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Correspondence should be addressed to Siamak Talatahari; siamak.talat@gmail.com

Received 12 June 2021; Revised 16 August 2021; Accepted 3 September 2021; Published 30 September 2021

Academic Editor: Radu-Emil Precup

Copyright © 2021 Hadi Bayzidi et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, a new metaheuristic optimization algorithm, called social network search (SNS), is employed for solving mixed
continuous/discrete engineering optimization problems.+e SNS algorithmmimics the social network user’s efforts to gain more
popularity by modeling the decision moods in expressing their opinions. Four decision moods, including imitation, conversation,
disputation, and innovation, are real-world behaviors of users in social networks.+ese moods are used as optimization operators
that model how users are affected and motivated to share their new views. +e SNS algorithm was verified with 14 benchmark
engineering optimization problems and one real application in the field of remote sensing. +e performance of the proposed
method is compared with various algorithms to show its effectiveness over other well-known optimizers in terms of compu-
tational cost and accuracy. In most cases, the optimal solutions achieved by the SNS are better than the best solution obtained by
the existing methods.

1. Introduction

Optimization is a part of the nature of human works, in
which almost all of the human decisions go through an
optimal process [1]. Optimization is embedded in the es-
sence of the many branches of science, for example, a system
with minimal energy in physics, the maximum profit in
business, survival of the best organism in biology, and de-
signing an engineering system that satisfies a set of con-
straints [2, 3]. Almost all of the engineering problems
contain several nonlinear and complex constraints
depending on the design criteria and safety rules.

Over the last decades, various types of methods have
been developed to solve constrained engineering problems.
Two well-known groups of these methods are mathematical
and metaheuristic methods. +e idea of mathematical
methods can be attributed to the development of the calculus
of variations [4]. +ese methods employ the gradient of the
objective function and constraints of the problem to find the

optimal solution. +e results of these methods are exact.
However, these approaches search in a space near the
starting point, which makes them sensitive to the initial
starting point. In other words, just a correct starting point
can lead to the global optima. In dealing with complex
optimization problems, these methods are not suitable and
frequently reach local solutions, and in some real applica-
tions, the gradient of the objective function and constraints
is impossible to be calculated [5]. +ese drawbacks en-
courage researchers towards metaheuristic methods. Met-
aheuristic methods try to combine basic heuristic methods
with randomization and rule-based theories, which are
usually taken from natural phenomena such as evolution,
swarm intelligence, and governing laws in different physics
theories. Metaheuristic algorithms are approximate, but
their results have high accuracy and are very close to the
global optimum solution [6]. +ese methods are problem-
independent, and the starting point does not determine the
quality of the final solutions. Besides, these methods employ
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different operators to perform a global search in the space of
the problem at an appropriate speed. +ese features have
made them popular in recent decades. Also, these types of
algorithms are among the most popular techniques that are
employed for solving optimization problems in different
fields, such as computer and electrical engineering [7], water,
geotechnical and transport engineering [8], structure and
infrastructures engineering [9], robotic [10], project and
construction management [11], feature selection and data
mining [12, 13], industrial and manufacturing [14], and
medicine and biology [15].

Glover [16] introduced the term metaheuristic firstly.
+e word metaheuristic is a combination of two old Greek
words: meta and heuristic. +e word heuristic has its origin
in the old Greek work heuriskein, which means the art of
discovering new strategies (rules) to solve problems. +e
suffix meta also is a Greek word that means “upper-level
methodology” [17]. Almost every metaheuristic algorithm
follows the general process shown in Figure 1. Algorithm
steps cause fundamental differences in the performance of
algorithms when faced with different problems. In the other
words, algorithm steps represent the unique operators of
each algorithm in which new solutions are generated. +e
operators of each algorithm refer to the optimal process of
a particular phenomenon that those algorithms have
imitated.

According to the type of basic phenomena of each
method, metaheuristic algorithms can be classified into four
main categories: (1) evolutionary, (2) swarm intelligence, (3)
physics-based, and (4) human-based algorithms. Evolu-
tionary algorithms are motivated by natural evolution.
Swarm intelligence algorithmsmodel the natural behavior of
animals in teamwork such as foraging and hunting. Physical
phenomena and laws of science inspire physics-based al-
gorithms, and finally, human-based algorithms mimic
various optimal behaviors of humans in different conditions.
Some of the most popular and novel algorithms are pre-
sented in Table 1.

Each of these algorithms can behave differently when
dealing with different problems, so that one particular al-
gorithm may not solve some problems. +erefore, it is
necessary to create a new high-performance optimization
algorithm that is able to solve more types of problems. Novel
metaheuristic methods are developed to find the optimal
solution for complex and large-scale problems in less time
than previous ones, with higher accuracy. +ese aims are
satisfied by developing more robust algorithms that have
a better ability to search the space of problems to find a better
solution. In addition, this property arises from the right
balance between exploration and exploitation of the pro-
posed algorithm. Exploitation means searching around the
current best solutions, while exploration tries to explore the
search space more efficiently, often by randomization [42].

In addition to inventing novel algorithms based on
natural phenomena, developing new algorithms using hy-
bridizing the operators of the current methods or modifying
them is a hot topic in the field of metaheuristic algorithms.
Firefly algorithm with chaos [43], hybrid particle swarm
optimizer, ant colony strategy and harmony search scheme

(HPSACO) [44], island-based cuckoo search with highly
disruptive polynomial mutation (iCSPM) [45], quantum-
behaved developed swarm optimizer (QDSO) [46], hybrid
self-assembly with particle swarm optimization (SAPSO)
[47], upgraded whale optimization algorithm (UWOA) [48],
fuzzy controllers with slime mould algorithm (SMAF) [49],
and hybrid invasive weed optimization-shuffled frog-leaping
(SFLA-IWO) [50, 51] are some the newly developed hybrid
or modified optimization algorithms.

Social network search (SNS) algorithm is a robust
metaheuristic algorithm that was innovated as a novel
method for solving optimization problems, and its results
showed that it is capable of outperforming various methods
in dealing with different optimization problems [42]. +e
SNS algorithm simulates human behavior as users of
a social network. Social network users can influence the
opinions of other users on the network by sharing their
views, opinions, and thoughts. Each of the users can also
share their thoughts on the network and affect other
people’s opinions. In other words, the SNS simulates
particular moods where the views and opinions of users are
influenced under their communications. +is paper in-
vestigates the performance of the SNS algorithm using 14
constrained engineering optimization problems and a real
application in the field of satellite image segmentation. +e

Table 1: List of some popular and new metaheuristic algorithms.

Algorithm References

Evolution strategy (ES) [18]
Genetic algorithms (GA) [19]
Ant colony optimization (ACO) [20]
Particle swarm optimization (PSO) [21]
Differential evolution (DE) [22]
Cuckoo search (CS) [23]
Bat algorithm (BA) [24]
Charged system search (CSS) [25]
Firefly algorithm (FA) [26]
Eagle strategy (ES) [27]
Krill herd algorithm (KH) [28]
Flower pollination algorithm (FPA) [29]
Grey wolf optimizer (GWO) [30]
Optimization based on phylogram analysis (OPA) [31]
Whale optimization algorithm (WOA) [32]
Developed swarm optimizer (DSO) [33]
Stochastic paint optimizer (SPO) [34]
Chaos game optimization (CGO) [35, 36]
Atomic orbital search (AOS) [37, 38]
Material generation algorithm (MGA) [39]
Crystal structure algorithm (CryStAl) [40]
Social network search (SNS) [41]

Initial
Solution

Evaluation

New
Solution

End?
Optimal
Solution

Algorithm
steps

no

yes

Figure 1: +e general form of optimization algorithms.
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obtained results are compared with other optimizers in
terms of best function value and number of function
evaluations, and in most cases, the solutions of the SNS are
better than the other methods.

+e rest of this paper is organized as follows. Section 2
describes the SNS algorithm and constraint-handling
technique. +e performance of the SNS algorithm in solving
optimization problems is evaluated against other methods in
Section 3. Finally, conclusions are given in Section 4.

2. Materials and Methods

+is section presents the general framework of the SNS
algorithm and the utilized constraint-handling technique for
solving engineering optimization problems.

2.1. Social Network Search (SNS). Human beings are social
species, which always try to communicate with each other.
Social networks are virtual tools that were created for this
goal with the advent of technology. +e proposed SNS al-
gorithm simulates the interactive behavior among users in
social networks to achieve more popularity. Social networks
are platforms where users can interact virtually with other
users. Interacting with other users of the network may affect
their opinions. +e process of interacting with and influ-
encing other users of the network goes through an optimal
process so that users are always trying to increase their level
of popularity on the network.

+e main property of social networks is that users can
follow other persons, as shown in Figure 2. If a user shares
a new post, that person’s followers may be informed about
the shared topic. +is feature (fast propagation of views) has
turned networks into a powerful tool for promoting in-
formation and ideas, which is due to having high connec-
tivity of users in the social networks, as demonstrated in
Figure 2.

In social networks, users’ viewpoint can be affected by
other views in different moods containing imitation, con-
versation, disputation, and innovation. One of these moods
that look like real-world social behavior creates the new
solution in the SNS algorithm. Description and mathe-
matical modeling of these moods are as follows [42].

2.1.1. Mood 1: Imitation. Imitation means that the views of
other users are attractive, and usually, users try to imitate
each other in expressing their opinions as follows:

Xinew � Xj + rand(−1, 1) × R,

R � rand (0, 1) × r,
r � Xj −Xi,

(1)

whereXj represents the vector of the jth user’s view, which is
selected randomly (i≠ j),Xi is the view vector of the ith user,
and rand(−1, 1) and rand (0, 1) are two random vectors in
intervals [−1, 1] and [0, 1], respectively. In this mood, the
new solution will be generated according to imitation space
(Figure 3(a)), and this space is created using the radii of
shock and popularity. +e shock radius (R) reflects the

amount of influence of the jth user, and its magnitude is
considered as a multiple of r. +e value of r shows the
popularity radius of the jth user, which is calculated based
on the difference in the opinions of the ith and jth users.
Also, the final effect of the shock radius is reflected by
multiplying its value to a random vector in the interval of
[−1, 1], in which if the components of the random vector
are positive, the shared view will be agreed with the jth
opinion and vice versa. +e process of the imitation mood
is illustrated in Figure 3(a). As can be seen, using equation
(1), the space of imitation will be formed, and then a point
as a new view will be shared on the network.

2.1.2. Mood 2: Conversation. In social networks, users can
communicate with each other and benefit from their con-
versation about different issues according to

Xinew � Xk + R,
R � rand(0, 1) ×D,

D � sign fi − fj( ) × Xj −Xi( ),
(2)

where rand (0, 1) is a random vector in the interval [0, 1],Xj

and Xk are the vectors of two randomly selected positions
somehow i≠ j≠ k, and fi and fj are the objective functions
of Xi and Xj, respectively. +is mood models a state in
which users learn from each other and increase their in-
formation about events. In conversation, users find a sight
about a specific issue through other views, and finally, due to
the differences in opinions, they can draw a new vision of the
issue under discussion. Xk demonstrates the vector of the
issue, which is randomly chosen to speak about it; also, R is
the effect of chat, which is based on the differences of
opinion and represents the change in their beliefs about the

Network

Figure 2: A general model for the social network.
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issue. D is the difference between the views of users. In
addition, sign(.) is the sign function and sign(fi − fj)
determines the moving direction ofXk by comparing fi and
fj. +e process of this decision mood is shown in
Figure 3(b). As can be seen, the user’s view about the issue
changes as a result of conversations with the jth user. +e
changed opinion is considered as a new view to share with

others. Changing the user’s view about the events is con-
sidered as the relocation of the events.

2.1.3. Mood 3: Disputation. +e disputation mood imagines
a state where users explain their views about events to others
and defend their opinion. In this situation, users see different
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Figure 3: +e process of different moods in the SNS algorithm. (a) Imitation. (b) Conversation. (c) Disputation. (d) Innovation.
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views from other persons and may be influenced by the
expressed reasons. +e new affected view in disputation is as
follows:

Xinew � Xi + rand(0, 1) × M − AF ×Xi( ),
M � ∑Nr

t Xt

Nr

,

AF � 1 + round(rand),

(3)

where rand (0, 1) is a random vector in the interval [0, 1] and
Nr is a random integer between 1 and Nuser (Nuser is the
population size or network size).Nr determines the number
of users who participate in disputation, and participants are
selected randomly. AF is the admission factor, which in-
dicates the insistence from users on their opinion in dis-
cussions with other persons and is a random integer that can
be either 1 or 2. round(.) is a function that rounds its input
to the nearest integer number. +e process of disputation
mood is shown in Figure 3(c).

2.1.4. Mood 4: Innovation. Sometimes a topic that users
share on the networks comes from their new experiences and
thoughts. In this mood, the new solution is developed by
changing a randomly selected variable of Xi as follows:

Xinew � x1, x2 , x3 , . . . , x
d
inew , . . . , xD[ ],

xdinew � t × xdj +(1 − t) × n
d
new,

ndnew � lbd + rand1 × ubd − lbd( ),
t � rand2,

(4)

where d is the dth variable that is selected randomly in the
interval [1, D], D is the number of problem variables, and
rand1 and rand2 are two random numbers in the interval [0,
1]. Also, ubd and lbd are maximum and minimum values for
the dth variable. ndnew represents the new idea about the
selected dimension. xdj is the current idea about the dth
variable presented by another user (jth user which selected
randomly and i≠ j) that ith user wants to change it because
of the new idea (ndnew). Innovation models a state in which
a person thinks about a specific issue, perhaps looks at that
issue in a novel way, and is able to understand the nature of
that problem more accurately or can find a completely
different view about it. A particular subject may have distinct
features, and each of them affects the understanding of the
problem. As a result, by changing the idea about one of them
(xdi ), the general concept of the subject will change, and
a novel view will be achieved. xdinew is a new insight into the
issue under consideration from the dth viewpoint and is
replaced with the current view (xdi ). +e outline of the
construction of the new view is shown in Figure 3(d).

In the SNS algorithm, only one of the predefined four
models, so-called decision moods, will be selected and ex-
ecuted randomly for each user in each iteration of the al-
gorithm. In other words, all of the moods described here are
real-world behaviors of users in social networks, and it seems

that the correct assumption is that only one of these moods
occurs at a specific time (iteration) for each users. As a result, the
chance of occurrence of these moods is considered to be small
by using a random procedure with a uniform distribution.

An important point is that the SNS algorithm has no
specific parameter to be fine-tuned, and this feature is one of
its superiority. In the third mood of the SNS algorithm, AF is
defined as a random integer, and it can be considered
a deterministic parameter whose value is generated ran-
domly. To utilize the SNS algorithm, it just needs to de-
termine the number of users (population size) and the
maximum number of evaluations or iterations. +e flow-
chart of the SNS algorithm is illustrated in Figure 4. Besides,
the MATLAB code of the SNS algorithm for solving engi-
neering optimization problems is available in [52].

2.2. Constraint-Handling Technique. Most engineering op-
timization problems aim to find optimal solutions under
special conditions, which are usually based on resource
limitations, design principles, and safety requirements.
+ese special conditions are called constraints, and the main
aim of constraint optimization is to find a feasible solution.
A constrained optimization problems can be formulated as

minimize:

f(X), X � x1, x2, . . . , xd( ),
subject to:

gi(X)≤ 0, i � 1, 2, . . . , ng,

hj(X) � 0, j � 1, 2, . . . , nh,

lbk ≤ xk( )≤ ubk, k � 1, 2, . . . , d,

(5)

where the function f(X) is an objective function, X is
a vector of solution variables (and they can be continuous,
discrete, or mixed), gi(X) and hj(X) are inequality and
equality constraints, respectively, in which ng is the number
of inequality constraints and nh is the number of equality
constraints, d represents the number of variables, and lbk
and ubk are the minimum and the maximum permissible
values for the kth variable, respectively. +e point worth
mentioning is that a feasible solution satisfies all constraints.
In contrast, infeasible solutions do not satisfy at least one
constraint [53]. Also, in dealing with equality constraints,
hj(X) � 0 is replaced with an inequality |hj(X)| − δ ≤ 0,
where δ is a positive tolerance value. Another approach for
handling the equality constraints is to replace hj(X) � 0
with two inequality constraints of the type hj(X)≤ 0 and
hj(X)≥ 0. +is strategy facilitates convergence to the op-
timum design [54]. +erefore, all of the constraints can be
transformed into inequality constraints.

Metaheuristic algorithms cannot solve constraint opti-
mization problems, directly. +erefore, it needs to equip
them with an additional tool for handling constraints. A
group of methods was developed for this proposal which is
called constraint-handling techniques (CHTs). +e CHTs
enable the optimization methods to handle the objective
function and constraints, simultaneously. CHTs are grouped
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into five categories: (1) penalty functions, (2) special rep-
resentations and operators, (3) repair algorithms, (4) sep-
aration of objectives and constraints, and (5) hybrid
methods [53]. +e first method, penalty functions, is
a simple and standard procedure for handling constraints. In
the penalty function approach, a penalty term is added to the
objective function, and then a constrained optimization
problem is transformed into an unconstrained one. A
penalty function can be formulated as follows:

F(X) � f(X) + P(X), (6)

where F(X) is the fitness function, which expresses the
unconstrained state of the constrained problem, f(X) is
the objective function, and P(X) is the penalty term that
denotes the violation of constraints and is calculated as
follows:

P(X) �∑ng
i�1

αi ×max 0, gi(X)( )
+∑nh
j�1

βj ×max 0, hj(X)
∣∣∣∣∣ ∣∣∣∣∣ − δ( ),

(7)
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Figure 4: +e flowchart of the SNS algorithm.
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where max(0, gi(X)) andmax(0, | hj(X)| − δ) represent the
value of the violations of the solutions according to the ith
inequality and jth equality constraints, respectively. Also, αi
and βj are penalty factors for these constraints, respectively.
+e magnitude of penalty factors affects the quality of an-
swers, and the suitable penalty factors are problem-
dependent.

To solving constrained optimization problems, meta-
heuristic methods and CHT should be liked for recognizing
feasible search space. +en, the optimizer should try to find
the optimum or a near-optimum solution in the feasible
region. +erefore, in each iteration of an algorithm, the
fitness of the population is evaluated according to objective
and constraint(s), and based on the calculated fitness
function, the next generation of the population will be
generated. In other words, the algorithm will identify the
problem’s search space using the fitness of the current
population.

3. Results and Discussion

+is section evaluates the performance of the SNS algorithm
using 15 benchmark problems in various fields of engi-
neering. One of these problems deals with the segmentation
of satellite images in the field of remote sensing as a real
application of metaheuristic algorithms in engineering. Each
of these examples was run 30 times independently using the
SNS algorithm, and the results are compared with different
counterpart algorithms from the literature. In selecting the
counterpart algorithm, an attempt has been made to use the
results of newly developed methods.

3.1. Cantilever Beam. +is problem is a structural engi-
neering design example that is related to the weight op-
timization of a cantilever beam with a square cross section
[55]. +e beam is rigidly supported at one end, and
a vertical force acts on the free node of the cantilever, as
shown in Figure 5. +e beam consists of five hollow square
blocks with constant thickness, whose heights (or widths)
are the decision variables, and the thickness is held fixed
(here 2/3). +is problem can be expressed analytically as
follows:

minimize:

f(X) � 0.0624 x1 + x2 + x3 + x4 + x5( ),
subject to:

g(X) � 61
x31
+ 37
x32
+ 19
x33
+ 7

x34
+ 1

x35
− 1≤ 0,

variable range:

0.01≤ xi ≤ 100, i � 1, . . . , 5.
(8)

+e best solutions for solving this problem obtained by
the SNS and various methods are listed in Table 2. It can be
seen that the solution obtained by the SNS is better than that
of the other methods. In addition, the SNS terminated after
12,000 evaluations. +e statistical results of the SNS and
other methods are listed in Table 3, and based on them, it can
be seen that the SNS algorithm has obtained a more accurate
answer in a smaller number of function evaluations (NFEs).

3.2. Optimal Design of I-Shaped Beam. +e other typical
engineering optimization problem is the I-beam design
problem, which aims to minimize the vertical deflection of
the beam shown in Figure 6. It simultaneously satisfies the
cross-sectional area and stress constraints under given loads.
+e width of flange b(� x1), the height of section h(� x2),
the thickness of the web tw(� x3), and the thickness of the
flange tf(� x4) are variables of this problem.+emaximum
vertical deflection of the beam is f(x) � PL3/48EI when the
length of the beam (L) and modulus of elasticity (E) are
5200 cm and 523.104 kN/cm2, respectively. +e objective
function and constraints of this problem are formulated as
follows:

1 2 3 4 5

xi

xi

t = 2/3

Figure 5: Schematic representation of cantilever beam.
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minimize:

f(X) � 5000

x3 x2 − 2x4( )3/12 + x1x
3
4/6( ) + 2bx4 x2 − x4/2( )2

subject to:

g1(X) � 2x1x3 + x3 x2 − 2x4( )≤ 300,
g2(X) �

18x2 × 10
4

x3 x2 − 2x4( )3 + 2x1x3 4x24 + 3x2 x2 − 2x4( )( ) + 15x1 × 10
3

x2 − 2x4( )x23 + 2x3x31 ≤ 56,
variable range:

10≤ x1 ≤ 50,

10≤ x2 ≤ 80,

0.9≤x3 ≤ 5,

0.9≤x4 ≤ 5.

(9)

Table 2: Best results of the cantilever beam design example.

Algorithm
Variables Constraint

x1 x2 x3 x4 x5 g1(X) f(X)
CS [18] 6.0089 5.3049 4.5023 3.5077 2.1504 −6.448E− 05 1.33999
MFO [56] 5.98487 5.31672 4.49733 3.51361 2.16162 4.182E− 09 1.33998
ALO [57] 6.01812 5.31142 4.48836 3.49751 2.15832 −2.995E− 06 1.33995
SOS [58] 6.01878 5.30344 4.49587 3.49896 2.15564 1.393E− 04 1.33996
SSA [59] 6.01513 5.30930 4.49500 3.50142 2.15278 4.0578E− 09 1.33995
SNS (present study) 6.01545 5.31066 4.48800 3.50528 2.15428 −3.2718E− 07 1.33995

MFO: moth-flame optimization algorithm. ALO: ant lion optimizer. SSA: salp swarm algorithm.

Table 3: Comparative results of SNS with other methods for the cantilever beam design problem.

Algorithm Worst Mean Best SD NFEs

SOS [58] NA 1.33997 1.33996 1.1E− 5 15,000
CGO [37] 1.340602 1.340052 1.339970 1.2245E− 04 100,000
AOS [39] 1.491711 1.351954 1.339957 0.02499743 100,000
MGA [40] 1.3402011 1.3400526 1.3399756 6.99E− 05 100,000
SNS (present study) 1.3399576 1.3399576 1.3399576 1.1102E− 15 12,000

P = 5600 KN

Q = 550 KN

L = 5200 cm

x1 (= b)

x2 (= h) x3 (= tw)

x4 (= tf)

Figure 6: A 3D view of beam design problem.
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Many optimizers have solved this nonlinearly con-
strained problem, and Table 4 presents the best results of
these methods. In addition, the statistical results for com-
paring the performance of the SNS methods are provided in
Table 5. For this case study, the SNS needs 3600 function
evaluations to reach these results, and it can be seen that the
SNS performs superior compared to other methods.

3.3.8ree-BarTrussDesign Problem. +is case considers a 3-
bar planar truss structure shown in Figure 7. +e volume of
a statically loaded 3-bar truss is to be minimized subject to
stress (σ) constraints on each of the truss members. +e
objective is to evaluate the optimal cross-sectional areas,
A1(� x1) and A2(� x2). +e mathematical formulation is
given below:

minimize:

f(X) � 2
�
2

√
x1 + x2( ) × l,

subject to:

g1(X) �
�
2

√
x1 + x2�

2
√
x21 + 2x1x2

P − σ ≤ 0,

g2(X) �
x2�

2
√
x21 + 2x1x2

P − σ ≤ 0,

g3(X) �
1�

2
√
x2 + x1

P − σ ≤ 0,

l � 100 cm,

P � 2kN/cm3,

σ � 2kN/cm3,

variable range:

0≤x1,

x2 ≤ 1.

(10)

+e best results of different methods are presented in
Table 6. Also, Table 7 provides the statistical results of these
algorithms. It can be seen that the best objective value of the
SNS is equal or better than that of other methods. +e re-
quired number of function evaluations (NFEs) for the SNS
algorithm is 4800, which is much lower than that of other
algorithms.

3.4. Tubular Column Design. +is problem is an example of
designing a uniform column of the tubular section to carry
a compressive load at minimum cost. +is problem has two
design variables, the mean diameter of the column d(� x1)
and the thickness of tube t(� x2), which are shown in
Figure 8.+is column is made of a material with a yield stress

of σy � 500 kgf/cm2 and a modulus of elasticity of
E � 0.85 × 1066 kgf/cm2. +e optimization model of this
problem is given as follows:

minimize:

f(X) � 9.8x1x2 + 2x1,

subject to:

g1(X) �
P

πx1x2σy
− 1≤ 0,

g2(X) �
8PL2

π3Ex1x2 x
2
1 + x

2
2( ) − 1≤ 0,

g3(X) �
2.0

x1
− 1≤ 0,

g4(X) �
x1
14
− 1≤ 0,

g5(X) �
0.2

x2
− 1≤ 0,

g6(X) �
x2
8
− 1≤ 0,

variable range:

2≤x1 ≤ 14,

0.2≤ x2 ≤ 0.8.

(11)

According to the constraints g1 and g2, the included
stress in the column should be less than the buckling and
yield stresses, respectively. Also, other constraints (g3, g4,
g5, and g6) clamp the variables of the problem to the ranges
of the variables. +is problem was previously solved using
various methods, and the best results of these methods and
SNS are presented in Table 8. +e SNS uses 1250 evaluations
to solve this problem. In addition, the statistical results of
some methods are reported in Table 9. According to these
results, the SNS has found better results than other
algorithms.

3.5. SpeedReducerDesign. In mechanical systems, one of the
essential parts of the gearbox is the speed reducer, and it can
be employed for several applications [65]. In this optimi-
zation problem (see Figure 9), the weight of the speed re-
ducer is to be minimized with subject to 11 constraints. +is
problem has seven variables, face width b(� x1), module of
teeth m(� x2), the number of teeth in the pinion z(� x3),
length of the first shaft between bearings l1(� x4), length of
the second shaft between bearings l2(� x5), the diameter of
first shafts d1(� x6), and the diameter of second shafts
d2(� x7). +e mathematical formulation of this problem is
formulated as follows:
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Table 4: Best results for the optimal design of I-shaped beam problem.

Algorithm
Variables Constraints

x1 x2 x3 x4 g1(X) g2(X) f(X)
IARSM [60] 79.99 48.42 0.9 2.4 0.0869999 −1.524540 0.0131
CS [18] 80 50 0.9 2.3216 −0.012005 −1.570020 0.01307
GWO [61] 80 50 0.9 2.3217 −0.009059 −1.570071 0.0131
EMGO-FCR [61] 80 50 0.9 2.3200 −0.176000 −1.567179 0.0131
SOS [58] 80 50 0.9 2.3217 −0.000222 −1.570224 0.01307
AEFA-C [61] 79.9671 49.99 0.9 2.3164 −0.560371 −1.559518 0.0131
SNS (present study) 80 50 0.9 2.3217 0 −1.570228 0.0130741

IARSM: improved adaptive response surface method. EMGO-FCR: ensemble meta model-based global optimization using fuzzy clustering. AEFA-C:
artificial electric field algorithm.

Table 5: Comparison of the results of SNS with the other methods for the I-shaped beam problem.

Algorithm Worst Mean Best SD NFEs

CS [18] 0.01353646 0.0132165 0.0130747 0.0001345 5000
SOS [58] NA 0.0130884 0.0130741 4.0E− 5 5000
AOS [39] 0.0138140 0.0131788 0.0130741 1.555E− 04 100,000
SNS (present study) 0.0130764 0.0130743 0.0130741 4.313E− 07 3600

Table 6: Best results of the three-bar truss design problem.

Algorithm
Variables Constraints

x1 x2 g1(X) g2(X) g3(X) f(X)
GA [62] 0.788915 0.407569 9.6430E− 07 −1.464873605 −0.53512542 263.8958857
PSO [62] 0.788669 0.408265 4.8650E− 07 −1.464082376 −0.535917137 263.8958434
ICA [62] 0.788625 0.408389 8.4180E− 07 −1.463941244 −0.536057913 263.8958452
CS [18] 0.78867 0.40902 −2.9000E− 04 −0.26853 −0.73176 263.9716
WCA [5] 0.788651 0.408316 0.0000E+ 00 −1.464024 −0.535975 263.895843
GWO [62] 0.788648 0.408325 3.3400E− 08 −1.464014397 −0.535985569 263.8960063
ALO [57] 0.78866281 0.4082831 −5.3170E− 12 −1.464062005 −0.53593799 263.8958434
MFO [56] 0.78824477 0.4094669 7.7090E− 12 −1.462717072 −0.537282927 263.8959796
SSA [59] 0.78866541 0.4082757 3.0000E− 10 −1.464070360 −0.53592963 263.8958434
WSA [62] 0.788683 0.408227 −7.2400E− 07 −1.464126180 −0.53587454 263.8958434
SNS (present study) 0.78868473 0.4082211 3.2978E− 08 −1.4641325 −0.5358675 263.8958434

WCA: water cycle algorithm. WSA: water strider algorithm.

A3

H

H

H

A1=A3

A2
A1

PP

Figure 7: A schematic model of three-bar truss.
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Table 7: Comparative results of SNS with other methods for the three-bar truss design problem.

Algorithm Worst Mean Best SD NFEs

GA [62] 264.82080546 263.96803663 263.89588573 1.66862E− 01 50,000
PSO [62] 264.58490296 263.95741428 263.89584341 1.36897E− 01 50,000
ICA [62] 263.91413326 263.89932689 263.89584519 4.11693E− 03 50,000
CS [18] NA 264.0669 263.97156 9.00000E− 05 15,000
WCA [5] 263.896201 263.895903 263.895843 8.71000E− 05 5250
GWO [62] 263.90421778 263.89795501 263.89600631 1.61422E− 03 50,000
WSA [62] 263.89743217 263.89606687 263.8958434 3.11960E− 04 50,000
CGO [37] 263.8960068 263.8958511 263.895843 2.51E− 05 100,000
AOS [39] 263.895845 263.895843 263.895843 8.26E− 09 100,000
SNS (present study) 263.8958561 263.8958462 263.8958434 3.31056E− 06 4800

Table 8: Best results of the tubular column example.

Algorithm
Variables Constraints

x1 x2 g1(X) g2(X) g3(X) g4(X) g5(X) g6(X) f(X)
CS [18] 5.45139 0.29196 −0.0241 −0.1095 −0.633 −0.610 −0.315 −0.635 26.53217
ISA [63] 5.45115623 0.29196547 −2.5E− 10 −1.8E− 10 −0.6331 −0.6106 −0.3149 −0.635 26.5313
SNS 5.45115623 0.29196547 −2.6E− 10 −1.8E− 10 −0.6331 −0.6106 −0.3149 −0.635 26.4994969

Table 9: Comparative results of SNS with other methods for the tubular column example.

Algorithm Worst Mean Best SD NFEs

ISA [63] 26.532 26.531 26.531 1.70E− 04 3000
CS [18] 26.53972 26.53504 26.53217 1.93E− 03 15,000
FA [64] NA 28.74 26.52 2.08 3000
AOS [39] 26.60831361 26.53161399 26.53137828 1.0300E− 03 100,000
SNS (present study) 26.48637095 26.48636249 26.48636147 2.2160E− 06 1250

t

P

A Ad
i

d

d
o

Figure 8: +e 3D model of tubular column.
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minimize:

f(X) � 0.7854x1x
2
2 3.3333x

2
3 + 14.9334x3 − 43.0934( )

− 1.508x1 x
2
6 + x

2
7( ) + 7.4777 x36 + x37( ) + 0.7854 x4x26 + x5x27( ),

subject to:

g1(X) �
27

x1x
2
2x3

− 1≤ 0,

g2(X) �
397.5

x1x
2
2x
2
3

− 1≤ 0,

g3(X) �
1.93x34

x2x
4
6x3

− 1≤ 0,

g4(X) �
1.93x35

x2x
4
7x3

− 1≤ 0,

g5(X) �

����������������������
745x4/x2x3( )2 + 16.9 × 106√

110x36
− 1≤ 0,

g6(X) �

�����������������������
745x5/x2x3( )2 + 157.5 × 106√

85x37
− 1≤ 0,

g7(X) �
x2x3
40

− 1≤ 0,

g8(X) �
5x2
x1

− 1≤ 0,

g9(X) �
x1
12x2

− 1≤ 0,

l1

l2

z1
z2

d1

d2

Figure 9: A schematic representation of speed reducer.
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g10(X) �
1.5x6 + 1.9

x4
− 1≤ 0

g11(X) �
1.1x7 + 1.9

x5
− 1≤ 0,

variable range:

2.6≤ x1 ≤ 3.6,

0.7≤ x2 ≤ 0.8,

x3 ∈ 17, 18, 19, . . . , 28{ },

7.3≤ x4,

x5 ≤ 8.3,

2.9≤ x6 ≤ 3.9,

5≤x7 ≤ 5.5.

(12)

+is engineering problem has 11 constraints, seven
nonlinear constraints and four linear inequality constraints,
which are considered based on (1) bending stress of the gear
teeth, (2) surface stress, (3) transverse deflections of the
shafts, and (4) stresses in the shafts. +e comparison of the
best optimal solution with various optimization methods is
given in Table 10.+e SNSmethod requires 3750 evaluations
to find its solution. +e statistical results of SNS and ten
optimization methods are compared in Table 11. Among the
compared optimization algorithms, the SNS has the lowest
number of function evaluations while its results are better
than those of the other methods.

3.6. Piston Lever. +e main objective of this problem is to
locate the piston components, H(� x1), B(� x2), D(� x3),
and X(� x4), by minimizing the oil volume when the lever
of the piston is lifted up from 0° to 45°, as shown in Figure 10.
+e formulation of this problem is given as follows:

minimize:

f(X) � 1
4
πx23 L2 − L1( ),

subject to:

g1(X) � QLcosθ − R × F≤ 0,

g2(X) � Q L − x4( ) −Mmax ≤ 0,

g3(X) � 1.2 L2 − L1( ) − L1 ≤ 0,
g4(X) �

x3
2
− x2 ≤ 0,

where

R �
−x4 x4sinθ + x1( ) + x1 x2 − x4cosθ( )∣∣∣∣ ∣∣∣∣�������������

x4 − x2( )2 + x21√ ,

F � πPx23
4
,

L1 �
�������������
x4 − x2( )2 + x21√

,

L2 �
��������������������������
x4sinθ + x1( )2 + x2 − x4cosθ( )2√

,

θ � 45° ,

Q � 10, 000 lbs,

L � 240 in,

Mmax � 1.8 × 10
6 lbs in,

P � 1500 psi,

variable range:

0.05≤ x1, x2, x4 ≤ 500,

0.05≤ x3 ≤ 120.

(13)

+ese inequality constraints consider the force equilib-
rium, the maximum bending moment of the lever, mini-
mum piston stroke, and geometrical conditions. +e best
solutions obtained by SNS and some of the other algorithms
are presented in Table 12. In addition, the performance of
the PSO [71], DE [71], GA [71], hybrid particle swarm
optimization (HPSO) [71], HPSO with Q-learning [71], CS
[18], ISA [63], CGO [37], MGA [40], AOS [39], and SNS is
summarized in Table 13. +e SNS algorithm obtains its
results after 5000 evaluations, and its results are far better
than those of other methods.
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Table 10: Best results of the speed reducer design example.

CS [18] WCA [5] BA [66] ABC [67] APSO [68] SHO [69] SNS

x1 3.50150 3.50000 3.50000 3.50000 3.50131 3.50159 3.50000
x2 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000
x3 17.00000 17.00000 17.00000 17.00000 18.00000 17.00000 17.00000
x4 7.60500 7.30000 7.30001 7.30000 8.12781 7.30000 7.30000
x5 7.81810 7.71532 7.71532 7.80000 8.04212 7.80000 7.71532
x6 3.35200 3.35021 3.35021 3.35022 3.35245 3.35127 3.35021
x7 5.28750 5.28665 5.28665 5.28668 5.28708 5.28874 5.28665
g1(X) −0.07430 −0.07392 −0.07400 −0.07392 −0.12569 −0.07434 −0.07392
g2(X) −0.19830 −0.19800 −0.19800 −0.19800 −0.28490 −0.19836 −0.19800
g3(X) −0.43490 −0.49917 −0.49900 −0.49917 −0.34888 −0.49980 −0.49917
g4(X) −0.90080 −0.90464 −0.90500 −0.90156 −0.89804 −0.90162 −0.90464
g5(X) −0.00110 −0.66685 0.00000 0.00000 −0.66559 −0.66717 0.00000
g6(X) −0.00040 0.00000 0.00000 −0.00063 −0.00026 −0.00117 0.00000
g7(X) −0.70250 −0.70250 −0.70300 −0.70250 −0.68500 −0.70250 −0.70250
g8(X) −0.00040 0.00000 0.00000 0.00000 −0.00038 −0.00045 0.00000
g9(X) −0.58320 −0.58333 −0.58300 −0.58333 −0.58318 −0.58314 −0.58333
g10(X) −0.08900 −0.05133 −0.05100 −0.05133 −0.14754 −0.05111 −0.05133
g11(X) −0.01300 0.00000 0.00000 −0.01070 −0.04058 −0.01056 0.00000
f(X) 3000.98100 2994.47107 2994.46710 2997.05841 3187.63049 2998.55070 2994.47107

APSO: accelerated particle swarm optimization. SHO: spotted hyena optimizer.

Table 11: Comparative results of SNS with other methods for the speed reducer design example.

Algorithm Worst Mean Best SD NFEs

CS [18] 3009.00 3007.1997 3000.981 4.96E+ 00 250,000
ABC [67] NA 2997.058412 2997.058412 0.00E+ 00 30,000
WCA [5] 2994.505578 2994.474392 2994.471066 7.40E− 03 15,150
APSO [68] 4443.01763900 3822.64062400 3187.63048600 3.66E+ 02 30,000
SHO [69] 3003.889 2999.64 2998.5507 1.93E+ 00 NA
SSA 3015.662612 3005.574377 2996.021720 4.63E+ 00 NA
WOA 3233.598124 3042.915023 2996.604340 4.08E+ 01 NA
CSS 3106.216451 3005.658912 2996.492478 4.86E+ 00 NA
CGO [37] 2995.504933 2994.465397 2994.443649 0.110282 100,000
FACSS [70] 3006.419746 2999.413798 2996.3752376 4.82E+ 00 NA
SNS (present study) 2994.4710992 2994.4710696 2994.4710662 7.00E− 06 3750

FACSS: fuzzy adaptive charged system search.
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Figure 10: A model of piston lever problem.
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3.7. Corrugated Bulkhead Design. +is problem aims to
minimize the weight of a corrugated bulkhead in a chemical
tanker [72], in which the design variables are the width (x1),
depth (x2), length (x3), and plate thickness (x4). +e
mathematical model of this optimization problem is given as
follows:

minimize:

f(X) � 5.885x4 x1 + x3( )
x1 +

�������
x23 − x

2
2

∣∣∣∣ ∣∣∣∣√ ,

subject to:

g1(X) � −x4x2 0.4x1 +
x3
6

( ) + 8.94 x1 +
�������
x23 − x

2
2

∣∣∣∣ ∣∣∣∣√( )≤ 0,
g2(X) � −x4x

2
2 0.2x1 +

x3
12

( ) + 2.2 8.94 x1 +
�������
x23 − x22
∣∣∣∣ ∣∣∣∣√( )( )4/3 ≤ 0,

g3(X) � −x4 + 0.0156x1 + 0.15≤ 0,

g4(X) � −x4 + 0.0156x3 + 0.15≤ 0,

g5(X) � −x4 + 1.05≤ 0,

g6(X) � −x3 + x2 ≤ 0,

variable range:

0≤x1, x2, x3 ≤ 100,
0≤x4 ≤ 5.

(14)

Tables 14 and 15 compare the best and statistical results
of SNS and other optimizers, respectively. According to
these results, the SNS significantly improves the solution
quality of other algorithms. In addition, the SNS method
solves this problem after 3125 evaluations that is the lowest
value among other methods.

3.8. Design of Pressure Vessel. A cylindrical vessel is capped
at both ends by hemispherical heads, as shown in Figure 11.
+e objective is to minimize the total cost, including the cost
of material, forming, and welding. +is problem has four
variables including the thickness of the shell Ts(� x1), the
thickness of the head Th(� x2), the inner radius R � (x3),
and the length of the cylindrical section of the vessel, not
including the head L(� x4). In addition, x1 and x2 are
integer multiples of 0.0625 in, while the other variables are
continuous. +e optimization problem can be expressed as
follows:

Table 12: Best results of the piston lever example.

PSO [71] DE [71] GA [71] HPSO [71] CS [18] SNS

x1 133.3 129.4 250.0 135.5 0.050 0.050
x2 2.44 2.43 3.96 2.48 2.043 2.042
x3 117.14 119.80 60.03 116.62 120.000 120.000
x4 4.75 4.75 5.91 4.75 4.085 4.083
g1(X) NA NA NA NA −1744.912 0.000
g2(X) NA NA NA NA −600,000 −600,000
g3(X) NA NA NA NA −117.185 −117.187
g4(X) NA NA NA NA −4.50E− 04 −9.74E− 12
f(X) 122 159 161 162 8.427 8.412698349

Table 13: Comparative results of SNS with other methods for the piston lever example.

Algorithm Worst Mean Best SD NFEs

PSO [71] 294 166 122 51.7 50,000
DE [71] 199 187 159 14.2 50,000
GA [71] 216 185 161 18.2 50,000
HPSO [71] 197 187 162 13.4 50,000
HPSO with Q-learning [71] 168 151 129 13.4 50,000
CS [18] 168.5920 40.2319 8.4271 59.0552 50,000
ISA [63] 610.6 226.5 8.4 111.2 12,500
CGO [37] 167.4728087 45.0486599 8.412813813 67.24763 100,000
AOS [39] 167.6649862 33.7412759 8.419142742 93.46674724 100,000
MGA [40] 167.4732134 32.4688925 8.413406652 29.96370439 100,000
SNS (present study) 167.4727747 24.3189743 8.412698349 47.71792646 5000
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minimize:

f(X) � 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x

2
1x4 + 19.84x

2
1x3,

subject to:

g1(X) � −x1 + 0.0193x3 ≤ 0,

g2(X) � −x2 + 0.00954x3 ≤ 0,

g3(X) � −πx
2
3x4 −

4

3
πx33 + 1, 296, 000≤ 0,

g4(X) � x4 − 240≤ 0,

variable range:

x1, x2 ∈ 1 × 0.0625, 2 × 0.0625, 3 × 0.0625, . . . , 1600 × 0.0625{ },

10≤x3,

x4 ≤ 200.
(15)

+is problem has been used to evaluate the performance
of many algorithms. Tables 16 and 17 compare the best and
statistical results of SNS and other algorithms, respectively.
+e SNS needs 6000 NFEs for solving this problem that is
much lower than that of other algorithms.

3.9. Design of Tension/Compression Spring. +e tension/
compression spring design problem is described in [81] for
which the objective is to minimize the weight of a tension/
compression spring, as shown in Figure 12. +is problem is

subject to constraints on minimum deflection, shear
stress, surge frequency, limits on the outside diameter,
and design variables. +e design variables are the mean
coil diameter D (� x1), the wire diameter d (� x2), and
the number of active coils N(� x3). +e problem can be
stated as

minimize:

f(X) � x3 + 2( )x2x21,
subject to:

g1(X) � 1 −
x32x3

71785x41
≤ 0,

g2(X) �
4x22 − x1x2

12566 x2x
3
1 − x

4
1( ) + 1

5108x21
− 1≤ 0,

g3(X) � 1 −
140.45x1

x22x3
≤ 0,

g4(X) �
x1 + x2
1.5

− ≤ 0,

variable range:

0.05≤ x1 ≤ 2,

0.25≤ x2 ≤ 1.3,

2≤ x3 ≤ 15.

(16)

Table 14: Best results of the corrugated bulkhead design.

CS [18] VIGMM3 [61] AEFA-C [61] SNS

x1 37.1179498 57.69231 57.69277 57.69230732
x2 33.0350210 34.14762 34.13296 34.14762029
x3 37.1939476 57.69231 57.55294 57.69230729
x4 0.7306255 1.05000 1.05007 1.05
g1(X) −23.3537699 −0.25839 −240.89634 −240.6946226
g2(X) −15.9738532 −2.220E− 16 −11.59051 −1.46827E− 05
g3(X) −0.00158548 −9.769E− 15 −6.864E− 05 −5.80038E− 09
g4(X) −0.00039992 −5.551E− 16 −2.250E− 03 −6.20877E− 09
g5(X) 0.3193745 0.00000 −7.581E− 05 −6.50591E− 13
g6(X) −4.1589266 0.68949 −23.41997 −23.544687
f(X) 5.894331 6.84296 −6.84584 6.842958019

VIGMM3: vibration-based ideal gas molecular movement. AEFA-C: artificial electric field algorithm.

Table 15: Comparative results of SNS with other methods for the corrugated bulkhead design.

Algorithm Worst Mean Best SD NFEs

FA [64] NA 10.23 7.21 1.95 12,000
LF-FA [64] NA 8.83 6.95 1.26 12,000
LS-LF-FA [64] NA 7.44 6.86 0.67 12,000
AD-IFA [64] NA 7.21 6.84 0.58 12,000
AOS [39] 7.066936186 7.060808377 6.84295801 6.4911E− 04 100,000
SNS (present study) 6.843074399 6.842979802 6.842960515 2.0942E− 05 3125

LF-FA: Levy flight firefly algorithm. LS-LF-FA: logarithmic spiral path flight firefly. AD-IFA: spiral-Levy flight firefly algorithm.
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Table 18 compares the SNS with many optimization
algorithms in terms of best optimization results, and Ta-
ble 19 presents the statistical results of these algorithms. +e
SNS algorithm solves this problem in 9000 evaluations, and
among the compared methods, just WOA [33] and MCEO
[80] used a fewer number of evaluations, while their results
are not as good as SNS.

3.10. Design of Welded Beam. +is benchmark problem was
introduced by Coello [77] and has been tackled by many
researchers. As illustrated in Figure 13, the beam is under
a vertical force. +e goal of this problem is to find the
minimum manufacturing cost of the welded beam. +e
problem is subject to seven constraints of stress, deflection,
welding, and geometry. +e variables are weld thickness

Table 16: Best results of the pressure vessel design.

G-QPSO [73] HPSO [74] CPSO [75] CDE [76] SAP [77] ABC [67] CS [18] EO [78]

x1 0.81250 0.81250 0.81250 0.81250 0.81250 0.81250 0.81250 0.81250
x2 0.43750 0.43750 0.43750 0.43750 0.43750 0.43750 0.43750 0.43750
x3 42.09840 42.09840 42.09130 42.09840 40.32390 42.09845 42.09845 42.09845
x4 176.63720 176.63660 176.74650 176.63760 200.00000 176.63660 176.63660 176.63660
g1(X) 0.00000 0.00000 0.00000 0.00000 −0.03432 0.00000 0.00000 0.00000
g2(X) −0.03580 −0.03580 −0.00036 −0.03580 −0.05285 −0.03588 −0.03588 −0.03588
g3(X) −0.21790 3.12260 −118.76870 −3.70512 −27.10585 −0.00023 −0.00005 −0.00005
g4(X) −63.36280 −63.36340 −63.25350 −63.36230 −40.00000 −63.36340 −63.36340 −63.36340
f(X) 6059.7208 6059.7143 6061.0777 6059.7340 6288.7445 6059.7143 6059.7143 6059.71430

MFO [56] GWO [31] WOA [33] APSO [68] IAPSO [68] NDE [79] MCEO [80] SNS
x1 0.8125 0.812500 0.812500 0.8125 0.8125 0.8125 0.8125 0.81250
x2 0.4375 0.434500 0.437500 0.4375 0.4375 0.4375 0.4375 0.43750
x3 42.098445 42.089181 42.0982699 42.0984 42.0984 42.0984455 42.0984455 42.09845
x4 176.636596 176.758731 176.638998 176.6374 176.6366 176.636595 176.636596 176.63660
g1(X) −1.15E− 08 −0.00017880 −3.39E− 06 −8.80E− 07 −4.09E− 13 −1.4E− 15 −1.13E− 10 0.00000
g2(X) −0.03588083 −0.03296921 −0.03588250 −0.03588126 −3.58E− 2 −0.00035880 −0.037564 −0.03588
g3(X) 0.04023295 −40.6168247 −1.25270175 −1.33153860 −1.39E− 07 −0.00000001 −4.73E− 04 0.00000
g4(X) −63.363404 −63.241269 −63.361002 −63.3626 −63.3634 −0.63363404 −63.3634 −63.36340
f(X) 6059.7143 6051.5639 6059.7410 6059.72418 6059.71433 6059.71433 6059.7143 6059.71434

G-QPSO: Gaussian quantum-behaved particle swarm optimization. CPSO: co-evolutionary particle swarm optimization. CDE: co-evolutionary differential
evolution. SAP: self-adaptive penalty approach. EO: equilibrium optimizer. MCEO: multilevel cross entropy optimizer.

Table 17: Comparative results of SNS with other methods for the pressure vessel design.

Algorithm Worst Mean Best SD NFEs

SAP [77] 6308.15 6293.843 6288.745 7.41E+ 00 3000
HPSO [74] 6288.677 6099.9323 6059.7143 8.62E+ 01 81,000
CDE [76] 6059.734 6085.23 6371.046 4.30E+ 01 204,800
CPSO [75] 6363.8041 6147.1332 6061.0777 8.65E+ 01 200,000
PSO [73] 14076.324 8756.6803 6693.7212 1.49E+ 03 8000
QPSO [73] 8017.2816 6839.9326 6059.7209 4.79E+ 02 8000
G-QPSO [73] 7544.4925 6440.3786 6059.7208 4.48E+ 02 8000
ABC [67] NA 6245.308144 6059.714736 2.05E+ 02 30,000
CS [18] 6495.347 6447.736 6059.714335 5.03E+ 02 15,000
WOA [33] NA 6068.05 6059.741 6.57E+ 01 6300
APSO [68] 7544.49272 6470.71568 6059.7242 3.27E+ 02 200,000
EO [78] 7544.4925 6668.114 6059.7143 5.66E+ 02 15,000
CGO [37] 6330.958685 6250.957354 6247.672819 1.07E+ 01 100,000
SNS (present study) 6410.086886 6097.100294 6059.714335 9.28E+ 01 6000

Th (= x2) Ts (= x1)L (= x4)

R (= x3)

Figure 11: Schematic view of pressure vessel design.

Computational Intelligence and Neuroscience 17



Table 18: Best results of tension/compression spring design.

Algorithm
Variables Constraints

x1 x2 x3 g1(X) g2(X) g3(X) g4(X) f(X)
CPSO [75] 0.051728 0.357644 11.244543 −8.25E− 04 −2.52E− 05 −4.051306 −0.727085 0.012674
WCA [5] 0.051680 0.356500 11.300400 −1.60E− 13 −7.90E− 14 −4.053300 −0.727800 0.012665
ABC [67] 0.051749 0.358179 11.203763 0.00E+ 00 0.00E+ 00 −4.056663 −0.726713 0.012665
SFOA [65] 0.051800 0.359000 11.279000 −3.24E− 06 −3.58E− 07 −4.060000 −0.726000 0.012700
APSO [68] 0.052588 0.378343 10.138862 −1.55E− 04 −8.33E− 04 −4.089171 −1.069069 0.012700
IAPSO [68] 0.051685 0.356629 11.294175 −1.97E− 10 −4.64E− 10 −4.053610 −1.091686 0.012665
MFO [56] 0.051994 0.364109 10.868421 −4.10E− 06 3.04E− 06 −4.068140 −0.722600 0.012667
GWO [31] 0.051690 0.356737 11.288850 −7.91E− 05 −7.51E− 06 −4.053380 −0.727720 0.012666
WOA [33] 0.051200 0.345200 12.004000 −5.60E− 04 −3.00E− 05 −4.027400 −0.735700 0.012676
SHO [69] 0.051144 0.343751 12.095500 −3.30E− 04 1.16E− 05 −4.025790 −0.736740 0.012674
NDE [79] 0.051689 0.356718 11.288968 0.00E+ 00 0.00E+ 00 −4.053785 −0.727728 0.012665
SSA [59] 0.051207 0.345215 12.004032 −5.60E− 04 −3.70E− 05 −4.027410 −0.735720 0.012676
SNS 0.051587 0.354268 11.434058 −1.37E− 08 −3.18E− 10 −4.048919 −0.729430 0.012665

Table 19: Comparative results of tension/compression spring design.

Algorithm Worst Mean Best SD NFEs

CPSO [75] 0.012924 0.01273 0.0126747 5.20E− 05 200,000
HPSO [74] 0.0127191 0.0127072 0.0126652 1.58E− 05 81,000
CDE [76] 0.01279 0.012703 0.0126702 2.70E− 05 204,800
PSO [73] 0.071802 0.019555 0.012857 1.17E− 02 20,000
QPSO [73] 0.018127 0.013854 0.012669 1.34E− 03 20,000
G-QPSO [73] 0.015869 0.012996 0.012666 6.28E− 04 20,000
WCA [5] 0.012952 0.012746 0.012665 8.06E− 05 11,750
ABC [67] NA 0.012709 0.012665 1.28E− 02 30,000
APSO [68] 0.014937 0.013297 0.0127 6.85E− 04 120,000
IAPSO [68] 0.01782864 0.01367653 0.01266523 1.57E− 03 20,000
WOA [33] NA 0.0127 0.0126763 3.00E− 04 4410
MCEO [80] 0.01350901 0.0127196 0.01266051 3.79E− 05 2000
EO [78] 0.013997 0.013017 0.012666 3.91E− 04 15,000
SNS (present study) 0.012765873 0.012684717 0.012665246 2.38549E− 05 9000

t = (x3)

l (= x
2)

h (= x1)

b (= x4)

L

Figure 13: Schematic of the welded beam structure with indication of design variables.

P

d (= x2)

D (= x1)

Figure 12: Tension/compression spring.
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h(� x1), height l(� x2), length t(� x3), and bar thickness
b(� x4), as shown in Figure 13.+e objective function can be
mathematically be stated as

minimize:

f(X) � 1.10471x21x2 + 0.04811x3x4 14.0 + x2( ),
subject to:

g1(X) � τ(X) − τmax ≤ 0,

g2(X) � σ(X) − σmax ≤ 0,

g3(X) � δ(X) − δmax ≤ 0,

g4(X) � x1 − x4 ≤ 0,

g5(X) � P − Pc(X)≤ 0,

g6(X) � 0.125 − x1 ≤ 0,

g7(X) � 1.10471x
2
1 + 0.04811x3x4 14.0 + x2( ) − 5.0≤ 0,

τ(X) �
��������������������
τ′( )2 + 2τ′τ″x2

2R
+ τ″( )2,√

τ′ � P�
2

√
x1x2

,

τ″ �MR
J
,

M � P L + x2
2

( ),
R �

�������������
x22
4
+ x1 + x3

2
( )2

√
,

J � 2
�
2

√
x1x2

x22
4
+ x1 + x3

2
( )2[ ]{ },

σ(X→) � 6PL
x4x

2
3

,

δ(X→) � 6PL3

Ex23x4
,

Pc(X
→) �

4.013E
�������
x23x

6
4/36

√
L2

1 − x3
2L

���
E

4G

√( ),
P � 6000 lb,

L � 14 in,

δmax � 0.25 in,

E � 30 × 106 psi,

G � 12 × 106 psi,

τmax � 13, 600 psi,

σmax � 30, 000 psi.

variable range:

0.1≤x1,

x4 ≤ 2,

0.1≤x2,

x3 ≤ 10.

(17)

Tables 20 and 21 compare the best and statistical results
of various optimizer in dealing with welded beam design
problem. +e SNS algorithm needs 9000 evaluations, which
is the lowest NFE among other algorithms, while its results
are better. In addition, the SNS algorithm has the lowest
standard deviation that shows its robustness in solving this
problem.

3.11. Design of Gear Train. +e gear train design problem is
an unconstrained discrete design problem in mechanical
engineering and was introduced by Sandgren [85]. +e
purpose of this benchmark task is to minimize the gear ratio
defined as the ratio of the angular velocity of the output shaft
to the angular velocity of the input shaft. +e number of
teeth of gears nA(� x1), nB(� x2), nC(� x3), and nD(� x4)
are considered as the design variables, and Figure 14 il-
lustrates the 3D model of this problem. +e mathematical
formulation is provided as follows:

minimize:

f(X) � 1

6.931
− x3x2
x1x4

( )2,
variable range:

x1, x2, x3, x4 ∈ 12, 13, 14, . . . , 60{ }.

(18)

+e best results of 19 algorithms include the SNS are
presented in Table 22. It can be seen that all the algorithms
find the optimum solution, except the PSO [62] and BBO
[62]. In addition, the statistical results of 14 algorithms are
compared in Table 23. +e proposed method outperformed
most of the other algorithms in terms of themean, worst, SD,
and NFEs.

3.12. A Reinforced Concrete Beam Design. Amir and Hase-
gawa [91] presented a simplified optimization problem of
designing a reinforced concrete beam, as shown in Figure 15.
+e beam is assumed to be simply supported with a span of
30 ft and subjected to a live load of 2000 lbf and a dead load
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of 1000 lbf, including the weight of the beam. +e concrete
compressive strength (σc) is 5 ksi, and the yield stress of the
reinforcing steel (σy) is 50 ksi. +e cost of concrete is $0.02/

in2/linear ft, and the cost of steel is $1.0/in2/linear ft. To
minimize the total cost of the structure, the area of the
reinforcement As(� x1), the width of the beam b(� x2), and

Table 20: Best results of welded beam design.

BBO [62] PSO [62] ICA [62] WCA [5] ABC [67] EO [78] TEO [82] SSA [59]

x1 0.1854860 0.219292 0.205799 0.205728 0.205730 0.2057000 0.20568100 0.2057000
x2 4.3129000 3.430416 3.469634 3.470522 3.470489 3.4705000 3.47230500 3.4714000
x3 8.4399030 8.433559 9.034950 9.036620 9.036624 9.0366000 9.03513300 9.0366000
x4 0.2359020 0.236204 0.205806 0.205729 0.205730 0.2057000 0.20579600 0.2057000
g1(X) −114.190503 −0.193642 0.020688 0.010832 0.000000 0.0094704 −0.60927688 −0.8256803
g2(X) −6.7171616 0.017873 −0.017763 0.119259 −0.000002 0.0014958 0.22468860 −0.7106346
g3(X) −0.0504000 −0.016900 −0.000007 −0.000001 0.000000 −0.0000001 −0.00011500 0.0000000
g4(X) −3.2078633 −3.276396 −3.390414 −3.390662 −3.432984 −3.3906592 −3.39027259 −3.3908203
g5(X) −0.0604860 −0.094292 −0.080799 −0.080728 −0.080730 −0.0807295 −0.08068100 −0.0807000
g6(X) −0.2350000 −0.235000 −0.236000 −0.235540 −0.235540 −0.2355403 −0.23553783 −0.2355381
g7(X) −2639.74280 −2668.48570 −5.951908 0.057684 0.000000 0.0008607 −5.15644919 −2.6033472
f(X) 1.9180550 1.852720 1.725135 1.724856 1.724852 1.7249000 1.72528400 1.7249100

WSA [62] MCEO [80] CBO [62] GWO [62] SHO [69] WOA [33] CCSA [83] SNS
x1 0.20573000 0.20572964 0.2057220 0.2056770 0.2055630 0.2053960 0.2057000 0.2057296
x2 3.47048900 3.47048866 3.4704100 3.4708940 3.4748460 3.4842930 3.4702000 3.4704887
x3 9.03662400 9.03662391 9.0372760 9.0385580 9.0357990 9.0374260 9.0362000 9.0366239
x4 0.20573000 0.20572964 0.2057350 0.2057390 0.2058110 0.2062760 0.2057000 0.2057296
g1(X) −0.02539959 0.00000363 −0.0246881 −0.0519206 −1.4028657 −21.5450190 −0.0020610 0.0000000
g2(X) −0.05312238 −0.00002880 −5.1106833 −14.2018357 −6.3837568 −84.7713395 −0.6569560 0.0000000
g3(X) 0.00000000 0.00000000 −0.0000130 −0.0000620 −0.0002480 −0.0008800 −0.0000045 0.0000000
g4(X) −3.39065616 −3.39000000 −3.3905161 −3.3902412 −3.3898697 −3.3852837 −3.3906250 −3.3906591
g5(X) −0.08073000 −0.08072964 −0.0807220 −0.0806770 −0.0805630 −0.0803960 −0.0807296 −0.0807296
g6(X) −0.23554035 −0.23554032 −0.2360000 −0.2355503 −0.2355421 −0.2355825 −0.2355406 −0.2355403
g7(X) −0.03155555 −0.00001860 −0.7536625 −1.6632990 −6.7607624 −48.2829292 −0.3906801 0.0000000
f(X) 1.72485200 1.72485230 1.7246630 1.7252320 1.7256610 1.7304990 1.7249000 1.7248523

CCSA: conscious neighborhood-based crow search algorithm.

Table 21: Comparative results of welded beam design.

Algorithm Worst Mean Best SD NFEs

PSO [62] 3.841845 2.613785 1.85272 4.71E− 01 50,000
CPSO [75] 1.782143 1.748831 1.728024 1.29E− 02 200,000
HPSO [74] 1.814295 1.749040 1.724852 4.00E− 02 81,000
CDE [76] 1.824105 1.768158 1.733461 2.22E− 02 204,800
ICA [62] 2.237755 1.79433 1.725135 1.10E− 01 50,000
BBO [62] 3.606933 2.630412 1.918055 4.11E− 01 50,000
FA [54] 2.345579 1.878656 1.731206 2.68E− 01 50,000
CSS [26] 1.759479 1.739654 1.724866 8.06E− 03 NA
WCA [5] 1.744697 1.726427 1.724856 4.29E− 03 46,500
ABC [67] NA 1.741913 1.724852 3.10E− 02 30,000
MFO [62] 1.724852 1.732109 1.950241 3.40E− 02 50,000
SCA [62] 1.786863 1.849364 1.925162 3.47E− 02 50,000
APSO [68] 1.993999 1.877851 1.736193 7.61E− 02 50,000
SHO [69] 1.726064 1.725828 1.725661 2.87E− 04 NA
SSA [62] 1.725886 1.823426 2.246638 1.28E− 01 50,000
GWO [62] 1.725232 1.72631 1.728487 7.71E− 04 50,000
WOA [33] NA 1.7320 1.730499 0.0226 9900
TEO [82] 1.931161 1.768040 1.725284 5.82E− 02 NA
EO [78] 1.736725 1.726482 1.724853 3.26E− 03 15,000
WSA [62] 1.725068 1.724908 1.724852 4.15E− 05 50,000
FACSS [70] 1.736565 1.730223 1.724853 6.363E− 7 100,000
T-CSS [84] 1.735656 1.730212 1.724860 2.00E− 06 100,000
SNS (present study) 1.725051 1.724880 1.724852 5.18E− 05 9000

T-CSS: tribe-charged system search.
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the depth of the beam h(� x3) have to be determined. +e
structure should be proportioned to have a required strength
based upon the ACI building code 318-77 as follows:

Mu � 0.9Asσy(0.8h) 1.0 − 0.59
Asσy

0.8bhσc
( )≥ 1.4Md + 1.7Ml,

(19)

Table 22: Best results of the gear train design.

Algorithm
Variables

f(X)
x1 x2 x3 x4

GA [62] 49 19 16 43 2.70E− 12
PSO [62] 34 13 20 53 2.31E− 11
ICA [62] 43 16 19 49 2.70E− 12
CS [18] 43 16 19 49 2.70E− 12
ABC [67] 49 16 19 43 2.70E− 12
MSFWA [86] 49 19 16 43 2.70E− 12
MBA [87] 43 16 19 49 2.70E− 12
BBO [62] 53 26 15 51 2.31E− 11
NNA [62] 49 16 19 43 2.70E− 12
GWO [62] 49 19 16 43 2.70E− 12
ISA [63] 43 19 16 49 2.70E− 12
APSO [68] 43 16 19 49 2.70E− 12
IAPSO [68] 43 16 19 49 2.70E− 12
MVO [88] 43 16 19 49 2.70E− 12
MFO [56] 43 19 16 49 2.70E− 12
ALO [57] 49 19 16 43 2.70E− 12
PSOSCALF [89] 49 19 16 43 2.70E− 12
WSA [62] 43 16 19 49 2.70E− 12
SNS (present study) 43 19 16 49 2.70085714E− 12
MBA: mine blast algorithm.

Table 23: Comparative results of SNS with other methods for the gear train design.

Algorithm Worst Mean Best SD NFEs

GA [62] 1.5247E− 08 1.6212E− 09 2.7009E− 12 3.2174E− 09 50,000
PSO [62] 1.0222E− 06 7.9383E− 08 2.3078E− 11 1.8147E− 07 50,000
ICA [62] 2.3576E− 09 8.0417E− 10 2.7009E− 12 7.7862E− 10 50,000
UPSO [90] N.A 3.80562E− 08 2.700857E− 12 1.09E− 07 100,000
MFO [62] 2.7265E− 08 7.5337E− 09 2.3078E− 11 9.3539E− 09 50,000
SCA [62] 2.3576E− 09 8.8113E− 10 2.7009E− 12 6.4529E− 10 50,000
SSA [62] 2.7265E− 08 1.9822E− 09 2.7009E− 12 4.5748E− 09 50,000
BBO [62] 4.2018E− 07 4.5418E− 08 2.3078E− 11 7.2953E− 08 50,000
CBO [62] 1.1173E− 08 2.1032E− 09 2.3078E− 11 2.4025E− 09 50,000
NNA [62] 2.3576E− 09 6.1128E− 10 2.7009E− 12 6.1167E− 10 50,000
GWO [62] 9.9216E− 10 3.3777E− 10 2.7009E− 12 4.0956E− 10 50,000
WOA [62] 6.5123E− 09 9.6633E− 10 2.7009E− 12 1.1296E− 09 50,000
WSA [62] 1.3616E− 09 1.6800E− 10 2.7009E− 12 3.8265E− 10 50,000
SNS (present study) 1.36165E− 09 1.68012E− 10 2.700857E− 12 3.74894E− 10 25,000

A

B
C

D

Figure 14: +e 3D model of gear train.
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whereMu,Md, andMl are the flexural strength, dead load,
and live load moments of the beam, respectively. In this case,
Md � 1350 in kip and Ml � 2700 in kip. +e depth to width
ratio of the beam is restricted to be less than or equal to 4.
+e optimization problem can be expressed as

minimize:

f(X) � 2.9x1 + 0.6x2x3,

subject to:

g1(X) �
x2
x3
− 4≤ 0,

g2(X) � 180 + 7.375
x21
x3
− x1x2 ≤ 0,

variable range:

x1 ∈ 6, 6.16, 6.32, 6.6, 7, 7.11, 7.2, 7.8, 7.9, 8, 8.4{ },

x2 ∈ 28, 29, 30, . . . , 40{ },

5≤x3 ≤ 10.
(20)

It is clear that the variables x1 and x2 are discrete, while
x3 is continuous. +e SNS method requires1000 evaluations
to reach the optimum solution. Table 24 presents the results
of optimum designs obtained by the SNS and other methods
for this problem. In addition, the statistical results of FA
[54], CS [18], AOS [39], and SNS are compared in Table 25.
Obviously, the performance of the SNSmethod is better than
other algorithms.

3.13. Car Side Impact Design. On the foundation of the
European Enhanced Vehicle-Safety Committee (EEVC)
procedures, a car is exposed to a side impact, and the aim of
this benchmark problem is minimizing the weight of the
door using nine influence parameters including thicknesses
of B-pillar inner (� x1), B-pillar reinforcement (� x2), floor
side inner (� x3), cross members (� x4), door beam (� x5),
door beltline reinforcement (� x6), roof rail (� x7), ma-
terials of B-pillar inner (� x8), floor side inner (� x9),
barrier height (� x10), and hitting position (� x11). Youn
et al. [93] simplified this optimization problem’s analytical
formulation and sped up computations using the global
response surface methodology to approximate the structural
weight and response to the impact. Figure 16 shows a model
for the car side impact problem. According to the simplified
models, the optimization problem is formulated as follows:

minimize:

f(X) � 1.98 + 4.90x1 + 6.67x2 + 6.98x3 + 4.01x4 + 1.78x5 + 2.73x7,
subject to:

g1(X) � 1.16 − 0.3717x2x4 − 0.00931x2x10 − 0.484x3x9 + 0.01343x6x10 − 1≤ 0,
g2(X) � 46.36 − 9.9x2 − 12.9x1x2 + 0.1107x3x10 − 32≤ 0,
g3(X) � 33.86 + 2.95x3 + 0.1792x3 − 5.057x1x2 − 11.0x2x8 − 0.0215x5x10 − 9.98x7x8 + 22.0x8x9 − 32≤ 0,
g4(X) � 28.98 + 3.818x3 − 4.2x1x2 + 0.0207x5x10 + 6.63x6x9 − 7.7x7x8 + 0.32x9x10 − 32≤ 0,
g5(X) � 0.261 − 0.0159x1x2 − 0.188x1x8 − 0.019x2x7 + 0.0144x3x5 + 0.0008757x5x10 + 0.08045x6x9

+ 0.00139x8x11 + 0.00001575x10x11 − 0.32≤ 0,
g6(X) � 0.214 + 0.00817x5 − 0.131x1x8 − 0.0704x1x9 + 0.03099x2x6 − 0.018x2x7 + 0.0208x3x8 + 0.121x3x9 − 0.00364x5x6

+ 0.0007715x5x10 − 0.0005354x6x10 + 0.00121x8x11 + 0.00184x9x10 − 0.02x
2
2 − 0.32≤ 0,

g7(X) � 0.74 − 0.61x2 − 0.163x3x8 + 0.001232x3x10 − 0.166x7x9 + 0.227x
2
2 − 0.32≤ 0,

30 �

q=3k lbf

b

h
As

Figure 15: A schematic view of reinforced concrete beam.
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g8(X) � 4.72 − 0.5x4 − 0.19x2x3 − 0.0122x4x10 + 0.009325x6x10 + 0.000191x
2
11 − 4≤ 0,

g9(X) � 10.58 − 0.674x1x2 − 1.95x2x8 + 0.02054x3x10 − 0.0198x4x10 + 0.028x6x10 − 9.9≤ 0,

g10(X) � 16.45 − 0.489x3x7 − 0.843x5x6 + 0.0432x9x10 − 0.0556x9x11 − 0.000786x
2
11 − 15.7≤ 0,

variable range:

0.5≤x1, x2, x3, x4, x5, x6, x7 ≤ 1.5,

x8, x9 ∈ 0.192, 0.345{ }, ,

− 30≤ x10,

x11 ≤ + 30.

(21)

+e design of car side impact is also used as a benchmark
problem to evaluate the performance of various methods.
+e best results of the SNS and these algorithms are pre-
sented in Table 26. It should be noted that the results of other
algorithms evaluated by Gandomi et al. [18, 54, 66] have

different variables ranges, but in this paper, the variable
ranges of [93] are utilized. Table 27 summarizes the sta-
tistical results obtained by the different optimization algo-
rithms for the car side impact design problem. In this case,
the SNS achieves its results with 20,000NFEs. +e CS

Table 24: Best results of a reinforced concrete beam design.

GHN-EP [71] GA [92] FA [54] CS [18] ISA [63] AOS [39] SNS

x1 6.32 7.20 6.32 6.32 6.32 6.32 6.32
x2 34 32 34 34 34 34 34
x3 8.637180 8.0451 8.5000 8.5000 8.5000 8.5 8.5
g1(X) −0.7745 −2.8779 −0.2241 −0.2241 −0.2241 −0.22409498 −0.22409411
g2(X) −0.0635 −0.0224 0 0 0 −1.00E− 07 5.27667E− 12
f(X) 362.00648 366.1459 359.2080 359.2080 359.2080 359.2080 359.2080

GHN-EP: generalized Hopfield network-based extended penalty approach.

Table 25: Comparative results of SNS with other methods for a reinforced concrete beam design.

Algorithm Worst Mean Best SD NFEs

FA [54] 669.150 460.706 359.2080 80.73870 25,000
CS [18] NA NA 359.2080 NA 5000
AOS [39] 362.2535 359.3306872 359.2080 0.59614901 100,000
SNS (present study) 362.634 359.3222001 359.2080 0.61498581 1000

Figure 16: A model of car side impact problem.
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method has better performance than all of the methods,
according to the results presented in [18]. In addition, the
best result of the SNS is better than those of other algorithms.

3.14. Cantilever Stepped Beam. +is problem is a good
benchmark to verify the capability of the optimization
methods for solving continuous, discrete, and mixed vari-
able structural design problems. +is problem aims to
minimize the volume of the beam. +e width of segments
(x1, x2, x3, x4, x5) and height of them (x6, x7, x8, x9, x10) are
chosen to be the design variables. +ese ten variables are
illustrated in Figure 17. Except for bending stress con-
straints, a specified aspect ratio is imposed such that the ratio
of height to width in the segments of the beam is limited to
be less than 20. +e problem is formulated as follows:

minimize:

f(X) � D x1x6l1 + x2x7l2 + x3x8l3 + x4x9l4 + x5x10l5( ),
subject to:

g1(X) �
6Pl5

x5x
2
10

− σd ≤ 0,

g2(X) �
6P l5 + l4( )
x4x

2
9

− σd ≤ 0,

g3(X) �
6P l5 + l4 + l3( )

x3x
2
8

− σd ≤ 0,

Table 26: Best results of the car side impact design example.

PSO [54] DE [54] GA [54] CS [18] BA [66] SNS

x1 0.50000 0.50000 0.50005 0.50000 0.50000 0.5
x2 1.11670 1.11670 1.28017 1.11643 1.11670 1.115933208
x3 0.50000 0.50000 0.50001 0.50000 0.50000 0.5
x4 1.30208 1.30208 1.03302 1.30208 1.30208 1.302918991
x5 0.50000 0.50000 0.50001 0.50000 0.50000 0.5
x6 1.50000 1.50000 0.50000 1.50000 1.50000 1.5
x7 0.50000 0.50000 0.50000 0.50000 0.50000 0.5
x8 0.34500 0.34500 0.34994 0.34500 0.34500 0.345
x9 0.19200 0.19200 0.19200 0.19200 0.19200 0.192
x10 −19.54935 −19.54935 10.3119 −19.54935 −19.54935 −19.6388662
x11 −0.00431 −0.00431 0.00167 −0.00431 −0.00431 1.49192E− 06
g1(X) −0.617505 −0.617505 −0.43167 −0.617423 −0.61750525 −0.61849499
g2(X) −0.092707 −0.092707 −0.09839 −0.092703 −0.09270723 −0.09273231
g3(X) −0.100627 −0.100627 −0.13685 −0.100625 −0.10062705 −0.10061401
g4(X) −0.034209 −0.034209 −0.02699 −0.034182 −0.03420961 −0.03418562
g5(X) −4.278328 −4.278328 −3.77008 −4.277761 −4.27832783 −4.28314394
g6(X) −7.2838105 −7.2838105 −3.36103 −7.282103 −7.28381045 −7.29404065
g7(X) −0.0026365 −0.0026365 −0.00025 3.647E− 05 −0.00263652 0
g8(X) −2.425E− 05 −2.425E− 05 −8.6156E− 06 1.395E− 06 −2.43E− 05 0
g9(X) −0.9654269 −0.9654269 −0.58567 −0.965154 −0.96542696 −0.96669762
g10(X) −0.1666041 −0.1666041 0.502506 −0.166604 −0.16660413 −0.16739262
f(X) 22.84474 22.84298 22.85653 22.84294 22.84474 22.84297965

Table 27: Comparative results of SNS with other methods for the car side impact design example.

Algorithm Worst Mean Best SD NFEs

PSO [54] 23.21354 22.89429 22.84474 0.15017 20,000
DE [54] 24.12606 23.22828 22.84298 0.34451 20,000
GA [54] 26.240578 23.51585 22.85653 0.66555 20,000
BA [66] 23.21354 22.89273 22.84474 0.17383 20,000
FA [54] 24.06623 22.89376 22.84298 0.16667 20,000
CS [18] 23.25998 22.85858 22.84294 0.07612 20,000
WCA [94] 23.37093376 22.97516442 22.84303648 1.9772E− 01 NA
MBA [94] 23.48894217 22.93642104 22.84359640 1.5258E− 01 NA
ER-WCA [94] 24.45531280 23.06992534 22.84326461 3.502E− 01 NA
WOA [94] 27.36081368 24.81448617 23.04216220 9.657E− 01 NA
FACSS [70] 23.05362562 22.91212354 22.84907401 4.726E− 02 NA
CSS [84] 24.863563 23.523265 23.007336 0.562345 100,000
T-CSS [84] 23.800904 22.903653 22.847848 0.078565 100,000
SNS (present study) 23.18454939 22.88145736 22.84296954 0.101801211 20,000

ER-WCA: evaporation rate-based water cycle algorithm.
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g4(X) �
6P l5 + l4 + l3 + l2( )

x2x
2
7

− σd ≤ 0,

g5(X) �
6P l5 + l4 + l3 + l2 + l1( )

x1x
2
6

− σd ≤ 0,

g6(X) �
Pl3

3E

1

I5
+ 1
I4
+ 1
I3
+ 1
I2
+ 1
I1

( ) − Δmax ≤ 0,
g7(X) �

x10
x5

− 20≤ 0,

g8(X) �
x9
x4
− 20≤ 0,

g9(X) �
x8
x3
− 20≤ 0,

g10(X) �
x7
x2
− 20≤ 0,

g11(X) �
x6
x1
− 20≤ 0,

P � 50000N,

σd � 14, 000N/cm
2,

E � 2 × 107N/cm2,

Δmax � 2.7 cm,

D � 1.0,

variable range:

x1 ∈ 1, 2, 3, 4, 5{ },

x2, x3 ∈ 2.4, 2.6, 2.8, 3.1{ },

1≤ x4,

x5 ≤ 5,

x6 ∈ 30, 31, 32, . . . , 65{ },

x7, x8 ∈ 45, 50, 55, 60, 65{ },

30≤x9,

x10 ≤ 65.

(22)

+e first five constraints are related to the bending
stresses in each beam segment that must be lower than the
allowable limit (σd). Also, the deflection of the cantilever
beam tip must be smaller than the limit deflection (Δmax).
+e aspect ratio between the height and width of the cross
sections must be less than 20 and is applied by the last five
constraints. Six of the variables (x1, x2, x3, x6, x7, x8) are
discrete, and the rest of them (x4, x5, x9, x10) are continuous.

+e best and statistical results of the FA [54], thermal
exchange optimization (TEO) [82], PSO [82], and SNS are
presented in Tables 28 and 29, respectively. To solve this
problem, the SNS needs 20,000 evaluations, which is lower
than the NFEs of other compared methods, and at the same
time, it outperforms all of them in terms of best, mean,
worst, and SD.

3.15.RealApplicationof SNS inRemote Sensing (Segmentation
of Satellite Images). Image segmentation is an important
topic in the field of remote sensing due to the increasing
volume of collected images from satellites, airplanes, and
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Figure 17: A 3D model of stepped cantilever beam.
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other platforms [95]. Image segmentation aims to par-
tition an image into several homogenous sections such
that the combination of no two adjacent sections is
homogenous. Segmentation is a difficult task due to poor
resolution, unfavorable environmental conditions, am-
biguous regions, and the presence of pixels with a weak
local correlation in satellite images [96, 97]. Meta-
heuristic methods are proper tools that can deal with the
difficulty of discovering the homogeneity measure in the
images [98]. In this section, the SNS algorithm is
employed for segmenting color satellite images, and then
its results have been compared with different optimiza-
tion algorithms.

+resholding techniques are the most common methods
that are used as the objective function in image segmen-
tation. In this study, Kapur’s entropy method is employed
for this purpose, and its mathematical formulation is as
follows:

H0 � − ∑t1−1
i�0

pi
ω0

( )log2 pi
ω0

( );

H1 � − ∑t2−1
i�t1

pi
ω1

( )log2 pi
ω1

( );

Hj � − ∑tj+1−1
i�tj

pi
ωj

( )log2 pi
ωj

( );
Hm � − ∑N−1

i�tm

pi
ωm

( )log2 pi
ωm

( ),
(23)

where

ω0 � ∑t1−1
i�0
pi;ω1 � ∑t2−1

i�t1
pi;ωj � ∑tj+1−1

i�tj
pi;ωm � ∑N−1

i�tm
pi, (24)

where H0, H1, . . . , Hm are the entropy values of m+ 1
various sections or classes, pi is the probability of the pixel
intensity, and N is the total number of distinct intensity
levels.

+e utilized image and its histogram patterns are shown
in Figure 18. +is satellite image is taken from Pléiades
Satellite Imagery to carry out the experimental study for
segmentation. It can be seen that the histogram of the
satellite image has a multimodal pattern, and it is very
difficult to segment such an image that possesses immense
information content.

+e experiment was carried out 10 times to choose the
best of each algorithm. Figure 19 gives the segmented images
for four different levels of thresholding (n) and compares the

Table 28: Best results of the cantilever stepped beam.

FA [54] TEO [82] PSO [82] SNS (present study)

x1 3 3 5 3
x2 3.1 3.1 3.1 3.1
x3 2.6 2.6 2.6 2.6
x4 2.205 2.21629046531169 2.204556 2.204555692
x5 1.750 1.76910085340763 1.749757 1.749757012
x6 60 60 47 60
x7 55 55 55 55
x8 50 50 50 50
x9 44.091 44.014420969625 44.09111 44.09111383
x10 34.995 34.8445777966116 34.995140 34.99514024
g1(X) −1.83171281 −33.157060 −1.49E− 06 −1.81899E− 12
g2(X) −2.74873225 −25.554426 −2.38E− 06 −1.81899E− 12
g3(X) −153.846153 −153.846154 −153.8461538 −153.8461538
g4(X) −1203.41242 −1203.412423 −1203.412423 −1203.412423
g5(X) −111.111111 −111.111111 −419.1942055 −111.1111111
g6(X) −2.44816450 −2.447883 −2.44430588 −2.448137336
g7(X) −0.00285714 −0.303792 0 −3.19744E− 14
g8(X) −0.00408163 −0.140500 −4.54E− 09 −3.55271E− 15
g9(X) −0.76923076 −0.769231 −0.769230769 −0.769230769
g10(X) −2.25806451 −2.258065 −2.258064516 −2.258064516
g11(X) 0 0 −10.6 0
f(X) 63893.52 63994.018919 69393.430796 63893.4307958715

Table 29: Comparative results of SNS with other methods for the cantilever stepped beam.

Algorithm Worst Mean Best SD NFEs

FA [54] 64262.99420 64144.75312 63893.52578 175.91879 50,000
PSO [82] NA NA 69393.430796 NA 300,000
TEO [82] NA NA 63994.018919 NA 300,000
SNS (present study) 63905.69523997 63893.88749760 63893.43079588 2.21E+ 00 20,000

26 Computational Intelligence and Neuroscience



S
N
S

C
S

 M
c
C

u
ll

o
c
h

C
S

A
B
C

D
P
S
O

P
S
O

n=5 n=7 n=9 n=11

Figure 19: Segmentation results of test images using metaheuristic algorithms for four different threshold levels.
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Figure 18: +e utilized satellite image and its histograms (https://www.satpalda.com/gallery).
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results of the SNS algorithm with PSO, Darwinian PSO
(DPSO), ABS, CS, and CS algorithm with McCulloch’s
method (CSMcCulloch). Also, Table 30 presents the compar-
ison of threshold values between the SNS and other
methods.

Various criteria can be used for comparing the perfor-
mance of metaheuristic algorithms in satellite image seg-
mentation. Peak signal to noise ratio (PSNR) and feature
similarity index (FSIM) are two quantitative performance
metrics, which are utilized in this study [99]. PSNRmeasures
the accuracy of the reconstructed image and is formulated as
follows:

PSNR � 10log10
2552

(1/mn)∑mj�1∑nk�1 Xj,k − X
’
j,k( )2 ,

(25)
wheremn is the size of image andX andX′ are the main and
the processed images, respectively. In addition, FSIM is
a criterion that calculates the similarity of the thresholded
and original images as follows:

FISM � ∑x∈XSL(x)PCm(x)∑x∈XPCm(x) , (26)

Table 30: Comparison of threshold values between algorithms.

n
Methods

PSO [96] DPSO [96] ABC [96]

5
40 82 123 164 207 43 86 128 171 211 40 82 121 162 205
62 100 138 176 217 65 104 142 180 217 63 100 139 177 217
54 93 131 171 210 51 95 99 147 166 56 95 134 173 214

7
30 60 90 119 151 184 220 33 66 97 129 160 191 221 33 65 95 126 157 188 220
52 80 105 133 161 189 219 54 82 109 137 166 195 225 54 81 109 137 166 195 225
44 74 104 132 161 190 219 43 73 103 132 161 190 219 46 76 104 132 161 190 217

9
22 44 68 94 120 148 175 203 231 22 45 70 96 121 146 171 197 224 22 48 73 99 125 152 179 204 231
47 68 89 110 132 155 180 203 229 44 63 82 103 125 147 171 197 226 29 51 71 94 121 147 171 197 228
21 48 75 101 128 155 181 206 230 21 47 72 95 119 145 172 199 225 21 48 75 101 126 151 177 201 226

11
17 38 59 78 98 119 140 162 183 207 231 16 35 54 74 94 116 139 163 186 209 231 16 32 50 70 91 113 136 159 182 206 231
28 46 66 84 101 118 135 153 175 198 224 44 63 82 101 119 138 157 176 194 214 234 28 46 66 86 106 126 144 164 184 204 225
18 36 56 77 99 121 141 161 181 202 226 18 39 59 80 101 122 143 164 186 208 230 18 37 56 76 96 118 140 162 185 208 230

n CS [96] CSMcCulloch [96] SNS (present study)

5
48 89 132 181 210 45 88 130 172 208 45 88 131 174 215
49 91 133 179 215 47 89 132 178 212 43 57 71 97 173
51 93 140 182 219 48 88 133 173 209 56 95 134 174 214

7
42 81 110 145 182 221 245 39 76 107 139 173 204 232 35 66 96 126 157 189 220
42 83 115 143 179 208 239 40 77 108 142 174 203 233 40 50 51 66 116 182 206
43 77 109 143 181 217 242 41 76 106 140 175 205 234 46 75 103 132 161 191 223

9
34 61 79 110 133 159 189 210 233 25 51 75 103 130 156 182 209 235 24 47 72 97 122 148 174 200 225
25 56 77 109 137 161 191 210 240 20 53 70 108 135 159 189 211 238 12 12 14 48 62 115 157 186 191
30 62 79 110 132 164 198 214 245 29 61 75 109 130 163 194 213 240 18 47 74 99 123 148 173 198 226

11
28 47 65 87 105 132 145 167 191 220 239 23 45 64 84 105 129 145 164 186 211 235 21 41 63 83 103 123 143 165 187 209 232
25 48 69 91 110 132 147 165 191 214 240 24 46 67 89 107 131 146 162 188 213 238 11 12 40 61 83 100 110 180 217 219 251
28 50 66 85 108 135 148 167 189 211 235 22 48 65 85 106 130 147 163 185 212 235 16 34 54 74 95 117 139 161 183 206 230

Table 31: Comparison of PSNR between algorithms.

n PSO [96] DPSO [96] ABC [96] CS [96] CSMcCulloch [96] SNS

5 20.3884 20.4267 20.4707 20.4781 20.4816 26.0094

7 21.1449 21.1886 21.2327 21.155 21.316 26.1077

9 22.2473 22.3048 22.3342 22.5418 22.7496 26.7082

11 23.139 23.2316 23.3399 23.5449 23.6527 27.6536

Table 32: Comparison of FSIM between algorithms.

n PSO [96] DPSO [96] ABC [96] CS [96] CSMcCulloch [96] SNS

5 0.9425 0.9427 0.9433 0.9402 0.9445 0.96655
7 0.9097 0.9125 0.9141 0.9071 0.9174 0.97626
9 0.947 0.9479 0.9486 0.9441 0.9549 0.98178
11 0.9175 0.9179 0.9214 0.9156 0.9276 0.98441
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where SL(x) shows the similarity of images and PCm(x) is
the phase congruency map. Tables 31 and 32 present the
values of PSNR and FSIMmetrics, respectively. According to
these results, the SNS algorithm achieved better PSNR and
FSIM values for all thresholding levels.

+is comprehensive study demonstrates that the de-
veloped SNS has competence among the other metaheuristic
algorithms. Based on the results in solving classical engi-
neering problems, it can be concluded that the SNS algo-
rithm can perform superior to other algorithms in dealing
with semi-real constrained problems. In addition, the image
segmentation problem results show the SNS algorithm’s
ability to solve real-world problems.

4. Conclusion

+e social network search (SNS) is a newly developed
metaheuristic algorithm that mimics the behavior of social
network users in expressing their opinions. In the present
study, the SNS algorithm was employed for solving 14 semi-
real constrained optimization problems and one real-world
application in the field of remote sensing at a relatively low
computational cost. From the comparative study, the SNS
has shown its potential to handle various constrained op-
timization problems, and its performance is much better
than other state-of-the-art algorithms in terms of the se-
lected performance metrics. +is is partly because there are
no parameters to be fine-tuned in the SNS. In addition, it is
worth mentioning that a simple penalty function method is
used for constraint handling, while other comparedmethods
maybe used advanced methods for this task.

+is algorithm uses four moods of users in the social
networks, namely, imitation, conversation, disputation, and
innovation. Users are influenced to express their new views
using these four moods simulated from real-world behaviors
of users in social networks that randomly accrue for each of
them. As further studies, different modifications can be
employed to improve the performance of the SNS. Some of
these editions are listed below:

(i) In the course of iterations, each user is affected
during a randomly selected mood. Developing this
random selection to an adaptive selection may
affect the performance.

(ii) In the imitation mood, the new view is created
inside the imitation space. A new model for this
space can have a high impact.

(iii) +e shock radius (R) and popularity radius (r) are
two important key parameters for improving the
imitation mood output.

(iv) In the imitation, conversation, and innovation
moods, a random user (Xj) is selected. +e se-
lection of this user affects extremely the perfor-
mance of the SNS. Another selection mechanism
can be useful.

(v) +e subject (Xk) in conversation mood has an
effective impact on the quality of the newly gen-
erated solutions.

(vi) In conversation mood, the direction and size of
movements are affected by sign(fi − fj). +e
change of this factor in an adaptive way that affects
the size of movements is desirable.

(vii) In the disputation mood, a random number of
users are considered. Different strategies can be
integrated with this mood. For example, dif-
ferent neighborhood topologies can be used. In
addition, dynamic regrouping schema can be
useful to improve the performance of disputa-
tion mood.

(viii) A newmood can be designed to improve the ability
of the SNS by modeling another specific situation
in social networks.

Hybridization of the proposed algorithm with other
popular algorithms is a commonway to benefit from the idea
of different metaheuristics to develop a more robust opti-
mization algorithm. In addition, the ability of this algorithm
should be examined in dealing with other complex real-
world optimization problems in different branches of
science.
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