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Abstract

This paper examines optimal social linkage when each individual’s repeated interaction

with each of his neighbors creates spillovers. Each individuals’ discount factor is randomly

determined. A planner chooses a local interaction network or neighborhood design before

the discount factors are realized. Each individual then plays a repeated Prisoner’s Dilemma

game with his neighbors. A local trigger strategy equilibrium (LTSE) describes an equi-

librium in which each individual conditions his cooperation on the cooperation of at least

one “acceptable" group of neighbors. Our main results demonstrate a basic tradeoff in the
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design problem between suboptimal punishment and social conflict. Potentially suboptimal

punishment arises in designs with local interactions since in this case monitoring is imper-

fect. Due to heterogeneity of discount factors, however, greater social conflict may arise in

more connected networks. When individuals’ discount factors are known to the planner, the

optimal design exhibits a cooperative “core" and an uncooperative “fringe." Uncooperative

(impatient) types are connected to cooperative ones who tolerate their free riding so that

social conflict is kept to a minimum. By contrast, when the planner knows only the ex

ante distribution over individual discount factors, then in some cases the optimal design

partitions individuals into maximally connected cliques (e.g., cul-de-sacs), while in other

cases incomplete graphs with small overlap (e.g., grids) are possible.

JEL Fields: C7, D62, D7.

Keywords: repeated games, local interaction, social norms, neighborhood design, local trig-

ger strategy, spatial design.
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1 Introduction

It is well known that repeated play can mitigate free rider problems when social spillovers

exist. Standard results establish that cooperative outcomes are attainable when individuals

are sufficiently patient. These results usually pertain to environments with global interac-

tions – all individuals interact with one another in each repetition of the stage game.1

Less is known when interactions are local.2 Yet, in many instances local rather than

global interactions prevail. For example, a neighbor who leaves his porch light on illuminates

houses in direct view, but not those located further down the street; an office worker may

disrupt the work of those in adjacent cubicles, but not in non-adjacent ones; a gas station

that lowers its price attracts customers away from the station across the street but, perhaps,

not from the one two blocks away.

These local interaction settings share the characteristic that each person interacts with

only a subset of the relevant population. Moreover, the interaction need not be transitive;

one’s strategic “neighbors" may not be the same as one’s “neighbor’s neighbors." This paper

examines repeated play in such settings. Specifically, our goal is to compare consequences

of repeated play across different spatial designs. It turns out that some designs are more

conducive than others to socially desirable outcomes. We therefore address the question of

the optimal spatial or neighborhood design when free rider problems are localized.

1See, for example, Fudenberg andMaskin (1986). Some results also pertain to environments with random,

pairwise matching. See Kandori (1991), Ellison (1994), and Okuno-Fujiwara and Postlewaite (1995).
2Related models are discussed in Section 5.
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To focus on spillovers and free rider problems, this paper describes a design problem

in which each individual in a large society plays a repeated Prisoners Dilemma game with

his neighbors. An individual’s stage payoff is the sum of the payoffs from each neighbor

interaction. A social planner must choose a neighborhood design, a local interaction system

represented by an undirected graph. Each individual only interacts with, and observes

behavior of, those with whom he is linked.

An individual’s willingness to cooperate in this game is determined, in part, by the

opportunity cost of his time which, in turn, is determined by his discount factor. We allow

that discount factors are heterogeneous. Randomly determined discount factors introduce

heterogeneity in the population. The planner makes his choice of design knowing only the

joint distribution of discount factors of individuals.

A useful analogy is to that of a city planner who knows something about the aggregate

population characteristics, but does not know the identities of the residents who move in

after the houses are built. The structure of residential developments is, in fact, a com-

mon and interesting local interaction design problem. Social norms of cooperation differ

markedly across different communities. In many neighborhoods, for example, cooperative

arrangements in supervision of children, in maintaining communal spaces, or in monitoring

the safety of the neighborhood are common. In others less so. Typically, cooperative ar-

rangements, when they exist, are not coerced but instead rely on reciprocity and voluntary

“good will" of the residents. Detailed discussion, examples, and surveys of the effect of spa-

tial structure on these norms may be found in Logan and Molotch (1987), Landon (1994),
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Southworth and Ben-Joseph (1997), and White (1980).

The design of team projects in firms is another application. Individual workers differ

in their abilities to cooperate, and the project manager may not know these abilities ex

ante. The manager would thus find it optimal to maximize interaction between members,

but limit the size of teams based on expectations for cooperation.

To obtain useful results, we limit attention to a particular subset of the sequential

equilibria. We examine norms of conduct that rely on simple punishments to enforce social

cooperation. The concept of a local trigger strategy equilibrium (LTSE) is introduced to

describe a sequential equilibrium in “trigger strategies" in which each individual chooses to

condition his cooperation on the continued cooperation of at least one “acceptable" group

of neighbors. For instance, an individual living on a traditional street grid may choose to

cooperate as long as either of his two adjacent neighbors continues to do so. However, if

both neighbors ever choose to play uncooperatively then the individual permanently reverts

to uncooperative behavior himself. As in other repeated Prisoner’s Dilemma games, an

individual’s cooperation requires a certain threshold level of patience.

In the design problem, we study optimal local trigger strategy equilibria (LTSE) – those

that maximize the planner’s criterion in any neighborhood design. The main results of this

paper demonstrate a basic tradeoff in the design problem between suboptimal punishment

and social conflict. Potentially suboptimal punishment arises in designs with local inter-

actions since these interactions have private monitoring. Due to heterogeneity of discount

3



factors, however, greater social conflict may arise in more connected networks.

Whether this trade-off also holds in the general class of sequential equilibria is an open

question. Very likely, some generality is lost in our restricting attention to trigger strategies.

Later in the paper we examine some of the limitations quite explicitly.3 On the other hand,

remarkably little is known about forward looking equilibrium behavior in local interaction

models.4 Consequently, the restriction to local trigger strategies is a sensible starting

point. Trigger strategies have been much studied in the standard literature, and for good

reason: they are simple, easily followed norms which nevertheless require forward-looking

sophistication of the participants themselves. In our environment LTSE exhibit a large

variety of "in-equilibrium" free riding, selective enforcement, and other social phenomena

that emerge naturally from the heterogeneous agent, local interaction environment.

We are not aware of other work that examines the design of networks in repeated game

settings. A complete analysis of the local interaction setting with heterogeneous discounting

is a daunting, but worthwhile, task. This paper is therefore best viewed as a first step in

this much larger research agenda on optimal, dynamic social interaction.

The outline of the paper and description of results are as follows. Section 2 gives an

example that illustrates the basic tradeoff between connectivity and social conflict. The

benchmark model is then described in Section 3. Section 4 studies the case in which all

groups of connected individuals are maximally connected. Maximally connected graphs, or

3See Section 5.1
4See Section 6 for a discussion of the proximate literature.
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cliques, conform to the case where (1) the actions of each neighbor are consequential to all

others, and (2) these actions are observable to the others. For example, cul-de-sacs (circular

streets in which each house is in plain view of the others) have this property. Cliques

are of particular interest since maximal linkage is assumed implicitly in standard repeated

games with perfect monitoring. We characterize the planner’s problem when her choices are

restricted to cliques. Optimal clique size varies depending on the payoff and distributional

characteristics. Higher threshold discount factors are necessary for cooperation the smaller

the number of other cooperators in one’s neighborhood.

The general design problem is taken up in Section 5. The first main result characterizes

the “full information" solution, i.e., the solution when the distribution over discount factors

is degenerate. A special case of this is the standard assumption of homogeneous discount

factors.5 Not surprisingly, when everyone is sufficiently patient, the largest possible clique

is uniquely optimal. The problem is more interesting when discounting is heterogeneous

and bounded away from 1. Here we show that cliques need not be optimal. Generally, the

solution is shown to exhibit a cooperative “core" and an uncooperative “fringe." Sufficiently

patient neighbors (“cooperative types") are maximally connected to one another. However,

impatient or “uncooperative" types are also connected to certain individuals in the cooper-

ative group who are able to tolerate some free riding. Those who are both cooperative yet

comparatively intolerant of free riders are connected to fewer uncooperative neighbors. In

5With some notable exceptions (see Harrington (1989), Fudenberg, Kreps, and Maskin (1990), and Lehrer

and Pauzner (1999)), the individuals in repeated game models are assumed homogeneous with respect to

rates of time preference.
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this sense, the optimal design minimizes the degree of social conflict.

When the type distribution is not degenerate, the planner may not be able to prevent

social friction ex post. As a useful baseline case, we study symmetric graphs – those designs

for which all neighborhoods are of equal size – and IID type distributions. Symmetric

graphs with low connectivity (i.e., those with small numbers of links per person relative to

the maximum of n− 1 in a component of size n) provide more incentives to free ride. The

reason is that sanctions against free riding may not be credible if too many of the sanctioner’s

neighbors do not observe the defection. This is illustrated in Section 2. Low connectivity

results in imperfect monitoring. Maximal connectivity provides perfect monitoring, and

therefore provides maximal incentives to cooperate. Consequently, among symmetric graphs

with IID types, the optimal design partitions individuals into maximally connected graphs,

or cliques.

When some correlation in the joint distribution over types exists, optimal designs with

grid-like features are possible. Without independence, one person’s likelihood of realizing

a discount factor above a particular threshold may negatively or positively correlate with

another’s. We construct examples where grid designs are optimal.

We review the proximate literature in Section 6. Section 7 is an Appendix with details

of the proofs.
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Figure 1: Cul-De-Sac versus Street Grid

2 An Example

The two figures below correspond to distinct "neighborhood designs." In each, three individ-

uals are represented abstractly as nodes in a graph. The links express both the presence of

potential spillovers and the information flows. In Figure 1a, the individuals are maximally

connected in a clique, while in 1b the link between Neighbor 2 and Neighbor 3 is absent.

In the latter, neither Neighbor 2 nor Neighbor 3 observes the behavior of the other.6 One

interpretation is that in Figure 1a, these three live in houses arranged in a cul-de-sac, while

in Figure 1b, they live on a street grid.

In each link, the interaction each period is described by the Prisoner’s Dilemma game

in Figure 2 below. Each person can choose one of two actions, “C” or “D”. Action “C”

corresponds to “cooperative” behavior. In the case where the local interaction conforms

to residential settings, the cooperative action may be mowing the lawn, taking in one’s

garbage can at the end of the day, leaving an outdoor light on, or volunteering to maintain

6If, for instance, a neighbor enjoys viewing another neighbor’s flower bed, then the spillover coincides

with his observations of his neighbor.
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a communal garden. Conversely, action “D” is defined as the “deviant” or “uncooperative”

action. In each of these examples, an individual’s cooperative action confers external rewards

to others.

C D

C c, c - , d

D d,- 0, 0

Figure 2: Prisoner’s Dilemma Game

We assume d > c > 0 > − . Payoff c is the gain frommutual cooperation, d the gain from

“deviant" behavior, and the loss from being cheated. We also assume that 2c > d− > 0

so that mutual cooperation is Pareto undominated by any feasible payoff profile, and the

aggregate payoff is higher if a cooperative individual “tolerates" uncooperative behavior by

another.

While Figure 2 describes the payoffs from a single interaction between two individuals,

we examine activities with spillovers such as those mentioned above, whereby an individual

cannot isolate his behavior toward one neighbor from his behavior toward other neighbors.

In each period, an individual’s choice of “C" or “D" applies to all his links simultaneously.

In standard analysis of repeated PD, lower bounds on the discount factor δi for each

individual i = 1, 2, 3 determine when full cooperation, i.e., all neighbors choose “C", is an

equilibrium of the repeated game. To find this bound, one may examine a perfect equilibrium

in which the “grim trigger strategy" – defection is met with permanent reversion to the

Nash equilibrium – is used. If other neighbors adopt this strategy, then each individual i
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will choose “C" if c > (1− δi)d, i.e., the payoff from permanent cooperation outweighs the

one shot gain from defection. Full cooperation is therefore an equilibrium if

δi ≥
d− c

d
, i = 1, 2, 3. (1)

In both designs, Inequality (1) is necessary for full cooperation to constitute a perfect

equilibrium. In the clique, it is also sufficient. Since the interaction there is global, it is

no different from a standard three-person repeated game. By contrast, in the grid, there

is potentially an additional “perfection" constraint for Neighbor 1. When the grim trigger

punishments are used, this “perfection” constraint in the grid requires that if, for instance,

Neighbor 3 defects to “D”, then Neighbor 1 must retaliate by choosing “D” himself, rather

than tolerate 3’s behavior, even for just one period. However, by punishing Neighbor 3,

he threatens his relationship with Neighbor 2 who did not observe the deviation. This

constraint is satisfied if (1− δ1)d ≥ (1− δ1)(c− ) + δ1(1− δ1)d. Rewriting this inequality

yields an upper bound on δ1,

δ1 6
d− c

d
+

d
(2)

If 1 > δ1 > d−c
d
+

d
then an excessively patient Neighbor 1 using this strategy will not

punish a single deviator on either side.7 Instead, he will tolerate uncooperative behavior

7If discount factors are homogeneous, then Ellison (1994) describes an ingenious way of constructing

sequential equilibria for δ close to one that simulates the situation of smaller discount factors. Roughly, given

an equilibrium for a small discount factor, his construction replicates this equilibrium on every Nth period of

the repeated game for an appropriate choice of N . Consequently, equilibria exist for which the constraint (2)

does not apply. However, since this method uses the same re-normalization for everyone’s discount factor,
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by one of his two neighbors. In such a case, potential gain to “containment” of the bad

behavior on one side outweighs the gain to retaliation when a neighbor chooses “D”.

While the constraint in (2) describes the incentive to credibly punish an out-of-equilibrium

deviation, the violation of (2) describes the in-equilibrium incentive to tolerate one uncoop-

erative neighbor. Inequalities (1) and (2) therefore define three relevant intervals of discount

factors. Low types satisfy δL < d−c
d
, and hence, will never cooperate. “Tolerant" types sat-

isfy δT ≥ d−c
d
+

d
, meaning that they are patient enough, not only to cooperate themselves,

but will also tolerate uncooperative behavior from one other neighbor. Finally, “intolerant"

types are cooperative but intolerant of uncooperative behavior, i.e., d−c
d
6 δI <

d−c
d
+

d
.

Suppose, first, that all individuals are exceedingly patient, i.e., δi = δT , i = 1, 2, 3. It

is easy to see that the full-cooperation equilibrium exists in the clique. However, because

(2) is violated for Neighbor 1, this full-cooperation equilibrium does not exist for the grid.

The reason is that Neighbor 3 can choose “D” with impunity (alternatively, if Neighbor 3

cooperates then Neighbor 2 can choose “D" with impunity). Since Neighbor 1 will tolerate

such a defection, Neighbor 3 has no reason to continue to cooperate. In this sense, the

clique has higher aggregate welfare than the grid.

Now suppose δ1 = δT , δ2 = δI , δ3 = δL. Since Neighbor 3 is a low type , full

it may not work when discounting is sufficiently heterogeneous. A referee recently suggested, by way of an

interesting example, an asymmetric extension of Ellison’s technique to a local interaction environment. It is

hard to tell if the construction is widely applicable, but it does suggest a possible blueprint for incorporating

the Ellison technique in some heterogeneous discounting, local interaction settings.
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cooperation is not possible in any spatial arrangement. However, the following is a simple,

stationary sequential equilibrium in the grid. Neighbor 3 chooses “D", Neighbor 1 chooses

“C", thereby tolerating Neighbor 3’s bad behavior, and Neighbor 2 choose “C".

By contrast, this “partial cooperation" equilibrium does not exist in the clique. While

the link between the cooperating neighbors, Neighbors 1 and 2, poses no problem, the

link between Neighbors 2 and 3 is problematic. Neighbor 3’s behavior, while tolerable to

Neighbor 1, is intolerable to Neighbor 2. Discount factor δ2 satisfies both (1) and (2) which

means that Neighbor 2 is patient enough to cooperate in equilibrium, but not patient enough

to tolerate a neighbor choosing “D". Therefore, in a clique Neighbor 2 will only respond to

3’s choice by choosing “D", leaving Neighbor 1 no alternative but to choose “D". Since all

three choose “D" in the clique, the grid has higher aggregate welfare. Note also that the

assumption d− > 0 implies that the grid is better than a design that disconnects Neighbor

3 altogether.

The examples highlight an important tradeoff. If all individuals are patient, then struc-

tures with a high degree of social interaction, such as large cliques, are preferable. However,

when uncooperative types are present, then designs that limit social interaction among cer-

tain neighbors may be preferable. In the grid example, Neighbor 1, the more tolerant of

the two “cooperative" types, effectively “shields" behavior of the uncooperative Neighbor

3 from the less tolerant Neighbor 2. This tradeoff is relevant to a planner even if she does

not have precise information about individuals’ discount factors.
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3 The Model

3.1 Neighborhood Designs

A set M of individuals with m = |M | play an infinitely repeated game with network exter-

nalities. At the beginning of time t = 0, a residential planner chooses a local interaction

system that determines who interacts with whom. We refer to this structure as a neigh-

borhood design which is described as a collection of subsets N = (N1, . . . , Nm). For each

individual i, the set Ni is the collection of individuals with whom i interacts each period.

We refer to this subset as “i’s neighborhood". Hence, j ∈ Ni means that j is i’s neighbor.

We assume that i ∈ Ni (Ni is self inclusive). We also assume that the relation is symmetric

so that j ∈ Ni iff i ∈ Nj. Let ni = |Ni|.

The neighborhood design describes a repeated game of private monitoring. Specifically,

i ∈ Nj means not only that i and j directly interact, but also that i and j each observe

the history of the other’s behavior. Conversely, i /∈ Nj implies that i does not observe j’s

behavior.8

As before, we assume that the game in Figure 2 describes an individual’s interaction

with each of his neighbors. Let ati denote the action taken by individual i in period t.

Let atNi
= (atj)j∈Ni denote the behavior of everyone in i’s neighborhood (including, by

definition, i himself). Individual i’s t-period personal history is defined as the list hti =

8See Section 6 for extensions that break this link.
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( a1Ni
, a2Ni

, . . . , at−1Ni
). A standard notation denotes Hi as the set of all t-period personal

histories for i ∈M .

Individual i’s dynamic payoff is the discounted sum
P

t(1 − δi)δ
t
iui(a

t
Ni
) where δi is i’s

discount factor, and ui is i’s stage payoff function. Individual i’s payoff at date t is the sum

of the payoffs from each interaction. Hence, if q other individuals in neighborhood Ni play

“C" at time t then i’s temporal payoff is qc − (ni − 1 − q) if he plays “C", and is qd if

he plays “D". This specification captures both negative scale effects of congestion if most

neighbors choose “D", and positive scale effects of spillovers if most neighbors choose “C".

We assume that at date t = 0, before play begins, each individual’s discount factor is

randomly determined. Let G denote the joint distribution over vectors δ = (δ1, . . . , δm).

Once a vector δ is realized, it is common knowledge to everyone at the start of play. Each

individual then chooses a behavior strategy fi in the ensuing local interaction game. For

each personal history hi, we write fi(h; δ) ∈ {C,D} to denote i’s action as a function of

history h given a parameter vector of realized discount factors δ.9 Societal behavior in the

interaction game can now be completely described by a profile f = (fi)i∈M of strategies.

Clearly, the “uncooperative" profile in which everyone plays “D" regardless of history is a

sequential equilibrium.

The model differs from standard repeated games with perfect monitoring in two respects.

First, local interaction implies that a neighbor’s behavior may not be observed by one’s other

neighbor. Second, the dispersion of discount factors δi introduces heterogeneity across

9Only pure strategies are considered in this analysis.
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individuals. The presence of any number of impatient individuals implies that the Folk

Theorem will not generally apply. In such cases, certain neighborhoods may tolerate some

degree of in-equilibrium “cheating."

A planner who knows G must choose a neighborhood design before the realization δ. If,

following the planner’s chosen neighborhood design N = (N1, . . . ,Nm), a strategy profile f

is anticipated, then the planner’s criterion is the expected average discounted value

E

"
1

m

X
i∈M

∞X
t=1

(1− δi)δ
t−1
i ui(ã

t
Ni
(f))

#
, (3)

where E is the expectation operator taken with respect to distribution G, and ãtNi
(f) is the

action profile of i’s neighbors induced by anticipated profile f .

While other welfare criteria could be considered, the utilitarian criterion (3) is a logical

starting point for the study of network design because of its implied symmetry. In partic-

ular, it treats all links in the graph identically. The utilitarian criterion (3) presumes not

only equal treatment of all individuals and all links ex ante, but also weights equally each

player’s payoff under particular strategy profile f .10 Note also that by changing payoffs

asymmetrically in the game, one can obtain at least some of the optimal designs that could

be obtained by varying the welfare weights.

Unfortunately, three issues arise that render criterion (3) inadequate and intractable for

10Note that our social welfare criterion presumes that there are no side payments. Otherwise, an optimal

strategy profile may entail unbounded borrowing and lending. Also, the normalizations, (1−δi), make more

sense if discount factors come from differences in the pure rate of time preference rather than arise from

differing frequencies of play across individuals.
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our purposes. First, consistency requires that the same type of equilibrium be examined

across different types of designs. Otherwise, any design can be shown to maximize (3)

provided that the residents play the uncooperative equilibrium following any other chosen

design.11 To rule out designs which are supported by this “punishment-by-beliefs" scenario,

we ultimately restrict attention to sequential equilibrium profiles f that maximize (3) given

N . We call such a profile f ∗ optimal in design N . Let W (N) denote the value of (3) in the

optimal equilibrium f ∗. A design N is optimal if it solves:

max
N

W (N) (4)

Second, for tractability we consider solutions to (4) that ignore integer and remainder

problems. For example, suppose that the optimal design called for a replication of finite

component graphs, each with r individuals. To implement this design would require a

population size divisible by r. For our purposes we simply assume such divisibility. While

this entails some loss of generality, our solutions will approximate the actual solutions when

the population relative to the solution size is large enough or when the solution leaves a

small enough remainder.

Third, even the restriction to equilibria that maximize (3) is, in some sense, too broad. A

11Specifically, suppose there are two designs, N and N 0. In design N all residents choose D (the uncoop-

erative equilibrium), even though other equilibria exist. In design N 0, residents choose an equilibrium that

admits some social cooperation even though the uncooperative equilibrium always exists. While design N 0

then yields a higher value according to (3), the comparison is biased by the selective choice of equilibrium

in each.
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recent paper by Lehrer and Pauzner (1999) shows that equilibria can sustain payoffs outside

the convex hull of the stage game payoff set if individuals are sufficiently but heterogeneously

patient. The intuition is that relatively impatient players can receive favorable payoffs early

on, while relatively patient ones receive rewards later in the game. This means that the

optimal f in a maximally connected design may be highly nonstationary. Unfortunately,

even in games of complete information (i.e., maximal linkage) to date we are not aware of any

general characterization of the equilibrium payoff set when discounting is heterogeneous.12

Hence, for tractability, we introduce in the next Section a restriction to a certain class of

stationary equilibria. We would argue that this restriction admits a transparent comparison

with uniform discounting models, and, at the same time, highlights potential social conflicts

generated by the interaction of patient and impatient individuals.

3.2 Local Trigger Strategy Equilibria

Here we introduce a type of stationary, “trigger strategy" equilibrium for repeated play in

graphs. To facilitate our definition, some definitions and notation are needed.

First, for each individual i ∈ M and for each personal history hti let Ni(h
t
i) denote the

set of neighbors that have never chosen the deviant action, “D", in the past, i.e.,

Ni(h
t
i) = {j ∈ Ni : a

τ
j 6= D, ∀ τ < t}.

12Lehrer and Pauzner characterize the feasible payoff set for 2-player games, and go on to prove a Folk

Theorem as discounting approaches one, holding fixed the log ratio between the two players’ discount factors.
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Notice that Ni(h
1
i ) = Ni, i.e., everyone in the neighborhood is presumed cooperative in

the null history. Next, a collection, T ⊂ 2M , of sets is comprehensive if for any nonempty

set S ∈ T , if S 0 ⊇ S, then S 0 ∈ T . Comprehensive collections are those that are closed

under the taking of supersets of nonempty sets.

Definition 1 A local trigger strategy for individual i in the neighborhood design N is a

strategy fi satisfying: for each vector δ, there exists a comprehensive collection T δ
i ⊆ 2Ni of

subsets of neighbors of i such that for each personal history hi,

fi(hi; δ) =

⎧⎪⎪⎨⎪⎪⎩
C if Ni(hi) ∈ T δ

i \{∅}

D otherwise.

In words, a local trigger strategy in a neighborhood design is one in which an individual

agrees to cooperate if and only if i’s neighbors who have not yet defected are “acceptable"

according to T δ
i . Local trigger strategies require each person to bind his behavior to a,

perhaps not unique, selection of trustworthy members of his community. Comprehensivity

guarantees that reciprocity is (weakly) increasingly likely, the larger is the set of cooperators.

It also guarantees that “D" is an absorbing action for each individual. Since Ni(hi) can

never increase over time, once Ni(hi) /∈ T δ
i \{∅}, no subsequent cooperating set can be

included in T δ
i \{∅}.

Hereafter, we associate resident i’s local trigger strategy with the set T δ
i and refer to it

as i’s collection of “trigger sets." The collection T δ
i = {∅}, for example, corresponds to the

strategy, “always play D." The trigger set T δ
i = {S0 : S 0 ⊇ S} for some S ⊂ Ni corresponds
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to the strategy, “play C as long as everyone in S continues to play C; play D otherwise."

In this case, individual i’s cooperation depends on the continued cooperation of everyone

in set S.13 Such a strategy may be contrasted with the trigger set T δ
i = {{j}, {k}, {j, k}}

which corresponds to: “play C if either j or k continue to play C; play D otherwise."

In Figure 3 below, we describe an example of a sequential equilibrium in which each

individual uses a local trigger strategy. Using the three types, δL, δT and δI defined in the

previous Section, suppose that Neighbor 3 in Figure 3 is tolerant of a single free rider , i.e.,

δ3 = δT , while all others are cooperative but intolerant, i.e., δi = δI for all i 6= 3. Now

define: T δ
i = {Ni} for each i 6= 3, while T δ

3 = {{2, 3}, {3, 4}, {2, 3, 4}}. While each of the

others requires cooperation from everyone in his neighborhood, Neighbor 3 only requires it

from himself and either of his two neighbors. Despite Neighbor 3’s failure to punish each

neighbor individually, both Neighbors 2 and 4 will cooperate since sufficient deterrence is

provided by their end-point neighbors.

v v v v v
1 2 3 4 5

Figure 3: Neighbors on the Line

Certainly, local trigger strategies entail some loss of generality in the design problem.

Since nonstationary strategies are not considered, a relatively impatient neighbor plays

“D" permanently. The community might be better off if an impatient type could choose

13While the supersets of S are also acceptable, only the cooperation of members of S is essential for i’s

continued cooperation.
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“C" every nth period. However, to be successful in an environment with heterogeneous

discounting, time varying strategies such as this may require long memory and carefully

calibrated sanctioning tailored to the realized type of each individual. By contrast, local

trigger strategies are quite simple. They admit a very simple partition of private histories

into two states, “cooperative" and “punishment/free riding," the latter being absorbing.

Despite their simplicity, local trigger strategies will be shown to admit a large degree of

“in-equilibrium" free riding, selective enforcement, and other interesting social interactions

when spillovers are present.

Definition 2 A local trigger strategy equilibrium (LTSE) in neighborhood design N is a

collection of trigger strategy profiles, T = (T δ
i )i∈N, δ∈[0,1)m, that comprises, for each δ, a

sequential equilibrium. An optimal LTSE is an LTSE that maximizes the social welfare

criterion (3) in the class of LTSE.

Lemma 1 Let T be a LTSE, and let St denote the set of individuals that choose the co-

operative action C in date t in equilibrium. Then St = Sτ , for all t, τ ≥ 1, i.e, LTSE are

stationary.

The proof is straightforward and is contained (along with proofs of all subsequent results)

in the Appendix. As Section 2 showed, for some realizations of δ, LTSE may entail that

only a subset of individuals cooperate in equilibrium. Clearly, the set of LTSE is always

nonempty as it contains the “uncooperative equilibrium" T δ
i = {∅} for each i and each δ.

(Note that by our assumption that Ni(h
1
i ) = Ni, i.e., that everyone is presumed cooperative
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after the null history, an individual who chooses “D" in equilibrium will choose T δ
i = {∅}.

Hence, T δ
i 6= {∅} implies that i cooperates in equilibrium.) In all that follows, we assume

that the planning problem is solved assuming that optimal LTSE are used (where optimality

is restricted in the sense that it is relative to the set of LTSE). The notion of optimal design

is relative to this class.

4 Optimal Cliques

We first consider a special case in which the Planner is restricted to neighborhood designs

consisting of partitions into maximally connected neighborhoods or “cliques." These are

useful objects to study since they correspond to interactions in the standard repeated game

model. They also occur naturally in many real environments. For example, each neighbor

living in a cul-de-sac has full view and interacts with each of the his neighbors, or, each

large firm in a public, homogeneous product industry observes the sales of the other firms.

Assume then that the Planner chooses N from among the set of cliques of size no

greater than m to solve (4). In this case, the question of structure reduces to one of

size. To understand the determinants of optimal clique size, one must first characterize

incentive constraints implied by optimal LTSE, then use this characterization to construct

the planner’s criterion as a function of size. We obtain an explicit construction only for the

case where types (discount factors) are distributed iid. In the subsequent Section we prove

that cliques are optimal among all symmetric designs precisely when types are iid.
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The iid assumption on types allows us to focus on a single clique and drop “i" subscripts

for convenience. Formally, we may write the planner’s criterion as W (n) where n is the size

(number of individuals) in the clique. The optimal clique size is an integer n that maximizes

W (n) =
nX

s=0

p(s|n)v(s;n) (5)

where p(s|n) denotes the probability that s individuals are cooperative in an optimal LTSE

in a clique of size n, while v(s;n) is the aggregate value when s individuals are cooperative

in an n-clique, and is given by

v(s;n) =
1

n
[s(s− 1)c+ s(n− s)(d− )]

To maximize (5), a characterization of p is required. First, observe that since all neigh-

bors are connected to one another in any clique, deviations are common knowledge in the

group. If one neighbor deviates from prescribed cooperation, he can be sanctioned by all

neighbors, each knowing that all other neighbors will enforce sanctions. There is perfect

coordination of sanctions among all neighbors. Therefore, the equilibrium level of coopera-

tion in any LTSE is determined by the set of neighbors that satisfy a collection of simple,

single threshold, incentive constraints. Expecting that a deviation is met with immedi-

ate “grim trigger" sanction by all neighbors, an individual will cooperate in equilibrium if

(s− 1)c − (n− s) ≥ (1− δi)(s− 1)d or, equivalently, if

δi ≥ min{1, d− c

d
+

d

(n− s)

s− 1 } (6)

Notice that (6) is a generalization of the Inequalities (1) and (2). Clearly, the constraint is

less restrictive the larger is the number, s− 1, of cooperating neighbors.
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Using Inequality (6), the type space of discount factors can be segmented into intervals,

each consisting of types that tolerate precisely certain numbers of cooperating neighbors.

For the clique of size n, let Hn q ⊆ [0, 1] denote the set of types (discount factors) for each

individual which cannot tolerate q cooperating neighbors, but can tolerate q + 1 or more

cooperative neighbors where q < n. When q = n − 1 then the individual is an impatient

type. Using Inequality (6), one can verify that Hn n−1 = [0,
d−c
d
), and

Hn q =

∙
min

½
1,
d− c

d
+

d

[n− 1− (q + 1)]
(q + 1)

¾
,min

½
1,
d− c

d
+

d

(n− 1− q)

q

¾¶
if q = 0, . . . , n− 2.

Recall that G is the joint distribution on δ. Let Gi denote the marginal distribution on

δi. With iid types, we assume that each identical marginal Gi admits a density g so that

g(Hnq) ≡
R
Hnq

dGi denotes the probability of Hnq. Then, let

Gns =
nX

q=s

g(Hnq) = Gi

µ
min

½
1,
d− c

d
+

d

(n− s)

s

¾¶

In words, Gns is the probability that an individual i is too impatient to cooperate when s

of his neighbors are cooperative.

Our construction of p is nearly complete. Given any set of k individuals, we will say

that a vector r = (r1, . . . , rk) with ri ∈ {0, 1, . . . , k − 1} for each i is k-admissible if there

exists a permutation θ : {1, . . . k} → {1, . . . , k} such that the permuted vector rθ satisfies

rθ ≥ (0, 1, 2, . . . , k − 1). Let A(k) denote the set of k-admissible vectors. An admissible

point r is an integer-valued vector which, under some permutation, is bounded below by
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a stepwise ascending vector. For example, r = (0, k − 1, k − 1, . . . , k − 1) is admissible.

However, r = (0, 0, k − 1, k − 1, . . . , k − 1) is not.14

Theorem 1 The equilibrium distribution p on the number of cooperators in an n-clique is

given by

p(s|n) =
µ
n

s

¶
(1−Gn s−1)

s
X

r∈A(n−s)

n−sY
j=1

g(Hn s+rj)

The proof is in the Appendix. The probability derived in Theorem 1 describes a par-

ticular type of correlated binomial distribution (“success" likelihoods may be correlated).15

The purpose of the characterization in the Theorem 1 is to provide an algorithm for com-

puting optimally sized cliques. That is, an explicit solution to (5) can be computed using

the construction in Theorem 1.

To see how optimal clique size may vary, suppose that (1 − Gi(
d−c
d
)) = 1. Then all

individuals are commonly known to be cooperative and so W (n) = (n − 1)c. In this case,

optimal clique size is unbounded (see also Theorem 2 in the next Section). By contrast,

if Gi(
d−c
d
) = 1, then all individuals are commonly known to be uncooperative. Therefore,

W (n) = 0 for all n.

If there is any positive mass above d−c
d
then the planner’s payoff cannot be zero. Nev-

14Each admissible r can contain at most one “0", two “1"s, three “2"s, and so on.
15For a description and properties of correlated binomial distributions, see Johnson, Kotz, and Kemp

(1992), pp. 148-150.
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ertheless, one can construct distributions that bound optimal clique size. For example, let

α satisfy: 0 < α < Gi(
d−c
d
) and Gi(

d−c
d
+

d
(1−α)
α
) = 1. This last condition implies that no

individual will tolerate less than fraction α cooperative neighbors. With this distribution,

W (n) < 4c
X
s

s p(s|n) = 4c
X
s≥αn

s p(s|n) < 4c
X
s≥αn

s

µ
n

s

¶µ
1−Gi(

d− c

d
)

¶s

Gi

µ
d− c

d

¶n−s

(7)

The last inequality follows from the fact that in the standard binomial distribution with

success rate (1−G(d−c
d
)), types above (d−c)/d are presumed cooperative, while in the actual

distribution p, some types above that threshold may not cooperate. Hence, the standard

binomial distribution with success rate (1−G(d−c
d
)) first order stochastically dominates the

actual distribution p. Since α > (1 − G(d−c
d
)), the right hand side of the Inequality in (7)

converges to zero as n → ∞. To see this, observe that given the assumptions on α, the

right tail,
P

s≥αn
¡
n
s

¢ ¡
1−Gi(

d−c
d
)
¢s
Gi

¡
d−c
d

¢n−s
, is o( 1

an
) for some constant a > 1. Hence,

limn→∞W (n) = 0, and so optimal clique size is bounded.

5 Optimal Designs: The General Case

5.1 A Problem with Local Trigger Strategies

We now turn to the general design problem. As with cliques, a characterization of optimal

LTSE is required before proceeding with the planner’s problem. However, before proceed-

ing, we point out a shortcoming in LTSE. For some incompletely connected designs, the
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restriction implied by sequential equilibria in local trigger strategies can be unduly harsh.

In the example in Figure 4 above, each Neighbor has the same discount factors as in

Figure 3 from Section 3. The difference is that Neighbors 1 and 5 are linked, closing the

graph. With this change, the only LTSE is one in which all individuals play “D”! The reason

has to do with off-equilibrium behavior. Suppose, instead that all Neighbors cooperate and

play the same local trigger strategies as before. If, say, Neighbor 2 defects to “D”, Neighbor

3 must continue to cooperate as prescribed. However, Neighbor 2’s action causes a chain

reaction elsewhere: Neighbor 1 then plays “D”, then Neighbor 5, until Neighbor 3 faces

free riders from both sides. Yet, since Neighbor 3 observed the initial defection, he should

have been able to infer Neighbor 4’s reaction 3 periods later. In this case, Neighbor 3’s best

response is not a local trigger strategy.

The problem is most evident in designs that are cyclic and for discount factor profiles

with highly tolerant individuals. In all the subsequent results, however, these types of

"problem" designs do not arise as solutions to the planner’s problem. However, an example

is Section 6 indicates that cyclical graphs may solve the planner’s problem when types are

imperfectly correlated. Whether these types of examples are robust, or whether such designs

might arise for general sequential equilibria is an interesting, open question.
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Figure 4: Neighbors on the Circle

5.2 Incentive Constraints

For arbitrary neighborhood designs, LTSE are no longer simply characterized by a single

constraint such as Inequality (6). An individual can no longer count on the coordination

of punishments of all his neighbors. Additional “perfection" constraints are required. We

construct two constraints that are necessary conditions for LTSE. Though they are not

sufficient conditions, our results show that these constraints suffice to characterize optimal

designs in all the environments we examine. Specifically, in these environments, a design

that is optimal among all designs sustained by strategies satisfying these constraints is, in

fact, sustained by a local trigger strategy equilibrium.

To characterize these constraints, fix an LTSE T and a realization δ. Let S = (S1, . . . , Sm)

with Si ⊆ Ni for all i. Define

QT (S) =
©
k ∈M : Sk /∈ T δ

k \{∅}
ª

so that QT (S) denotes the set of all residents k ∈ M who choose “D" when the set Sk

constitutes the neighbors who choose “C". Given an initial state S0, the transition law
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of motion according to T is given by St
i = St−1

i \QT (St−1) for each t = 1, 2, . . .. Here, St
i

denotes the set of neighbors who choose “C" t periods after initial state S0. An equilibrium

path from S is a sequence {St} with S = S0 and for t = 1, 2, . . .,

St = (St
1, . . . , S

t
m) = ( S

t−1
1 \QT (St−1), . . . , St−1

m \QT (St−1) ). (8)

In a LTSE, if S∗i is i’s equilibrium set of cooperating neighbors, then S
∗ = (S∗i )i∈M is a fixed

point of the transition map defined by (8), then Observe that (∅, . . . , ∅) is a trivial fixed

point of this map. The aggregate set of cooperators is the union denoted by: S∗ = ∪iS∗i .

The transition equation (8) can be used to construct incentive constraints along the

equilibrium path. Given S∗ with i ∈ S∗i , let {Ŝt} denote an equilibrium path from S∗\{i}.

The latter denotes a continuation following a deviation by resident i from “C" to “D".

Letting s∗i = |S∗i | and ŝti = |Ŝt
i |, i’s equilibrium incentive to cooperate is given by

(s∗i − 1)c − (ni − s∗i ) ≥ (1− δi)(s
∗
i − 1)d + δi

∞X
t=1

(1− δi)δ
t−1
i ŝtid (9)

Notice that if i is expected to cooperate, then he anticipates (s∗i − 1) other cooperators

in his neighborhood, whereas if he deviates then there are ŝti other cooperators in the

continuation. In the case of a clique, all of i’s neighbors are able to punish him if he deviates.

Then (9) reduces to (6), the simple constraint for cooperation in a clique. Inequality (9)

implicitly defines a lower bound, Li(S
∗), for i’s patience parameter δi. That is, i chooses

“C" in equilibrium if δi ≥ Li(S).

A second, “perfection", constraint may be derived as follows. Suppose that S0 = S∗i \{j}

is observed by i, and the continuation prescribes that i “punish" j’s deviation. Let {St}

27



denote the path from S0, and let {S̃t} denote the path from S1∪ {i}. Then the individual’s

constraint is

∞X
t=1

(1− δi)δ
t−1
i sti d ≥ (1− δi)[(s

1
i − 1)c− (ni − s1i ) ] + δi

∞X
t=1

(1− δi)δ
t−1
i s̃ti d. (10)

Inequality (10 ) implicitly defines an upper bound, Ui(S
0), for i’s discount factor. If

δi > Ui(S
0) then the patient player prefers to tolerate a deviation in his neighborhood for

a period. This may occur when, for example, most of his neighbors do not initially observe

the deviation. It is not hard to see that Ui(S
0) = 1, i.e., the constraint never binds in a

clique. Since all individuals in the clique are connected, one can easily construct LTSE so

that all individuals punish a deviator.

Inequalities (9) and (10) are necessary conditions for a local trigger strategy profile to

be a LTSE. The constraint (9) determines incentives along the equilibrium path, while (10)

must hold after an immediate defection. Clearly, the set of local trigger strategies that

satisfy (9) and (10) is a superset of the set of LTSE.

Definition 3 A local trigger strategy profile, T , is said to be expanded optimal in N if it

is optimal in design N among all local trigger strategy profiles that satisfy constraints, (9)

and (10). A neighborhood design N is expanded optimal if it maximizes the social welfare

criterion, (4) , over all designs sustained by expanded optimal trigger strategies.

The notion of expanded optimality will prove useful when characterizing optimal designs

in the results below. Roughly, we will show that the resulting expanded optimal designs are
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sustained not just by the trigger strategies satisfying these incentive constraints, but are

sustained by equilibrium (i.e., LTSE) trigger strategies.

5.3 Characterizing Optimal Designs

What types of designs are optimal when the planner can choose from among possibly in-

complete designs? In this Section we characterize the optimal neighborhood design for two

special, but important cases. We first take up the case when the planner has full informa-

tion. In this case, the distributionG is degenerate, and so the planner can connect particular

types, fully anticipating the degree of cooperation resulting from their interaction. In the

second case, the types are independently and identically distributed. With this degree of

uncertainty, individuals are identical ex ante, though ex post the planner cannot be certain

that particular neighbors will end up compatible.

Before proceeding with the aforementioned characterizations, we prove a preliminary

result below which reveals why heterogeneity is necessary for the planning problem to be

nontrivial. The notation supp G refers the support of G.

Theorem 2 1. If supp G ⊆ [d−c
d
, 1)m, then an optimal neighborhood design is uniquely

given by the maximal clique: Ni =M for all i.

2. If supp G ⊆ [0, d−c
d
)m then any neighborhood design is optimal.

Part 1, the first support condition, is more important than Part 2. Part 1 covers the
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typical case of observable, homogeneous discount factors (i.e., distribution G is degenerate

and places full mass on the vector (δ̂, . . . , δ̂) for some δ̂ ≥ d−c
d
). Given the result, the design

problem is relatively uninteresting in conditions under which the Folk Theorem applies.

Limited interaction is optimal only when irreconcilable social conflicts arise. Part 2 is

sensitive to the particular normalization we use in the stage game. For if the payoff to the

pair (D,D) is greater than zero, then connected nodes are generally preferable to singletons.

The result is straightforward, utilizing incentive constraints (9) and (10). The idea is

that, first, we use the constraints to find the expanded optimal design. Next, we show that

because the resulting design in Part (i) is a clique, this design can naturally be sustained

by a standard, grim trigger strategy which is a special case of a LTSE. Consequently, the

design is optimal.

Full Information

Suppose that the planner knows the exact value of δ, that is, let G be the degenerate

distribution that places probability one on some vector δ = (δ1, ..., δm). Define the set

Ω = {i : δi ≥ d−c
d
}. A preliminary result establishes that in the full information case, all

individuals in Ω cooperate in any expanded optimal local trigger strategy.

Lemma 2 Suppose G is a degenerate distribution that places full mass on some δ. Let N

be any expanded optimal design. If T is a local trigger strategy that sustains N then T

satisfies T δ
i 6= {∅}, ∀i ∈ Ω, and T δ

i = {∅}, ∀i /∈ Ω,
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The proof is in the Appendix. Let |Ω| = ω. The Lemma states that there are precisely ω

cooperators and m−ω uncooperative individuals. To see how they are all connected in the

optimal design, we begin by partitioning the cooperators in Ω by their degree of tolerance

for free riders.

Ω1 = {i ∈M : δi ≥ d−c
d
+

d
1

ω−1}

...

Ωk = {i ∈M : δi ≥ d−c
d
+

d
k

ω−1}

...

Ωm−ω = {i ∈M : δi ≥ d−c
d
+

d
m−ω
ω−1 }

Using Inequality (6), the set Ωk is the subset of cooperators in Ω who are able to tolerate

being connected to at most k free riders out of ω+ k total neighbors. Note that Ωk ⊂ Ωk−1,

and it may be the case that Ωk = ∅ for some large enough index k. We can now describe

the full information optimum.

Theorem 3 Suppose that G is degenerate. Then every optimal neighborhood design, N ,

31



satisfies,

(i) i ∈ Nj , ∀i, j ∈ Ω, and

(ii) there exists an ordering, i1, i2, . . . , im−ω, of the uncooperative individuals,

such that for each k = 1, . . . ,m− ω, ik ∈ Nj iff j ∈ Ωk.

Since uncooperative individuals in M\Ω are indistinguishable, all optimal designs are

equivalent up to payoff-irrelevant permutations of uncooperative individuals. According

to the result, the optimal design exhibits a spatial pattern with a cooperative “core" and

an uncooperative “fringe" connected to the more tolerant elements of the core. Since the

planner has full information, he knows where the social frictions lie. While all pairs of

cooperative individuals are linked, each uncooperative individual is connected to as many

cooperators as will tolerate his free riding. The gain to each uncooperative neighbor net of

the loss to the cooperator is d− .

The neighborhood design described in Theorem 3 characterizes a point on the Pareto

frontier which maximizes (4). The welfare weights implied by (4) are identical for all indi-

viduals. However, the same design is robust with respect to small perturbations in these

welfare weights. To see this, take any pair of individuals. If both are cooperative, or if

both are uncooperative, then there is no issue as to whether they should be connected.

However, if the link is one in which one individual is cooperative while the other is not,

then ideally they should be connected iff (1− β)d− β > 0 where β is a normalized welfare

weight between the two. The present welfare criterion assumes that β = 1/2. Since we
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assume d− > 0, then for small perturbations of weights around 1/2, the currently optimal

design remains optimal. If, however, β is enough close to one, then the pair should not be

connected.16 Note that if d − < 0, then there is no social gain to connecting this pair

unless β is close to zero.

The proof of the Theorem is as follows. First, notice that if the design can be shown to

be expanded optimal, then it is, in fact, optimal in the original sense. The reason is that

all cooperators form a clique. Since only their incentives need to be checked (uncooperative

individuals always play best response by choosing D), there are no perfection constraints.

Hence, constraint (9) is both necessary and sufficient to characterize LTSE.

It suffices, therefore, to check that every expanded optimal design satisfies (i) and (ii).

Part (i) in the theorem is a straightforward consequence of the Lemma. Since connectivity

among cooperators increases social welfare, it is clear from the Lemma that all cooperators in

Ω should be connected to each other. Part (ii) follows from the assumption that d− > 0.

When d − > 0, there is a net social gain to connecting a free rider to a cooperator

provided that the cooperator is not induced to change his behavior as a result. Part (ii) is

an iterative application of the equilibrium incentive constraint (6). The degree of slackness

in the incentive constraints of cooperators determines the feasibility of adding a marginal

free rider.17 However, each additional free rider raises the threshold required to tolerate

subsequent free riders. Hence, if Ωk = ∅, then at most only k − 1 free riders are tolerated
16We thank a referee for pointing this out.
17This aspect is reminiscent of Bernheim and Whinston’s (1990) study of collusion in multi-market firms.

The difference is that their design decision is decentralized and limited to one firm’s connections.
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Figure 5: Examples of Optimal Designs

in the network. The rest remain unconnected to cooperators.

The graphs in Figure 5 illustrate three examples of optimal designs. The types L, I and

T correspond to the familiar three types δL, δI and δT in Section 1. Recall that low types

L never cooperate; intolerant types I only cooperate if surrounded by other cooperators;

tolerant types T tolerate a single free rider. Type H is assumed to lie in Ω2 so that this

type tolerates two free riders.

Unknown Types

A design N is symmetric if ni = nj for all pairs of individuals i and j. Symmetric graphs

serve as a useful benchmark for examining the planner’s decision problem. With symmetry,

analysis is more tractable since each neighborhood is representative, and so a local exami-

nation of behavior is without loss of generality. Symmetry may also facilitate commitment

by the planner. Consider, for example, a planner who must assign the individuals to the

graph when only the ex ante distribution of types is unknown. A planner with egalitarian
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concerns, for example, has no incentive to re-assign individuals after learning the realized

or sample distribution (though not the specific identities) of types.

We show that when the type distribution is iid the optimal neighborhood design in the

class of symmetric designs will partition society into cliques of identical size.18 Since cliques

are maximally connected coalitions or communities, one person’s decision affects everyone

in his local community. Social cooperation becomes a local public good.

Theorem 4 If discount factors are distributed iid, then for any symmetric design, N , there

is a neighborhood design N∗ which partitions the population into identically sized cliques,

and such that W (N∗) ≥W (N).

The idea of the proof is quite simple. Cliques are symmetric graphs which are shown to

provide maximal incentives to cooperate.

Proof of Theorem 4

Recall that i’s action in any period t is denoted by ati ∈ {C,D}. It will prove more

convenient to denote i’s action by its equivalent mixed strategy in {0, 1}. Let σi ∈ {0, 1}

denote individual i’s action, where σi = 1 is the value of the mixed strategy that places full

mass on ai = C (“cooperate") while σ = 0 is the value of the mixed strategy that places

full mass on ai = D (“defect").

18A referee correctly pointed out that symmetric designs are almost certainly not optimal generally if

“remainder problems" are not ignored. For example, it is better in certain cases to leave some of the

individuals unconnected if the probability of the uncooperative type is high.
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Let σ = (σ1, . . . , σm) and σNi =
P

j∈Ni\{i} σj.

Fixing, for the moment, an arbitrary (possibly non-symmetric) design N , and given any

realized vector δ of discount factors, we define Vi(σ,Ni) to be the average payoff of the ni−1

paired links, each of which include individual i. Specifically, if individual i chooses to be

cooperative, i.e., if he chooses σi = 1, then the average of payoffs over all ni − 1 links is

σNic + (ni − 1 − σNi)
(d− )
2
.19 If, however, individual i chooses to be uncooperative, i.e., if

σi = 0, then the average payoff over the ni− 1 links is σNi

(d− )
2
. Accounting for either of i’s

choices, this average link payoff can be expressed succinctly as

Vi(σ,Ni) ≡ σi

∙
σNi(c−

d−
2
) + (ni − 1)

d−
2

¸
+ (1− σi)σNi

d−
2

= σi

∙
σNi(c−

d−
2
) + ((ni − 1)− σNi)

d−
2

¸
+ σNi

d−
2

(11)

We can now express the aggregate payoff each period as the sum

V (σ,N) ≡ 1

m

X
i∈M

Vi(σi,Ni) (12)

Lemma 3 The function V in (12) is strictly increasing in σ, and, for each i, is an affine

function of σi.

The proof of this and all subsequent Lemmatta are contained in the Appendix.

Now, consider any expanded optimal local trigger strategy profile. Along the realized

19If, in any of i’s links, both individuals cooperate, then the total payoff between them is 2c. If only one

of them cooperates then the total payoff is d− , while if neither cooperate, then the payoff is 0.
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path of any such profile, actions are stationary. Therefore, let

σ∗(δ,N) = (σ∗1(δ,N), . . . , σ
∗
m(δ,N) )

denote the action profile along the realized path, i.e., the action profile which maximizes

(12) among all local trigger strategies satisfying incentive constraints (9) and (10). Clearly,

σ∗ depends (explicitly) on both δ and N .

The social planner’s expanded optimal criterion can now be described in terms of V :

W (N) =

Z
δ

V (σ∗(δ,N), N) dG (13)

where, here, W (N) denotes the expanded optimal, rather than optimal, planner’s payoff

given the expanded optimal local trigger strategy.

We now proceed to construct another artificial planner’s criterion W̄ (N) based on

"pseudo-equilibrium" behavior in which each individual believes, possibly falsely, that all

other neighbors in his neighborhood Ni will observe and therefore punish a deviant neighbor

in Ni. The construction of W̄ proceeds as follows.

For each δ and each designN , define a “best response" functionΦi(· ; δi, Ni) : {0, 1}m−1 →

{0, 1} by

Φi(σ−i; δi, Ni) =

⎧⎪⎪⎨⎪⎪⎩
1 if δi ≥ min{1, d− c

d
+

d

(ni − 1− σNi)

σNi

}

0 if otherwise

(14)

Recalling that Inequality (6) is necessary and, in an optimal LTSE, sufficient condition

for i’s cooperation in a clique of size ni, the function Φi(σ−i; δi, Ni) takes a value of “1"
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whenever this same condition holds. Hence, Φi(σ−i; δi, Ni) may be interpreted as the best

response to σ−i if i holds the potentially false belief that all individuals in his neighborhood

observe and punish any deviant in Ni.

Let Φ denote the “best response" map for all individuals:

Φ(σ; δ,N) = (Φ1(σ−1; δ1,N1), . . . ,Φm(σ−m; δm, Nm) )

Observe that for any pair of individuals, i and j, Φi = Φj up to isomorphism.20 Moreover,

since Φ is increasing in σ, Tarsky’s Fixed Point Theorem applies. Hence, there is some σ

for which σ = Φ(σ; δ,N). Denoting the explicit dependence on δ and N , let

σ̄(δ,N) = (σ̄1(δ,N), . . . , σ̄m(δ,N) )

be the fixed point which maximizes (12) among all fixed points of Φ(·; δ,N). We remark

that the vector of actions, σ̄(δ,N), is the natural analogue of the σ∗(δ,N) in the expanded

optimal local trigger strategy. The difference is that σ̄(δ,N) is an “equilibrium" of the

game in which each individual has an incorrect model of his neighbors’ observations about

his other neighbors’ behavior.

Now define W̄ by

W̄ (N) =

Z
δ

V (σ̄(δ,N),N) dG (15)

20Technically, since i ∈ Ni, we cannot define Φj on the set (σ−i, δi;Ni). However, it is clear that by

placing individual j in i’s position in the graph, his “best response" defined by (14) would prescribe the

same behavior given the same discount factor as i.

38



Lemma 4 For any design N ,

W̄ (N) ≥W (N)

The idea of the proof is to show that for each δ an individual who cooperates under

σ∗ will also cooperate under σ̄. Note that, so far, nothing in the proof has restricted the

analysis to symmetric designs.

Lemma 5 For any symmetric design, N 0 (where N 0 satisfies with n01 = · · · = n0m = n0),

there exists a neighborhood design N∗ which partitions individuals into identically sized

cliques of size n∗ = n0 and which satisfies

W̄ (N∗) = W̄ (N 0)

Using Lemma 5, for any symmetric design N 0 there is a partition, N∗, of individuals

into identically sized cliques, and W̄ (N∗) = W̄ (N 0). Observe that in any clique, there is

perfect monitoring within the clique. Therefore, equilibria exist in which each individual can

expect that all other individuals observe and punish a deviator. Hence, W (N∗) = W̄ (N∗).

Consequently,

W (N∗) = W̄ (N∗) = W̄ (N 0) ≥ W (N 0),
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where the last inequality follows directly from Lemma 4. SinceW (N∗) is the planner’s value

of a clique, it can be sustained by the obvious LTSE in which members of each clique play

the grim trigger strategy. We conclude the proof. ♦ ♦

When the distribution G admits correlation, then incomplete graphs with low neighbor

overlap may be optimal for certain regions of the parameter set. To see this, we work out

an example with four people and four types. As before, a low type, δL, is below the minimal

threshold for cooperation and so will always defect. An “intolerant" type, δI , will cooperate

so long as every one of his neighbors cooperates and defect if any of his neighbors defects.

The “tolerant" type, δT , is associated with residents who can withstand one defector for

every cooperator, but not more.

Consider a distributionGwhich puts full mass on the permutations from the set {δL, δI , δT , δT}.

The planner knows there are two tolerant types, one intolerant type, and one uncooperative

type (but does not know who is which). The payoffs associated with each of the structures

are listed under Case 1 of Table 1 below.

40



Graph Neighborhood Payoffs

Number Design

1  1
2
c

2  1
2
c+ 1

6
(d− )

3  2
3
c+ 1

6
(d− )

4  7
12
c+ 5

24
(d− )

5
 1

2
c+ 1

8
(d− )

6
 2

3
c+ 1

2
(d− )

7
 2

3
c+ 1

3
(d− )

8
 1

4
c+ 1

12
(d− )

9
 

0
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Table 1: The Permutations with Four Neighbors

To calculate a particular example, consider graph number 4 in Table 1. With probability

1
2
, the low type lies at one of the end points, in which case there is a 2

3
probability that the low

type’s neighbor is a tolerant type. This gives an average payoff of 1
4
(c+ c+ 2c+ (d− )) =¡

c+ 1
4
(d− )

¢
. There is also a 1

2
probability that the low type lies at one of the end points

and a 1
3
chance that the low type’s neighbor is an intolerant type, yielding an average payoff

of 1
4
(c+ c+ (d− )) =

¡
1
2
c+ 1

4
(d− )

¢
. Finally, there is a 1

2
probability that the low type

is on the interior with a 2
3
probability that its interior neighbor is a tolerant type. This

gives an average payoff of 1
4
(c+ c+ (d− )) =

¡
1
2
c+ 1

4
(d− )

¢
. All other possibilities

lead to no cooperation, hence a payoff of zero. Overall, the expected average payoff is

1
2
2
3

¡
c+ 1

4
(d− )

¢
+ 1

2
1
3

¡
1
2
c+ 1

4
(d− )

¢
+ 1

2
2
3

¡
1
2
+ 1

4
(d− )

¢
+ 1

2
1
3
0 = 7

12
c + 5

24
(d− ).

Note that in the clique (Graph 9), a “cascade” effect prevents any cooperation. The low

type is, by definition, uncooperative which induces the intolerant type to be uncooperative

which induces, in turn, the remaining two types to be uncooperative as well, so that no

cooperation is possible. While we cannot say which of the graphs are (fully) optimal, it

turns out that the square or closed grid structure (Graph 6) is expanded optimal. The

grid balances the connectivity gains when cooperators are linked against connectivity losses

when social conflicts, say between types L and I arise.
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6 Literature and Extensions

The present work is a first step toward finding a tractable model of ongoing social inter-

action. Problems with local externalities are cast here as mechanism design problems in

repeated games. While we are not aware of other work that does this, the nature of the

linkage relates the present paper to a growing literature on network externalities. These

include a wide variety of applications ranging from macroeconomic growth, e.g., Durlauf

(1993), and buyer-supplier relationships, e.g., Kranton and Minehart (2000, 2001), to in-

formation transmission, e.g., Bala and Goyal (1998, 2001), and social networks, e.g., Chwe

(2000).21 Of particular relevance for the present paper is a subset of this literature which

examines strategic (noncooperative) behavior in and/or strategic formation of networks.22

Examples include Anderlini and Ianni (1995), Bala and Goyal (1998, 2001), Bhaskar (1998)

Blume (1993, 1995), Epstein (1998), Houba, Tieman, and van der Laan (2000), Jackson and

Wolinsky (1996), Kranton and Minehart (2000, 2001), Lagunoff and Schreft (1999, 2001),

Morris (2000), and Vega-Redondo (2003), among others.23

With a few exceptions, these models tend to be either static or assume adaptive ad-

justment dynamics. By contrast, the present paper studies repeated game effects in graphs

21See also Katz and Shapiro (1994), and Sharkey (1993), and references contained therein.
22This is as distinct from cooperative game theoretic models of networks, some references for which can

be found in Sharkey (1993).
23The Morris paper is a good source for further references. Note also: Epstein (1998), Houba, Tieman,

and van der Laan (2000), and, Vega-Redondo (2003) all specifically examine local interaction models of

Prisoner’s Dilemma.
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with forward-looking agents. Exceptions are Bhaskar (1998) who studies Prisoner’s Dilemma

when agents are located on a line, and Lagunoff and Schreft (1999, 2001) who examine the

financial fragility of a network, and Vega-Redondo (2003) who examines network formation

when payoffs evolve randomly. Close analogues may also be found in the study of collusion

with multi-market firms (see Bernheim and Whinston (1990)), and in the study of multi-

lateral tariff cooperation (see Bagwell and Staiger (1999) and sources contained therein).

Also more closely related are general, repeated game models with private monitoring (see,

for example, Ben-Porath and Kahneman (1996), Kandori and Matsushima (1998), Mailath

and Morris (1999), and Ely and Valimaki (2002)).24 Repeated game effects have also been

studied in population games where individuals are repeatedly and randomly paired. See

Kandori (1991), Ellison (1994), and Okuno-Fujiwara and Postlewaite (1995). In population

games, full cooperation is shown to be supported in repeated Prisoner’s Dilemma games

when discount factors are high enough.25

In addition to local interaction, the present paper introduces heterogeneity in rates of

time preference. It is precisely this heterogeneity which makes the linkage design problem

nontrivial. Heterogeneity in discounting has been examined by Harrington (1989) who

24While our model is also one of private monitoring, other papers we have come across tend to either

augment the model with communication, or assume approximate perfect/public monitoring. In the latter

case, our graph-induced monitoring structure is bounded away from these limiting cases. In the former case,

with communication, a Folk Theorem of Ben-Porath and Kahneman (1996) applies to any neighborhood

design in which each individual is connected to at least two others.
25Kandori proves a Folk Theorem property for certain Prisoner’s Dilemma stage games. Ellison extends

the Kandori result to all PD games when a public randomizing device is available.
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studies the effect of discount rate differences on collusion in oligopolies, by Fudenberg, Kreps,

and Maskin (1990) who prove a limited Folk Theorem when some subset of individual’s

discount factors are zero (perfect impatience), and by Lehrer and Pauzner (1999) who

examine heterogeneity in general two-player repeated games.

Finally, our interest in the determinants of social cooperation is not so different from

a large literature modeling the determinants of group size, the effects of congestion, peer

effects, and the quality and quantity of public services in local jurisdictions. A small sample

includes de Bartolome (1990), Benabou (1993), Conley and Wooders (2001), Epple and Ro-

mano (1995), Glomm and Lagunoff (1998, 1999), Oates and Schwab (1991), and Scotchmer

(1985) to name only a few.26

A number of assumptions are used in the analysis for tractability. Four modifications in

future work would enrich the present analysis. First, the use of space and distance would

add a dimension of realism, particularly when the model applies to residential neighborhood

interaction. If, for example, externalities diminish with distance, then a planner may prefer

to mitigate the consequences of certain neighbor’s actions by increasing space between him

and others, rather than exclude the neighbor altogether.

Second, the perfect link between information flows and externalities could be severed.

The more interesting case occurs when the externalities flow beyond one’s observations.27

26See Conley and Wooders (2001) for further references.
27The case where a player’s information extends beyond his externalities is less interesting. To take an

extreme case, if residents could condition punishment on the behavior of everyone, then standard repeated
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In such a case, the moral hazard problem is more extreme in larger networks. This suggests

a smaller scale of linkage than before will be preferred by the planner.

Third, the design problem could be examined assuming types are private information

to the participants themselves. The addition of this type of incomplete information to the

imperfect monitoring environment considerably complicates the setup. The current model

seems reasonable when types are associated with observed characteristics such as social class

or ethnic background.

Fourth, the optimal design problem should be re-examined when nonstationary sequen-

tial equilibria are considered. Local trigger strategies entail loss of generality since occasional

cooperation is not admitted. The incentive constraints can be relaxed if, say, a relatively

impatient type need only choose “C" every nth period.

Finally, a more thorough characterization of the general correlated case is necessary.

Although we demonstrate cases where grids are optimal, general conditions under which

this is true have not been fully explored.

game arguments can be used to prove a Folk Theorem when the δ realizations are large enough. Kandori

(1992) makes this observation in a random matching model.
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7 Appendix

Proof of Lemma 1: Fix an LTSE T and suppose, by contradiction, that it is not

stationary. Let h̄τ denote an equilibrium path history up to (but not including) date τ ≥ 1.

Let t > 1 be the first date at which St 6= S1. Since, by construction, the set Ni(h̄
t
i) for each i

can never increase over time, it follows by definition of local trigger strategies that St ⊂ S1.

Let j ∈ S1\St. Since j ∈ St−1, it follows from the definition of local trigger strategies

that Nj(h̄
t−1
j ) ∈ T δ

j and Nj(h̄
t
j) /∈ T δ

j . But this implies that some other individual at date

t − 1 must have switched from C to D to have induced the change in j’s behavior. This

contradicts the supposition that t is the first date at which actions have changed. Hence,

St = S1 for all t. ♦

Proof of Theorem 1: As with the standard binomial with independent draws, there are
¡
n
s

¢
ways to select a set S with |S| = s cooperators. Fix one such set S. Each i ∈ S will cooperate

if δi satisfies Inequality 6 or, equivalently, if δi ∈ ∪s−1q=0Hnq. Using the definition of Gns, the

probability that each i ∈ S cooperates is therefore (1 − Gn s−1)
s. Now order individuals

in N\S, j = 1, 2, . . . , n − s. Utilizing the definition of Hnq, consider the first individual

j = 1 who conditions only on the behavior of members of S, and does not condition on the

other members of N\S. This individual will choose “D" if δ1 ∈ ∪n−s−1r1=0 Hn s+r1. Suppose

that r1 takes its minimal value r1 = 0. Then this individual could conceivably cooperate

if all other members of N\S cooperate. Conditioning on this possibility, individual j = 2

will choose “D" if δ2 ∈ ∪n−s−1r2=1
Hn s+r2 . Note that r2 6= 0 since he must account for 1’s
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behavior. Proceeding in this way, if for j = 1, 2, . . . , k − 1, rj takes on its minimal value,

then individual k will choose “D" if δk ∈ ∪n−s−1rk=k−1Hn s+rk . The vector r = (r1, . . . , rn−s) we

have constructed has the form r = (0, 1, 2, . . . , n − s), and is therefore minimally n − s-

admissible. By considering all permutations of the set N\S, and all r0 ≥ r, we obtain the

n− s-admissible set, A(n− s). The probability that all individuals in N\S choose “D" is

then X
r∈A(n−s)

n−sY
j=1

g(Hn s+rj)

♦

Proof of Theorem 2 (1) Let supp G ⊆ [d−c
d
, 1)m. Then we show that in any clique N 0

with m0 = |M 0|, the maximal LTSE entails that everyone play C. Any defection is followed

by a grim trigger strategy in which everyone plays D thereafter. If such an equilibrium

exists, then W (N 0; f) = (m0 − 1)c. Observe that if m0 = m, i.e., the clique is the maximal

one, then the planner’s criterion is maximal over all possible neighborhood designs. We

now show that this equilibrium exists, and so the planner can realize W (N 0; f) = (m0− 1)c.

Recall that Inequality (9) is the relevant incentive constraint when Si = S∗i . Since the

grim trigger is played by all in state S∗i \{i}, the incentive constraint in (9) reduces to the

Inequality in (6). But in the maximal clique, s∗i = s∗j = m for all i and j. Therefore,

the incentive constraint is δi ≥ d−c
d
which clearly holds when supp G ⊆ [d−c

d
, 1)m. Finally,

observe that perfection constraints never bind in the grim trigger local trigger strategies in

cliques. Hence, (9) is, in fact, a sufficient condition for a local trigger strategy to comprise

a LTSE.
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(2) Clearly the bound (d − c)/d is the minimal lower bound for δi in any equilibrium

of any neighborhood design. Hence, if supp G ⊆ [0, d−c
d
)m then in any neighborhood design

the only possible LTSE is the one in which all individuals play “D" every period. Therefore

the planner is indifferent between all designs. ♦

Proof of Lemma 2: Suppose that N = (N1, ..., Nm) is an expanded optimal design.

Suppose, by contradiction, that ati = D for some i ∈ Ω and some t in the expanded optimal

trigger strategy. Because local trigger strategies are stationary, we must have ati = D for all

t. This stationarity, coupled with fact that G is degenerate, allows us to express (3) as

W (N) =
1

m
(1− δ)

X
t

⎛⎝ X
j∈M\{i}

δtjuj(eatNj
(f)) + δtiui(eatNi

(f))

⎞⎠

Let S denote the aggregate set of cooperators in equilibrium in design N . Let K =

M\(S ∪ {i}) and define N 0 = (N 0
1, ..., N

0
m) by:

N 0
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nj\{i} if j ∈ K

Nj ∪ {i} if j ∈ S

Ni\K if j = i
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In words, N 0 connects i to all the current cooperators in M , and removes him from all

current uncooperative individuals. We now modify the old LTSE as follows. Let CH(S)

denote the comprehensive hull, i.e., the collection of sets defined by including all super-

sets of the set S. By writing CH(T ∪ S) to express the collection defined by taking the

comprehensive hull of all the sets in T when S is added to the collection. Let

T δ0
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CH(T δ
j ∪ {i}) if j ∈ S

T δ
j if j ∈ K

CH(T δ
i ∪ {S}) if j = i

We assert that this is indeed an expanded optimal local trigger strategy profile. First,

behavior in K is unchanged. Second, current cooperators in S continue to cooperate with

additional incentives since the same set of punishers is strictly larger as it now includes i.

It remains to show that i has an incentive to cooperate. Since he is only connected to those

in S and since i ∈ Ω, δi ≥ L(S) = d−c
d
. That is, his incentive constraint (9) holds. To

verify the perfection constraint (10) of those who would punish i, observe that if i defects,

everyone punishes him. Hence, recalling the notation Ŝ = S\{i}, we have ŝti = 0 for all t.

Therefore, δj 6 U(S\{i}) = 1.

To verify that T 0 is expanded optimal, observe that individual i cooperates and is con-
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nected to all current cooperators in S. He is also disconnected to all free riders. Hence, in

every new link created in the new neighborhood structure N 0 there is mutual cooperation,

while in every deleted link, there had been none. Since T was asserted to be expanded

optimal in N , the local trigger strategy T 0 is expanded optimal in N 0.

We now show that W (N 0) > W (N). To see this, observe first that uj(eatN 0
j
(f)) =

uj(eatNj
(f)) ∀j ∈ K since all the defecting individuals who were previously connected to

i received a payoff of 0 from interacting with a mutually defective individual. Observe

next uk(eatN 0
k
(f)) = uk(eatNk

(f)) + c + ∀k ∈ S. Finally, ui(eatN 0
i
(f)) = |St

i |c, whereas

ui(eatNi
(f)) = |St

i |(d). Then, W (N 0) =W (N)+ |S|(c+ c+ −d) = W (N)+ |S|(2c− (d− )).

Since 2c > d− , W (N 0) > W (N). This contradicts the initial assumption that N was an

expanded optimal design. ♦

Proof of Lemma 3

Since V is a sum of all the Vi , the requisite properties on V can be verified by showing

that they hold on each Vi when restricted to (σi, σNi).

Using the first right-hand side term in (11), strict monotonicity of Vi in σNi
is easily

verified since c > d−
2

> 0 was assumed at the outset. To verify strict monotonicity in σi,

observe that since σNi ≤ ni− 1, and since the second bracketed expression in equation (11)

is positive, Vi is strictly increasing in σi. Finally, it follows directly from the construction

that each Vi is an affine function of σi and of σNi . ♦
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Proof of Lemma 4

Fix some individual i. Recall from the incentive constraints that Inequality (9) is a

necessary condition for cooperation in any LTSE. Moreover, if all of i’s neighbors are able

to punish him if he deviates, then (9) reduces to Inequality (6). Hence, σ∗i (δ,N) = 1 implies

that Inequality (6) holds. Using the construction in (14), the Inequality (6) holds whenever

Φi(σ−i; δi, Ni) = 1. Consequently,

σ∗i (δ,N) = 1 ⇒ Inequality (6) ⇒ σ̄i(δ,N) = 1

Since every individual’s cooperation in σ∗ implies that same individual’s cooperation in σ̄

for every N and every realization of δ, it follows that W̄ (N) ≥W (N). ♦

Proof of Lemma 5

For any N (symmetric or otherwise), let αi(N) ≡
R
δ
σ̄i(δ,N)dG, and αNi(N) ≡P

j∈Ni\{i} αj(Nj). Then let βij(N) ≡
R
δ
σ̄i(δ,N)σ̄j(δ,N)dG and βNi

(N) ≡
P

j∈Ni\{i} βij(N).

Finally let

α(N) ≡ (α1(N), . . . , αm(N) )

and

β(N) ≡ (βN1(N), . . . , βNm
(N) ).
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Observe that

W̄ (N) =

Z
δ

V (σ̄(δ,N), N) dG

=

Z
δ

V (σ̄1(δ,N), . . . , σ̄m(δ,N), N) dG

=
1

m

X
i

Z
δ

∙
σi(δ,N)σNi(δ,N)(c−

d−
2
) + σi(δ,N)((ni − 1)− σNi(δ,N))

d−
2

+ σNi(δ,N)
d−
2

¸
dG

=
1

m

X
i

∙
βNi
(N)(c− (d− ) ) + αi(N)(ni − 1)

d−
2

+ αNi(N)
d−
2

¸
≡ V̄ (α(N), β(N), N)

(16)

where the first two equalities follow from the definition of W̄ and σ̄, respectively, the third

equality follows from Lemma 3 and equations (11) and (12). The final equality clearly

follows from the way that α and β were defined.

Consider any symmetric design N . By the construction of (14), the resulting profile

σ̄ is symmetric, i.e., aggregate cooperation is invariant to permutations of δ. By the iid

assumption G admits a product measure G1 × · · · × Gm with Gi = Gj for all i and j,

and so αi(N) = αj(N) and βi(N) = βj(N) for the symmetric design N . Moreover, the

exchangeability property of the iid random variables (δi) implies that αi(N) = αi(N̂) and

βi(N) = βi(N̂) where N̂ is any design derived from N by permutation of the names of the

individuals in each neighborhood.

Now, given an arbitrary symmetric N 0, let N∗ be a design that partitions society into

identically sized cliques of size n∗ = n0. Then there is a collection of permutation maps (θi)

with θi : N
0
i → N∗

i such that θi(i) = i and θi(j) denotes i’s neighbor in N∗
i iff j was i’s
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neighbor in N 0
i . By our previous argument, αi(N

∗) = αi(N
0) and βi(N

∗) = βi(N
0) for each

i. Hence, using equation (16), we have

V̄ (α(N∗), β(N∗), N∗) = V̄ (α(N 0), β(N 0),N 0) (17)

Using the construction of W̄ in (15), equation (17) implies that W̄ (N∗) = W̄ (N 0). ♦
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