecting,
Examining, and Preserving Evidence of
Computer Crime (Second Edition ed.).
NEW YORK: CRC PRESS - TAYLOR
AND FRANCIS.

McKemmish, R. (2008). When is Digital
Evidence Forensically Sound? Advances
in Digital Forensics , IV , 3–15.

Montasari, R. (2016, jun). Formal Two Stage
Triage Process Model (FTSTPM) for
Digital Forensic Practice. International
Journal of Computer Science and Security
(IJCSS), 10 (2), 69–87. Retrieved from
https://pure.hud.ac.uk/en/

publications/

formal-two-stage-triage-process

-model-ftstpm-for-digital-forensic

Moore, K. (2014, June). Social media ‘at least
half ’ of calls passed to front-line police.
BBC News. Retrieved from https://

© 2021 JDFSL Page 21



JDFSL 2021 SMURF

www.bbc.co.uk/news/uk-27949674

Mukasey, M. B., Sedgwick, J. L., & Hagy, D. W.
(2008, April). Electronic Crime Scene
Investigation: A Guide for First
Responders, Second Edition. U.S.
Department of Justice, Office of Justice
Programs, National Institute of Justice.
Retrieved from https://www.ncjrs.gov/

pdffiles1/nij/187736.pdf

Parsonage, H. (2009). Computer Forensics Case
Assessment and Triage. (
http://computerforensics.parsonage

.co.uk/triage/

ComputerForensicsCaseAssessment

AndTriageDiscussionPaper.pdf)
Robertson-Steel, I. (2006). Evolution of triage

systems. Emergency medicine journal ,
23 (2), 154–155. doi:
doi:10.1136/emj.2005.030270

Rogers, M. K., Goldman, J., Mislan, R., Wedge,
T., & Debrota, S. (2006). Computer
Forensics Field Triage Process Model.
Journal of Digital Forensics, Security and
Law , 1 (2). Retrieved from https://

commons.erau.edu/cgi/viewcontent

.cgi?article=1004&context=jdfsl

doi: 10.15394/jdfsl.2006.1004
Roussev, V., & Quates, C. (2012). Content

triage with similarity digests: The M57
case study. Digital Investigation, 9 ,
S60–S68. doi: 10.1016/j.diin.2012.05.012

Russinovich, M. (2016). PsTools Suite Windows
Sysinternals | Microsoft Docs. Retrieved
from
https://docs.microsoft.com/en-us/

sysinternals/downloads/pstools

Russinovich, M. (2018). Process Monitor -
Windows Sysinternals | Microsoft Docs.
Retrieved from
https://docs.microsoft.com/en-us/

sysinternals/downloads/procmon

Select Committee on Communications. (2014,
July). CHAPTER 2: SOCIAL MEDIA
AND THE LAW . Retrieved from
https://publications.parliament.uk/

pa/ld201415/ldselect/ldcomuni/37/

3702.htm

Shaw, U., Das, D., & Mehdi, S. P. (2016).

Social Network Forensics: Survey and
Challenges. International Journal of
Computer Science and Information
Security (IJCSIS), 14 (11), 310–316.

Sommer, P. (1999). Intrusion Detection
Systems as Evidence. Computer Networks ,
31 (23–24), 2477–2487.

TWGECSI. (2001). Technical Working Group
Electronic Crime Scene Investigation -
Electronic Crime Scene Investigation: A
Guide for First Responders.

Twitter Help Center. (2019). New user FAQs.
Retrieved from https://

help.twitter.com/en/new-user-faq

Wiles, J., & Reyes, A. (2007). Incident
Response: Live Forensics and
Investigations. In (pp. 89–109). Syngress.

WinPython. (2019). winpython. Retrieved from
https://github.com/winpython/

winpython

Zeng, D., Chen, H., Lusch, R., & Li, S. (2010,
Nov). Social Media Analytics and
Intelligence. IEEE Intelligent Systems,
25 (6), 13-16. doi: 10.1109/MIS.2010.151

Zimmerman, E. (2019). Prefetch Explorer
Command Line - PECmd version 1.3.4.5.
Retrieved from https://github.com/

EricZimmerman/PECmd

Page 22 © 2021 JDFSL



SMURF JDFSL 2021

A.

A.1 Extracts from predefined_paths.py

def current_user_keys ():

# keys of interest in the current user hive

# HKCU\Software\Microsoft\Windows\CurrentVersion

# HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer

# HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\ComDlg32

# HKCU\Software\Microsoft\Windows\Shell\BagMRU

# HKCU\Software\Clients

comdlg_set = r"Software\Microsoft\Windows\CurrentVersion\Explorer\ComDlg32\

CIDSizeMRU", \

r"Software\Microsoft\Windows\CurrentVersion\Explorer\ComDlg32\

OpenSavePidlMRU", \

r"Software\Microsoft\Windows\CurrentVersion\Explorer\ComDlg32\

LastVisitedPidlMRU", \

r"Software\Microsoft\Windows\CurrentVersion\Explorer\RecentDocs",

\

r"Software\Microsoft\Windows\CurrentVersion\Explorer\RunMRU", \

r"Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2"

, \

r"Software\Microsoft\Windows\CurrentVersion\Explorer\Taskband", \

r"Software\Microsoft\Windows\CurrentVersion\Run", \

r"Software\Microsoft\Windows\CurrentVersion\RunOnce", \

r"Software\Microsoft\Windows\Shell\Bags\1\Desktop", \

r"Software\Clients\StartMenuInternet", \

r"Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist",

return comdlg_set

A.2 Extracts from app_config.py

# predefined registry keys. These can be updated in 'predefined_hives.py'

prog_run = predefined_hives.software_keys ()

def local_software ():

for path in prog_run:

try:

i = 0

while True:

get_keys = OpenKeyEx(HKEY_LOCAL_MACHINE , path , 0, KEY_READ |

reg_view_flag)

name , value , data_type = EnumValue(get_keys , i)

[...]

file_exists = pathlib.Path(sw_csv_file).is_file ()

with open(sw_csv_file , 'a+') as skv:

fields = ["path", "name", "value", "data_type"]

© 2021 JDFSL Page 23



JDFSL 2021 SMURF

csvwriter = csv.DictWriter(skv , delimiter=',', lineterminator=

'\n',

fieldnames=fields)

if not file_exists:

csvwriter.writeheader () # if file doesn't exist , write a

header

skv.write("{0}, {1}, {2}, {3} ".format(path , name , value ,

data_type) + '\n')

i += 1

[...]

A.3 Extracts from system_info.py

# Prefetch

pref_out_file = "output_files/"

# set %winroot% as the OS partition then join %winroot% to path tho evtx logs

win_root = os.environ['WINDIR ']

prefetch_dir = os.path.join(win_root , 'Prefetch \\')

def parse_pf ():

# if str(path).endswith (".pf"):

[...]

logging.info("Parsing {}".format(prefetch_dir))

subprocess.call([r"PECmd\PECmd.exe", "-d", prefetch_dir , "--json",

pref_out_file],

shell=True)

# System events

# set %winroot% as the OS partition may not be C: by default.

# join %winroot% to path tho evtx logs

win_root = pathlib.Path(os.environ['WINDIR ']).drive

evtx_dir = pathlib.Path(win_root).joinpath('\\ Windows ', 'System32 ', 'winevt ', '

Logs')

def parse_logs ():

for each in evtx_dir.iterdir ():

i = str(each)

e_logs = ["Application.evtx", "Security.evtx"]

for log in e_logs:

if i.endswith("Application.evtx"):

evtx_file = i

Page 24 © 2021 JDFSL



SMURF JDFSL 2021

logging.info("Parsing {}: ".format(evtx_file))

subprocess.run([r"python", r"third_party\bin\python_evtx\scripts\

evtx_dump.py", evtx_file ,

">>", app_out_file], shell

=True)

elif ...

[...]

else:

continue

subprocess.run([r"third_party\bin\sysinternals\psloglist64", "-accepteula", ">"

, process_loglist], shell=True)

[...]

# Parse XML

# Parse the python_evtx output file

tree = etr.iterparse(dest , remove_pis=True , huge_tree=True , remove_blank_text=True

, resolve_entities=True , recover=True)

[...]

for event , elem in tree:

for child in elem:

results = child.tag , child.text

with open(evt_results , 'a', encoding="utf -8") as ft:

# ft.write(child.tag , child.text)

ft.write("{0}{1}{2}{3}{4}".format(child.tag , ': ', child.text , ' ', '\n

'))

sys.stdout.write("{0}{1}{2}{3}{4}".format(child.tag , ': ', child.text , ' ',

'\n'))

A.4 Extracts from session_info.py

# sessionstore

def sessionstore_info ():

try:

import lz4.block as lz4

except ImportError:

import lz4

for each_dir in profile_dir.iterdir ():

for i in each_dir.iterdir ():

i = str(i)

if 'sessionstore ' in i and 'lz4' in i:

file_name = i

© 2021 JDFSL Page 25



JDFSL 2021 SMURF

get_data = open(file_name , "rb")

read_bytes = get_data.read()

get_sig = read_bytes[:8] # verify header

if bytearray(get_sig).startswith(b"mozLz40\0"):

json_data = json.loads(lz4.decompress(read_bytes[8:]).decode("utf -8"))

with open(json_data_sstore , 'a+') as jd:

jd.write(str(json_data))

for win in json_data.get("windows"):

for tab in win.get("tabs"):

i = int(tab.get("index")) - 1

urls = tab.get("entries")[i].get("url")

[...]

last_accessed = win.get("tabs")[i].get("lastAccessed") tab_last_accessed =

dt.datetime.utcfromtimestamp(

last_accessed // 1000.0) [...

]

# the path to profile folder is '\\AppData \\Local\\ Google \\ Chrome \\User Data\\

Default '

# pathlib.Path.home() joins the user's home directory path to the profile path

chrome_dir = pathlib.Path.home().joinpath('AppData ', 'Local', 'Google ', 'Chrome ',

'User Data', 'Default ')

user_profile_dir = pathlib.Path(chrome_dir).glob('*')

def chrome_data ():

# Check if chrome.exe is running and terminate process before parsing

# Chrome places a lock on the browser files when it's running

for proc in psutil.process_iter ():

try:

# process_name = proc.name()

# check if chrome.exe is running

if 'chrome.exe' in proc.name():

proc.kill()

except (psutil.NoSuchProcess , psutil.AccessDenied , psutil.ZombieProcess):

continue

time.sleep(5)

# Parse current session

c_file = str(chrome_dir) + r"\Current Session"

logging.info("Parsing: {}".format(c_file))

subprocess.run(["python", r"chromagnonSession.py", c_file , ">", current_session

],

shell=True)

[...]

Page 26 © 2021 JDFSL



SMURF JDFSL 2021

A.5 Extracts from browser_history.py

# Firefox History

# the path to profile folder is '\\AppData \\ Roaming \\ Mozilla \\ Firefox \\ Profiles\\'

# pathlib.Path.home() joins the user's home directory path to the profile path

home_dir = pathlib.Path.home().joinpath('AppData ', 'Roaming ', 'Mozilla ', 'Firefox '

, 'Profiles ')

profile_dir = pathlib.Path(home_dir)

def user_places ():

for each_dir in profile_dir.iterdir ():

for i in each_dir.iterdir ():

i = str(i)

if 'sqlite ' in i:

file_name = i

# establish a connection to the database

conn = sq3.connect(file_name)

cursor = conn.cursor ()

# query for places.sqlite

sql = "SELECT datetime(visit_date/1000000 , 'unixepoch ') as

visitDate , url , title " \

"FROM moz_places , moz_historyvisits " \

"WHERE moz_places.id = moz_historyvisits.place_id " \

"ORDER BY visitDate "

[...]

© 2021 JDFSL Page 27



JDFSL 2021 SMURF

with open(places_csv , 'a+', encoding='utf -8') as ud:

fields = ["visit_datetime", "url", "title"]

writer = csv.DictWriter(ud, delimiter=',', lineterminator='\n', fieldnames=

fields)

if not file_exists:

# create file , write a header

writer.writeheader ()

ud.write("{0}, {1}, {2}".format(each_record["visit_datetime"],

each_record["url"],

each_record["title"]) + '\n')

with open(places_csv) as rd:

readCSV = csv.reader(rd, delimiter=',')

for row in readCSV:

for item in row:

ml = ['twitter ', 'facebook ', 'drive.google ', 'docs.google ']

for j in ml:

if j in item:

patt = r'((? <=\/) [^:\/\s]*[?*\w\w]+)'

regexp = re.compile(patt , re.IGNORECASE)

matches = regexp.findall(item)

with open(parsed_url , 'a+') as pu:

pu.write("{0}, {1}".format(row[0], ', '.join(

matches)) + '\n')

# Chrome History

# Parse history

h_file = str(chrome_dir) + r"\History"

logging.info("Parsing: {}".format(h_file))

subprocess.run(["python", r"chromagnonHistory.py", h_file , ">", chrome_hist_file],

shell=True)

with open(chrome_hist_file , 'r') as ch:

for line in ch:

get_each_val = line.split(None , 3)

cut_date_val = [i.split('.', 1)[0] for i in get_each_val[:-2]]

ml = ['twitter ', 'facebook ', 'drive']

for j in ml:

if j in line:

patt = r'((? <=\/) [^:\/\s]*[?*\w\w]+)'

regexp = re.compile(patt , re.IGNORECASE)

matches = regexp.findall(line)

with open(chrome_parsed_url , 'a+') as pur:

pur.write("{0}, {1}".format(" ".join(cut_date_val), ', '.join(

matches)) + '\n')

Page 28 © 2021 JDFSL



SMURF JDFSL 2021

A.6 Extracts from browser_cache.py

# the path to the Firefox cache2 profile folder is '\\AppData \\ Local\\ Mozilla \\

Firefox \\ Profiles\\'

# pathlib.Path.home() joins the user's home directory path to the profile path

cache_profile_dir = pathlib.Path.home().joinpath('AppData ', 'Local', 'Mozilla ', '

Firefox ', 'Profiles ')

cache_dir = pathlib.Path(cache_profile_dir)

# iterate through the cache profile directory

for each_dir in cache_dir.iterdir ():

for i in each_dir.iterdir ():

i = str(i)

if i.endswith('cache2 '):

cache2_path = i

[...]

with open(cache_idx_out_file , 'a+') as cix:

cix.write("Cache version: {}".format(cache_version) + '\n')

cix.write("Index last written time: {}".format(unix_written_time) + '\n')

[...]

cix.write("Index_Hash is: {}".format(binascii.hexlify(index_hash).upper ().

decode("ascii")) + '\n')

cix.write(" " + '\n')

count += 1

more_records = file_size - cif.tell()

[...]

# write to text file

with open(cache_data_file , 'a+') as cdf:

cdf.write("Parsing file: {0}".format(cache_entry_file) + '\n')

cdf.write("Cache file is written in version: {0}".format(version) + '\

n')

cdf.write("Cache entry file size: {0}".format(file_size) + '\n')

cdf.write("Start of cache metadata: {0}".format(metadata_start) + '\n'

)

[...]

cdf.write("Key size: {}".format(key_size) + '\n')

cdf.write("Key (URL): {}".format(key) + '\n')

cdf.write("Key hash (SHA1 hash of url): {}".format(key_hash) + '\n')

cdf.write(" " + '\n')

[...]

© 2021 JDFSL Page 29



JDFSL 2021 SMURF

# Google Chrome

[...]

# Parse cache

chrome_d = str(chrome_dir)

chrome_cache = str(chrome_dir) + r"\Cache"

print("Parsing: {}".format(chrome_cache))

logging.info("Parsing: {}".format(chrome_cache))

subprocess.run(["python", r"hindsight\hindsight.py", "-i", chrome_d , "-o",

chrome_cache_file ,

"-f", "jsonl"], shell=True)

A.7 Extracts from SMURF HTML
Report template

Page 30 © 2021 JDFSL


	Social Media User Relationship Framework (SMURF)
	Recommended Citation

	Social Media User Relationship Framework (SMURF)

