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Abstract Social relationships have profound effects on health in humans and other primates, but

the mechanisms that explain this relationship are not well understood. Using shotgun

metagenomic data from wild baboons, we found that social group membership and social network

relationships predicted both the taxonomic structure of the gut microbiome and the structure of

genes encoded by gut microbial species. Rates of interaction directly explained variation in the gut

microbiome, even after controlling for diet, kinship, and shared environments. They therefore

strongly implicate direct physical contact among social partners in the transmission of gut

microbial species. We identified 51 socially structured taxa, which were significantly enriched for

anaerobic and non-spore-forming lifestyles. Our results argue that social interactions are an

important determinant of gut microbiome composition in natural animal populations—a

relationship with important ramifications for understanding how social relationships influence

health, as well as the evolution of group living.

DOI: 10.7554/eLife.05224.001

Introduction
Vertebrate intestines are home to thousands of bacterial species that exert profound effects on their

hosts: they train the immune system, produce vitamins, help resist pathogens, and contribute

substantially to daily energy acquisition (Bergman, 1990; Turnbaugh et al., 2006; Hooper et al.,

2012; Bengmark, 2013;Morgan et al., 2013). In humans, inter-individual variation in gut microbiome

composition has repeatedly been linked to major health concerns, including obesity, diabetes, cancer,

heart disease, and autoimmune disorders (e.g., Turnbaugh et al., 2009; Hooper et al., 2012;

Bengmark, 2013; Iida et al., 2013; Koeth et al., 2013; Viaud et al., 2013).

However, despite its importance, large gaps remain in our understanding of the forces that shape

gut microbiome composition. Among the least understood but potentially most significant such

forces are the effects of host social interactions. From an evolutionary perspective, social effects on

the gut microbiome may be an underappreciated consequence of group living, associated with both
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fitness costs and benefits (Lombardo, 2008; Archie and Theis, 2011; Ezenwa et al., 2012; Montiel-

Castro et al., 2013). For example, co-housing in lab mice promotes the transmission of bacterial

communities that contribute to inflammatory bowel disease, implicating social relationships in

microbiome-associated disease risk (Garrett et al., 2010). In bumblebees, socially transmitted gut

bacteria protect against a widespread and virulent gut parasite, suggesting that socially mediated

microbial transmission can also confer powerful benefits (Koch and Schmid-Hempel, 2011). If social

interactions predict gut microbiome composition in free-living vertebrates as well, this link could help

explain the strong association between social interactions and health in highly social species

(e.g., Berkman and Syme, 1979; House et al., 1988; Sapolsky, 2004; Holt-Lunstad et al., 2010).

A handful of recent studies in humans and other primates provide circumstantial evidence for social

effects on the gut microbiome (Degnan et al., 2012; Kinross and Nicholson, 2012; Yatsunenko

et al., 2012; Song et al., 2013). For instance, in wild chimpanzees, social group membership predicts

the identity and abundance of gut microbes, while kinship, age, and sex do not (Degnan et al., 2012).

In humans, shared residence predicts gut microbiome similarity (Kinross and Nicholson, 2012;

Yatsunenko et al., 2012; Song et al., 2013). To date, these effects have largely been attributed to

shared diets, as members of the same household or social group tend to consume similar foods in

similar proportions (Claesson et al., 2011; Kinross and Nicholson, 2012; Yatsunenko et al., 2012).

However, social relationships could also shape gut microbiomes more directly, via transmission from

shared environments (Lax et al., 2014) or during physical contact.

Differentiating between these mechanisms requires fine-grained data on social interactions, shared

environments, and diet. Such complementary data sets are rare, but are frequently collected in long-

term primate field studies. Here, we leveraged one such study, on the intensively studied Amboseli

baboons of Kenya (Alberts and Altmann, 2012), to test whether social group structure and social

interactions within groups predict either the taxonomic or the functional composition of the gut

microbiome. Like humans, baboons are highly social, group-living primates. Members of the same

social group travel together, consume similar foods, and drink from the same water sources. Within

social groups, individuals selectively engage in frequent affiliative grooming interactions, which

solidify social bonds and have the potential to mediate bacterial transmission. Within this context, we

eLife digest The digestive system is home to a complex community of microbes—known as the

gut microbiome—that contributes to our health and wellbeing by digesting food, producing

essential vitamins, and preventing the growth of harmful bacteria. The recent development of rapid

genome sequencing techniques has made it much easier to identify the species of microbes found in

the gut microbiome, and how this microbiome’s composition varies between individuals.

Studies in humans and other primates suggest that direct contact during social interactions may

alter the composition of the gut microbiome in an individual. This could explain why there is a strong

association between social interactions and health in humans and other social animals. However,

similarities in the gut microbiomes of individuals within a social group could also be due to a shared

diet or a common environment. The information collected during long-term studies of wild primates

offers an opportunity to analyze and assess the influence of diet, environment and social interaction

on the gut microbiome.

Here, Tung et al. studied the gut microbiomes of 48 wild baboons belonging to two different

social groups in Amboseli, Kenya. Using a technique called shotgun metagenomic sequencing, they

sequenced DNA extracted from samples of feces collected from individual baboons. The sequence

data revealed that an individual’s social group and social network can predict the species found in its

gut microbiome. This remained the case even when other factors—such as diet, kinship, and shared

environments—were taken into account.

Tung et al.’s findings suggest that direct physical contact during social interactions may be

important in transmitting gut microbiomes between members of the same social group. However,

scientists still don’t know whether this exchange is good or bad for the health of the baboons. Future

work will try to understand whether baboons benefit from acquiring gut microbes from their group

members, and if the gut microbes of some social groups are better than others.

DOI: 10.7554/eLife.05224.002
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addressed three central questions. We first asked (i) does social group membership predict gut

microbiome composition, as shown for humans and chimpanzees (Degnan et al., 2012; Kinross and

Nicholson, 2012; Yatsunenko et al., 2012; Song et al., 2013)? We then asked two novel questions

that have not been addressed in prior studies: (ii) within social groups, do rates of social interactions

(captured here by grooming-based social networks) predict gut microbiome similarity after

accounting for dietary patterns, shared environments, and kinship? And (iii) which bacterial species,

with what lifestyle traits, are most likely to be socially transmitted, both between and within social

groups?

Results
We generated shotgun metagenomic data for the distal gut using fecal samples from 48 members of

two baboon social groups (‘Mica’s group’ or ‘Viola’s group’; one sample per individual;

Supplementary file 1). Together, these individuals represented almost complete sampling (92%) of

the adult members of both groups. Fecal samples were collected during a single 1-month timespan to

minimize developmental, temporal, and seasonal heterogeneity. During this time, Mica’s group and

Viola’s group exploited adjacent home ranges, with the center of each range separated by just a few

kilometers (Figure 1A).

Using the program MetaPhlAn 2.0 (Segata et al., 2012), we identified 925 bacterial and archaeal

taxa to the species level and quantified their relative abundance (364 ± 150 s.d. species per sample;

Figure 1—figure supplement 1; Supplementary files 2, 3; see Supplementary files 3, 4 for parallel

results using a de novo assembly approach). We also identified and quantified the relative abundance

of 9013 microbial-encoded enzyme orthologs using the HUMAnN pipeline (mean ± SD = 2746 ±

560 KEGG orthologs per sample; Abubucker et al., 2012; Figure 1—figure supplement 3;

Supplementary file 5). The taxa we found comprised a typical primate gut microbiota, dominated by

the phyla Firmicutes (mean ± SD = 42.2% ± 8.4%), Proteobacteria (13.0% ± 2.8%), Actinobacteria

(9.4% ± 4.6%), and Bacteroidetes (7.3% ± 2.4%) (Figure 1—figure supplement 1, 5; Supplementary

file 6). In some samples, especially those in Viola’s group, we also detected a large contribution from

the phylum Spirochaetes, consistent with findings from other primates, ancient humans, and modern-

day human hunter-gatherers (De Filippo et al., 2010; Tito et al., 2012; Schnorr et al., 2014).

Social group membership was the strongest single predictor of gut
microbiome composition
Across all 48 individuals, social group membership explained 18.6% of global variation in gut

microbial species composition (as summarized by a Bray–Curtis dissimilarity matrix; PERMANOVA for

social group effects: p < 10−4; Figure 1C). Social group membership was also the dominant source of

variance in the abundance of enzyme gene orthologs encoded by gut microbes, explaining 10.8% of

global variance in a Bray–Curtis dissimilarity matrix (PERMANOVA: p = 0.003; Figure 1D). In contrast,

sex, age, and sequencing read depth made comparatively minor or non-significant contributions to

gut microbiome composition (PERMANOVA: sex, age and read depth explained 3.6%, p = 0.026;

5.3%, p = 0.052; 6.0%, p = 0.024 of variance in taxonomic composition, respectively; no significant

variation was explained by sex, age, or read depth for enzyme gene orthologs). Furthermore, social

group remained a strong and significant predictor of taxonomic and enzyme gene ortholog

composition even after controlling for genetic relatedness between study subjects (partial Mantel test

for taxonomic composition: r = 0.378, p < 10−5; for enzyme gene orthologs: r = 0.140, p = 1.6 × 10−3).

Differences in gut microbiome composition between social groups were
unlikely to be explained by diet
Previous associations between social proximity and gut microbial composition in humans and other

primates have largely been attributed to diet (Degnan et al., 2012; Kinross and Nicholson, 2012;

Yatsunenko et al., 2012). However, the two social groups in our study inhabited a relatively

homogeneous savannah environment and exploited very similar resources. During the sample

collection period, half of each group’s diet was devoted to grass corms, and similar proportions were

devoted to other food types, including grass seed heads, Acacia tortilis seed pods, leaves (primarily

grass blades), and Acacia xanthophloea gum (Figure 1B; Supplementary file 7). The only diet

component that differed significantly between the two groups was the proportion devoted to fruit
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Figure 1. Social group membership predicts microbiome composition. (A) Group home ranges in the year prior to

and during sample collection. (B) Diet composition during sample collection. Only the proportion of fruit

consumed significantly differed between groups (p = 0.05; Supplementary file 7). Principal coordinates plots of

Bray–Curtis dissimilarity matrices for (C) taxonomic (Supplementary file 2) and (D) KEGG enzyme ortholog

composition of individual gut microbiomes (Supplementary file 5). Social group membership explained

significant variation in gut microbial composition (PERMANOVA: r2 = 0.186, p < 10−4) as well as gut microbial

enzyme ortholog composition (r2 = 0.108, p = 0.003). Relative abundances of common bacterial phyla and KEGG

enzyme orthologs are shown in Figure 1—figure supplement 1, 2. A rarefaction analysis of species-level

sampling is shown in Figure 1—figure supplement 3. The results of the HUMAnN pipeline are shown in Figure

1—figure supplement 4. A comparison between baboon and human microbiome composition across body sites

is shown in Figure 1—figure supplement 5.

DOI: 10.7554/eLife.05224.003

The following figure supplements are available for figure 1:

Figure supplement 1. Proportional representation of common phyla in each sample.

DOI: 10.7554/eLife.05224.004

Figure supplement 2. Proportional representation of common KEGG orthologs in each sample, summarized as

pathways.

DOI: 10.7554/eLife.05224.005

Figure supplement 3. Rarefaction analyzes of shotgun metagenomic data.

DOI: 10.7554/eLife.05224.006

Figure supplement 4. HUMAnN pipeline results.

DOI: 10.7554/eLife.05224.007

Figure supplement 5. PCA projection of baboon gut microbiome data and Human Microbiome Project data

collected from different body sites.

DOI: 10.7554/eLife.05224.008
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(permutation test: p = 0.05). However, we found no differences between the two groups in the

abundance of two common fruit-associated bacterial enzymes, pectinesterase (p-value for social

group in a linear mixed effects model: p = 0.306) and pectate lyase (p-value for social group in a linear

mixed effects model: p = 0.869). Furthermore, patterns of differential taxonomic abundance between

groups did not recapitulate differences associated with differential consumption of fresh fruits and

vegetables described in a human gut microbiome data set (Davenport et al., 2014; see ‘Materials

and methods’).

Grooming networks predicted gut microbiome composition within
groups
Despite few detectable differences in diet, unidentified environmental differences between Mica’s

group and Viola’s group could explain the differences in gut microbiome composition we observed.

To test whether social contacts per se predicted gut microbiome composition, we turned to fine-

grained data on within-group grooming interactions. Grooming is by far the most common form of

physical contact in baboons. Importantly, the strength of grooming relationships between pairs of

individuals in the same social group varies considerably, despite the fact that all members of a social

group travel together and use the same resource base.

To test whether physical contact predicted gut microbiome composition, we constructed

grooming networks for each social group, using all grooming interactions observed in the year prior

to and during microbiome sampling (Figure 2A,B). We found that, in both groups, closer grooming

partners harbored more similar communities of gut bacteria (Mantel test between Bray–Curtis

microbiome dissimilarity matrices and social network matrices: Mica’s group r = −0.257, p = 3.0 × 10
−4; Viola’s group r = −0.173, p = 8.0 × 10−4; Figure 2C,D). This pattern was not driven by host genetic

effects: although female relatives have stronger grooming bonds, controlling for pairwise relatedness

still produced strong support for a relationship between grooming and taxonomic composition for

Viola’s group (partial Mantel test controlling for kinship: r = −0.148, p = 2.0 × 10−3), and a consistent

trend in Mica’s group (partial Mantel test controlling for kinship: r = −0.163, p = 0.060). Interestingly,

extending this analysis to the level of enzyme gene orthologs suggested that close grooming partners

also have functionally more similar gut microbiomes. Grooming networks predicted variation in within-

group enzyme gene ortholog abundance for Mica’s group (partial Mantel test controlling for kinship:

r = −0.22, p = 0.014), but not Viola’s group (partial Mantel test controlling for kinship: r = −0.051,

p = 0.166).

Despite the relative homogeneity of diet within social groups, our results could still be explained by

a diet-related mechanism if close grooming partners consumed more similar diets. Alternatively, close

social partners might experience similar environmental exposures if they used more similar

microenvironments in the group’s home range. We tested these possibilities directly, focusing on

adult females for whom diet composition and spatial proximity data were routinely collected (N = 11

females in Mica’s group and N = 20 females in Viola’s group). Grooming network proximity also

predicted microbiota composition in this restricted data set (Mantel tests: Mica’s group: r = −0.328,

p = 9.0 × 10−3; Viola’s group: r = −0.228, p = 2.6 × 10−3), and remained a significant predictor of

microbiota composition after accounting for dietary similarity (partial Mantel test controlling for

dietary similarity: Mica’s group p = 0.020; Viola’s group: p = 0.005) and spatial proximity (partial

Mantel test controlling for spatial proximity for Mica’s group p = 0.039; Viola’s group: p = 0.005).

Additionally, we found no evidence that close social partners consumed more similar diets (Mantel

tests: Mica’s group: Mantel r = −0.200, p = 0.080; Viola’s group: Mantel r = 0.0942, p = 0.876).

Socially structured bacteria tended to be anaerobic and
non-spore-forming
We next investigated which bacterial species were associated with the strong signature of social

structure in our data set. To identify these ‘socially structured’ species, we focused on the 327 most

prevalent species in our data set (i.e., those found in ≥50% of samples). Using a mixed effects model

controlling for age, sex, read depth, and host genetic relatedness, we identified 64 species (19.6%,

using a 10% false discovery rate) that were significantly differentially abundant in the two social

groups. We performed a complementary analysis, using a test of spatial autocorrelation, to

investigate whether close grooming partners exhibited similar bacterial abundances within social
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groups as well (due to the larger sample size, we performed these tests in Viola’s group; see ‘Materials

and methods’). Among the same set of 327 prevalent species, we found 51 species (15.6%, 10% false

discovery rate) for which proximity within the group’s grooming network significantly predicted

abundance (Supplementary file 8). Interestingly, 15 species were significantly socially structured both

between groups and within social networks—more species than expected by chance (hypergeometric

test, p = 0.020).

We next conducted an enrichment analysis to test whether the set of significantly socially

structured species contained some taxonomic groups more often than by chance. We found that

socially structured species were phylogenetically non-random at both between-group and within

Figure 2. Grooming-based social networks predict microbiome composition. Social networks based on grooming

interactions in the year prior to and including the month of microbiome sampling in (A) Mica’s and (B) Viola’s social

groups. Each circle represents an individual (with the individual’s ID listed within the circle). Lines represent

grooming interactions between individuals, and heavier lines reflect stronger grooming relationships. (C and D)

Violin plots depicting the relationships between pairwise grooming bond strength vs pairwise Bray–Curtis

dissimilarity in taxonomic composition in Mica’s and Viola’s groups, respectively. White dots represent median

values and grey rectangles represent the first and third quartiles of the data. Rotated kernel density plots

representing the underlying data are shown on each side. Stronger bonds predict more similar gut microbiotas in

both groups (Mica’s group: Mantel test r = −0.257, p = 3.0 × 10−4; Viola’s group: r = −0.173, p = 8.0 × 10−4). Parallel

results based on de novo assembly are shown in Figure 2—figure supplement 1.

DOI: 10.7554/eLife.05224.009

The following figure supplement is available for figure 2:

Figure supplement 1. Evidence for social structuring of the gut microbiome based on de novo assembly.

DOI: 10.7554/eLife.05224.010
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social network levels of analysis (Figure 3A,B). Moreover, at both levels of analysis, similar taxonomic

groups were significantly enriched for socially structured species (red asterisks on Figure 3), including

the phylum Actinobacteria; the families Bifidobacteriaceae, Coriobacteriaceae, and Veillonellaceae;

and the genus Bifidobacterium, a group of Gram-negative bacteria that has been linked to beneficial

health effects in humans (Servin, 2004; Gronlund et al., 2007; Turroni et al., 2008). The striking

similarities between the two levels of analysis suggest that common underlying mechanisms—

mediated by direct social contact rather than diet or general physical proximity—account for both

between-group differences and grooming network effects within groups.

Finally, we extended our enrichment analysis to test whether the set of socially structured species

was enriched for particular bacterial lifestyles. We reasoned that, if socially structured species depend

on direct transmission between baboons, as our data suggest, they should be less likely than other

species to persist outside of a host. Thus, we predicted that socially structured species would tend to

be anaerobic and unable to produce spores. To test these predictions, we turned to information

about bacterial lifestyles available in the Genomes OnLine Database (Pagani et al., 2012), using both

species-level (n = 138) and genus-level (n = 299) traits (see ‘Materials and methods’ for trait

assignment criteria). We found that socially structured species were consistently enriched (relative to

all species or genera tested) for an anaerobic, non-spore forming lifestyle (Figure 3C; hypergeometric

tests for socially structured species between groups, species level traits: p = 0.017; socially structured

species within group, species level traits: p = 0.067; socially structured species between groups,

genus level traits: p = 0.036; socially structured species within group, genus level traits: p = 0.040). For

Figure 3. Socially structured species are taxonomically and phenotypically nonrandom. Bacterial taxonomic groups

significantly enriched (10% FDR) for socially structured species (A) between social groups and (B) within the

grooming network for Viola’s group (Supplementary file 8). Vertical dashed lines depict a fold enrichment of 1,

representing the background level of taxon abundance in the data set. Red asterisks denote taxonomic groups

identified as significantly enriched at both levels of analysis. (C) Significant enrichment of anaerobic, non-spore-

forming bacterial taxa, both between and within groups, at both species and genus levels (socially structured

species between groups, species level traits: p = 0.017; socially structured species within group, species level traits:

p = 0.067; socially structured species between groups, genus level traits: p = 0.036; socially structured species within

group, genus level traits: p = 0.040). See Figure 3—figure supplements 1, 2 for a comparison of the enrichment of

p-values in our data set vs an empirical null distribution.

DOI: 10.7554/eLife.05224.011

The following figure supplements are available for figure 3:

Figure supplement 1. Enrichment of low p-values in the data vs an empirical null: between group analyses.

DOI: 10.7554/eLife.05224.012

Figure supplement 2. Enrichment of low p-values in the data vs an empirical null: within group network analysis.

DOI: 10.7554/eLife.05224.013
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instance, 17% of the species in this analysis differed significantly in abundance between social groups;

however 32% of anaerobic and non-spore forming species were significantly socially structured.

Notably, no species that were both aerobic and spore-forming were socially structured at the level of

social groups or social networks, except for one case in the genus-level analysis.

Discussion
Taken together, our results provide strong evidence that social interactions directly affect the

composition of the gut microbiome in wild baboons. To our knowledge, this study is the first to test

whether rates of interaction within cohabiting groups, as opposed to between groups or households,

explain variation in the gut microbiome. Specifically, we found that an individual’s contacts in

a grooming-based social network, as well as its membership in a given social group, were highly

predictive of its gut microbiome composition at both the species and genic levels. Unlike prior

studies, we were able to exclude kinship, shared diet, and shared environment as the basis for our

observations. Our results are thus unique among studies to date in the degree to which they implicate

direct, affiliative physical contact as a determinant of gut microbiome composition in natural

populations. Our data also provide the first evidence in vertebrates that social effects on the

microbiome extend to its functional composition. These findings lend important support to the

hypothesis that social interactions play a role in the health-related consequences of variation in gut

microbiome composition (e.g., Turnbaugh et al., 2009; Hooper et al., 2012; Bengmark, 2013; Iida

et al., 2013; Koeth et al., 2013; Viaud et al., 2013), with potentially important consequences for

the evolution of sociality (Lombardo, 2008; Archie and Theis, 2011; Ezenwa et al., 2012;

Montiel-Castro et al., 2013).

Thus, our results highlight the importance of socially mediated transmission in shaping gut

microbiomes. However, unlike some prior studies in mice and bumblebees (Garrett et al., 2010;

Koch and Schmid-Hempel, 2011), baboons are not coprophagic, raising a question about the

mechanisms that facilitate gut microbial transfer between social partners. One possibility is that the

duration and intimacy of grooming bouts, which include frequent hand-to-mouth contact, may be

important in exposing baboons to the gut bacteria of their grooming partners. Furthermore, some

grooming bouts, especially those directed from adult males to estrous females, concentrate heavily

on the ano-genital region, increasing the probability of fecal-oral transfer. Such close contact may be

especially important in the transmission of anaerobic, non-spore-forming species, as these bacteria

are not thought to persist for long periods of time outside of a host (Wilson, 2008). However, some

relatively hardy bacterial species may also be transmitted via social contact (VanderWaal et al.,

2013), and recent modeling efforts suggest that fecal-oral transmission can be highly efficient in

socially structured host populations, even when transmission is indirectly mediated through the soil

(Nunn et al., 2011).

Interestingly, our observations suggest that social partners not only share more similar sets of gut

microbes, but also similar abundances of individual microbial species. One explanation for this pattern

is that when bacteria from a host colonize a social partner, they arrive pre-adapted to occupy the

available gut microbial niches in their new host (Walter and Ley, 2011). Specifically, because

members of a single bacterial species can have markedly different gene contents, a given member of

a gut microbial species may perform different functions in different hosts (Walter and Ley, 2011;

Costello et al., 2012). However, if social partners transmit bacteria with similar capabilities to each

other, these bacteria may serve similar functions in both hosts and thus be found in similar

abundances. This hypothesis could be further tested by assessing if bacterial species isolated from

social partners tend to represent shared strains that perform similar biological functions.

In humans, affiliative physical contact (e.g., hugging, kissing, holding hands) is common and may

provide a similar route through which close social partners transmit gut bacteria. In addition, surfaces

in human homes may act as reservoirs for household-specific bacterial communities (Lax et al., 2014),

possibly facilitating social transmission through intermediate surfaces. Future work, in both humans

and animals, will be important to establishing the relative importance and generality of socially

mediated transmission. In particular, population genetic studies have the potential to directly map the

genetic structure of microbiome-associated species onto the social structure of host populations to

test whether close social partners tend to share genetically more similar bacterial populations than

non-partners (e.g., VanderWaal et al., 2013). Fine-grained studies of how gut microbial communities

change in social species, before and after perturbations to their social networks, will also be important
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for understanding the time scales on which social transmission of microbes act. Such efforts would also

contribute an important longitudinal perspective. Our power to identify associations between social

relationships and microbiome composition in this study was probably facilitated by our sampling

scheme, which eliminated the contribution of temporal or seasonal effects. More comprehensive long-

term studies will be valuable for placing these effects in context, alongside concomitant changes in

season, diet, and resource use.

In humans, variation in the taxonomic and genic composition of the microbiome is increasingly

linked to health issues, such as obesity and autoimmune disorders (e.g., Turnbaugh et al., 2009;

Hooper et al., 2012; Bengmark, 2013; Koeth et al., 2013). Health and survival in social species

(including humans and baboons) are also strongly associated with social relationships (Berkman and

Syme, 1979; House et al., 1988; e.g., Sapolsky, 2004; Silk et al., 2009; Holt-Lunstad et al., 2010;

Silk et al., 2010; Archie et al., 2014). However, few studies have connected these two observations.

By highlighting the strong relationship between microbiome composition and social networks, our

findings indicate the importance of further research in this area. One of the most important

unanswered questions is whether social network-mediated microbiome sharing produces net fitness

benefits or costs for hosts. Previous research on fecal-oral or social network-mediated transmission

has focused almost exclusively on pathogens or parasites. Microbiome studies have the potential to

broaden this perspective to include species with beneficial effects. Indeed, while we found several

socially structured taxa that have been associated with pathogenic effects (e.g., Fusobacterium spp,

Campylobacter ureolyticus), we found several other bacteria thought to be beneficial to hosts. For

example, members of the phylum Actinobacteria, especially the genus Bifidobacterium, are

commonly thought to have probiotic effects in humans due to their role in complex carbohydrate

digestion, pathogen inhibition, and vitamin production (Servin, 2004; Gronlund et al., 2007; Turroni

et al., 2008). Understanding the balance between social transmission of pathogenic vs commensal or

beneficial bacteria thus promises to provide valuable new insight into the link between disease risk

and the evolution of sociality.

Materials and methods

Study subjects, sample collection, DNA extraction, and metagenomic
data generation
Study subjects were 48 wild, adult baboons living in the Amboseli ecosystem, a semi-arid savannah in

southern Kenya (Supplementary file 1). The baboons were studied as part of the Amboseli Baboon

Research Project (ABRP), which has been collecting continuous, individual-based data on all the

members of several baboon social groups since 1971 (Alberts and Altmann, 2012). The specific

subjects for this project represented near complete sampling (92%) of all the adult members of two

social groups, called ‘Mica’s group’ and ‘Viola’s group’. The baboons are individually recognized by

experienced observers, who visit each group several times per week, year round, for 5-hr monitoring

visits (Alberts and Altmann, 2012).

Distal gut microbiome composition was characterized using fecal samples collected opportunis-

tically from known individuals. All fecal samples were collected during a single 1-month span in the dry

season (7 July 2012 to 8 Aug 2012: Supplementary file 1). Samples were collected within a few

minutes of defecation, thoroughly mixed, and then preserved in 95% ethanol (2:5 feces to ethanol).

DNA was extracted from each sample using MO BIO’s PowerSoil DNA Isolation kit, according to the

manufacturer’s instructions (MO BIO Laboratories, Inc., Carlsbad, CA). For each individual, 200 ng of

extracted DNA were prepared for metagenomic sequencing on an Illumina HiSeq 2500 using the

Kapa Biosystems Library Preparation Kits (Kapa Biosystems, Wilmington, MA). Specifically, DNA

samples were sheared to an average size of 400 base pairs, ligated to barcoded adapters, and

subjected to 100 base pair paired end sequencing at the UCLA Neuroscience Genomics Core. In total,

we generated 1.4 billion raw, paired-end Illumina sequences across all samples (mean ± SD = 14.4 ±

13.7 million read pairs per sample). All raw reads are deposited in the National Center for

Biotechnology Information (NCBI) Short Read Archive (BioProject PRJNA271618).

Assessment of microbiome taxonomic composition using MetaPhlAn 2.0
Species-level taxonomic abundances were inferred for all samples using MetaPhlAn 2.0 (Segata et al.,

2012). MetaPhlAn 2.0 estimates the relative abundance of bacterial species by mapping reads against
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a set of clade-specific marker sequences, which unequivocally identify microbial clades at the species

level or higher taxonomic levels. Based on 12,926 complete bacterial genomes, MetaPhlAn 2.0 is able

to provide clade-specific markers for a total of 3848 bacterial species, 925 of which were detected in

our data set (Supplementary files 2, 3). Specifically, we mapped our sequence reads against the

clade-specific markers using the ‘very-sensitive-local’ alignment mode implemented in Bowtie 2

(Langmead et al., 2009). This mode produces alignments that can be trimmed at one or both

extremes in order to optimize the alignment score. Because spurious or poor-quality reads are unlikely

to match any of the pre-defined marker sequences, no preprocessing of the metagenomic DNA

sequences was performed, as recommended by the authors. However, we tested the robustness of

these estimates by re-running MetaPhlAn 2.0 on a subset of our data after trimming the reads to

eliminate adapter sequences and bases with a quality score <20. Correlations between the bacterial

abundance estimates obtained using unprocessed data and those obtained using the trimmed data

were always above 0.97, confirming that MetaPhlAn 2.0 is indeed highly robust to potential sequence

artifacts.

Assessment of enzyme gene family composition
To investigate variation in the genic composition of the gut microbiome, we combined information

from the Kyoto Encyclopedia of Genes and Genomes database (KEGG: Kanehisa and Goto, 2000;

Kanehisa et al., 2014) with the HMP Unified Metabolic Analysis Network (HUMAnN) v0.99 pipeline

(Abubucker et al., 2012). We first filtered the forward reads for quality using USEARCH v7.0 (Edgar,

2010). Specifically, for each sample, we (i) trimmed reads to a length of 99 bases, (ii) excluded reads

shorter than 99 bases, and (iii) excluded reads with expected error (a measure of read quality in

USEARCH based on base call quality and read length) > 0.5.

An average of 87.9% of all reads passed quality filtering (Figure 1—figure supplement 4).

Remaining reads were translated in all three possible reading frames and aligned against a reduced

KEGG database (last free version, June 2011) using the ublast function of USEARCH v7.0 and default

parameters. The reduced KEGG database was generated by removing entries for which no KEGG

orthology (KO) assignments existed and subsequently clustering each KO individually (uclust v1.5.579,

using 85% sequence identity as the clustering cutoff) (Edgar, 2010; Kanehisa and Goto, 2000;

Kanehisa et al., 2014). This database was converted to a USEARCH-compatible database file prior to

running ublast. An average of 23.0% of the input reads across all samples were assigned an identity

from the KEGG database (Figure 1—figure supplement 4). Finally, the ublast output was used as

input for HUMAnN. HUMAnN was configured to generate KO abundances from BLAST hits of

enzymes as well as coverage and abundances for KEGG pathways and modules.

Social group membership and microbiome composition
To investigate the correlation between social group membership and the composition of baboon gut

microbiomes, we constructed separate summaries of the complete taxonomic composition data set

from MetaPhlAn 2.0 and the complete enzyme gene ortholog abundance data set from HUMAnN.

Specifically, for each data set, we used the vegdist function in the R package vegan (Oksanen et al.,

2013) to calculate a 48 × 48 Bray–Curtis dissimilarity matrix, which describes the global dissimilarity in

gut microbial composition between each pair of individuals in the data set. To understand sources of

variance in these matrices, we performed PERMANOVA analyses (adonis function in vegan) with

10,000 permutations. In addition to social group, predictor variables in this analysis were age, sex, and

total read depth. Sex was known from direct observation of the study subjects. Ages were known to

within a few days’ error for 39 of the 48 individuals in the data set. The remaining 9 individuals

immigrated into the population after birth, and so their ages were estimated using well-defined

metrics and comparison to known-age animals (Alberts and Altmann, 1995). Of these 9 individuals, 6

animals had birth dates estimated to be accurate within 1 year, and 3 animals had birth dates

estimated to be accurate within 2 years. All study subjects were adults (i.e., all females had attained

menarche, and all males had attained adult dominance rank; Onyango et al., 2013).

To assess the possible confounding effects of kinship, we constructed a matrix of pairwise genetic

relatedness values from the extensive pedigree data available for the Amboseli population (e.g.,

Buchan et al., 2003; Alberts et al., 2006; current pedigree includes 1409 individuals, with 1298

known maternal links and 526 known paternal links) using the R package pedantics (Morrissey and
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Wilson, 2010). We then used partial Mantel tests to assess the correlation between a matrix

describing group co-residency (cells took a value of 1 if two individuals resided in different groups and

a value of 0 if they were co-resident) and the Bray–Curtis dissimilarity matrix for taxonomic

composition, controlling for the pairwise genetic relatedness matrix.

Differences in diet between social groups
To assess differences in diet between the two social groups, we used direct observations of the food

consumed by adult female baboons in each group during the month in which samples were collected.

Diet composition data were collected in the context of random-order focal animal sampling (Altmann,

1974). Specifically, ABRP observers spent 4 hr of each group visit rotating through the group,

conducting focal animal samples on adult females in the order dictated by a randomized list. Each

focal animal sample was 10 min long, during which activity (feeding, walking, resting etc) was

recorded during point samples collected at 1-min intervals. When feeding was observed (353 point

samples in Mica’s group and 731 point samples in Viola’s group), the observers recorded the type of

food consumed. Food types were divided into 7 categories, including: (1) corms of all grass species,

(2) seed heads of all grass species, (3) pods from A. tortilis and A. xanthophloea (4) fruits, including

those from Azima tetracantha, Salvadora persica, Solanum dubium, Trianthema ceratosepala, and

Tribulus terrestris, (5) leaves from Lyceum sp. and all grass species, (6) gum from A. xanthophloea, and

(7) unknown/unidentified diet items (Supplementary file 7).

To calculate the contribution (including confidence intervals) of each of the seven major food

categories to each group’s diet, we conducted 1000 random subsamples of one foraging point sample

per focal animal sample. We took this approach to avoid autocorrelation between point samples

collected during the same 10-min focal sample. To test for differences in diet between groups, we

repeated the same analysis after randomly permuting group membership across the females in our

data set. We calculated the proportion of cases in which between-group differences in the proportion

of a food consumed exceeded between-group differences in the 1000 permuted data sets. This

proportion is equivalent to the p-value for the null hypothesis that the two groups did not differ in diet.

Because we detected a nominally significant difference (p = 0.05) in the amount of fruit consumed

by the members of Mica’s group (7.9%, 95% CI: 0.0–8.3%) and the members of Viola’s group (2.2%,

95% CI: 1.0–7.3%) during the sampling period, we also compared our results to a published data set

of seasonal differences in gut microbiome composition in humans (Davenport et al., 2014). These

differences are believed to be the result of differences in consumption of fresh fruits and vegetables.

Only three genera were detected as both significantly differentially abundant in the diet-related

human data set (FDR = 10%) and significantly enriched for differential abundance between social

groups in our data set, at a conservative (for comparative purposes) threshold of p ≤ 0.05.

Bifidobacterium was more abundant in humans when they consumed less fresh fruit; Prevotella and

Treponema were more abundant when they consumed more fresh fruit. In our data set, however,

Bifidobacterium levels were more abundant in Mica’s group, which consumed more fruit, and

Prevotella and Treponema species were more abundant in Viola’s group, which consumed less fruit,

suggesting that the patterns we observed are due to other sources of variance.

Social interactions and microbiome composition within groups
To test whether grooming-based social networks predicted gut microbiome similarity, we constructed

grooming networks based on ad lib observations of grooming interactions collected in the year prior

to and including the period of microbiome sampling (8 August 2011 to 8 August 2012: 1648 total

interactions, with 667 in Mica’s group and 981 in Viola’s group). Ad lib grooming interactions were

collected throughout the monitoring visit while observers were carrying out focal animal sampling. Ad

lib grooming data were used to calculate a count of observed grooming interactions between all adult

dyads present in each social group (range = 0 to 41 interactions per dyad). These data were used to

construct a matrix of grooming relationship strength by scoring the strongest dyadic grooming

relationship in each group as a 1 and weighting all other dyadic relationships relative to this strongest

bond. We then used Mantel tests to investigate the strength of the correlation between group-

specific grooming networks and group-specific Bray–Curtis dissimilarity matrices, constructed as

described above. We used partial Mantel tests to assess whether grooming network-microbiome

dissimilarity matrix correlations were driven by kinship (represented using pedigree-based pairwise

relatedness estimates).
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To investigate alternative explanations for social network effects on the microbiome, we collated

data on diet and spatial proximity for members of each social group, focusing on adult females only

(comparable data were not available for adult males). Parallel to the time span for social network

construction, we compiled data for the year prior to and including the month of microbiome sampling.

For diet, we extracted all foraging-related point samples from the females in our microbiome data set

(1380 points in Mica’s group; 1989 points in Viola’s group). We subsampled each data set so that only

one point sample was represented per focal sample, which avoids autocorrelation between point

samples collected during the same focal. We then constructed a table of the proportion of foods

consumed per female, for each group separately, and used this table to calculate group-specific, diet-

based Bray–Curtis dissimilarity matrices. For spatial proximity, we calculated the percent of time all

adult female dyads spent within 5 m of each other during the same time period. Specifically, during

each focal animal sample, the nearest adult female neighbor within 5 m is recorded at each 1-min

point sample (893 points in Mica’s group; 1637 points in Viola’s group; range = 0–64 points per dyad).

The proximity score between each pair of females (within groups) was calculated as the total number

of point samples in which they were each other’s nearest neighbors divided by the total number of

point samples collected for each member of the dyad.

Identification of socially structured taxa
To identify differentially abundant bacterial taxa by social group membership, we used the linear

mixed model approach implemented in the program GEMMA (Zhou and Stephens, 2012), which

allowed us to account for potential kinship effects in our data set. This approach assumes that the

response variable (taxon abundance) is continuously distributed. To meet this assumption, we used

methods established for analyzing high-throughput functional genomic data sets (Rapaport et al.,

2013). Specifically, we first quantile normalized abundance values across individuals, focusing only on

the 327 most prevalent taxa (i.e., those found in at least 50% of hosts based on our MetaPhlAn

2.0 analysis, regardless of abundance), and then transformed the distribution of values for each species

to a standard normal. We then fit the following linear mixed model to the data for each species:

y = μ+ xβx + aβa + sβs + rβr + u+ ε;

u∼MVN
�

0; σ2uK
�

;

ϵ∼MVN
�

0; σ2eI
�

:

Here, y is the n by 1 vector of normalized taxon abundances for the n individuals in the sample; μ is

the intercept; x is the n by 1 vector denoting social group membership; and βx is the effect size of

social group membership. For the other covariates, a is the n by 1 vector denoting age and

βa describes its effects on taxon abundance; s is the n by 1 vector denoting sex and βs its effect size;

and r is the n by 1 vector denoting read depth and βr its effect size. The n by 1 vector of u is a random

effects term to control for relatedness, and the n by n matrix K provides pedigree-based estimates of

relatedness. Residual errors are represented by ε, an n by 1 vector, and MVN denotes the multivariate

normal distribution. We interpreted significantly non-zero βx values as support for differences in taxon

abundance between social groups, using a false discovery rate threshold of 10% (Storey and

Tibshirani, 2003) after checking that an empirically derived null distribution of p-values for this

analysis was uniform (Figure 3—figure supplement 1).

To identify socially structured bacterial taxa within baboon social groups, we utilized a test of

spatial autocorrelation, Moran’s I, as implemented in the function Moran.I in the R package ape

(Paradis et al., 2004). This analysis tests whether individuals with closer social bonds (as measured by

the pairwise matrix of grooming strengths) tend to have more similar values for taxon abundance than

those with weak or absent social bonds. Here, we again investigated the 327 most prevalent species

from the MetaPhlAn 2.0 analysis. For this analysis, our power was constrained by the number of

individuals in the social group. Thus, while we identified a large number of socially structured species

within Viola’s group (n = 51 of 327 species tested, at a false discovery rate of 10%), we did not observe

strong evidence for socially structured species within Mica’s group. Further investigation suggests this

result is a consequence of sample size, as subsampling Viola’s group (n = 29 individuals) to the size of

Mica’s group (n = 19 individuals) also resulted in little power to detect socially structured species.

More than half of the time (58% of 100 random subsamples), fewer than 5 such cases were detected in
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Viola’s group after subsampling, and more than a third of the time (35%) no cases could be detected

with the smaller sample size. Hence, we focused on results from Viola’s group. We again used a 10%

FDR threshold to identify significant taxa in this analysis, after ensuring that the empirical null

distribution was uniform (Figure 3—figure supplement 2).

For both between-group and within-group analyses, we investigated enrichment of socially

structured species in taxonomic units above the level of species (i.e., phylum, class, order, family, and

genus) using hypergeometric tests. We required that taxonomic units include at least four species in

our analysis to test for significant enrichment, and again employed an FDR threshold of 10%.

Bacterial life style analysis
Descriptive data on bacteria were retrieved from the Genomes OnLine Database (GOLD; Pagani

et al., 2012). This information included records for 34,533 unique entries and was downloaded from

the GOLD website using a custom script on 02 June 2014 (available on GitHub at https://github.com/

jklynch/scrape). Each record included fields for oxygen requirements and sporulation, as well as

taxonomic classifications from the kingdom to species levels. We retained only completely sequenced

genomes, and filtered this set to the entry, for any given species, associated with the most information

about bacterial lifestyle and phenotype (n = 3818 unique species in 1280 unique genera). To assign

‘genus-level’ traits, we kept only genera in which all species in our filtered database were associated

with the same trait value, if assigned (e.g., we assigned an anaerobic lifestyle to a genus only when all

members of the genus were consistently anaerobic).

To investigate properties of significantly socially structured species, we merged the set of 327

prevalent species with the set of species with known lifestyle information. 138 species were

represented in both sets; the comparable analysis at the genus level yielded n = 299 genera in both

sets. We then applied hypergeometric tests to these data sets to ask whether socially structured

species or genera, either between or within groups, were enriched for anaerobic, non-spore forming

life-styles. Our results were broadly robust to whether anaerobes are distinguished in contrast to

aerobes or in contrast to both aerobes and facultatively oxygen tolerant species (socially structured

species between groups, species level traits: p = 0.025; socially structured species within group,

species level traits: p = 0.100; socially structured species between groups, genus level traits:

p = 0.056; socially structured species within group, genus level traits: p = 0.050).

Alternative assessment of microbiome taxonomic composition using de
novo assembled contigs
As an alternative to taxonomic profiling using MetaPhlAn 2.0, we also performed de novo contig

assembly using the complete set of 1.4 billion raw reads. This approach allowed us to evaluate

whether our results were robust to our methods for estimating species abundance. Reads were

assembled de novo using Ray Meta, a short read de Bruijn assembler specifically devised for

metagenome data, following the authors’ recommendations (Boisvert et al., 2012). Bacterial

proportions for each sample were then estimated using Ray Communities, utilizing all bacterial

genomes available in GenBank and the Greengenes taxonomy as a reference (DeSantis et al., 2006).

Summary statistics for alpha diversity and bacterial abundances estimated for each sample from the

de novo assemblies can be found in Supplementary files 3, 4.

Across all 48 samples, we identified 1465 taxa that could be identified to the species level. Similar

to our results using MetaPhlAn 2.0, we identified substantial representation of phyla typically found in

gut microbiomes, including Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria

(Figure 1—figure supplement 1). The de novo assembly, however, identified a very large

contribution of the phylum Spirochaetes in Viola’s group (mean = 23.7%), which was primarily driven

by the abundance of reads mapping to the bacteria Treponema succinifaciens. Notably, we also

identified T. succinifaciens as significantly more abundant in Viola’s group members than in Mica’s

group members using the MetaPhlAn approach (p = 2.46 × 10−10). Thus, while our two approaches

differed in the magnitude of this effect, the overall pattern was highly consistent.

The relationship between social group membership and gut microbiome composition using the de

novo assembly approach broadly recapitulated the results using MetaPhlAn-based estimates

(Figure 2—figure supplement 1). Specifically, social group membership explained 32.8% of global

variation in gut microbial taxonomic composition, as summarized by a pairwise Bray–Curtis dissimilarity

matrix (PERMANOVA: p < 1.0 × 10−4). Kinship did not explain this relationship (partial Mantel test relating
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group co-residency to taxonomic composition, controlling for pedigree-based kinship: r = 0.434, p < 1.0 ×

10−5). Additionally, the de novo assembly approach again revealed that, within groups, closer grooming

partners harbored more similar gut microbes (Mica’s group: Mantel test r = −0.197, p = 0.016; Viola’s

group: r = −0.147, p = 1.9 × 10−3). However, while this relationship survives correcting for kinship in Viola’s

group (r = −0.112, p = 0.017), it is not statistically detectable after controlling for kinship in Mica’s group

(r = −0.091, p = 0.20). This pattern recapitulates our observations in the MetaPhlAn analysis, in which

within group structuring of the microbiome tended to be weaker in Mica’s group as well.

We next restricted the within-group grooming network analysis to adult females only, in order to

test for alternative explanations for the grooming-microbiome composition effect. Grooming

interactions remained a significant predictor of microbiome composition after accounting for both

within-group patterns of dietary similarity (partial Mantel controlling for dietary similarity: Mica’s

group p = 0.038; Viola’s: p = 0.006) and spatial proximity in Viola’s group (partial Mantel controlling

for proximity: Viola’s: p = 0.009). In Mica’s group, controlling for proximity produced a consistent

trend with our main analyses, but eliminated the strong statistical signal of grooming on microbiome

composition (Mica’s group p = 0.124). We surmise that patterns of proximity, kinship, and grooming

may be too closely correlated in Mica’s group to disentangle in the de novo assembly-based data set,

which may produce noisier estimates of taxonomic abundance.
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