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Abstract. Ever since the introduction of wireless sensor networks in the re-
search and development agenda, the corresponding community has been eager 
to harness the endless possibilities that this new technology has to offer. These 
micro sensor nodes, whose capabilities have skyrocketed over the last couple of 
years, have allowed for a wide range of applications to be created;  applications 
that not so long ago would seem impossible, impractical and time-consuming. It 
would only be logical to expect that researchers from other fields would take an 
interest in sensor networks, hence expanding the already wide variety of algo-
rithms, theoretical proofs and applications that existed beforehand. Social Net-
work Analysis is one such field, which has instigated a paradigm shift in the 
way we view sensor nodes. 

In this paper, we will present the contribution of Social Network Analysis to 
sensor networks in terms of theory, algorithms and applications. 

Keywords: Social network, sensors, centrality, vehicular networks, topology 
control. 

1   Introduction 

In computer science and telecommunications, wireless sensor networks are an active 
research area. These networks consist of spatially distributed autonomous micro de-
vices, the sensor nodes, which can be programmed to monitor a wide range of chemi-
cal, environmental and physical phenomena, such as temperature, vibration, sound, 
conciseness and object location.  Due to their versatility, sensor networks have many 
applications; usually they involve some kind of monitoring, controlling or tracking.  
Specifically, there are some industrial areas where sensor networks seem to have had 
the biggest impact. First of all, they are being used in habitat monitoring, whether that 
concerns the prevention of fires, observation of groups of animals, monitoring of 
underwater currents and underground phenomena such as earthquakes.  The two most 
prominent and useful in everyday life areas though, include traffic monitoring and 
health care. As far as traffic monitoring is concerned, they can be used to alleviate the 
traffic problems that many cities seem to be facing nowadays, by preventing traffic 
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jams and, in conjunction with a GPS device, offering alternative routes. In health care, 
sensor networks can be used to monitor patients and assist handicapped people either 
in hospitals or even in their own homes. A sensor network example and an actual 
sensor node are illustrated in Figure 1. 

             

Fig. 1. Sensor networks applications and the Eco sensor node 

The characteristics of wireless sensor networks include limited power of the sensor 
nodes, susceptibility to node failures, node mobility, large scale deployment, dynamic 
network topology. Depending on the actual application that the sensor network is 
implemented for, the network administrator needs to evaluate the precedence that 
each characteristic will have over the others. 

As far as the research areas of sensor networks that have been studied over years, 
these include but are not limited to topology control, cooperative caching, vehicular 
networks and lately social network analysis. Topology control refers to the concept of 
trying to maintain network connectivity under certain circumstances. An example 
would be for the nodes to adjust their transmission power in order to preserve energy.  
Cooperative caching as a research area was raised as a way to deal with the challeng-
ing task of application-level QoS. Since communication cost is almost three times as 
much as processing cost, we try to reduce communication as much as possible by 
sharing data between sensors, coordinating cache data and exploiting the aggregate 
cache space of cooperating sensors. Finally, in vehicular networks, we combine vehi-
cles, used as sensors, and wireless local area network technologies in order to prevent 
or warn about nearby accidents, advise over traffic jams or inform about vacant park-
ing spots. 

As it was mentioned earlier, there is one more research area which has gained more 
interest lately in the community and was found to have similarities with sensor net-
works.  In social network analysis, social structures are formed, where the nodes are 
usually represented by individuals or organizations and the links between these nodes 
are represented by the relationships that exist between these entities. Because of the 
similarities between them, sensor and social networks can interface both ways.  For 
example, sensor networks can sense and provide information to personalized social 
applications and social networks analysis can supply algorithms and techniques which 
can lead to energy saving and efficient storage in sensor networks depending each 
time on the application being executed. 
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 In this paper, we address the contribution of social network analysis in sensor 
networks in terms of algorithms and applications. In section 2, the reader will be pro-
vided with a more detailed insight in social networks. We will present some of the 
social network analysis concepts, such as the metrics that are being used in social 
network analysis and how these affect the design of protocols in sensor networks. In 
section 3 the previous protocols will be presented along with their corresponding 
applications so we can assess the impact of social network analysis on sensor net-
works on a more practical level. In section 4, the paper will provide some of the re-
lated work that was already done on the combination of the two areas.  

2   Social Network Analysis 

Social network analysis [SNA] studies the relationships between people, groups, and 
other similar entities.  Social network analysis views social relationships in terms of 
nodes and ties. Nodes are the individual actors within the networks, and ties are the 
relationships between the actors. There can be many kinds of ties between the nodes.  
There is a wide variety of applications in sensor networks where the need to identify 
important components is of great importance. Centrality is a term used to denote such 
an importance of a node inside a network. There are various measures of centrality 
and the most prominent of them are going to be presented in the following section. 

2.1   Centrality Metrics 

In this section we briefly describe the most important centrality metrics that the sensor 
network research community has focused on. 

Degree centrality (DC). The simplest centrality metric is degree centrality and re-
fers to the number of direct connections a node has to its neighbors.  A common mis-
conception is that the more connections the better, but this is not always the case.  An 
important factor is where those connections lead to and how they connect the other-
wise unconnected nodes.  In Figure 2, node 4 has the highest degree. 

Betweenness centrality (BC). Another centrality measure is betweenness.  Be-
tweenness assesses the number of shortest paths passing through a given node or 
edge.  A node with high betweenness centrality is more likely to be located on the 
shortest paths between multiple node pairs in the network and therefore more infor-
mation needs to be passed through it.  Moreover a node with high betweenness cen-
trality plays a crucial role in the connectivity of the network.  Node 4 again has the 
highest rank in betweenness centrality as pointed out in Figure 2. 

Closeness centrality (CC).  Closeness refers to the property of nodes being closest 
to every other node in the network, i.e. they have the shortest paths to all others.  
These nodes have therefore the best visibility in the network and can monitor the 
information flow.  Node 4, being right at the center of the network, has the shortest 
overall paths to the rest of the nodes as shown in Figure 2. 

Bridging centrality (BRC).  Bridging centrality identifies bridging nodes, which are 
located in between highly connected regions.  In Figure 2, node 7 plays an important 
role in connecting the two sub graphs G[1,2,3,4,5,6] and G’[8,9,10,11]. 
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DC BC CC BRC 
4 4 4 7 
2 7 7 3 
8 8 8 5 
3 2 3 8 
5 3 5 4 
7 5 6 2  

Fig. 2. The top six nodes are presented according to the respective centrality measure.  Choos-
ing a centrality measure involves considering the type of application that the network will 
satisfy and also the measurements that we are interested in obtaining. 

3   Applications to Protocol Design 

In section 2 we presented Social Network Theory together with the significant con-
cept of centrality.  Having introduced some centrality variants, the next step would be 
to present the way these variants get involved in several areas of sensor networks, 
both algorithmically and application wise. The next three subsections present such 
cases. 

3.1   Topology Control 

As we mentioned earlier topology control refers to maintaining a topology with cer-
tain properties, for example connectivity, while reducing energy consumption and/or 
maximizing network capacity.  This can be achieved in various ways, such as adapt-
ing transmission power or choosing the right neighbors to pass information to.  The 
later can be implemented by taking the centrality measures that we mentioned earlier 
under consideration. 

The direct connection between reducing the transmission power and reducing the 
energy consumption is straightforward.  Usually in this case there is a startup phase, 
where the nodes communicate in order to find the minimum transmission power that 
they can provide while preserving connectivity at the same time. This phase may be 
called upon again sometime during the network’s lifetime in order to check the state 
of the network and perhaps adapt to any node failures. Topology control protocols can 
also construct a logical topology out of the physical communication graph. A node for 
example can choose to communicate only with a certain subset of its direct neighbors, 
which the respective topology control algorithm has constructed. 

The algorithm that we have proposed in [11] is applied to undirected and weighted 
graphs and calculates the edge betweenness centrality (EBC) locally. The edge 
weights are analogous to the energy levels of the respective nodes that each edge 
connects. An example of the algorithm can be seen in Figure 3. 

3.2   Cooperative Caching 

As described in earlier sections, WSNs are mainly characterized by resource con-
straints, variable channel capacity, and in-network processing. Under these restric-
tions/requirements, the goal of achieving application-level QoS in WSNs becomes a  
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Fig. 3. An example of Edge Betweenness Centrality. The logical neighbors are chosen accord-
ing to the value of the respective betweenness centrality and the number of two hop neighbors 
they are connected to. In this case node 1 will choose to broadcast only to node 2, since the 
edge connecting nodes 1 and 2 has a bigger EBC value than the edge connecting nodes 1 and 3 
and all 2-hop neighbors can be reached through node 2. 

 

very challenging task. The technique of cooperatively caching content in sensor nodes 
can address all three characteristics. In cooperative caching, multiple sensor nodes 
share and coordinate cache data to cut communication cost and exploit the aggregate 
cache space of cooperating sensors. 

Since the battery lifetime can be extended if we manage to reduce the “amount” of 
communication, caching the useful data for each sensor either in its local store or in 
the near neighborhood can prolong the network lifetime. Additionally, caching can be 
very effective in reducing the need for network-wide transmissions, thus reducing the 
interference and overcoming the variable channel conditions. Finally, it can speed-up 
the in-network processing, because – as it is emphasized in [1] – the processing and 
delivery of content are not independent and their interaction has a major impact on the 
levels of QoS that can be delivered. 

The work [2] pointed out the significance of the selection of the sensors that will 
coordinate the caching decisions, i.e., when/what/where to cache and for how long. 
Therefore, we need to develop methods to estimate the importance of sensors relative 
to the network topology. At this point, we can adopt and adapt methods from the field 
of social network analysis. For instance, betweenness centrality is an appropriate 
metric for this task, since large values of betweenness for a sensor indicate that this 
sensor can reach others on relatively short paths, or that this sensor lies on consider-
able fractions of shortest paths connecting others, i.e., it can control the communica-
tion between pairs of other sensors. 

Though, betweenness (and also the other aforementioned centrality metrics) has 
several deficiencies: a) its computation by a sensor requires detailed knowledge of the 
connectivity of the sensor's one-hop neighbors, i.e., the sensor must exchange the set 
of its one-hop neighbors with each and every one-hop neighbor; thus larger/more 
packets travel in the network, b) its calculation, although quite fast, is not a O(1) 
complexity operation, which might be an issue when the sensornet topology changes 
quite fast, c) the values of betweenness centrality might be misleading, since it is 
affected a lot by the existence of isolated nodes in the borders of the network. For 
instance, in Figure 4, we see that the nodes 3,4,7,6 are equally central with respect to 
their degree; they all have a degree equal to 4. In addition, if we compute the  
betweenness centrality for each sensor in the whole graph, then node 7 is the most  
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Fig. 4. Betweenness centrality values (the numbers in parentheses) for a small sample graph 
comprised by 9 nodes 

“central” (with betweenness equal to 13), followed by nodes 3,4 and then comes the 
node 6. This is somehow counter-intuitive, since node 6 has all network nodes at its 
vicinity (at a two-hop distance).  

Starting from this observation, we proposed a new centrality metric, the μ-Power 
Community Index (μ-PCI) defined as follows: 

The μ-Power Community Index of a sensor v is equal to k, if there are 
no more than μ*k sensors in the μ-hop neighborhood of v with degree 
equal to or greater than k, and the rest of the sensors within that region 
have a degree equal to or less than k. 

It is clear that sensor nodes which have more connections (larger degree) are more 
likely to be “powerful”, since they can directly affect more other sensor nodes. But, 
their power depends also on the degrees of their one-hop neighbors. Large values for 
the μ-Power Community Index of a sensor v indicate that this sensor v can reach oth-
ers on relatively short paths (just like betweenness index), or that the sensor v lies on 
a dense area of the sensor network (just like the indication provided by the sensors 
degree). For WSNs applications, a localized version of this metric is more desirable, 
i.e., μ=1, which is the plain Power Community Index. With this localized version of 
the definition, then PCI(7) = PCI(4)=2, whereas PCI(6) = PCI(3)=3. 

Using this definition, high performance cooperative caching protocols for wireless 
sensor networks can be designed [8] that will be based on the identification of sensors 
with high PCIs. 

3.3   Vehicular Networks 

Vehicular transportation is, and it is projected to remain, the most popular way for 
transporting people and goods among places. Although the use of vehicles is more 
than a century old, it is only recently that the widespread use of vehicles has become a 
real challenge, which requires the combat of the awful side-effects of road traffic. 

In the USA, around 41000 people were killed, and 2.5 millions were injured during 
2007; similar statistics hold also for the EU. Worldwide, more than one million peo-
ple are killed, and more than 50 million are injured in traffic accidents each year. 
Among the main causes of these deaths and injuries we could mention the bad road 
conditions, the drivers' misbehavior and traffic jams, with the last ones being also 
responsible for a tremendous waste of time and of fuel. Though, a significant percent-
age of this waste in life and resources can be solved by providing appropriate infor-
mation to the driver or to the vehicle via wireless communications. 
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The idea of employing wireless communications in vehicles dates back to '80, but 
recently the resolution of governments and national traffic administrations to allocate 
wireless spectrum for vehicular communications, along with the wide adoption of 
standards, like the Dedicated Short Range Communications (DSRC), or the IEEE 
802.11 technologies (e.g., 802.11p) has created a real thrust in the field of inter-
vehicle communications (IVC) or Vehicular Ad Hoc Networks (VANETs)1. VANETs 
comprise vehicle-to-vehicle and vehicle-to-infrastructure communications based on 
wireless local area network technologies (see Figure 5). Thus, a vehicle is a sensor-
on-wheels (see Figure 6). 

 

Fig. 5. Intervehicle communications 
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Fig. 6. A modern vehicle 

During the process of designing and deploying a VANET, various questions must 
be answered that pertain to protocol performance and usefulness. For instance, when 
deciding the placement of roadside proxies [4], in order to reduce the average path 
length between the vehicles and the access points, we need to know the distribution of 
the position of vehicles; when performing message routing, the corner-stone question 
is “which are the highest-quality nodes (vehicles)?” [3] to carry out the forwarding 
process; when performing geocasting, the question is how we can spread the message 

                                                           
1  Although the two terms are not identical, in this work we use the term VANET in order to 

emphasize the ad hoc nature of these wireless networks. 



418 A. Papadimitriou, D. Katsaros, and Y. Manolopoulos 

with the minimal number of rebroadcasts so as to reduce collisions and latency; when 
designing mobility models [5], we need to know the distribution of “synapses” per 
node, i.e., whether there are any clusters (communities); when the network is discon-
nected, a significant question concerns the identification of bridge nodes[6] which are 
encharged with the delivery/ferrying of the messages. All these questions and many 
more require knowledge of the topological characteristics of the VANET communica-
tion graph, where vehicles correspond to vertices and communication links to edges. 
Despite the fact that such knowledge is of paramount importance, the relevant litera-
ture is relatively poor with respect to the study of the characteristics of a VANET 
communication graph. And this is the place where social network theory comes into 
play. The measures described in subsection 2.1 can be used for the study of the topo-
logical characteristics of a VANET. In the next subsection we provide a glimpse of 
such results. 

3.3.1   Centrality Metrics in VANETs 
A VANET is a constantly evolving network, and therefore, one of the main features 
to examine is its connectivity over time. The study of a VANET requires either large 
scale (hundreds of thousands) of real vehicle trajectories or realistic vehicle trajecto-
ries over real road networks. We favor the second alternative, since currently there are 
no large scale vehicle trajectories publicly available to fit our needs. Thus, we study 
the structure and evolution of a VANET communication graph using realistic vehicu-
lar traces2 from the city of Zurich. We have extracted a rectangular street area of size 
5X5km2, which covers the centre of Zurich and which contains around 200000 dis-
tinct vehicle trajectories during a 3 hours interval in morning rush hour. We study the 
networking shape evolution of VANET, by observing snapshots of this network taken 
at regularly spaced time instances. The generic question we seek to answer is whether 
“Centrality metrics do identify “quality” (more central) nodes, and what is the spatial 
distribution of these nodes?” 

 

Fig. 7. Betweenness, bridging and closeness centrality over time and range 

                                                           
2 The traces are publicly available from http://lst.inf.ethz.ch/ad-hoc/car-traces/ 



 Social Network Analysis and Its Applications Applications in Wireless Sensor 419 

The general observation is that the distribution of the centrality metrics is not af-
fected by the communication range; the distributions have similar shapes for trans-
mission ranges T equal to T=50m and T=100m. The centrality metrics reflect quite 
reliably the variation in traffic conditions, i.e., density and relative positions of the 
vehicles (see Figure 7). Therefore, centrality is not an artifact of the communication 
range, but an indication of the latent “behavior" of the vehicles”, i.e., road network 
and drivers' intentions, which ultimately define the network position of the vehicles. 

 

Fig. 8. Betweenness centrality over time and geographic location 

Examining carefully the variation of one of the prevalent centrality metrics, i.e., 
betweenness, we plotted its actual values (instead of averages) as a function of time 
and geographic location. Due to space limitations, we present the betweenness cen-
trality values at 06:00 and 08:00. The results are illustrated in the graph of Figure 8, 
which do not reflect the BC values of road junctions, but the BC values of vehicles. 
Each vehicle takes a color with respect to its betweenness centrality value. Clearly, 
the road topology is not the decisive parameter for the betweenness, even though it 
affects it (i.e. the colored lines lie above the roads); it is the case that high centrality 
values appear at any geographic location independently of the geographic location. 
Therefore, the road network alone, e.g., junctions, is not sufficient information to 
determine the positions of possible “significant” nodes. A thorough investigation of 
the connectivity properties of VANET communication graph appear in [7]. 

4   Related Work 

One core concept for the analysis of social networks is centrality.  Centrality metrics 
have been used to identify the role of individual nodes in a network and study their 
relationship to their neighboring nodes. Even though one of these metrics, between-
ness centrality, was introduced in the 70s, the research community did not apply so-
cial network techniques to sensor networks until only the last couple of years.   

Initially, social network algorithms and measures where used on the premise of 
global knowledge of the network.  In 2006 for example, Hwang et al[9] proposed a 
centrality metric called Bridging Centrality (BC). The metric focuses on what the 
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authors call bridging nodes, which are the nodes that are located in between highly 
connected regions and are therefore crucial for the connectivity and routing inside the 
network.  The main drawback of the algorithm was that it was centralized and there-
fore global network knowledge was necessary. 

In 2008, Nanda and Kotz [10] improved the BC algorithm by introducing a distrib-
uted version called Localized Bridging Centrality (LBC). As the name suggests, the 
metric uses only local information to identify the nodes that have a high flow of in-
formation through them. 

5   Conclusions 

The sensor networks applications are practically unlimited.  Therefore the need arises 
for algorithms to be able to store data efficiently, save as much energy as possible and 
transfer messages with guaranteed delivery. Social Network Analysis can supply such 
algorithms. 
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