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Abstract

Hepatitis C virus (HCV) infects 170 million people worldwide, and is a major public health problem in Brazil, where over 1%
of the population may be infected and where multiple viral genotypes co-circulate. Chronically infected individuals are both
the source of transmission to others and are at risk for HCV-related diseases, such as liver cancer and cirrhosis. Before the
adoption of anti-HCV control measures in blood banks, this virus was mainly transmitted via blood transfusion. Today,
needle sharing among injecting drug users is the most common form of HCV transmission. Of particular importance is that
HCV prevalence is growing in non-risk groups. Since there is no vaccine against HCV, it is important to determine the factors
that control viral transmission in order to develop more efficient control measures. However, despite the health costs
associated with HCV, the factors that determine the spread of virus at the epidemiological scale are often poorly
understood. Here, we sequenced partial NS5b gene sequences sampled from blood samples collected from 591 patients in
São Paulo state, Brazil. We show that different viral genotypes entered São Paulo at different times, grew at different rates,
and are associated with different age groups and risk behaviors. In particular, subtype 1b is older and grew more slowly
than subtypes 1a and 3a, and is associated with multiple age classes. In contrast, subtypes 1a and 3b are associated with
younger people infected more recently, possibly with higher rates of sexual transmission. The transmission dynamics of HCV
in São Paulo therefore vary by subtype and are determined by a combination of age, risk exposure and underlying social
network. We conclude that social factors may play a key role in determining the rate and pattern of HCV spread, and should
influence future intervention policies.
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Introduction

Hepatitis C virus (HCV) is a major cause of hepatitis and liver

cancer globally, chronically infecting nearly 3% of the world’s

population [1]. During the second half of the 20th Century, the

global HCV pandemic worsened due to widespread viral

transmission by blood or blood-derived products, and by unsafe

medical practices. Today, needle sharing among injecting drug

users (IDUs) is a major risk factor in industrialized countries [2]

and prevalence among IDUs ranges from 30 to 90% [3,4], with

between 5.6 to 36% of Brazilian drug users infected [5].

Approximately 15–40% of infected persons clear the virus during

the acute phase. Of the remainder, nearly 80% result in chronic

infections which may lead to subsequent viral transmission [6]. It

has been estimated that 0.8% to 3.5% of the Brazilian population

is HCV-positive, while prevalence among those that are also HIV

infected may reach 25% [7].

HCV is classified into six major genotypes and many subtypes,

varying in geographical distribution, transmission route and

treatment response [1,8,9]. Genotype 1, and especially subtypes

1a and 1b, are the most prevalent worldwide, although 1b is

mostly found among older members of the population who have a

history of blood transfusion [3,10,11]. HCV-1a and 3a appear to

have emerged recently and are spreading rapidly in many global

regions, with a high prevalence among young IDUs [3,10,11,12].

Coarse-grained phylogenetic studies suggest that HCV subtypes 1a

and 1b reached a plateau globally in the 1980’s after previously

experiencing exponential growth [13]. Despite the increasing

importance of HCV for human health, no vaccine is currently

available, treatment is suboptimal in many countries and,
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alarmingly, up to 40% of the transmission events are of unknown

cause [14]. Moreover, there is a severe lack of donor organs,

causing tens of thousands of patients with decompensate liver

disease and portal hypertension to await orthotopic liver

transplantation [15].

The lack of an effective vaccine highlights that prevention is

currently the main strategy available to control viral transmission.

As a consequence, detailed studies of the molecular epidemiology

of HCV, particularly at the scale of local epidemics, are needed to

enhance our understanding of the transmission dynamics of this

major public health problem. Herein, we investigated the

population dynamics of HCV in the most populous region of

Brazil – São Paulo state – with the aim of identifying the

epidemiological factors that influence viral transmission.

Materials and Methods

Experimental design
Partial NS5b gene sequences were obtained from blood samples

collected from 591 patients chosen irrespective of their risk

associations between 1997 and 2006 as part of the Viral Genetic

Diversity Network (VGDN) program [16]. Patients were sampled

from four different regions within São Paulo state; Ribeirão Preto,

São José do Rio Preto, São Bernardo do Campo and from two

reference centers for HCV surveillance and treatment in São Paulo

city (Clı́nicas Hospital and Reference and Training Center- RTC).

After RNA extraction from blood samples and cDNA synthesis, a

361 nt region of NS5b was amplified. Questionnaire data from

patients such as age, gender, sex, and marital state were collected at

the time of sampling. Relevant clinical information on transmission

risk factors was gathered, including: (i) self-declared drug use profile:

injected (IDU) or non-injected drugs (crack and cocaine) (NIDU), (ii)

sexual behavior, including the number of casual and regular sexual

partners during their entire life and, (iii) blood transfusion (BT)

before and after 1993 when HCV blood screening started in Brazil,

were also obtained. The NS5b sequences were typed by phy-

logenetic inference with the inclusion of worldwide HCV reference

sequences available in GenBank (http://www.ncbi.nlm.nih.gov/

Genbank/) and Los Alamos HCV database (hcv.lanl.gov/). All

sequences generated here have been deposited in GenBank and

assigned accession numbers GQ490493–GQ491027.

Ethics Statements
All procedures adopted in this work were done according to the

terms agreed by the Ethics Committee on Human Research of the

University of São Paulo and informed consent terms were signed

by all patients.

Inferring phylogenetic history
NS5b sequences were aligned using Clustal X [17]. Phyloge-

netic trees were inferred using the GARLi program (Genetic

Algorithm for Rapid Likelihood Inference) [18], which employs an

extensive branch-swapping protocol and optimizes the substitution

model iteratively during the search. Initial trees were used to

determine the position of our sequences in the context of the

global HCV pandemic. In particular, these analyses allowed us to

identify and eliminate sequences that were directly related to non-

Brazilian sequences suggesting that they had been imported from

localities outside of Brazil.

HCV phylodynamics
To investigate the population history of HCV in São Paulo state

(after excluding potential migrants) we utilized the Bayesian

Markov Chain Monte Carlo (MCMC) approach implemented in

the BEAST package [19]. First, the rate of nucleotide substitution

as well as the Time to the Most Recent Common Ancestor

(TMRCA) of each viral subtype was estimated under the best-fit

model of nucleotide substitution obtained by comparing the

GTR+C+I, GTR+C+I+SRD112, HKY and HKY+SRD112 models

[20] using Bayes factors (BF) (although similar results were

obtained under all substitution models). We also utilized both strict

and relaxed (uncorrelated lognormal) molecular clocks. To be as

conservative as possible we also employed the least constrained

Bayesian skyline coalescent prior, which provided similar substi-

tution rates to those obtained with the best demographic model for

each subtype. To improve the MCMC search, we set the operator

values as a function of the number of taxa in each group, and set

the upper value of the ‘population size’ parameter to 170 million,

which hypothetically covers the estimated number of infected

people in the world. After optimizing the values of the MCMC

operators during preliminary runs, up to 10 additional MCMC

runs, each consisting of 20 million generations (with a 50%

burnin), were undertaken to obtain convergence of parameter

estimates. With the substitution rates in place we then estimated

the rate of population growth (r) under the demographic model

(i.e. constant, exponential population growth or logistic population

growth) that best-fit each subtype data set, with model compar-

isons again undertaken using BF. Similarly, setting the prior on the

substitution rate, we estimated Bayesian skyline plots for each data

set. In all cases the convergence of parameters during the MCMC

was inspected with Tracer v.1.4 [19], with uncertainties depicted

as 95% highest probability (HPD) intervals. To provide an

independent assessment of the robustness of our analysis of

evolutionary dynamics we also estimated the TMRCA of each

data set using the Path-O-Gen program (available at http://tree.

bio.ed.ac.uk/software/pathogen/), which employs a linear regres-

sion of root-to-tip genetic distances against sampling time based on

the ML phylogenies described above.

HCV phylogeography
To evaluate how phylogenies are shaped by underlying

geography within São Paulo state we utilized the Bayesian

approach available in BEAST [19]. Specifically, we performed a

phylogeographic analysis using a standard continuous-time

Markov chain (CTMC) model with the Bayesian stochastic search

variable selection (BSSVS) procedure [21]. The three main

geographic locations of sampling (Metropolitan area of São Paulo,

Ribeirão Preto and São José do Rio Preto) were coded as

multistate characters and the most parsimonious description of

geographic spread was obtained by MCMC sampling from the

plausible set of trees using the procedures outlined above.

Fitting a power law to the sexual contact data
We estimated the extent of social interaction among the patients

in our data set as their total number of sexual contacts [22]. We

fitted a pure power law distribution model of the form P(k) > k2a

to our data and estimated the minimal value of sexual contacts

above which the data follow a power law (xmin), and the maximum

likelihood estimator of the scaling exponent a using the goodness-

of-fit based method of [23] with the R v.2.10.0 program (http://

www.r-project.org/). The quality of fit was evaluated by a

Kolmogorov-Smirnov goodness-of-fit (K–S) test that compares

the D-statistic for the observed data to a critical D value estimated

for large n [24] from the expected power law distribution.

Estimating R
To allow a broad-scale comparison of growth dynamics across

HCV epidemics we obtained approximate estimates of the basic
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reproductive number (R) for each HCV genotype using the

relation R = 1+rD, where r is the population growth rate and D is

the mean time of infectiousness [25]. Growth rate (r) estimates

were obtained with BEAST from the best-fit demographic model

for each data set. Additionally, we estimated r using GENIE

(http://evolve.zoo.ox.ac.uk/software/Genie/) under the relation

r = rm, where m is the nucleotide substitution rate (subs/site/year)

and the composite parameter r (r/m) estimated from the ML

phylogeny, with branch lengths adjusted for date of sampling with

the TipDate program [26]. Parameter D is an estimator of the

generation time distribution (w(t)), which is a function that

describes the distribution of times between infections in a chain

of transmission [27]. Accurate proposals for w(t) depend on several

complex factors that are difficult to evaluate for a persistent virus

such as HCV, which causes fluctuating viral load levels during

chronic infections that may last several years [28,29]. Moreover,

the probability of virus transmission is expected to vary according

by risk factor. Therefore, instead of utilizing w(t), R was calculated

using a mean time of infectiousness (D) of 2, 5, 10, and 15 years,

which appear to cover a reasonable range of values. Importantly,

values of R inferred from phylogenetic trees may not relate linearly

to the number of infected people, and may also be strongly

affected by the variance on the number of potential infectious

contacts events. These limitations notwithstanding, agreements

between R estimated from viral phylogenies and from epidemi-

ological data have been noted [30].

Finally, the human population growth rate was approximated

using census data in time fitted to both exponential and logistic

curves, and by estimating the rate coefficients under the model

that best fit the data using the SPSS v.11.0.1 program (SPSS Inc.

Chicago, IL).

Results

HCV epidemiology and phylogeography
A total of 591 HCV sequences obtained from São Paulo State

were successfully amplified, sequenced and typed by phylogenetic

analysis using reference sequences obtained from the Los Alamos

HCV database. Genotype 1 was the most prevalent (70.5%),

comprising 51.3% of subtype 1b and 48.7% of HCV-1a samples.

Subtype 3a was the next most prevalent, representing 24.2% of all

samples. Genotype 2 included subtypes 2b and 2c and was found

at frequencies of 2.1% and 1.9% of the population, respectively.

Genotypes 4 and 5, not commonly found in Brazil, were detected

in five patients, one infected with the subtype 4a and four with 5a.

Subtypes only found in a small number of patients (2, 4 and 5)

were discarded for the subsequent analysis. Phylogenies of the

most common 1a, 1b and 3a subtypes also suggested different

demographic histories (Figure S1). Specifically, the HCV-1b

phylogeny possessed three distinct clusters comprising Brazilian

sequences, such that the same local epidemic is associated with

different 1b lineages. In contrast, there was no evidence for

phylogenetically distinct clusters in trees of subtypes 1a and 3a.

To reduce the effect of any phylogeographic structure on our

subsequent analysis of transmission dynamics we first excluded all

taxa that we suspected to be ‘‘migrant’’ due to their close

phylogenetic relationship to samples obtained from outside Brazil

(and taken from GenBank). In addition, we performed a Bayesian

analysis of phylogeographic structure, dividing our time-stamped

sequences into three main geographic sources: (i) the Metropolitan

area of São Paulo city, including patients from the Clinicas

Hospital, the Reference and Training Center (RTC), and São

Bernardo dos Campos (located in the outskirts of São Paulo), (ii)

Ribeirão Preto, located in the west of São Paulo state some

317 km from the São Paulo metropolis, and, (iii) São José do Rio

Preto in northern São Paulo state, 443 km from the São Paulo city

and 205 km from Ribeirão Preto. For each HCV genotype, the

root location with the highest posterior probability falls in the

metropolitan area of São Paulo city and is shown as black

branches in the maximum clade credibility (MCC) trees (Figure 1).

Although we found small phylogenetically distinct clusters of

sequences spreading in Ribeirão Preto (sectors highlighted in

green) and São José do Rio Preto (highlighted in blue) in all three

trees, overall there was clearly no segregation by region of

sampling. In addition, all region-specific clusters radiated at

approximately the same time as those from São Paulo (grey

concentric circles in Figure 1) suggesting that they should not

impact significantly on overall dynamics.

Time-scale of HCV emergence and dynamics in São Paulo
Key demographic and epidemiological parameters estimated for

all HCV subtypes, or collected from patients’ questionnaires, are

shown in Table 1. Importantly, our estimates for the TMRCA of

each subtype obtained under the best-fit demographic model

covered essentially the same range as those estimated by the

Bayesian skyline analysis, suggesting that these results are robust to

demographic history (see supplementary Table S1A to S1F for

details of the statistical analysis). Although HCV subtypes 1a, 1b

and 3a showed similar rates of nucleotide substitution, there were

significant differences among subtypes in both TMRCA and

population growth rate (Table 1). To infer how the demographic

history of each subtype changed through time we inferred

Bayesian skyline plots using a relaxed molecular clock and the

substitution rates estimated previously under the best-fitted model

of nucleotide substitution (that is, GTR+C+I+SRD112 for HCV-

1a, and 1b and HKY+SRD112 for HCV-3a). Although the 95%

HPD values for the skyline plots under the relaxed clock were too

wide for meaningful interpretation, those generated using a strict

clock gave a reasonable demographic signal (Figure 2 and S2).

Together, these evolutionary analyses suggest that HCV-1b was

the first subtype to enter São Paulo and which experienced rapid

population growth in the 1970’s, possibly spread by blood

transfusion and unsafe medical practices (the frequency of each

risk factor is given in Table 1). HCV-1b was followed by HCV-3a

in the mid 1960s (Table 1). HCV-1a was most likely the last

subtype to emerge and started growing exponentially in 1990’s,

after the end of paid blood donation and the onset of obligate

blood-donor screening (Figure 2), attaining the highest growth rate

of all (Table 1). Subtypes HCV-1a and 3a are known to dominate

IDU-associated infections in most industrialized countries. How-

ever, we found only 27% of HCV-1a and 20% of HCV-3a

infected individuals in our study to be at risk of exposure by IDU,

and a similar proportion, albeit with lower numbers, of NIDU

(Table 1). This last result is of relevance since people that use non-

injecting drugs (NIDU) are also at risk of HCV infection, mainly

due to crack and cocaine [31]. Indeed, approximately half of our

NIDU patients that reported sharing cocaine paraphernalia also

reported nasal bleeding (76 patients). Interestingly, most of our

NIDU used cocaine exclusively, with a small percentage (6%) also

reporting smoking crack, indicating that crack may not be

particularly important for HCV transmission among our study

population. Finally, because HCV prevalence in IDUs can reach

90% [32], it is possible that IDUs act as reservoirs that disseminate

the virus through the population as a whole.

We therefore explored the impact of injecting drug use on the

HCV transmission network. To do this we reconstructed the

ancestral mode of transmission across our subtype phylogenies

using ‘‘IDU’’, ‘‘non-IDU’’, and ‘‘unknown status’’ as character

Transmission Dynamics of HCV
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states. This revealed a non-IDU root in all cases, suggesting that

HCV transmission did not originate exclusively from IDU

(Figure 1). However, we did observe six small IDU clusters in

the HCV-1a phylogeny and one cluster in the HCV-1b tree

(highlighted red sectors in Figure 1). Moreover, since IDU

occurrence was higher in HCV-1a than HCV-3a and HCV-1b,

we also tested if IDU could explain the differences in growth rates

we observed. By excluding the IDUs from HCV-1a data set, we

observed that the exponential growth rate only increased from

0.51 to 0.56 and with overlapping 95% HPDs. We also observed

that 28 to 38% of our patients had unknown risk factors for HCV

transmission, which suggested that additional host-associated

factors should be considered as determinants of transmission

dynamics.

Dynamics associate with age structure of HCV patients
An important observation from our analysis of HCV population

dynamics was that viruses that emerged more recently – subtypes

1a and 3a –also experienced higher rates of population growth.

Strikingly, the year of birth of people infected by HCV-1a and 3a

was uni-modal, with modes of around 1954 and 1964 for HCV-3a

and HCV-1a, respectively (Figure 3). In marked contrast, the year

of birth structure of HCV-1b carriers was clearly multi-modal,

with three peaks roughly spaced according to decade-sized

Figure 1. Phylogeographic and IDU risk analysis. We show Maximum Clade Credibility (MCC) trees for the main HCV genotypes in São Paulo.
Branches are colored according to the geographic locality of sampling, with IDUs shown as red dots at the tips. The highest posterior probability for
the root of all trees revealed that the epicenter of HCV epidemics was the metropolitan area of São Paulo. Highlighted sectors indicate ancestral
nodes with posterior probability .50% located outside the metropolitan area of São Paulo (green in Ribeirão Preto and blue in São José do Rio
Preto). Branch lengths are scaled in years shown as concentric rings of 5 years. The grey concentric rings indicate that the epidemic expansion of
HCV-1a in São José do Rio Preto and Ribeirão Preto was synchronized with the growth in the metropolitan area of São Paulo. Most of the IDUs are
located within the HCV-1a and HCV-3a subtypes. Sectors highlighted in red indicate IDU clusters with posterior probability .50%. All trees depicted
non-IDU as the root state with the highest posterior probability.
doi:10.1371/journal.pone.0011170.g001
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intervals. This tri-modal distribution may be explained by the fact

that subtype HCV-1b has likely been circulating in São Paulo

since the beginning of the 20th century, and because carriers

survive for long time periods following infection. Therefore, people

infected several decades ago were sampled during our study.

Host population size and social networks impact on HCV
transmission

The population dynamics of infectious agents are greatly

influenced by a variety of epidemiological factors, including host

population size and density, the spatial distribution of the host, and

the rate of contact between individuals [33,34]. As an initial

exploration of how these factors may impact HCV transmission

we investigated census population growth concurrent with the

spread of HCV in São Paulo. This analysis revealed a positive

relationship between human population increase and the growth

rates of each HCV subtype according to their time of origin

(Figure S3).

Since the rate of contact between infected and susceptible hosts

(i.e., the nodes of a transmission network) are crucial determinants

of epidemic dynamics [35,36], the number of connections per

highly-connected node should increase as a function of host

population density and size. Moreover, it reflects the intensifica-

tion of social interaction as measured by the number of sexual

contacts [22]. We therefore examined the dependency of the

cumulative frequency distribution P(k) on the total number of

sexual partners (k) obtained from questionnaires available for 492

of the 591 patients in our study group. Strikingly, we observed a

negative relationship of P(k) for increasingly higher values of the

number of reported sexual contacts (k), showing stereotypically

sequential decay on the number of sexual contacts (Figure 4A). We

then fitted the data to a pure power law distribution and estimated

the value of xmin = 10 and the maximum likelihood value of the

scaling exponent a= 2.15. Although other heavy-tailed distribu-

tions may explain our data [23], it conformed well to a power law

as shown by the significance of the K–S test statistic D = 0.0254

(p,0.001, n = 217, D-critical>0.0913), expounding the scale-free

nature of this HCV network. In general, values of k for most of the

cumulative frequency values of P(k) indicated a higher number of

Figure 2. Patterns of population growth for HCV1a, 1b and 3a.
The colored lines in the strict clock Bayesian skyline plots show the
superimposed median values (y-axis) of relative genetic diversity (Ne.g,
where Ne is the effective population size and g the inter-host
generation time) through time in years for each subtype. Vertical
arrows indicate the introduction of control measures in 1980 (end of
paid donation) and 1993 (implementation of screening for HCV in blood
banks) aimed to hamper HCV spread by blood products in Brazil.
doi:10.1371/journal.pone.0011170.g002
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sexual contacts and connectivity for HCV-1a, followed by HCV-

3a and finally HCV-1b, and most strongly so at the heavy-tail side

of the curves (Figure 4A).

Since our patients did not identify sexual partners among others

in the cohort, we were not able to infer the exact topology of the

HCV network. Nevertheless, we examined the social, risk-related

and clinical factors at the two ends of the overall distribution (i.e.,

for all HCV carriers taken together to obtain robust parameter

estimates). By dividing all patients into two extreme log-binned

groups with ‘‘low-connectivity’’, defined as 5 or less sexual partners

(40% HCV-1b, 37% 1a and 23% 3a), and ‘‘high-connectivity’’,

reflecting 50 or more sexually partners (56% HCV-1a, 30% 3a

and 14% 1b), we found that greater sexual activity was also

associated with increased exposure to known HCV risk factors

(STD, drug use, tattooing and imprisonment) and specific

behaviors, such as unprotected sex (Figure 4B).

HIV-1 and HBV co-infection
HCV, HIV-1, and hepatitis B virus (HBV) share similar routes

of transmission and HCV infects 25 to 30% of HIV-infected

persons [37]. Although our sampling protocol was designed to

minimize the inclusion of persistent viral co-infections, we in fact

sampled 36 HIV-1 positive out of 878 HCV carriers. This 4.1%

prevalence was six times higher than the HIV-1 prevalence of

0.7% in the general Brazilian population [www.ias-2005.org/

admin/images/upload/533.pdf]. From the seventeen co-infected

samples sequenced here, there were nine patients infected by

HCV-1a, four by 1b and four by 3a. From these, 2.7% where at

the low-connectivity end of the HCV network and 6.1% were

located at the high-connectivity end, which also had several other

evident risk factors associated other than HIV-1 (Figure 4B).

Therefore, some small proportion of the increase in growth rate

we see in 1a and 3a compared to 1b could have been due to an

increased rate of HCV transmission due to HIV co-infection

(Figure 4B). Similarly, we found two HCV patients from a total of

494 to be HBV positive (0.4% prevalence, which was 10 times

lower than prevalence of 3.7% in metropolitan areas of Brazil

[38]. Both these individuals had medium connectivity (from 6 to

49 sexual partners) in the HCV network.

Discussion

Our study reveals that co-existing yet distinct epidemics of

different HCV subtypes circulate in São Paulo and among discrete

age-structured groups that are differently exposed to risk factors

for viral transmission. Subtypes HCV-1a and 3a also grew faster

than 1b during the last 20 years, and not reaching the plateau

observed in other localities [13]. Since our results are based on the

analysis of a large data set of randomly sampled sequences from a

one single regional epidemic, and backed by data on risk factors

and exposure behaviors, we believe that they are potentially a

more accurate reflection of HCV epidemic dynamics. We found

that the metropolitan area of São Paulo city was the epicenter of

HCV spread in the State, coinciding with it being also the

epicenter of human population growth during the 20th century.

Perhaps because HCV-1b reached high prevalence earlier in the

20th century it has been able to establish sustained transmission

among generations born from the 1940’s to the 1970’s. In

addition, subtype 1b was mainly transmitted through contaminat-

ed blood transfusion, which is not obviously associated with an

age-specific risk group, and the range of patients ages is expected

to be large in this case. This is reflected in the fact that 47% of

HCV-1b carriers born in the 1970’s (i.e., members of the last peak)

received blood transfusion at an early age. In contrast, HCV-3a

and subsequently HCV-1a colonized increasingly larger waves of

susceptible hosts. These results agree with previous studies of HCV

epidemics using smaller sample sizes showing that HCV-1a has

grown faster than 1b in many regions, including Brazil

[12,39,40,41,42]. While the nucleotide substitution rate we

obtained for HCV-1a (Table 1) was slightly higher than those

estimated for HCV in other localities [12], it is possible that this

signifies an increased strength of natural selection in this case, in

Figure 3. Viral and host age structure. Dotted color-filled distributions at the back of the figure show the relative densities of estimates of the
Time to the Most Recent Common Ancestor (TMRCA) of HCV-1a (red), HCV-1b (blue) and HCV-3a (green). The TMRCA relative densities (left y-axis)
depict the frequency normalized to unity of TMRCA values sampled during the MCMC runs in BEAST. Full line distributions in the foreground show
the percentage of HCV carriers that were born in a specific year (x-axis). Patient age distributions were color-coded in the same fashion as the TMRCA.
Horizontal arrows, connecting the mode of age of birth of patients with the TMRCA peak value for both HCV-3a and HCV-1a, show the temporal
correlation between each subtype origin of spread and the age of its carriers.
doi:10.1371/journal.pone.0011170.g003
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turn reflecting an elevated epidemic growth rate. Indeed, tree-

based estimates of the basic reproductive number (R) for the HCV-

1a and HCV-3a epidemics in São Paulo were higher than those

observed among IDUs in the United Kingdom [12], which also

exhibits a lower rate of census population growth during the last

century (see Figure S4 A and C). However, because there was no

clear distinction in risk association between subtypes HCV-3a and

HCV-1a, and because their growth rates were associated with

initial time of spread, it is clear that additional factors are needed

to fully explain the differing population dynamics of these

subtypes.

We therefore propose that the association between age modes

and times of subtype origin (horizontal arrows in Figure 3) is

largely explained by social factors that might confine HCV

transmission within specific age groups. Both an age group

restriction on transmission and the control measures implemented

in Brazil in 1980 and 1993 could help explain the slowdown in

HCV-1b transmission that occurred after 1985 (Figure 2). In

addition, age structure may explain more than just the epidemics

in São Paulo since the lower number of young adults (between 20

to 39 years of age) in the UK compared with São Paulo is

compatible with their difference in viral growth rates (Figure S4 B).

It is likely that age-structured waves of HCV carriers transmit the

virus among age-related susceptible hosts, perhaps due to

behavioral generation exclusion (i.e. a ‘‘generation gap’’). This

accords with the observation that people generally only have

significant contact with others like themselves (‘‘the homophylic

principle’’), which governs the emergence of assortative mixing in

social networks [43]. When assortative mixing occurs among

highly connected individuals (which can be thought of as ‘‘hubs’’),

such that nodes with many connections tend to be connected to

other nodes with many connections (i.e. preferential attachment),

then scale-free networks emerge such as the one we document here

[44,45]. Although blood transfusion and IDU enhance HCV

transmission, it has been also shown that ‘‘survival’’ sex work

among young people was the strongest predictor of elevated HCV

incidence in Canada [46]. Importantly, this justifies our sexual-

contact network analysis and also agrees with our results on age

stratification (Figure 3) and risk factors among highly connected

patients (Figure 4).

Importantly, although we do not currently understand to which

extent HCV is sexually transmitted, the association of high

connectivity and risk behavior in the HCV network, agrees with

genotype composition and age structuring, since 29% of the low-

connectivity patients were older than the high-connectivity group.

This also fits with the observed trend of higher rates of viral

population growth among younger age groups. The exception to

this was the obviously increased risk of blood transfusion among

the low-connectivity group (with a particularly high prevalence in

HCV-1b carriers), which also had a more even sex ratio compared

to the male-dominated high-connectivity end of the spectrum.

Moreover, both extreme groups had marked differences in other

factors, such as STD, IDU partners, tattooing, MSM, imprison-

ment, IDU, NIDU, not using condoms, etc., which could impact

on the rates of contact for HCV transmission (Figure 4B). These

data, together with the age-stratification data shown in Figure 3,

are strongly suggestive of assortative mixing.

In sum, the patterns obtained from clinical and sociologic data

suggest that each HCV subtype analyzed here is characterized by

different social networks. We therefore propose that increasing

population growth, with its knock-on effects on increased social

network connectivity and assortative mixing in urban settings, has

played a major role in increasing the transmission rate of HCV in

São Paulo and perhaps more widely.

Figure 4. Scale-free sexual contact network of HCV carriers. A)
The cumulative frequency distribution P(k) versus the number of
partners (k) shows that the low connectivity end of this network
(individuals with 5 or less sexual partners) is associated with a higher
prevalence of HIV-1b infected individuals compared to the high
connectivity heavy tail-end of the network, which is in turn more
frequently associated by HCV-1a and 3a carriers. B) Social, clinical and
transmission risk factors are shown in increasing frequency in relation to
the high-connectivity group that includes all HCV patients with 50 or
more sexual contacts (dark grey) compared to the low-connectivity
group that includes all HCV patients with 5 or less sexual contacts (light
grey). The final two columns on the right show a preponderance of
males with increased risk factors and behaviors. The high frequency of
blood transfusions among the low-connectivity group shows its
importance for HCV transmission among the general population at
large up until the early 1990’s.
doi:10.1371/journal.pone.0011170.g004
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Supporting Information

Table S1 Bayes factor values obtained for substitution models

comparison.

Found at: doi:10.1371/journal.pone.0011170.s001 (0.07 MB

DOC)

Figure S1 Maximum likelihood phylogenetic trees of HCV

subtypes. Phylogenies were inferred using 335 sequences from

HCV-1a, 499 sequences from HCV-1b and 252 HCV-3a

sequences (i.e. a combination of those viruses sampled here and

those collected from GenBank). Sequences sampled in this work

are shown in phylogenies by colored branches, which indicate the

four distinct localities in the State of São Paulo: Ribeirão Preto

(red), São Bernardo do Campo (green), São Paulo (blue) and São

José do Rio Preto (yellow). There was an evident lack of

geographical structure in the data. Black branches correspond to

global reference sequences collated from GenBank. As Brazilian

sequences that fell within clusters of non-Brazilian sequences likely

signify recent migration they were excluded from the subsequent

phylodynamic analyses.

Found at: doi:10.1371/journal.pone.0011170.s002 (1.03 MB

TIF)

Figure S2 Bayesian skyline plots of the main subtypes found in

São Paulo: HCV-1a, HCV-3a and HCV-1b. Skyline plots

describe the mean change (bold line) in genetic diversity under

both the relaxed uncorrelated molecular clock (A, C, E) and strict

molecular clock (B, D and F) with values of the 95% of high

posterior density (HPD) shown in each case (light line).

Found at: doi:10.1371/journal.pone.0011170.s003 (0.88 MB TIF)

Figure S3 Relationship between population size in São Paulo

and viral dynamics. The graph shows the exponential population

growth in São Paulo State in the period 1920 to 2005 (left y-axis)

in millions of people and the increase of viral growth rate

(estimated using BEAST) during the same time period (right

y-axis). For comparison, the TMRCA for each subtype was

obtained also with Path-O-Gen, using the best ML phylogeny

inferred with GARLi. A summary of the change in time of HCV

growth rates and population size in São Paulo is shown in the

graph inserted in the upper left of the figure. Dots indicate the

growth rate values estimated for each subtype (shown with same

colors as in Figures 2 and 3) versus the log of the human

population size at the time of the most recent common ancestor

(TMRCA) of the subtype.

Found at: doi:10.1371/journal.pone.0011170.s004 (0.52 MB TIF)

Figure S4 Higher human population growth correlates with

higher rates of HCV growth. (A) Census population growth in São

Paulo (red dots) and the UK (blue dots) during the 20th Century.

The best-fit curve for both populations indicate linear growth in

the UK and exponential growth in the State of São Paulo. (B) By

partitioning the population of Brazil and the UK into age groups,

it appears that most of the growth in Brazil is taking place among

the age group that we found to be at a higher risk of infection by

HCV-1a and 3a (20–39 years-old). (C) The population growth rate

of HCV- 1a and HCV-3a was consistently higher in Brazil than in

the UK, suggesting that human population growth accelerates

HCV transmission.

Found at: doi:10.1371/journal.pone.0011170.s005 (0.62 MB TIF)
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