
Social Network Analysis in Streaming Call

Graphs

Rui Sarmento1,2, Márcia Oliveira1,2, Mário Cordeiro1, Shazia Tabassum1, and
João Gama1,2

1 LIAAD/INESC TEC, University of Porto
2 FEP, School of Economics and Management, University of Porto

Abstract. Mobile telecom operators collect and store Call Detail Records
(CDRs) in real-time, which detail the communication among subscribers.
Call graphs can be induced from these CDRs, where nodes represent sub-
scribers and edges represent the phone calls made. These graphs may eas-
ily reach millions of nodes and billions of edges. Besides being large-scale
and generated on real-time, the underlying social networks are inherently
complex and, thus, difficult to analyze. Conventional data analysis per-
formed by telecom operators is slow, done by request and implies heavy
costs in data warehouses. In face of these challenges, real-time streaming
analysis becomes an ever increasing need to mobile operators, since it en-
ables them to quickly detect important network events and improve their
marketing strategies. Sampling, together with visualization techniques,
are required for online exploratory data analysis and event detection in
such networks. In this chapter, we report the burgeoning body of research
in network sampling, streaming analysis and streaming visualization of
social networks and the solutions proposed so far.

Keywords: Call Graphs; Network Sampling; Network Visualization; Streaming
Networks.

1 Introduction

Technological advances in computer processing power, disk storage and databases
have enabled the collection of a wealth of data on social interactions by mobile
telecom operators. The communication among individuals through mobile de-
vices has been used as a proxy of their social relationships and is captured in
the form of Call Detail Records (CDRs). CDRs provide detailed information
regarding each phone call made between two individuals, such as time, call du-
ration, source number and destination number. These data implicitly define a
call graph, where nodes represent the individuals (or mobile operator subscribers
or phone users) and there is an edge between two individuals if they called each
other. This graph is typically weighted and directed. Weighted because the edges
of the graph are assigned a weight indicating the frequency of phone calls, and
directed because it includes information about who initiated the phone call.



Since call graphs model the communication among individuals, these represent
social networks and its analysis falls within the scope of Social Network Analysis
(SNA). SNA is an interdisciplinary methodology concerned with the discovery
of patterns in the structure of social networks. The focus of SNA is on the link
structure of the network rather than on the attributes of the nodes. Important
SNA tasks include topological analysis, centrality analysis and community de-
tection. Topological analysis aims at discovering structural properties that char-
acterize the overall topology of the network (e.g., degree distribution, average
path length, effective diameter, clustering coefficient, connected components),
whereas centrality analysis is focused on finding the key nodes in the network
based on the position they occupy in the network structure. The importance of
nodes is typically measured in terms of their centrality in the network, which
can be quantified by, for instance, the degree, closeness and betweenness central-
ities. On a different level, the goal of community detection is to discover implicit
communities comprised in the network. These communities are groups of nodes
that interact more often with each other than with other nodes in the networks
and share stronger ties among them.

The analysis of the social networks underlying call graphs, using the SNA
methodology, can deliver valuable business insights to mobile telecom operators
that can support relevant business tasks. Pinheiro [34] addresses these tasks by
combining areas such as social network analysis, analytical studies and marketing
expertise to propose improvements in customer service for telecommunications
networks. Kayastha et al. [23] reveal another work quite relevant, presenting a
compilation of applications, architecture and issues associated with protocols de-
signed for social networking obtained with mobile communications. Examples of
applications enabled by SNA methodology include churn prediction, identifica-
tion of influencers and most active callers, fraud detection and design of targeted
marketing campaigns to increase subscribers’ loyalty.

However, the network data collected by mobile network operators has specific
features that introduces complexity in the design of new methods. CDRs are be-
ing continuously generated by the communication activity among subscribers. In
addition to the large volume, this data arrives at high rates. Thus, the developed
methods should be able to cope with data speed and volume and operate under
the one-pass constraint of data streams. Besides scalability and computational
efficiency issues, it is also desirable that the outputs of the developed algorithms
are comprehensible, in order to foster their real-world deployment. Resorting to
appropriate visualization techniques eases the understanding of patterns in the
data, especially for non-experts. Since visualization plays an important role in
the presentation of results and proves useful in supporting business decisions by
the operators’ managers, methods for streaming network analysis should be cou-
pled with visualization techniques. Hitherto, few research work has been done
to tackle these challenges.

The analysis of data collected by mobile telecom operators is usually per-
formed offline and heavily relies on batch processing. Business Intelligence tech-
niques and tools are typically used to transform these large volumes of raw data



into useful business information, mostly by means of querying and reporting.
This information serves several purposes, such as the identification of trends
and the extraction of patterns from both users and equipment events. The use-
ful knowledge obtained from the data analysis process is then used to support a
wide range of business decisions. Nevertheless, the prevailing modus operandi for
analysing data by the telecommunication providers is slow, done by request and
requires high costs in data warehouses. These characteristics, coupled with an
increasing need to quickly react to events (or even anticipate them), avoid cus-
tomer churn and improve customer service, places real-time streaming analysis
in the forefront of the analytics solutions of telecom operators. The development
and application of streaming methods, specifically tailored to network mining,
grants telecom operators the ability to adapt to changes in the evolution of the
network and detect key events in an efficient and timely manner. This ability to
react and quickly adapt to real-time events brings benefits to the operators by
means of increased revenue and cost reduction. In short, a streaming solution
would provide the operators with the means to operate with little or even no
latency, therefore being able to automatically respond to events, in a shorter
time.

In this chapter, we generically cover the solutions proposed so far on sam-
pling, visualization, community detection and centrality measures for streaming
social networks.

The chapter starts with Section 2, where we describe general structural prop-
erties of call graphs. In Section 3, we address the sampling process for both static
and streaming social networks. Section 4 is devoted to an introduction, followed
by a critical discussion, of windowing data models to capture different kind of
network events in a streaming environment. Here, we also present network cen-
trality measures that were developed for the analysis of dynamic and large-scale
social networks. Finally, in Section 7 we summarise this chapter and discuss open
challenges.

2 Properties of Telecommunication Networks

All the experiments and empirical results presented in this chapter are supported
by a case study conducted with real-world data collected, and made available,
by a mobile telecom operator. The characteristics of the network data will be
presented in this section.

The communication among mobile users generates huge amounts of data that
arrives at high rates. To conduct the case study we had access to 135 days of
anonymized CDRs retrieved from equipment distributed geographically. These
CDRs implicitly define a directed weighted call graph, which is stored in the
form of a sparse weighted edge list. This call graph depicts the communication
among the operator’s subscribers, by modelling the subscribers as nodes, and
the phone calls made among them as edges. These edges are weighted by the
number of phone calls made. This call graph has, on average, 10 million phone
calls per day made by approximately 6 million subscribers. Each edge represents



a private phone call between source number A and destination number B. For
each edge/call, there is information regarding the date and time (seconds) when
the call was initiated, as well as its duration. The volume of data speed ranges
from 10 up to 280 calls per second, usually around mid-night and mid-day time,
respectively.

To study the distribution of the available data, we aggregate the data in two
different ways:

1. Dyad weighted out-degree distribution: Count the number of calls, per
day, from source number A to destination number B (A→B);

2. Out-degree distribution: Count the number of calls, per day, made by
each subscriber.

After the previous operation we observed the distribution of the aggregated
data and there is some evidence that the tail of these distributions follows a
power-law [3], as can be ascertained in Figure 1(a) and Figure 2(a). The analysis
of these figures suggest that, for a one-day period, it is expected a high amount
of single phone calls between some phone numbers A→B, and a low amount of
many phone calls between a few phone numbers A→B. Therefore, it is expected
a low amount of highly active subscribers and a large amount of low activity
subscribers. We also plotted the distribution of the daily aggregated data in
a log-log scale (see Figures Figure 1(b) and Figure 2(b)). These plots show a
monomial approximation that suggests that this data is derived from a power-
law distributions.

(a) (b)

Fig. 1: (a) Distribution of the A→B phone calls and (b) the corresponding log-log
plot.

The power-law hypothesis was tested by following the guidelines described
in [9] and using the poweRlaw R package. Figure 3 illustrates the hypothesis test
for the power-law distribution presenting the mean estimate of parameters xmin,
α and the p-value, being xmin the lower bound of the power-law distribution.
Estimation parameter α is the scaling parameter (”Par 1” in Figure 3) and α



(a) (b)

Fig. 2: (a) Out-degree distribution of the subscribers and (b) the corresponding
log-log plot.

>1. The dashed-lines give approximate 95% confidence intervals. The observed
p-value when testing the null hypothesis H0 that the original data is generated
from a power-law distribution is 0.1. Since we set the significance level to be
0.05, H0 cannot be rejected because the p-value is higher than 0.05. Given that
the tail of the distribution of the phone calls follows a power-law, we can expect
that the use of sampling techniques to extract the most active subscribers is
feasible and desirable.

Fig. 3: Original Network - Hypothesis test for the Caller power-law distribution

3 Sampling

The analysis of large streaming networks poses processing or memory issues when
using conventional hardware or software. Even if the available computational
resources are able to perform the analysis of a network comprised of millions
of nodes, it is difficult for the analyst to gather valuable knowledge from the
outcome. Thus, in this section, we introduce several sampling methods, as well as



effective visualizations, of large streaming networks in order to address the above-
mentioned problems. More specifically, we introduce the top-K sampling method
that focuses on extracting a sample of the most active nodes in the network.
This approach is suitable for networks exhibiting a power-law behaviour and is
able to preserve the same distribution of the original network and the global
community structure. Besides, it is highly efficient, either for visualization or
analysis purposes, because it relies on the Space-Saving algorithm.

3.1 Sampling Large Static Networks

Large-scale network sampling has recently become a hot topic in network analysis
and only a few methods have been proposed so far. The most common approaches
for static network sampling are the random sampling and the snowball sampling.

In the snowball sampling [15], a starting node is chosen. Then, the connections
in the 1st, 2nd, to n, neighborhood-order of this starting node are extracted until
the network reaches the desirable size. This approach, while easy to implement,
has known problems: it is biased towards the region of the network to where the
starting node belongs to, and potentially misses important network properties.
Yet, it is one of the most common sampling approaches.

On the other hand, random sampling [16], randomly selects a user-defined
percentage of nodes and keeps all the corresponding edges. Alternatively, the
sampling can be performed on the edges, by randomly selecting a user-defined
percentage of edges and keeping the corresponding nodes. The main problem
with this approach is that random edge sampling is biased towards high-degree
nodes, whereas the random node sampling may be unable to generate a repre-
sentative sample, since the structural properties of the sample may not reflect
the ones observed on the original network. Despite these drawbacks, random
sampling is easy to understand and implement.

The task, therefore, must be to generate a sample in such a way that the
sampled network is representative of the original one in terms of structural prop-
erties. A primary question is related with the definition of representative sample.
Existing work considers measures such as similarity in degree distributions and
clustering coefficients [20, 28].

Leskovec et al. [28] introduce a great variety of graph sampling algorithms.
They conclude that methods combining random node selection and some vicinity
exploration generate the best network samples. They show that a 15% sample is
usually enough to match the properties of the original graph and that no list of
network properties serving as basis for sampling evaluation will ever be perfect.

3.2 Sampling Large Streaming Networks

Papagelis et al. [33] introduced sampling-based algorithms that quickly obtains
a near-uniform random sample of nodes in its neighborhood, given a selected
node in the social network. The authors also introduce and analyze variants of
these basic sampling schemes, aiming the minimization of the total number of
nodes in the visited network, by exploring correlations across samples.



Several approaches have been proposed to gather information from streaming
graphs. Typical SNA problems, such as triangle counting, centrality analysis and
community detection, have already been implemented in streaming settings. We
will delve deeper on these topics further in the chapter.

Network sampling of streaming graphs is still a promising area for future
research since, to the best of our knowledge, only few stream-based sampling
methods were proposed so far. Ahmed et al. [1] present a novel approach to
graph streaming sampling. According to the authors, there was no previous
contribution in this topic. The authors propose a novel sampling algorithm,
dubbed PIES, based on edge sampling and partial induction by selecting the
edges that connect sampled nodes.

3.3 Top-K Sampling with Top-K itemsets

Researchers have been trying to achieve efficient ways of analyzing data streams
and performing graph summarization. The exact solution implies the knowledge
of the frequency of all nodes and edges, which might be impossible to obtain in
large-scale networks.

The problem of finding the most frequent items in a data stream S of size
N is basically how to discover the elements ei whose relative frequency fi is
higher than a user-defined support φN , with 0 ≤ φ ≤ 1 [14]. Given the space
requirements that exact algorithms addressing this problem would need [8], sev-
eral algorithms were already proposed to find the top-k frequent elements, being
roughly classified into counter-based and sketch-based [30]. Counter-based tech-
niques keep counters for each individual element in the monitored set, which is
usually a lot smaller than the entire set of elements. When an element is identi-
fied as not currently being monitored, various algorithms take different actions to
adapt the monitored set accordingly. Sketch-based techniques provide less rigid
guarantees, but they do not monitor a subset of elements, providing frequency
estimators for the entire set.

Simple counter-based algorithms that process the stream in compressed size,
such as Sticky Sampling and Lossy Counting, were proposed by Manku et al.
in [29]. Yet, these have the disadvantage of keeping a large amount of irrelevant
counters. Frequent [11], by Demaine et al., keeps only k counters for monitoring
k elements, incrementing each element counter when it is observed, and decre-
menting all counters when an unmonitored element is observed. Zeroed-counted
elements are replaced by new unmonitored element. This strategy is similar to
the one applied by the Space-Saving algorithm, proposed by Metwally et al.[30],
which give guarantees for the top-m most frequent elements. Sketch-based algo-
rithms usually focus on families of hash functions which project the counters
into a new space, keeping frequency estimators for all elements. The guarantees
are less strict but all elements are monitored. The CountSketch algorithm [8], by
Charikar et al., solves the problem with a given success probability, estimating
the frequency of the element by finding the median of its representative coun-
ters, which implies sorting the counters. Also, GroupTest method [10] proposed



by Cormode et al., employs expensive probabilistic calculations to keep the ma-
jority elements within a given probability of error. Despite the fact of being
generally accurate, its space requirements are large and no information is given
about frequencies or ranking.

Algorithm 1 represents the proposed top-K Method application using the
Space-Saving algorithm.

This type of application is based on a landmark window model [14], which
implies a growing number of inspected events in the accumulating time window.
This landmark application is useful also in other contexts, e.g., when the network
is relatively small and the user wants to check all events in it.

Experiments using the landmark window model showed that this model suf-
fers from the problems we would like to avoid, such as exceeding memory limits.
This happens when the number of nodes and edges exceeds dozens of thousands
of nodes. The top-K algorithm, based on a landmark window model, is an efficient
approach for large-scale data. It focus on the most active nodes and discards the
least active ones, which are the most frequent according to the power-law distri-
bution. The alternative option to the landmark window model, i.e., the sliding
window model [14], would not be appropriate for the top-K approach, since it
may remove less recent nodes. Those nodes may yet be included in the top-K

list we want to maintain.
In our scenario, the top-K representation of data streams implies knowing

the K elements of the simulated data stream from the database. Network nodes
that have higher frequency of outgoing connections, incoming connections, or
even specific connections between any node A and B, may be included in the
graph, as well as their connections.

For this application, the user can insert as input a start date and hour and
also the maximum number of top-K nodes to be represented (the K parameter),
along with their connections.

With the inserted start date and hour, the top-K application is expected to
return the evolving network of the top-K nodes. Functions getTopKNodes and
updateTopNodesList in Algorithm 1 implement the Space-Saving algorithm. As
the network evolves over time, new top-K nodes are added to the graph. Nodes
that exit the top-K list of numbers are removed from the top-K list and, thus,
removed from the graph along with their connections.

Fig. 4 represents the network induced by the top-100 subscribers with the
highest number of phone calls, since the midnight of the first day of July 2012,
until 00h44m33s. The algorithm shows the 100 most active phone numbers in
that period. Fig. 5 depicts a similar network but after running the layout algo-
rithm. This time, the output considers results until 01h09m45s.

4 Window-Based Visualization3

Resorting to time window models is an useful strategy to limit the amount of
data available for analysis, since it is based on setting a fixed point in time (the

3This section is based on the work published in [37].



Fig. 4: Network induced by the top-100 subscribers with the highest number of
phone calls and corresponding direct connections. This network was generated
without running the layout algorithm.

Fig. 5: Network induced by the top-100 subscribers with the highest number of
phone calls and corresponding direct connections. This network was generated
after running the layout algorithm.



Algorithm 1 Top-K algorithm for call graphs

Input: start, k param, tinc ⊲ start timestamp, k parameter and time increment
Output: edges

1: R← {} ⊲ data rows
2: E ← {} ⊲ edges currently in the graph
3: R← getRowsFromDB (start)
4: new time← start

5: while (R <> 0) do
6: for all edge ∈ R do

7: before← getTopKNodes(k param)
8: updateTopNodesList(edge) ⊲ update node list counters
9: after ← getTopKNodes(k param)
10: maintained← before

⋂
after

11: removed← before \maintained

12: for all node ∈ after do ⊲ add top-k edges
13: if node ⊂ edge then

14: addEdgeToGraph(edge)
15: E ← E

⋃
{edge}

16: end if

17: end for

18: for all node ∈ removed do ⊲ remove non top-k nodes and edges
19: removeNodeFromGraph(node)
20: for all edge ∈ node do

21: E ← E \ {edge}
22: end for

23: end for

24: end for

25: new time← new time+ tinc

26: R← getRowsFromDB (new time)
27: end while

28: edges← E

so-called landmark) from which the data starts being observed. A disadvantage
of this method is that the amount of data inside the window quickly grows to a
prohibitive size. Other way of limiting data is by using a fixed sliding window
model. These windows are bounded by the number of data points or the number
of time units, being both constant.

4.1 Landmark Windows

Algorithm 2, regarding streaming landmark window models, provides the rep-
resentation of all the events (e.g., edge and node addition or removal) that occur
in the network, starting at a specific time stamp, for example, 01h48m09s of 1st
of January 2012.

This type of window model is not very useful in a streaming scenario, be-
cause it implies a growing number of events outputted on the screen and the
comprehensibility lowers as this number reaches, or exceeds, a few thousands of



Algorithm 2 Algorithm based on a landmark window model [37]

Input: start, wsize, tinc ⊲ start timestamp, window size and time increment
Output: edges

1: R← {} ⊲ data rows
2: E ← {} ⊲ edges currently in the graph
3: R← getRowsFromDB (start)
4: new time← start

5: while (R <> 0) do
6: for all edge ∈ R do

7: addEdgeToGraph(edge)
8: E ← E

⋃
{edge}

9: end for

10: new time← new time+ tinc

11: R← getRowsFromDB (new time)
12: end while

13: edges← E

events. This landmark application is however useful in other contexts, for exam-
ple, if the network is relatively small and the analyst is interested in checking
all events in the evolution of the network. Nevertheless, if the analyst wants to
follow the evolution of a large streaming network, the application described in
the next subsection is more appropriate.

4.2 Sliding Windows

For this large data stream, we generate a dynamic sample representation of
the data by using a sliding window model. This sliding window is defined as a
data structure with fixed number of registered events. Each event is a phone call
between pairs of subscribers. Since these events are annotated with time stamps,
the time period between the first call and the last call in the window is easily
computed. The input parameters of this algorithm are (i) starting date and time,
and the (ii) maximum number of events/calls the sliding window can have. The
SNA model used in this application is a full weighted directed network, since all
the nodes and edges in the network are outputted for a particular instance of
the sliding window [19].

An example of the obtained results is provided in Fig. 6. Nodes are sized
according to their weighted degree. Thus, larger nodes correspond to more ac-
tive subscribers, i.e., subscribers associated with a higher number of phone calls
(either received or made). This is the representation of a window with 1000
events/calls, for a time period starting at 00h01m52s and ending at 00h02m40s.
The evolution of the network is visually and immediately conclusive. There are
three nodes with the largest number of connections/phone calls in the network.

From the figure, we can also see the connection established between two of
these three largest nodes. Fig. 6 also displays the average data speed in the
window (approximately 22 calls per second). This average data speed is com-
puted by counting the number events (i.e., phone calls) inside the window, which



Algorithm 3 Algorithm based on a sliding window model [37]

Input: start, wsize, tinc ⊲ start timestamp, window size and time increment
Output: edges

1: R← {} ⊲ data rows
2: E ← {} ⊲ edges currently in the graph
3: V ← {} ⊲ buffer to manage removal of old edges
4: R← getRowsFromDB (start)
5: new time← start

6: p← {}
7: while (R <> 0) do
8: for all edge ∈ R do

9: addEdgeToGraph(edge)
10: E ← E

⋃
{edge}

11: k ← 1 + (p mod wsize)
12: old edge← V [k]
13: removeEdgeFromGraph(old edge)
14: E ← E \ {old edge}
15: V [k]← edge

16: p← p+ 1
17: end for

18: new time← new time+ tinc

19: R← getRowsFromDB (new time)
20: end while

21: edges← E

Fig. 6: Visualization of the call graph using a sliding window approach [37]

comprises all the events observed during the time period associated with the win-
dow length. Under different experimental conditions, namely when analysing the



Fig. 7: Visualization of the call graph using a sliding window approach (2nd
version) [37]

window obtained for mid-day, the data speed increases, with more phone calls
per second. After several experiments with different window sizes, and consid-
ering that the data speed changes, we concluded that this speed should not be
smaller than approximately 100 events and also not larger than approximately
1000 events. With the minimum data speed conditions, 100 events represents a
window period of around 10 seconds of events. With the maximum data speed
and a window of 1000 events, it represents around 5 seconds of data. Using this
data, less than 100 events represents changes in the window that are too fast
to be visually comprehensible, and more than 1000 events represents too many
events, reducing the visual comprehensibility of the output.

Fig. 7 represents the next window instance, starting at 00h02m41s and ending
at 00h03m30s. Considering the previous Fig. 6, we can visually observe the
evolution of the network and observe that there is a new smaller node establishing
connection to the most active nodes identified before, in this window of 1000
events.

5 Centrality Analysis

One of the most relevant tasks in SNA is the computation and interpretation of
centrality measures. Centrality is often used for finding important nodes by an-
alyzing their position in the network. The concept of importance is multidimen-
sional. Each relevant dimension, such as reachability, embeddedness, influence,
support, ability to span structural holes and control of information flow, is cap-
tured by different centrality measures. Examples of classical measures are degree,
betweenness, closeness and eigenvector centrality. The first three were proposed



by Freeman [13] and the last one by Bonacich [5]. There are two fundamentally
different classes of centrality measures: node-level measures (e.g., degree) and
network-level measures (e.g., density). The former evaluates the centrality of
each node/vertex (or edge/link) in the network, whereas the latter evaluates the
centrality of the whole network.

While some of these measures can be straightforwardly computed for stream-
ing graphs, since they only require the update of counters (e.g., degree and
density), other measures are computationally expensive because they rely on
the computation of the shortest paths across all nodes in the network (e.g.,
closeness and betweenness). The computation of the all pairs shortest paths is
feasible when dealing with small networks of a few tens of thousands of nodes
and links, but it quickly becomes prohibitively expensive as the network grows
larger. A possible solution to circumvent this problem is to calculate these mea-
sures on snapshots of the dynamic network. However, since streaming networks
typically change at a fast pace, this solution is frequently not fast enough to
provide accurate and up-to-date information, which makes it unfeasible for prac-
tical applications. Given this limitation, incremental algorithms for computing
shortest-path-based centrality measures were developed. Incremental algorithms
keep analytic information without performing all computations from scratch,
thus being suitable for dynamically changing networks.

Since betweenness and closeness are among the most widely used centrality
measures, are expensive to compute in streaming environments and are essential
to identify important subscribers in a call graph (e.g., mobile users with high
reachability or users who control the information flow between communities),
here we report the advances on algorithms for computing these two measures.
Note that these algorithms assume a landmark window model when updating
the centralities.

5.1 Betweenness

Betweenness is a classical centrality measure that quantifies the importance of a
network element (node or edge) based on the frequency of its occurrence in short-
est paths between all possible pairs of nodes in the network. The intuitive idea
behind this measure is to identify graph elements that act as bridges, i.e., which
connect dense regions of the network and without which the information would
not pass from one of these regions to the other. An edge with high betweenness
is likely to act as a bridge between dense graph regions and, thus, occurs in many
shortest paths. Nodes with high betweenness are usually located at the ends of
these edges. These nodes occupy a strategic position in the network, which al-
lows them to control the information transfer between different network regions,
either by blocking the information between them or by accessing it before other
nodes belonging to their region.

Node (or edge) betweenness is computed as the fraction of shortest paths
that go through a given node (or edge) among all shortest paths in the network.
This is a global centrality measure since it requires complete information about
the network in order to compute all pairs shortest paths. Since it is based on



the computation of shortest paths for the whole network, betweenness is com-
putationally demanding. The best known algorithm for computing this measure
in static unweighted graphs was proposed by Brandes [7]. This algorithm runs
in O(nm) time, being n the number of nodes/vertices and m the number of
links/edges, and has a space complexity of O(n2 + nm), which is prohibitive for
networks with millions of nodes and billions of links. Given this, it is necessary to
develop new algorithms that avoid the full recomputation of betweenness every
time a new edge or node is added to, or removed from, the network. Incremen-
tal algorithms offer a solution to this problem, since they can handle large-scale
data and can adapt to incremental changes in evolving networks. This is achieved
by performing early pruning and by updating only the regions of the network
affected by the changes.

Recently, several solutions were proposed to compute node and/or edge be-
tweenness centrality in streaming networks. Lee et al. [27] introduced QUBE,
an incremental algorithm that relies on the decomposition of the graph into bi-
connected components. The performance of the algorithm is strongly associated
with the size of the components, which is usually very large in real-world appli-
cations. Consequently, it suffers from scalability and efficiency problems, which
are of utmost importance in streaming settings. In the same year, Green et al.
[17] proposed an exact algorithm, which extends Brandes’s approach [7], to com-
pute node betweenness in unweighted streaming graphs. The idea is to preserve
information from prior computations of betweenness values and the needed data
structures and update only the values and data structures directly affected by
the changes in the network. However, the algorithm has some drawbacks: it only
supports one type of change (insertion of new edges), and has the same space
complexity of Brandes’s static algorithm, which is O(n2+nm). Hence, the algo-
rithm is not fully suited to handle large-scale and dynamic networks. Kas et al.
[22] propose a slightly better solution. They present an incremental algorithm for
dynamic maintenance of node betweenness centrality values in rapidly growing
networks, using as a building block the dynamic all pairs shortest path algorithm
introduced by Ramalingam and Reps [36]. Similarly to [17], the technique of Kas
et al. is also based on keeping in memory information from previous computa-
tions but using data structures that are faster to update (e.g., shortest distances
and number of shortest paths). Although the computational complexity can be
lower than the one obtained by [17], the space complexity is similar, turning it
prohibitive for very large graphs. More recently, Kourtellis et al. [26] proposed an
incremental and scalable algorithm for online computing of both node and edge
betweenness centralities in very large dynamic networks. Besides being adapted
to fully dynamic networks, where nodes and links are added and removed over
time, these authors propose an algorithmic framework that can be efficiently
used for real-world deployment (e.g., for identifying strategic subscribers in call
graphs) since the algorithm allows for out-of-core implementation and is tailored
for modern parallel stream processing engines.

A different approach from the above mentioned was introduced by Kim and
Anderson [25]. They presented the time-ordered graph model, which converts a



dynamic network into a static network with directed flows, and propose temporal
centrality measures to extract information from the graph. These measures are
simple extensions of the classical measures to this specific type of dynamic model.
However, this method was devised for dynamic networks which evolve in non-
streaming scenarios, thus not being fully suitable to the online analysis of call
graphs.

5.2 Closeness

Closeness is another classical SNA measure that quantifies the importance of a
node based on its ability to reach other nodes in a network through shortest
paths. The higher the closeness, the less the cost for a node to reach the rest of
the network. For instance, in a call graph, the subscriber with highest closeness
can quickly spread information to other nodes of the network, as long as the
nodes belong to the same connected component.

Closeness is computed as the inverse of the sum of the shortest path dis-
tances between a node i and the remaining n − 1 nodes in a network of size n.
Similarly to betweenness, a few incremental algorithms were proposed to com-
pute the closeness centrality in large dynamic graphs. Kas et al. [21] proposed
an algorithm for the fast computation of closeness in large-scale networks. Their
technique supports efficient computation of all pairs shortest paths and is suited
to dynamic networks, since it handles addition, removal and modification of
nodes and links. This algorithm is similar to the one proposed by the same au-
thors in [22]. A more recent work by Khopkar et al. [24] presents a partially
dynamic and incremental closeness algorithm that runs in O(n2).

6 Community Detection

In a social network, a community represents individuals that form a group dis-
tinguishable by its properties or characteristics. In other words, when we say we
encountered a community it might be, for example, a group of friends, family,
work colleagues or other group of individuals sharing the same role, characteris-
tics or label in the context of a network. Detection of communities on a network
has many applications, for example, clients that have the same interests and
are geographically close to each other might benefit with the implementation of
mirror servers. These servers provide faster services on the World Wide Web.
The identification of retail clients with similar interests in products enables the
retailer to give better recommendation services and therefore increases the prob-
ability of increasing profits and the service quality. In telecommunications and
computer networks, the community structure of nodes may help the improvement
of the compactness of routing tables, maintaining efficient choice of communica-
tion paths. Regarding community structure, several areas consider important if
the node is located in the center of a community or if it lies on the boundaries
of the community. In the first case, the node might have an important control
and stability function within the community. In the second case, the node might



have functions enabling information exchange between communities. The iden-
tification of central and peripheral nodes is of high importance, for example, in
social and metabolic networks [12]. One of the most efficient methods used for
community detection, either in static environments or in dynamic ones, is the
Louvain method [4].

1

2 3 5

4

6

7

1 1

1 1

1

1

1

1

(a) original network

1

2 3 5

4

6

7

1 1

1 1

1

1

1

1

(b) initial communities

1

2 3 5

4

6

7

1 1

1 1

1

1

1

1

(c) step 1 of 1st iteration

3 5 71 2

6 2 2

(d) step 2 of 1st iteration

3 5 71 2

6 2 2

(e) step 1 of 2nd iteration

3 71

6 8

(f) step 2 of 2nd iteration

Fig. 8: The original Louvain algorithm steps.

Figure 8 briefly explains how the Louvain algorithm works, by illustrating
the sequential steps that the algorithm performs for identifying communities in
the network. The Louvain method is non-deterministic and performs a greedy
optimization to maximize the modularity [31] of all the network partitions. A
two-step optimization is performed at each iteration. In step 1, the algorithm
seeks for small communities by locally optimizing the modularity. Only local
changes of communities are allowed. In step 2, nodes belonging to the same
community are aggregated in a single node representing that community in order
to build a new aggregated network of communities. Steps are repeated iteratively
until no increase of modularity is possible and a hierarchy of communities is
generated. Figure 8a represents the initial network; Figure 8b represents initial
individual node communities; Figure 8c represents local modularity optimization
after the first step; Figure 8d represents the community aggregation results and
the new initial communities; Figure 8e and Figure 8f, are the two Louvain steps,
where the local modularity optimization and community aggregation for the
second iteration are presented; The algorithm stops at the 2nd iteration, once
increasing modularity is no longer possible. Despite the fast convergence property
of the algorithm, which allows the identification of communities in very large
networks, its non-deterministic behaviour and internal network structure make
it only suitable for static networks.

Methods for detecting communities in dynamic networks were already pro-
posed in the literature. Shang et al. [39] propose the addition of new edges in
a two-step approach by using the Louvain Method in the first step and then
applying incremental updating strategies on the detected communities in the
second step. Thus, the obtained results with this algorithm are dependent on
the community structure at its starting point. Another extension of the Louvain
method is the one introduced by Nguyen et al.[32]. The proposed QCA algorithm



for the efficient detection of communities, starts by detecting the initial commu-
nities and then adapts itself to the communities changes by doing addition and
removals of nodes and edges within and across communities. Bansal et al. [2],
propose a fast community detection algorithm that uses community information
from previous time steps. In their experiments, these authors achieve execution
time improvements of as much as 30% over the static methods and maintaining
the quality of the community partitions. More recently, the use of spectral clus-
tering became one of the most used methods for community detection. There are
several examples of its use. In [43], Yun et al., introduce community detection
with partial information. With their method, only a sample of the nodes is ob-
served. Again, the developed algorithm developed is spectral. They extract the
clusters only when it is possible. Thus, the authors address the memory limit
problem for community detection from a streaming point of view, and achieve
asymptotic reconstruction of the clusters with a memory requirement which is
sub-linear with the size of the network. The memory requirement of the algo-
rithm is non-increasing. Bouchachia et al. [6] present an algorithm that performs
enhanced spectral incremental clustering. This algorithm does not need to cal-
culate the clustering for the whole network each time new nodes or edges appear
in the stream. Several Label propagation algorithms such as, for example, LPA
[35, 41], COPRA [18] and SLPA [42] were also proposed. Results shown that they
perform well in static networks, however when those algorithms are applied in
different snapshots of an evolving network they produce different communities
at each run. When tracking communities in dynamic networks the instability of
the partitions is undesirable. LabelRankT, a new label propagation technique
proposed by [40] was designed to overcome this problem.

6.1 Top-K Communities 4

Top-K communities are defined as groups of densely connected nodes in top-

K networks. As the name implies, in this work these communities are detected
considering only the top-K nodes and their 1st and 2nd neighborhood-order con-
nections. This method samples the original network in a way that preserves its
structural properties and the community structure of the original network. We
apply top-K sampling to obtain the nodes that belong to the top-K group. To re-
trieve their network we query the database so as to collect all connections/edges
representing the network with the neighbors of the top-K nodes. After generating
the sampled networks, the Louvain method [4] is applied to find the communities.
Figure 9 represents the matching between the community membership obtained
for the top-10000 network and the community membership of the original net-
work retrieved by the Louvain method. This task was performed for an entire
day of streaming data. The matching of communities for the two scenarios (sam-
pled network and original network) is performed by retrieving the percentage of
matching community members between any top-k network community and the
original network communities.

4This section is based on the work published in [38].



Fig. 9: Matching of community members in the community structure of the sam-
pled network and the community structure of the original network

Further analysis of Figure 9 shows the matching of the 100 largest commu-
nities for the sampled network and the 20 largest communities in the original
network. The proportion of community member matching varies with a color
gradient between 0 (light grey) and 1 (black). There is considerable matching
of the top-10000 sampling communities and the 20 largest communities of the
original network. These highly active callers and the communities they belong
to are therefore represented in the top-K sampling, as expected.

Experiments were also conducted using other days of the dataset. The results
are very similar and consistent throughout full day data comparisons and for
the complete dataset of more than 100 days. In all comparisons it is visible that
larger original dataset communities are matched by communities retrieved with
the proposed top-K sampling method.

7 Conclusions and Open Issues

Sampling of large social networks is still in its infancy and there are impor-
tant open research issues and unsolved problems not yet satisfactorily addressed
by the scientific community. Firstly, it is necessary to achieve consensus on the
definition of representative sample. Based on previous research, a representa-
tive sample is a subgraph of the original network that matches its structural
properties. However, it is not yet clear which structural properties (e.g., degree
distribution, global clustering coefficient, motifs, community structure) should
be preserved in the sample. Another matter of concern is the sample size. De-
spite the promising results of empirical studies [28], a rigorous formal study of
the most appropriate sample size according to the size and characteristics of the
original network still has to be done.

Regarding visualization, the proposed solutions for streaming networks are
still quite simple and leave much space for improvement. A straightforward ex-
tension of the presented techniques would be to include additional information
by means of visual cues, such as color, size and shape. An idea would be to



integrate the visualization techniques with the incremental algorithms used to
compute computationally demanding centrality measures (e.g., closeness and be-
tweenness) and then include this node-level information on the visual output. On
the other hand, it is necessary to explore new types of representations, that go
beyond the graph model, for visually displaying interesting patterns in streaming
networks.

Community detection on large dynamic social networks faces many of the
challenges of static community detection, namely in what regards the lack of a
consensual definition of network community and the evaluation of the network
partitions produced by community detection algorithms. A possible way to cir-
cumvent these problems would be to support the definition of community on
the specific domain and develop evaluation measures specifically tailored for the
application. For instance, telecommunication providers might be interested in
finding communities defined not only by the connections induced by the mobile
communications, but also by business variables (e.g., revenue generated by each
user), geographical position and demographic attributes. Depending on the pur-
pose of the community detection task, telecommunication companies could, for
instance, perform the evaluation based on the similarity of the users’ response
to the marketing campaigns targeted to the community they were assigned to.
Another important issue, especially for telecommunication providers, is to create
models and procedures to characterize and define profiles of communities.

Overall, the major challenge is to devise a system that integrates all the
relevant steps involved in the process of extracting useful knowledge from large
streaming social networks. This system should be built upon rigorous methods
and appropriate algorithms, while being user-friendly, in order to encourage its
use by business managers and decision makers. The use of social network analysis
applied to streaming telecommunications networks will benefit society. More
specifically, the network users, in terms of service quality, largely due to the
rapidity of action that allows operators. Service problems, which ultimately may
adversely affect the service to the point where the customer will want to leave the
operator, will decrease significantly. Otherwise, the problems that will probably
arise upon it will necessarily be discussed in more detail in the future, relate to
the use of such information for dissemination of network spam, dubious character
information or that might involve the loss of the network user’s privacy.

Acknowledgments

This work was supported by Sibila and Smartgrids research projects (NORTE-
07-0124-FEDER-000056/59), financed by North Portugal Regional Operational
Programme (ON.2 O Novo Norte), under the National Strategic Reference Frame-
work (NSRF), through the Development Fund (ERDF), and by national funds,
through the Portuguese funding agency, Fundação para a Ciência e a Tecnologia
(FCT), and by European Commission through the project MAESTRA (Grant
number ICT-2013-612944). The authors also acknowledge the financial support
given by the project number 18450 through the ”SI I&DT Individual” program



by QREN and delivered to WeDo Business Assurance. Márcia Oliveira gratefully
acknowledges funding from FCT, through Ph.D. grant SFRH/BD/81339/2011.

References

1. Ahmed, N.K., Neville, J., Kompella, R.: Space-efficient sampling from social ac-
tivity streams. In: Proceedings of the 1st International Workshop on Big Data,
Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming
Models and Applications (BigMine 2012), pp. 53–60. ACM (2012)

2. Bansal, S., Bhowmick, S., Paymal, P.: Fast community detection for dynamic com-
plex networks. In: L. da F. Costa, A. Evsukoff, G. Mangioni, R. Menezes (eds.)
Complex Networks, Communications in Computer and Information Science, vol.
116, pp. 196–207. Springer Berlin Heidelberg (2011)

3. Barabasi, A.L.: The origin of bursts and heavy tails in human dynamics. Nature
435(7039), 207–211 (2005)

4. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. Journal of Statistical Mechanics: Theory and Ex-
periment 2008(10), P10,008 (2008)

5. Bonacich, P.: Power and centrality: A family of measures. American Journal of
Sociology 92(5), 1170–1182 (1987)

6. Bouchachia, A., Prossegger, M.: Incremental spectral clustering. In: M. Sayed-
Mouchaweh, E. Lughofer (eds.) Learning in Non-Stationary Environments, pp.
77–99. Springer New York (2012)

7. Brandes, U.: A faster algorithm for betweenness centrality. Journal of Mathemat-
ical Sociology 25(2), 163–177 (2001)

8. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams.
In: Proceedings of the 29th International Colloquium on Automata, Languages and
Programming (ICALP 2002), pp. 693–703. Springer-Verlag (2002)

9. Clauset, A., Shalizi, C.R., Newman, M.E.: Power-law distributions in empirical
data. SIAM review 51(4), 661–703 (2009)

10. Cormode, G., Muthukrishnan, S.: What’s hot and what’s not: tracking most fre-
quent items dynamically. ACM Transactions on Database Systems 30(1), 249–278
(2005)

11. Demaine, E.D., López-Ortiz, A., Munro, J.I.: Frequency estimation of internet
packet streams with limited space. In: R. Möhring, R. Raman (eds.) Algorithms-
ESA 2002, Lecture Notes in Computer Science, vol. 2461, pp. 348–360. Springer
Berlin Heidelberg (2002)

12. Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5), 75–174
(2010)

13. Freeman, L.C.: Centrality in social networks conceptual clarification. Social Net-
works 1(3), 215–239 (1979)

14. Gama, J.: Knowledge Discovery from Data Streams, 1st edn. Chapman &
Hall/CRC (2010)

15. Goodman, L.A.: Snowball sampling. The Annals of Mathematical Statistics 32(1),
148–170 (1961)

16. Granovetter, M.: Network sampling: Some first steps. American Journal of Soci-
ology 81(6), 1267–1303 (1976)



17. Green, O., McColl, R., Bader, D.A.: A fast algorithm for streaming betweenness
centrality. In: Proceedings of the 2012 International Conference on Privacy, Secu-
rity, Risk and Trust (PASSAT 2012) and 2012 International Conference on Social
Computing (SocialCom 2012), pp. 11–20. IEEE Computer Society (2012)

18. Gregory, S.: Finding overlapping communities in networks by label propagation.
New Journal of Physics 12(10), 103,018 (2010)

19. Hanneman, R.A., Riddle, M.: Introduction to Social Network Methods.
University of California, Riverside, Riverside, CA, USA (2005). URL
http://www.faculty.ucr.edu/ hanneman/nettext/index.html

20. Hubler, C., Kriegel, H.P., Borgwardt, K., Ghahramani, Z.: Metropolis algorithms
for representative subgraph sampling. In: Proceedings of the 8th IEEE Interna-
tional Conference on Data Mining (ICDM 2008), pp. 283–292. IEEE Computer
Society (2008)

21. Kas, M., Carley, K.M., Carley, L.R.: Incremental closeness centrality for dynami-
cally changing social networks. In: Proceedings of the 2013 IEEE/ACM Interna-
tional Conference on Advances in Social Networks Analysis and Mining (ASONAM
2013), pp. 1250–1258. IEEE Computer Society (2013)

22. Kas, M., Wachs, M., Carley, K.M., Carley, L.R.: Incremental algorithm for updat-
ing betweenness centrality in dynamically growing networks. In: Proceedings of
the 2013 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM 2013), pp. 33–40. IEEE Computer Society (2013)

23. Kayastha, N., Niyato, D., Wang, P., Hossain, E.: Applications, architectures, and
protocol design issues for mobile social networks: A survey. Proceedings of the
IEEE 99(12), 2130–2158 (2011)

24. Khopkar, S.S., Nagi, R., Nikolaev, A.G., Bhembre, V.: Efficient algorithms for
incremental all pairs shortest paths, closeness and betweenness in social network
analysis. Social Network Analysis and Mining 4(1), 1–20 (2014)

25. Kim, H., Anderson, R.: Temporal node centrality in complex networks. Physical
Review E 85(2), 026,107 (2012)

26. Kourtellis, N., Morales, G.D.F., Bonchi, F.: Scalable online betweenness centrality
in evolving graphs. arXiv preprint arXiv:1401.6981 (2014)

27. Lee, M.J., Lee, J., Park, J.Y., Choi, R.H., Chung, C.W.: QUBE: a Quick algorithm
for Updating BEtweenness centrality. In: Proceedings of the 21st International
Conference on World Wide Web, pp. 351–360. ACM (2012)

28. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD 2006), pp. 631–636. ACM (2006)

29. Manku, G.S., Motwani, R.: Approximate frequency counts over data streams. In:
Proceedings of the 28th International Conference on Very Large Data Bases (VLDB
2002), pp. 346–357. VLDB Endowment (2002)

30. Metwally, A., Agrawal, D., El Abbadi, A.: Efficient computation of frequent and
top-k elements in data streams. In: Proceedings of the 10th International Confer-
ence on Database Theory (ICDT 2005), pp. 398–412. Springer-Verlag (2005)

31. Newman, M.E., Girvan, M.: Finding and evaluating community structure in net-
works. Physical Review E 69(2), 026,113 (2004)

32. Nguyen, N.P., Dinh, T.N., Xuan, Y., Thai, M.T.: Adaptive algorithms for detecting
community structure in dynamic social networks. In: Proceedings of the 2011 IEEE
International Conference on Computer Communications (INFOCOM 2011), pp.
2282–2290. IEEE Computer Society (2011)

33. Papagelis, M., Das, G., Koudas, N.: Sampling online social networks. IEEE Trans-
actions on Knowledge and Data Engineering 25(3), 662–676 (2013)



34. Pinheiro, C.A.R.: Social network analysis in telecommunications, vol. 37. John
Wiley & Sons (2011)

35. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect
community structures in large-scale networks. Physical Review E 76(3), 036,106
(2007)

36. Ramalingam, G., Reps, T.: On the computational complexity of dynamic graph
problems. Theoretical Computer Science 158(1), 233–277 (1996)

37. Sarmento, R., Cordeiro, M., Gama, J.: Visualization for streaming networks. In:
Proceedings of the 3rd Workshop on New Frontiers in Mining Complex Patterns
(NFMCP 2014), pp. 62–74 (2014)

38. Sarmento, R., Cordeiro, M., Gama, J.: Streaming networks sampling using top-
k networks. In: Proceedings of the 17th International Conference on Enterprise
Information Systems (ICEIS 2015), p. to appear. INSTICC (2015)

39. Shang, J., Liu, L., Xie, F., Chen, Z., Miao, J., Fang, X., Wu, C.: A real-time
detecting algorithm for tracking community structure of dynamic networks. In:
Proceedings of the 6th SNA-KDD Workshop (SNA-KDD 2012), pp. 1–9. ACM
(2012)

40. Xie, J., Chen, M., Szymanski, B.K.: Labelrankt: Incremental community detection
in dynamic networks via label propagation. In: Proceedings of the Workshop on
Dynamic Networks Management and Mining (DyNetMM 2013), pp. 25–32. ACM
(2013)

41. Xie, J., Szymanski, B.K.: Community detection using a neighborhood strength
driven label propagation algorithm. In: Proceedings of the IEEE Network Science
Workshop (NSW 2011), pp. 188–195. IEEE Computer Society (2011)

42. Xie, J., Szymanski, B.K.: Towards linear time overlapping community detection
in social networks. In: P.N. Tan, S. Chawla, C. Ho, J. Bailey (eds.) Advances in
Knowledge Discovery and Data Mining, Lecture Notes in Computer Science, vol.
7302, pp. 25–36. Springer Berlin Heidelberg (2012)

43. Yun, S.Y., Lelarge, M., Proutiere, A.: Streaming, memory limited algorithms for
community detection. In: Advances in Neural Information Processing Systems
(NIPS 2014), pp. 3167–3175 (2014)


