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Social networks predict the life and death of honey
bees
Benjamin Wild 1,8✉, David M. Dormagen 1,8, Adrian Zachariae2,8, Michael L. Smith 3,4,5,

Kirsten S. Traynor 1,6, Dirk Brockmann2,7, Iain D. Couzin 3,4,5 & Tim Landgraf 1✉

In complex societies, individuals’ roles are reflected by interactions with other conspecifics.

Honey bees (Apis mellifera) generally change tasks as they age, but developmental trajec-

tories of individuals can vary drastically due to physiological and environmental factors. We

introduce a succinct descriptor of an individual’s social network that can be obtained without

interfering with the colony. This ‘network age’ accurately predicts task allocation, survival,

activity patterns, and future behavior. We analyze developmental trajectories of multiple

cohorts of individuals in a natural setting and identify distinct developmental pathways and

critical life changes. Our findings suggest a high stability in task allocation on an individual

level. We show that our method is versatile and can extract different properties from social

networks, opening up a broad range of future studies. Our approach highlights the rela-

tionship of social interactions and individual traits, and provides a scalable technique for

understanding how complex social systems function.
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I
n complex systems, intricate global behaviors emerge from the
dynamics of interacting parts. Within animal groups, studying
interactions helps to elucidate the individuals’ functions1–4.

Descriptors of individuals derived from social interaction networks
have been used to investigate, for example, pair bonding5, inter-
group brokering6, offspring survival7, cultural spread8,9, policing
behavior10, leadership11–13, organization of food retrieval14, the
ability to affect behavioral change15, and behavior during famine
events16. As our ability to collect detailed social network data
increases, so too does our need to develop tools for understanding
the significance and functional consequences of these networks17.

Social insects are an ideal model system to study the rela-
tionship between social interactions and individual roles because
task allocation has long been hypothesized to arise from inter-
actions18–20. The relationship of individual roles within the col-
ony and the social network; however, is not well understood.
Individuals, for example, can modify their behavior based on
nestmate interaction21–24, and interactions change depending on
where and with whom individuals interact14,22,25,26. These studies
typically target specific types of interactions (e.g., food exchange),
specific roles within task allocation (e.g., foraging), or specific
stimuli within the nest (e.g., brood), but an automatic observation
system could capture behaviors and interactions within a colony
more comprehensively and without human bias. Measuring the
multitude of social interactions and their effect on behavior, and the
social networks over the lifetime of individuals without interfering
with the system (e.g., by removing individuals) is an open problem.

In honey bees, task allocation is characterized by temporal
polyethism27–29, where workers gradually change tasks as they
age: young bees care for brood in the center of the nest, while old
bees forage outside30,31. Previous works often used few same-aged
cohorts resulting in an unnatural age distribution27,28,30,32. The
developmental trajectory of individuals can, however, vary dras-
tically due to internal factors (i.e., genetics, ovary size, sucrose
responsiveness33–39), nest state (i.e., amount of brood, brood age,
food stores40–42), and the external environment (i.e., season,
resource availability, forage success43–46). These myriad influ-
ences on maturation rate are difficult to disentangle, but all drive
the individual’s behavior and task allocation. Due to the spatial
organization of honey bee colonies, task changes also result in a
change of location, with further implications on the cues that
workers encounter31. How and when bees change their allocated
tasks in a natural setting has typically been assessed through
destructive sampling (e.g., for measuring hormone titers of
selected individuals), but understanding how all these factors
combine would ideally be done in an undisturbed system.

With the advent of automated tracking, there has been renewed
interest in how interactions change within colonies47,48, how
spatial position predicts task allocation49, and how spreading
dynamics occur in social networks32. Despite extensive work on
the social physiology of honey bee colonies50, few works have
studied interaction networks from a colony-wide or temporal
perspective32,51. While there is considerable variance in task
allocation, even among bees of the same age, it is unknown to
what extent this variation is reflected in the social networks. In
large social groups, like honey bee colonies, typically only a subset
of individuals are tracked, or tracking is limited to short time
intervals28,47,52,53.

Tracking an entire colony over a long time would allow one to
investigate the stability of task allocation. Prior research has
shown that during each life stage, an individual spends most of its
time in a specific nest region31,54, interacting with nestmates, but
with whom they interact may depend on more than location
alone (e.g., previous interactions, or the genetic diversity within
the colony55,56). Social interactions permit an exchange of
information and can have long-term effects on an individual’s

behavior57. While honey bees are well known for their elaborate
social signals (e.g., waggle dance, shaking signal, stop signal58–60),
they also exchange information through food exchange, anten-
nation, or simple colocalization61,62. However, identifying an
individual bee’s role in a colony based on its characteristic pat-
terns of interaction remains challenging, particularly with large
numbers of individuals and multiple modes of interaction.

In this work, we investigate the relationship between an indi-
vidual’s social network and its lifetime role within a complex
society. We developed a tracking method for unbiased long-term
assessment of a multitude of interaction types among thousands
of individuals of an entire honey bee colony with a natural age
distribution. We introduce a low-dimensional descriptor, network
age, that allows us to compress the social network of all indivi-
duals in the colony into a single number per bee per day. Network
age, and therefore the social network of a bee, captures the
individual’s behavior and social role in the colony and allows us
to predict task allocation, mortality, and behavioral patterns such
as velocity and circadian rhythms. Following the developmental
trajectories of individual honey bees and cohorts that emerged on
the same day reveals clusters of different developmental paths,
and critical transition points. In contrast to these distinct clusters
of long-term trajectories, we find that transitions in task alloca-
tion are fluid on an individual level. We show that the task
allocation of individuals in a natural setting is stable over long
periods, allowing us to predict a worker’s task better than
biological age up to 1 week into the future.

Results
What is network age? To obtain the social network structure
over the lifetime of thousands of bees, we require methods that
will track the tasks and social interactions of many individuals
over consecutive days. We video recorded a full colony of indi-
vidually marked honey bees (Apis mellifera) at 3 Hz for 25 days
(from 1 August 2016 to 25 August 2016) and obtained continuous
trajectories for all individuals in the hive63,64. We used a two-
sided single-frame observation hive with a tagged queen and
started introducing individually tagged bees into the colony
~1 month before the beginning of the focal period (see “Methods:
‘Recording setup, data extraction, and preprocessing’” for details).
To ensure that no unmarked individuals emerged inside the hive,
we replaced the nest substrate regularly (approx. every 21 days).
In total, we recorded 1920 individuals aged from 0 days to
8 weeks.

A worker’s task and the proportion of time she spends in
specific nest areas are tightly coupled in honey bees31. We
annotated nest areas associated with specific tasks (e.g., brood area
or honey storage) for each day separately (see “Methods: ‘Nest
area mapping and task descriptor’”), as they can vary in size and
location over time65. We then use the proportion of time an
individual spends in these areas throughout a day as an estimate of
her current tasks.

We calculated daily aggregated interaction networks from
contact frequency, food exchange (trophallaxis), distance, and
changes in movement speed after contacts (see “Methods: ‘Social
networks’”). These networks contain the pairwise interactions
between individuals over time. For each day and interaction type,
we extract a compact representation that groups bees together with
similar interaction patterns, using spectral decomposition66,67. We
then combine each bees’ daily representations of all interaction
types and map them to a scalar value (network age) that best
reflects the fraction of time spent in the task-associated areas using
CCA (canonical-correlation analysis; refs. 68,69). Note that network
age is solely a representation of the social network and not of
location; the fraction of time spent in the task-associated areas is
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only used to select which information to extract from the social
networks (e.g., by assigning higher importance to proximity
contacts, see Supplementary Note 1.1). Network age can still
represent an individual’s location, but only if this information is
inherently present in the social networks. Network age thus
compresses millions of data points per individual and day (1919
potential interaction partners, each detected 127,501 ± 50,340 times
on average per day, with four different interaction types) into a
single number that represents each bee’s daily position in the
multimodal temporal interaction network. Since CCA is applied
over the 25 days of the focal period, network age can only represent
interaction patterns that are consistent over time. See Fig. 1 for an
overview and “Methods: ‘Network age: from networks to spectral
embeddings to CCA’” for a detailed description of the methods.

Network age is a unitless descriptor. We scale it such that 90%
of the values are between 0 and 40 to make it intuitively
comparable to a typical lifespan of a worker bee during summer,
and because biological age is commonly associated with task
allocation in honey bees. This scaling can be omitted for systems
where behavior is not coupled with biological age.

Network age correctly identifies task allocation. Because of the
inherent coupling of tasks and locations in a honey bee colony,
we expect a meaningful measure of social interaction patterns to
be correlated with the individual’s spatial preferences. We quantify
to what extent network age captures this correlation by using
multinomial regression to predict the fraction of time each bee
spends in the annotated nest areas (see “Methods: ‘Task prediction
models and bootstrapping’”). Note that while we also used these
spatial preferences to select which information to extract from the
interaction networks, it is not certain whether the spatial infor-
mation is contained in the social network in the first place, and
how well a single dimension can capture it. Furthermore, the
social network structure could vary over many days with changing
environmental influences, preventing the extraction of a stable
descriptor. The regression analysis allows us to compare different
variants of network age to biological age as a reference.

To evaluate the regression fit, we use McFadden’s pseudo R2

scores R2
McF

70. Network age is twice as good as biological age at
predicting the individuals’ location preferences, and therefore
their tasks (network age: median R2

McF ¼ 0:682, 95% confidence
interval (CI) [0.678, 0.687]; biological age: median R2

McF ¼ 0:342,
95% CI [0.335, 0.349]; 95% CI of effect size [0.332, 0.348], N=
128; likelihood ratio χ2 test p≪ 0.001, N= 26403, Supplementary

Table 2 and see “Methods: ‘Statistical comparison of models’” for
details). Network age provides a better separability of time spent
in task-associated nest areas than biological age (Fig. 2a, example
cohort in Fig. 2c, Supplementary Note 1.2 for all cohorts).
Network age correlates with the location because of the inherent
coupling between tasks and nest areas. Still, it is not a direct
measure of location: bees with the same network age can exhibit
different spatial distributions and need not directly interact (see
Supplementary Note 2.1).

While we can improve the predictive power of network age by
extracting a multidimensional descriptor instead of a single
value (see “Methods: ‘Network age: from networks to spectral
embeddings to CCA’ and ‘Task prediction models and boot-
strapping’” for details), the improvements for additional dimen-
sions are marginal compared to the difference in predictiveness
between the first dimension of network age and biological age (see
Supplementary Table 2). This implies that a one-dimensional
descriptor captures most of the information from the social
networks that are relevant to the individuals’ location preferences
and therefore their tasks.

We experimentally demonstrated that network age robustly
captures an individual’s task by setting up sucrose feeders and
identifying workers that foraged at the feeders (known foragers,
N= 40, methods in “Methods: ‘Forager groups’ experiment’”).
We then compared the biological ages of these known nectar
foragers to their network ages. We made these two quantities
comparable by z-transforming them because they do not have the
same unit of measure. As expected, foragers exhibited a high
biological age and a high network age, whereas biological age
exhibited significantly larger variance than network age (Fig. 2b;
Levene’s test71, performed on z-transformed values: p≪ 0.001,
N= 200). Indeed, while we observed a forager as young as
12 days old, that individual had a network age of 25.5,
demonstrating that network age more accurately reflected her
task than her biological age (z-transformed values: biological age
−0.46; network age 0.61).

Tagging an entire honey bee colony is laborious. However, by
sampling subsets of bees, we find that network age is still a viable
metric, even when only a small proportion of individuals are
tagged and tracked. With only 1% of the bees tracked, network
age is still a good predictor of task (median R2

McF ¼ 0:516, 95% CI
[0.135, 0.705], N= 128) while increasing the number of tracked
individuals to 5% of the colony results in an R2

McF value
comparable to the fully tracked colony (5% of colony tracked:
median R2

McF ¼ 0:650, 95% CI [0.578, 0.705], N= 128; whole

Fig. 1 Network age, a one-dimensional descriptor of an individual’s role within the colony, based on an individual’s interaction pattern. Using the

BeesBook automated tracking system, we obtain lifetime tracking data for individuals (a). These tracks are used to construct multiple weighted social

interaction networks (b). We aggregate daily networks (c) to then extract embeddings that group bees together with similar interaction patterns, using

spectral decomposition (d). Finally, we use a linear transformation (e; CCA canonical-correlation analysis) that maximizes correlation with the fraction of

time spent in different nest areas (f) to compress them into a single number per day called “network age” (g).
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colony tracked: median R2
McF ¼ 0:682, 95% CI [0.678, 0.687],

N= 128; see Supplementary Note 2.2). Similarly, we find that an
approximation of network age can be calculated without
annotated nest areas: Network age can be extracted in an
unsupervised manner using principal component analysis (PCA)
on the spectral embeddings of the different interaction type
matrices (median R2

McF ¼ 0:646, 95% CI [0.641, 0.650], N= 128,
see “Methods: ‘Network age: unsupervised variant using PCA’”).

Developmental changes over the life of a bee. Network age
reveals differences in interaction patterns and task allocation
among same-aged bees (Fig. 3a). After around 6 days of biological
age, the network age distribution becomes bimodal (see “Meth-
ods: ‘Quantifying when bees first split into distinct network age
modes’”). Bees in the functionally old group (high network age)
spend the majority of their time on the dance floor, whereas
same-aged bees in the functionally young group (low network
age) are found predominantly in the honey storage area (Fig. 3a).
Transitions from high to low network age are a rare occurrence in
our colony (see Supplementary Note 2.3).

We attribute the split on the population level to distinct
patterns of individual development. Clustering the time series of
network ages over the lives of bees identifies distinct develop-
mental paths within same-aged cohorts. We set the number of
clusters to three as this is the minimum number of clusters that
separates an early and a late transition from low to high network
age in all tested cohorts (see “Methods: ‘Network age transition
clustering’” for further details). In the cohort that emerged on
1 August 2016, the first developmental cluster (blue, Fig. 3b)
rapidly transitions to a high network age (likely corresponding to
foraging behavior) after only 11 days. The second cluster (orange)
transitions at ~21 days of biological age, while bees in the third
cluster (green) remain at a lower network age throughout the
focal period. We see similar splits in developmental trajectories
for all cohorts, although the timing of these transitions varies (see
“Methods: ‘Network age transition clustering’” for additional
cohorts). Such divergence in task allocation has been previously
shown in bees; factors that accelerate a precocious transition to
foraging include hormone titers72, genotype35, and physiology,
especially the number of ovarioles73, and sucrose response
threshold74.

Fig. 2 Network age is an accurate descriptor of task allocation. a The proportion of time spent on task-associated locations in relation to biological age

and network age with each cross representing one individual on one day of her life. For a given value on the y-axis (network age) colors are more consistent

than for a given value on the x-axis (biological age). b Z-transformed age distributions for known foragers visiting a feeder (N= 40 observed individuals).

The variance in biological age is greater than the variance in network age (boxes: center dot; median; box limits; upper and lower quartiles; whiskers, 1.5×

interquartile range). Corresponding biological ages are also shown on the right y-axis (original biological age: 34.2 ± 7.9; original network age: 38.3 ± 4.6;

mean ± standard deviation). c Spatial distributions of an example cohort over time (bees emerged on 29 July 2016, 64 individuals over 25 days), grouped

by biological age (top row) versus network age (bottom row). Note how network age more clearly delineates groups of bees than biological age, with bees

transitioning from the brood nest (center of the comb), to the surrounding area, to the dance floor (lower left area). The shaded areas depict density

percentiles (brightest to darkest: 99%, 97.5%, 95%, 80%, 70%, 20%).
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The transition from low to high network age over multiple days
is characterized by a gradual shift in the spatial distribution (see
example in Fig. 3c), highlighting that an individual’s task changes
gradually. The network age of most bees is highly repeatable

(median R= 0.612 95% CI= [0.199, 0.982], see “Methods:
‘Repeatability’” for details), indicating task stability over multiple
days. Both findings (gradual change over a few days and high
repeatability) are consistent with the dynamics of the underlying

Fig. 3 Network age reveals distinct developmental paths. a Left: The median of network ages over biological ages for all individuals that lived more than

11 days split by a threshold on the age of 11 (T= 23.07, calculated using Otsu’s method84.The upper line contains all bees that fall above this threshold

(N= 832), the lower contains all bees below that threshold (N= 563). The shaded areas depict 20%, 40%, 60% data intervals. We observe a split in

network age corresponding to different tasks: The upper heatmap (network age 30–40, biological age 20–30, 577 bees, 857,283 data points) corresponds

to the dance floor, while the lower heatmap (network age 5–15, biological age 20–30, 381 bees, 742,622 data points) borders between the dance floor and

brood nest. Right: The mean fraction of time a bee with a given network age spends on our annotated regions throughout a day. b Lines depict the network

age of individual bees of a same-aged cohort with the colors indicating clusters of their network age over time. Boxes summarize bees belonging to each

cluster for a given day (center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range). c Heatmaps showing the spatial

distribution of bees in the developmental cluster 2 (orange) from 19 August 2016 to 24 August 2016. The smooth transition in network age (orange in line

plot, b) from one mode to another corresponds to a smooth transition in spatial location (heatmaps, c). The shaded areas depict density percentiles

(brightest to darkest: 99%, 97.5%, 95%, 80%, 70%, 20%).
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physiological processes, such as vitellogenin and juvenile
hormone, that influence task allocation and the transition to
foraging75.

Network age predicts an individual’s behavior and future role
in the colony. Network age predicts task allocation (i.e., in what
part of the nest individuals will be) up to 10 days into the future.
Knowing the network age of a bee today allows a better prediction
of the task performed by that individual next week than her
biological age informs about her current tasks (Fig. 4c, binomial
test, p≪ 0.001, N= 55390, 95% CI of effect size [0.055, 0.090],
N= 128, see “Methods: ‘Future predictability’” for details). We
confirm that this is only partially due to network age being
repeatable (see “Methods: ‘Future predictability’”). We do note,
however, that our ability to predict the future tasks of a young bee
is limited, especially before cohorts split into high and low net-
work age groups (Fig. 3a). This limitation hints at a critical
developmental transition point in their lives, an attractive area for
future study.

We explicitly optimized network age to be a good predictor of
task-associated locations. However, we find that network age

predicts other behaviors better than biological age, including an
individual’s impending death (network age: median R2= 0.165,
95% CI [0.158, 0.172], versus biological age: median R2= 0.064,
95% CI [0.059, 0.068]; 95% CI of effect size [0.037, 0.039], N=
128, likelihood ratio χ2 test p≪ 0.001, N= 26,403). Biologically
young but network-old bees have a significantly higher
probability of dying within a week (80.6% N= 139) than do
biologically old but network-young bees (42.1% N= 390; χ2test of
independence p≪ 0.001 N= 529; see Supplementary Note 3.1 for
details). This is likely because a biologically young bee with a high
network age, that is, a bee that starts to forage earlier in life and
faces more perils imposed by the outside world, is more likely to
die than a bee of the same age with a low network age. This
finding is consistent with previous work showing increased
mortality with precocious foraging76,77.

We measure movement patterns of individual bees such as
daily and nightly average speed, the circadian rhythm, and the
time of an individual’s peak activity. While these properties are
related to task allocation due to the diurnal nature of foraging,
they are not direct measures of an individual’s location. Network
age also captures these movement patterns better than biological

Fig. 4 Network age can be used to predict other properties, such as mortality and circadian rhythms. It also predicts an individual’s future task

allocation. a An individual’s mortality on the next day based on her age (x-axis show original and z-transformed biological age and z-transformed network

age). Bees with a low network age have lower mortality than biologically young bees; bees with a high network age have higher mortality than biologically

old bees (shaded areas: 95% bootstrap confidence intervals for the regression estimates). b Network age can be used to predict task allocation and future

behaviors. Network age predicts the task of an individual 7 days into the future better than biological age predicts the individual’s task the same day (blue

dotted line). Each box comprises N= 12 scores from models with N= 12 days of training data (center line, median; box limits, upper and lower quartiles;

whiskers, 1.5× interquartile range; points, outliers). c Selected properties mapped for network age over biological age with each cross representing one

individual on one day of her life. Note that for a given value on the y-axis (network age) colors are more consistent than for a given value on the x-axis

(biological age).
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age (likelihood ratio χ2 test p≪ 0.001, N= 26403, see Supple-
mentary Table 1b for 95% CI of effect sizes).

To investigate whether network age is a good predictor of
future task allocation and behavior only because it captures the
spatial information contained in the social network, we repeat the
analyses above using the time spent in task-associated locations as
independent variables. We find that network age, even though it
was extracted using this spatial information as a guide, is still a
better predictor of an individuals’ behavior (for all dependent
variables likelihood ratio χ2 test p≪ 0.001, N= 26403, see
Location (1D) in Supplementary Note 3.2 and Supplementary
Table 1d for 95% CI of effect sizes). This difference in predictive
power suggests that the multimodal interaction network contains
more information about an individual than spatial information
alone.

While we focus on predicting tasks from network age, we can
control the information we extract from the observed social
networks and derive variants of network age better suited for
other research questions. By replacing the “task-associated
location preferences” in the final step of our method with “days
until death,” we extracted a descriptor that captures social
interaction patterns related to mortality. This descriptor improves
the prediction of the individuals’ death dates by 31% compared to
network age (median increase in R2= 0.05; 95% CI [0.04, 0.06] N
= 128, see “Methods: ‘Targeted embedding using CCA’” and
Supplementary Table 1c), opening up novel social network
perspectives for studies such as the risk factors of disease
transmission. Similarly, we extracted descriptors optimized to
predict the movement patterns introduced in the last paragraph (for
all except “Time of peak activity” likelihood ratio χ2 test p≪ 0.001,
N= 26,403, see Supplementary Table 1c for 95% CI of effect sizes).
These targeted embeddings provide precise control over the type of
information we extract from the social networks and extend the
network age method to address other important research questions
in honey bees and other complex animal societies.

Discussion
Combining automated tracking, social networks, and spatial
mapping of the nest, we provide a low-dimensional representa-
tion of the multimodal interaction network of an entire honey bee
colony. While many internal and external factors drive an indi-
viduals’ behavior, network age represents an accurate way to
measure the resulting behavior of all individuals in a colony
noninvasively over extended periods.

We use annotated location labels to select which information to
extract from the social network, but stress that network age can
only contain information inherent in the social network. There-
fore, the predictive power of network age demonstrates that the
social interaction network by itself comprehensively captures an
individual’s behavior. We show that network age does not only
separate bees into task groups, such as foragers and nurses, but
also allows us to follow maturing individuals as they develop. A
recent work derived a social maturity index in colonies of the
social ant Camponotus fellah78, highlighting a strong separation
of nurses and foragers in the social network and high variability
in transition timing. Similarly, network age is a fluid measure and
the age at which individuals change between the task groups is
highly variable. However, we find distinct clusters of develop-
mental trajectories at the colony level, with some groups entering
critical developmental transitions earlier in life than others.
Further investigating the precise combination of internal and
external factors that drive those transitions is a promising
direction for future research.

These transition points are also reflected in changes in
nest location, because spatial preferences, task allocation, and

interactions are inherently coupled in honey bees. However, we
show that network age is more than just a representation of
location: Bees with the same network age do not necessarily share
a location in the nest, and the time spent in task-associated
locations is less predictive of an individual’s current and future
behavior than network age. In addition, we calculate a variant of
network age that is not guided by auxiliary spatial information,
but instead extracts the information with the highest variance
from the social networks (Network age PCA). The PCA variant is
still predictive of task allocation, suggesting that location is the
predominant signal in the social network. However, the higher
predictive power of the CCA network age variant and the targeted
embeddings indicates that there is more information in the social
network that our method can extract.

In this study, we extract network age from daily aggregated
interaction networks, and thereby disregard potentially relevant
intraday information. Furthermore, honey bees have a rich
repertoire of interaction behaviors, of which we only capture a
subset. The inclusion of intraday data or additional interaction
types could reveal further differences between individuals (e.g.,
the temporal aspects of intraday interaction networks can dis-
entangle the contribution of different modes of interactions51).
While we study one colony in this work, we observe thousands of
individuals and many overlapping cohorts. Our findings, in
particular the existence of distinct developmental trajectories, and
the fluidity and long-term stability in task allocation on an
individual level, are consistent in all cohorts in our study. While
some details, for example, the timing of developmental transi-
tions, might depend on environmental circumstances, we believe
that these results transfer to other colonies. There is no straight
forward extension of the method to extract a common embedding
of social networks that do not share individuals (e.g., over dif-
ferent experimental treatments or repetitions). Still, specific
hypotheses can be tested using network age as long as a treatment
group is compared to a control group within each trial. For
example, while the meaning of specific values of network age can
differ slightly between colonies, a group treated with pesticides
could show differences in development, as measured by network
age, relative to a control group from the same colony. Analyzing
how network age changes within a day over other datasets with
possibly other types of interactions, or how network age shifts in
response to disease pressure or experimental manipulation of age
demography would be potentially fruitful areas for future inves-
tigation, as previous work has shown that there is a relationship
between pathogens and interaction behaviors28,79–81.

Network age can be repurposed and extended for other
research questions: We show that

(1) variants of network age capture different aspects from the
social networks related to mortality, velocity, or circadian
rhythms, and

(2) with a subsample of only 5% of the bees in the colony, we
can extract a good representation of the social network.

This makes the method applicable to systems with far more
individuals or with much less required experimental effort for a
comparable number of individuals. Network age could be
calculated in real time, opening up a wide range of possibilities
for future research: For example, it would be possible to
selectively remove bees that have just begun a developmental
change to determine their influence on colony-wide task
allocation. Sequencing individual bees could determine how
known internal drivers of behavioral transition, like the double-
repressor co-regulation of vitellogenin and juvenile hormone33,
are reflected in the social network. Our perspective captures both
internal and external influences that impact social interactions
and is thus applicable to all complex systems with observable
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multimodal interaction networks. Network age can be adapted to
questions that explore social interaction patterns independent of
age and division of labor, making it broadly applicable to any
social system. As such, our method will permit future research to
analyze how complex social animal groups use and modify
interaction patterns to adapt and react to biotic and abiotic
pressures.

Methods
Recording setup, data extraction, and preprocessing. We set up our observation
hive on 24 June 2016, with a queen and ~2000 young bees (A. mellifera) sourced
from a local host colony. To obtain newly emerged bees, we incubated brood from
the host colony, and later from the observation colony in an incubator at 34 °C.
Freshly emerged bees were marked every weekday. All bees were removed from the
brood comb each day before marking, so the maximum age in each batch of bees
was 24 h. After removing the hair from the bees’ thoraxes with a wet toothpick, we
applied shellac onto the thorax and attached a curved, circular tag. The number of
bees marked per batch varied, but never exceeded 156. Marked bees were intro-
duced to the colony through a backdoor entrance. After the initial marking period
(27 days, starting 28 June 2016), the video recording was started on 24 July 2016
and stopped on 19 September 2016. Marking newborn bees continued approxi-
mately twice a week with the latest introduction on 23 August 2016. A total of 3166
individuals were marked. We recorded 1920 individuals from 30 cohorts during the
focal period. See Supplementary Fig. 9 for the number of bees that were alive on
each day. Bees had free access to the outside environment via a tube connected to
the observation hive. We use the BeesBook64 recording setup (scaffold, cameras,
lighting, storage, marking procedure); however, for the experiments described here,
we used custom-built IR flash circuit boards triggered by an Arduino controller,
synchronized with the high-res cameras82. Combs were imaged at 3 Hz, alternating
between sides of the observation hive, to avoid low contrast due to backlighting.

A total of 46 TB of video data were recorded and continuously moved to a
network storage unit at the North-German Supercomputing Alliance (HLRN).
After the recording season, the data were processed to detect and decode the bee
markers83 and track these detections through time63. The output data consists of
timestamps, planar positions, three-dimensional rotations, IDs, and confidence
scores for the decoded IDs.

Two cameras were used for each side of the nest with both viewports
overlapping partially. Six reference points were marked on each comb side such
that four points were visible in each of the cameras’ recordings, with the center two
points visible in both cameras. Reference points were identified and their image
coordinates were extracted manually. The coordinates were then used to calculate
the homography between the comb and the image plane. The homography was
then used to rectify the tracking data that translated image coordinates to a metric
reference frame, that is, the nest surface. See Supplementary Fig. 10 for a schematic
of the setup.

Resulting tracking data were post-processed before entering the analysis. We
discarded detections with low decoding confidence, that is, detections that the
machine vision pipeline could not reliably decode. Remaining implausible
detections (e.g., of IDs that had not been tagged yet) were removed in an additional
filter step. The distribution of the number of detections of all IDs is strongly
bimodal, the larger mode representing those bees that actually are in the
observation hive, and the smaller mode representing erroneous decodings of tags
that are not present on the given day. We use Otsu’s method84 to automatically
determine the threshold which best separates those two modes and filter out all
potentially incorrect IDs. The tracking data, therefore, contains gaps due to falsely
filtering out correct detections, but also due to occlusions, such as when bees
inspect cells or depart the nest on foraging trips.

Forager groups’ experiment. Between 28 July 2016 and 22 August 2016, foragers
were trained to a feeder (see Supplementary Fig. 11 for a photo of the feeder)
offering unscented sucrose solution by gradually moving it from the colony
(52.457032, 13.296635) to a sequence of locations “F1” to “F4” (see Supplementary
Table 3). For days over which the feeder was moved, high sugar concentration was
used and iteratively changed to control the number of new foragers. Once the final
locations were reached, the feeder offered the highest concentration for 1–2 h
per day. After a minimum of 3 days, training to the next location in the list was
resumed. We photographed all bees landing at the location and manually tran-
scribed the identity and time of arrival. A list of foragers visiting the feeder is given
in Supplementary Table 4. The network age values around the day we first observed
each bee at the feeding side is given in Supplementary Fig. 12.

Bayesian lifetime model. The death date of an individual could ideally be com-
puted as the first date she was not detected in the hive. Unfortunately, this does not
work in practice for two reasons. First, tags are sometimes incorrectly decoded, and
because of the number of detections we have for each day, this means that most IDs
will be detected at least a couple of times per day. Second, some bees were not
visible at all on some days, even though they are not dead yet (see Supplementary
Fig. 13 for an example).

We, therefore, use a Bayesian changepoint model to robustly estimate the death
dates of all individuals. An individual is defined to be alive on all days since she
emerged and was introduced into the colony (day e) up to the change point d= e
+ l, where l is the number of days she was alive. We use a weakly informative prior
N(35, 50) for the number of alive days l. We model the probability that a bee is
detected at least as often as a threshold t while she is alive and less often than
t when she is not alive, using a Bernoulli distribution. We use a Beta(5, 1) prior for
this probability because we know that, typically, an alive bee will have many
detections. For the threshold t we use an informative Beta(25, 1) prior because we
know that a dead bee will have very few detections, if any. Note that we normalize
the detection counts to [0, 1] when fitting the model, that is, for each bee we divide
the counts of daily detections by the maximum count of detections of that tag over the
entire recording period. We sample this model using pymc3 and the NUTS sampler85.
For each bee, we compute 2000 tuning samples and 1000 samples. The date of death
is determined using the mean of those last 1000 Monte Carlo samples.

Social networks
Proximity interaction network. Two bees were defined to be in proximity if their
tags were <2 cm from each other (~1.4 body lengths) over at least 0.9 s (three
frames with our recording frame rate). We construct affinity networks based on the
counts of these proximity interactions without taking the duration of each contact
into account to reduce the effect of bees resting next to each other.

Euclidean proximity networks. Euclidean proximities were determined for each pair
of bees when both bees were visible. The daily average distance d between two
individuals was then transformed to two affinity matrices, the first derived by

applying a Gaussian similarity function d0 ¼ ð�d2=2γ2Þ with γ=max(D)/4 and
the second by subtracting from the maximum distance (d0 ¼ maxðDÞ � d). D is the
matrix of all daily average distances on the same day.

Trophallaxis networks. We constructed an interaction network representing tro-
phallaxis interactions (food exchange). To filter our data to detect trophallaxis
events, we use a two-step approach. We first use a fast logistic regression with low
precision to discard most of the non-trophallaxis encounters. We then use a
slower convolutional neural network to further refine the results with higher
recall.

To train the two classification models, we manually labeled bee interactions in
our dataset by observing video sequences. To increase the fraction of positive
events, we queried our data for bees that are close to each other, and approximately
facing each other. Note that we did not distinguish the directionality or different
types of trophallactic interactions.

This ground truth data contains 140 trophallaxis events out of the distinct 2651
events in total. For some events, we annotated a begin and end timestamp and
could, therefore, use multiple frames for the training. In total, we had 25,835
training samples, each consisting of a pair of bee IDs, a timestamp, and a label
(trophallaxis/not trophallaxis).

Because the prefiltering of the training data can introduce a sampling bias, we
created another test set by labeling all possible interactions in 33 randomly sampled
frames, containing a total of 15 trophallaxis events and 39,051 negative events (we
use every pair of bees with a thorax distance of ≤3 cm as a possible candidate). This
test set represents our data distribution without any bias.

In the classification step, we look at all pairs of bees with their thoraxes at a
distance between 0.731 and 1.204 cm (i.e.. the 99th percentile of the positive events
in the training data) together in a frame. For a pair of bees (i, j) we have the
locations of the thorax on the hive in millimeters (xyi, xyj) and their orientations
(αi, αj). We calculate the approximate head position hi as xyi+ d*[cos(αi), sin(αi)],
where d= 3.19 mm. We calculate their relative orientation as

½cosðαiÞ; sinðαiÞ� � ½cosðαjÞ; sinðαjÞ�
T . We then perform logistic regression on the

euclidean distance of their thorax locations, the euclidean distance of their head
locations, and their relative orientation.

The logistic regression was trained on the manually labeled samples, setting the
threshold to get a recall of 85% at a precision of 21% (on a 20% validation test).
This regression discards 62% of the true-negative samples (i.e., the specificity). For
the remaining data points, those that were classified as possible trophallaxis by the
first classifier, we extract trajectories of both bees for ~5 s (15 frames) around the
possible trophallaxis events. We then use a convolutional neural network, again
trained on the manually labeled data.

Evaluated on the test set, the two combined filters yield a recall of 60% at a
precision of 47%, discarding 99.97% of negative samples (i.e., the specificity).

Interaction effect networks. For each proximity interaction with a duration no >60 s
(to exclude bees resting next to each other) and with a minimum gap of at least 5 s
since the last interaction of the same two individuals, we compute the difference in
mean velocities within 30 s time windows before and after the interaction. This is
done for both partners, and so we derive four networks based on the mean and
cumulative changes, each split into negative and positive values. We use separate
networks for the positive and negative values because this allows us to define
affinity matrices that can only have positive edge weights.
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Temporal aggregation and post-processing of networks. Time-aggregated networks
were constructed by defining the weighted edge strength as the number of times
two individuals were in proximity or engaged in trophallaxis. The networks were
aggregated over 24 h without overlap. Edges in both networks are undirected. For
subsequent analyses, all networks were represented as a square adjacency matrix
with each element i, j representing the affinity of bee i with bee j on this day, given
by the interaction mode (e.g., for the network of trophallaxis counts, a high value
represents many trophallaxis interactions between the two individuals). Each
matrix is then preprocessed using a rank transform and normalized such that 0
represents the lowest affinity and 1 the highest affinity. Ties are resolved by
assigning the same rank to identical affinities.

Nest area mapping and task descriptor. We manually outlined the capped
brood area and visible honey storage cells for every day in background images
from 30 July 2016 until 5 September 2016. To obtain the open brood area, we
calculated the area of the comb that would become capped within 8 days. We
extracted the background images by extracting the first frame from every video
we recorded over a specific day (approximately one image every 5.6 min), and
then applying a rolling median filter with window size 10 to these images. We
then calculated the modal pixel value, for every pixel, over all the median images.
For each side of the comb, we stitched together the background images from the
two cameras on that side.

To get the approximate location of the dance floor, we used the detected waggle
runs of our waggle dance detection system86 that had high confidence (≥0.9) (see
Supplementary Fig. 14). As nearly all waggle detections happened on one side of
the comb, we exclusively labeled this area as the dance floor. We then fitted an
ellipse to the detections using scikit-image87, which we scaled manually to not
intersect with the exit area. The dance floor area was consistent throughout the
experiment, so in cases where we did not have waggle dance data for a given day,
we interpolated the dance floor area over the adjacent days. Finally, we used a
kaiser window applied over the consecutive days (window size= 5, Beta= 5) to
smooth the annotations. We considered the region 7.5 cm around the exit tube as
the nest region close to the exit.

To generate a task descriptor for every bee, we fetched one high confidence
detection (>0.9) per bee for every minute of a day. We then counted how many of
these detections per bee fell into the annotated regions. Then we normalized these
counts per bee to 1 by dividing through the sum. This descriptor, therefore,
contains the fraction of time each individual spends in each of the annotated
regions. Data points outside the annotated areas are ignored for this descriptor but
are used in all other parts of this work. For all evaluations, we consider the brood
area region to be the sum of the annotated open and closed brood cell regions. See
Supplementary Fig. 14 for an example of the annotations.

Network age: from networks to spectral embeddings to CCA. Network age is
derived from the raw interaction matrices using spectral decomposition and CCA.
For each day and interaction mode, the graph of interactions between all bees that
were alive (see “Methods: ‘Bayesian lifetime model’” for the definition of alive bees)
on that day is retrieved as an adjacency matrix as described in “Methods: ‘Social
networks.’”

For each preprocessed affinity matrix, spectral embeddings66 are calculated
using the Python package scikit-network. We compute the first eight embedding
dimensions (see Supplementary Note 2.2 for an evaluation of the performance of
different numbers of embeddings).

For the non-symmetric interaction effect matrices, we use bispectral
decomposition88 to obtain one set of embeddings each for the rows and for the
columns, to represent the two directions of an interaction.

For different days the eigenvectors of the embeddings and therefore the
embedding values themselves can have an inverted sign. To correct this, we flip the
sign of the values if the Spearman correlation between consecutive days is negative.

For every day, we now have a high-dimensional embedding per bee. We reduce
the dimensionality further by applying CCA. We use CCA to find a linear
transformation of the network embeddings to a three-dimensional vector that
maximizes the correlation to a projection of the bees’ task descriptors (as
introduced in “Methods: ‘Nest area mapping and task descriptor’”). We use the
CCA implementation in scikit-learn89. We use the first dimension of this vector as
‘network age’ throughout this paper, but also evaluate multidimensional variants
(Network age 2D, Network age 3D) in “Methods: ‘Task prediction models and
bootstrapping,’ ‘Statistical comparison of models,’ and ‘Prediction of other
behavior-related measures.’”

For every dimension and day, we use robust scaling based on the 5th and 95th
percentile of the network age distribution. A network age of zero corresponds to
the 5th percentile and 40 corresponds to the 95th percentile. This stabilizes the
distribution over time and also maps the values to a range comparable with the
biological age of honey bees. We note that this scaling slightly improves the
prediction of task allocation, but that the method also works without it. We enforce
that the 5th percentile of network age corresponds to bees with a lower biological
age than the 95th percentile such that biological age and network age have the same
directionality.

Network age: unsupervised variant using PCA. We also calculate a variation of
network age that does not require the annotated location descriptors. Instead of
applying CCA to the concatenated spectral embeddings (see “Methods: ‘Network
age: from networks to spectral embeddings to CCA’”), we instead use PCA to
reduce the dimensionality. This unsupervised network age still predicts task allo-
cation better than biological age (see Supplementary Note 2.4 and “Methods: ‘Task
prediction models and bootstrapping’” for details).

Task prediction models and bootstrapping. To evaluate how well biological age
and the different variants of network age represent an individual’s task allocation,
we use these measures as features to predict the proportion of time individuals
spend in the brood area, dance floor, honey storage and near the exit (see
“Methods: ‘Nest area mapping and task descriptor’” for details on the nest area
mapping). We evaluate the areas individually and in combined models. We eval-
uate different complexities of models (linear versus nonlinear) and different
independent variables (e.g., network age and biological age).

To test different complexities of the relationships, we evaluate both a
generalized linear model (GLM, the default model) and a small neural network
consisting of two fully connected layers (listed as “nonlinear” in Supplementary
Table 2) for each of the combinations of independent and dependent variables. The
hidden layer of the neural network has a dimensionality of 8 and uses tangens
hyperbolicus as its nonlinearity.

To evaluate the performance of the models for each area separately, we select a
sigmoid as the link function of the GLM and the activation function of the neural
network’s last layer. We then optimize and calculate the likelihood of the data
assuming a binomial distribution.

We also evaluate both models to simultaneously predict all four values of an
individual’s task allocation distribution. To this end, we choose a softmax function
as the link function of the GLM and the neural network’s final activation function.
We then optimize and calculate the likelihood of the data assuming a multinomial
distribution.

For all the combinations of independent and dependent variables, we repeat the
described procedure for 128 bootstrap samples. For each model, we retrieve the
final likelihood of the data L1. We use PyTorch90 and the L-BFGS optimizer to
obtain maximum-likelihood estimates of the models. We also always fit a null
model only consisting of the intercepts and retrieve its likelihood L0. For each
model and bootstrap iteration, we calculate McFadden’s pseudo R2 70 as
R2
McF ¼ 1� ððL1Þ=ðL0ÞÞ. We then calculate the median and 95% CIs from these

bootstrap samples. See Supplementary Table 2 for an overview of the results for all
evaluated models. We test the significance of these results separately with the tests
described in “Methods: ‘Statistical comparison of models’.”

Statistical comparison of models. We use bootstrapped CIs of the effect strength
to investigate whether a model based on one feature (e.g., network age) explains the
dependent variables (e.g., task allocation distributions) significantly better than the
same model based on a different feature (e.g., biological age). In addition, we use a
likelihood ratio χ2 test to answer whether one feature (e.g., network age) provides
additional information over biological age in a combined model.

Bootstrapped CIs of the effect strength. We draw 128 bootstrap samples of the
combined daily bee data. For each sample, we calculate either the McFadden’s
pseudo R2 in the case of the task allocation models (see “Methods: ‘Task prediction
models and bootstrapping’ and ‘Future predictability’”) or the R2 in the case of the
other measures (see “Methods: ‘Prediction of other behavior-related measures’”
and Supplementary Note 3.1) for both a model based on biological age and the
independent variable we want to compare with (e.g., network age). For each of
these paired samples, we calculate the difference in scores of the two models. From
these 128 differences, we calculate a two-sided 95% CI of the effect strength. If the
null hypothesis (difference in scores is zero or less) is not contained in the con-
fidence interval, we can reject the null hypothesis at an alpha level of 2.5%.

Likelihood ratio test. As the likelihood ratio test requires a nested model for testing,
we compare a model based solely on biological age with a model based on a
combination of biological age and the independent variable we want to compare
with (e.g., network age).

We fit each model to the data and calculate the likelihoods of the data under the
fitted models (L1 for the combined model and L0 for the model based on biological
age). The likelihood ratio is given by LR=−2ln(L0/L1). If the null hypothesis that
the models are equal were true, LR would approximately follow a χ2 distribution
with k degrees of freedom (with k= 4 in the case of the task allocation model from
“Methods: ‘Task prediction models and bootstrapping’” and k= 1 in case of the
general regression model for “Methods: ‘Prediction of other behavior-related
measures’” and Supplementary Note 3.1). We use the cumulative density function
of the χ2 distribution to calculate the p value.

Repeatability. We calculate the repeatability R of the network age consisting of
repeated measurements over several days of an individual I as R(I)= Varp/
(Vari+ Varp), with Vari being the variance of the network age of an individual
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measured over the available days and Varp being the variance of the mean
network ages of a control group. The control group consists of all bees inside
the same age span as I on all days on which the network age values for I were
collected. A repeatability close to 1 means that the individual variance is low
compared to the population variance. A repeatability close to 0 means that the
individual variance outweighs the population variance.

Network age transition clustering. In order to cluster the transitions of different
individuals in a cohort, we first collect the network ages for every individual in a
feature vector where each entry corresponds to the individual’s network age for one
day. We then do a linear inter- and extrapolation for missing values (e.g., due to
absence or the individual dying). For the cohort of bees, we calculate the euclidean
distance between each individual’s feature vector. Then we perform a hierarchical
clustering using Ward’s method91 using the Python library scikit-learn85 and
extract the first three clusters. See Supplementary Fig. 15 for an example of the
clustering. See Supplementary Fig. 16 for the network age development of different
cohorts and Supplementary Fig. 17 for all bees.

We fixed the number of clusters to three for visualization purposes as that is the
minimum number that showed a lagged transition from low to high network age
for all cohorts. In hierarchical clustering, cutting off the dendrogram of the
agglomerative clustering at a deeper level and thus increasing the number of
clusters will further subdivide the existing clusters. Supplementary Fig. 18 gives an
example with N= 5 clusters.

Quantifying when bees first split into distinct network age modes. We used
K-means to cluster the network age distribution of every day into two distinct
clusters corresponding to the two modes. Then we check for every bee that we
observed at least once as a young bee below the age of 6 (N= 1079) at which age
she first gets assigned to the higher cluster (mean= 12.33, 95% CI= [6, 25.7],
median= 11, N= 572). We ignore bees that are never assigned to the upper cluster
(e.g., because we do not observe them for a long enough timespan). See Supple-
mentary Fig. 19 for the distribution of biological ages.

Definition of circadian rhythmicity. The motion velocity of a bee was determined
by dividing the euclidean distance between two consecutive detections by the time
passed (a multiple of 1

3 seconds). Any duplicate IDs were discarded. The velocity

was median filtered with a kernel size of 3 to remove outliers. See Supplementary
Fig. 20 for an example of the velocity of a specific bee over multiple days.

Lomb–Scargle periodograms were computed for all individuals remaining in the
dataset at any time in the period from 20 July 2016 to 18 September 2016. For each
day and individual, the Lomb–Scargle periodogram was calculated on the motion
velocities over an interval of 3 days, that is, including the preceding and following
day. The circadian activity was confirmed as strong peaks at a period of 1 day.
Lomb–Scargle periodograms were computed using the Astropy package92. See
Supplementary Fig. 20 for an example of a bee’s velocity and the resulting
Lomb–Scargle periodogram.

In the following analyses, we reduced computational load by fitting a single sine
wave of fixed frequency= 1/d (least-squares fit). For each fit, we extract the power
as P(f)= 1− (SSEsine/SSEconstant) with SSEsine being the residuals (sum of squared
errors) of the sine fit and SSEconstant being the residuals (sum of squared errors) of a
constant model assuming the mean of the data.

The power, hence, reflects how much of the velocity variation can be explained
by the sinusoidal oscillation, or circadian rhythm.

Targeted embedding using CCA. We show that we can extract targeted
embeddings from the spectral factors of the interaction networks that are better in
predicting other properties of the individuals. To compute those targeted embed-
dings, we exactly follow the methodology outlined in Methods: ‘Network age: from
networks to spectral embeddings to CCA’,” but for each property (days until death,
time of peak activity, circadian rhythm, daytime and night-time velocities), we
extract a one-dimensional embedding from the spectral factors that maximizes the
correlation with this property using CCA.

Prediction of other behavior-related measures. We follow the same metho-
dology as described in “Methods: ‘Task prediction models and bootstrapping’” to
evaluate how well the various age measures explain various properties of the
individuals with a slight adjustment: We choose the identity function as the link
function of the GLM and as the activation function of the neural network’s final
layer. We model the residual distribution as a normal distribution with constant
variance.

We define the “days until death” as the number of days left in an individual’s
life on a given day (for a description of the automatically determined death dates
see “Methods: ‘Bayesian lifetime model’”). The time of peak activity and the
rhythmicity of daily movement were calculated as described in “Methods:
‘Definition of circadian rhythmicity’.”

For the daytime and night-time velocities we use the same data as for the
circadian rhythmicity (see “Methods: ‘Definition of circadian rhythmicity’”). For
the daytime velocities, we use the mean of all collected velocities between

09:00–18:00 UTC of the 3-day rolling window; for night-time velocities,
21:00–06:00 UTC.

See Supplementary Table 1a for an overview of the scores of different models
and targets.

Future predictability. We evaluate how well we can predict future task allocation
using network age and biological age. To ensure that no information leak can
occur, we only used supervised information from the past and test it on future data.
To do this, we first calculate the spectral factors for the entire dataset as described
in “Methods: ‘Network age: from networks to spectral embeddings to CCA’.” The
factors are computed for each day separately, hence no information can leak from
the past to the future. We then determine the mapping from spectral factors to
network age using CCA, but only on a fixed range of days prior to the validation
window. We fix the number of days in the train set to 12 days so that we always
have approximately the same amount of training data independent of the number
of days we predict into the future. Similar to the linear mapping given by CCA, we
also determine the parameters of the regression model only on the train dataset
from the same fixed time window. We train separate models for all viable ranges of
dates and for prediction from one to 11 days into the future. The linear mapping
given by the CCA and the predictive models is then applied to the spectral factors
on the held-out validation set from a time after the training dataset (see Supple-
mentary Fig. 21 for an overview about the data handling). For this analysis, we
want to evaluate how well we can predict task allocation into the future. We
estimate the effect size in R2

McF by calculating the 95% CI for the different time

windows (see Supplementary Fig. 21, median improvement in R2
McF ¼ 0:080, 95%

CI [0.055, 0.090], N= 12).
Because the two compared models are not nested, the likelihood ratio test does

not apply here. We perform a paired binomial test using the null hypothesis that
the improvement in mean-squared error in task allocation prediction is zero or less.
We find that we can predict the task allocation of an individual 7 days into the
future with a lower mean-squared error (paired binomial test, p≪ 0.001, N=
55,390) using network age.

This is mostly caused by older bees. For young bees, there is a low amount of
variance in task allocation and network age is about as good in describing task
allocation for young bees as biological age. Furthermore, we find that we can not
reliably predict future task allocation for young bees, suggesting that either the
social networks in this study are not predictive for this task or that the future task
allocation of young bees is driven by other factors. See Supplementary Fig. 22 for
an overview of the results.

The predictive power of network age cannot be fully explained by the bimodal
distribution of network age and organization of stable “work groups” within the
colony. We perform an additional analysis to reject this repeatability null
hypothesis by comparing how well the task allocation prediction using networks
works when simply shifting the prediction for the current day into the future. We
find that a model fitted to predict future task allocation outperforms this null
model considerably (see Supplementary Fig. 23).

Ethics statement. German law does not require approval of an ethics committee
for studies involving insects.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.
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