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Abstract

In this paper, we discuss a computational approach to the
cognitive task of social planning. First, we specify a class
of planning problems that involve an agent who attempts to
achieve its goals by altering other agents’ mental states. Next,
we describe SFPS, a flexible problem solver that generates
social plans of this sort, including ones that include decep-
tion and reasoning about other agents’ beliefs. We report the
results for experiments on social scenarios that involve differ-
ent levels of sophistication and that demonstrate both SFPS’s
capabilities and the sources of its power. Finally, we discuss
how our approach to social planning has been informed by
earlier work in the area and propose directions for additional
research on the topic.

1 Introduction and Motivation

Most Al research on planning and problem solving is con-
cerned with a single agent’s physical activities, but human
planning regularly incorporates interactions with other peo-
ple as a means to achieve goals. Sometimes these are simple
and straightforward, such as asking a taller person to reach
for an item on a shelf. More sophisticated plans may take
advantage of others’ ignorance or false beliefs, such as sell-
ing an item for a high price even when one knows it has little
value. Extreme cases, such as posing as a homeless person
to increase donations while panhandling, may even involve
intentional deceit.

Communicative acts are common in such social plans but
they are not necessary. One can suggest the need for help,
take advantage of ignorance, or engage in deceit without ver-
bal exchanges. What social planning requires is the ability
to reason about others’ mental states and about the effects of
one’s actions, verbal or otherwise, on them. This appears to
be a distinctive human trait, and our research aims to develop
a computational account of the structures and processes that
support it. We desire a general theory of social planning
that operates across different domain content and that han-
dles different level of sophistication in strategies for altering
other agents’ goals and beliefs.

Before we present such a theory, we should mention re-
search paradigms that address related issues but that differ
from our own along important dimensions. These include:
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e Game playing, an Al subfield that deals with settings in
which two or more agents compete to achieve some ob-
jective; most work in this area uses some form of ad-
versarial search (e.g., minimax), which adopts a simpler
model of mental states than concerns us here.

e Collaborative planning (e.g., Rao, Georgeff, and Sonen-
berg 1992), an area of Al that focuses on formation of
joint plans among multiple agents; work in this tradition
often encodes others’ mental states (e.g., Castelfranchi
1998), but typically assumes they share goals.

o Multi-agent systems (Sycara 1998), a broad subfield that
deals with coordination and collaboration among agents
that, in some cases, pursue shared goals (e.g., Levesque,
Cohen, and Nunes 1990); this contrasts with our con-
cerns, which revolve around single agents that achieve
their own goals in social settings.

e Dialogue systems, an area in which some efforts (e.g.,
Perrault and Allen 1980) represent and reason about
the effects of communicative actions on others’ men-
tal states; again, most work assumes that agents share
goals, but a few analyses have examined deception (e.g.,
Bridewell and Isaac 2011).

e Plan recognition (e.g., Goldman et al. 1999), an Al sub-
field concerned with inferring the goals that produce ob-
served behavior; most work in this area deals with sin-
gle agents, but some efforts (e.g., Meadows et al. 2013)
incorporate domain-independent rules about social rela-
tions to infer the beliefs and goals of interacting agents.

None of these research paradigms have the same emphasis
as our own, but each contains ideas and assumptions that
will prove relevant for our treatment of social planning.

In this paper, we present a computational theory that in-
corporates some aspects of these earlier paradigms, but com-
bines them in novel ways to provide a novel, system-level
account of social planning. In the section that follows, we
describe a class of scenarios that have driven our research on
this topic. After this, we review FPS, a problem-solving ar-
chitecture that we have used as the platform for our work.
We describe some representational and processing exten-
sions that let the system generate social plans, followed
by empirical studies that examine their effectiveness. We
conclude by reviewing related work in more detail and dis-
cussing avenues for future research.



Table 1: Four fable scenarios of varying levels of social complexity. The primary agent is a crow. Columns specify the problem
goals, simplified versions of the initial states, and plausible target plans.

Fable Initial State

Target Plan

HUNGRY DEER AND
FRIENDLY CROW belief(deer, canEat(deer, apple)
Goals: belief(deer, friends(crow, deer))

not(hungry(deer)) belief(deer, friends(deer, crow))

has(crow, apple) canEat(deer, apple)

friends(deer, crow) friends(crow, deer)

located(deer, field) located(crow, forest)
hungry(deer) goal(deer, not(hungry(deer)))

—_

. travel(crow, forest, field)
2. give(crow, deer, apple, field)
3. eat(deer, apple)

CRrROW FLEECES
THE SHEEP belief(sheep, canEat(sheep, berries))
belief(sheep, canEat(crow, berries))
Goals: has(crow, pebbles)  hungry(crow)

not(hungry(crow)) has(sheep, berries)

belief(sheep, value(berries, med))
belief(sheep, value(pebbles, med))

canEat(crow, berries) canEat(sheep, berries)

value(berries, med)  value(pebbles, low)

belief(sheep, belief(crow, value(berries, med)))
belief(sheep, belief(crow, value(pebbles, med)))
located(crow, field) located(sheep, field)

—_

. dishonest-trade(crow, sheep, pebbles, berries, field)
2. eat(crow, berries)

CROW MANIPULATES
THE CHEETAH
not(friends(crow, cheetah))
Goals: not(friends(cheetah, crow))
injured(lion)
not(injured(crow))
belief(lion, friends(crow, lion))

adjacentTo(cave, field) not(injured(crow))
not(friends(crow, lion))  not(friends(lion, crow))

belief(cheetah, friends(crow, cheetah))
belief(cheetah, friends(cheetah, crow))

belief(lion, friends(lion, crow)) located(lion, cave)
located(cheetah, field) located(crow, field)

. persuade(crow, cheetah, located(cheetah, cave), field)
. travel(cheetah, field, cave)

. travel(crow, field, cave)

. convince(crow, cheetah, insulted(lion, cheetah), cave)
. persuade(crow, cheetah, injured(lion), cave)

. fight(cheetah, lion, cave)

NN BN =

CUNNING CROW AND | has(crow, apple) has(sheep, jewel)
GREEDY SHEEP

Goals: goal(sheep, has(sheep, apple))
has(crow, jewel) belief(sheep, value(apple, mid))
belief(sheep, value(jewel, low))

value(apple, mid)  value(jewel, high)
located(crow, field) located(sheep, field)

belief(sheep, belief(crow, value(apple, mid)))

. bluff-inform(crow, sheep, value(jewel, med), field)
. dishonest-trade(sheep, crow, jewel, apple, field)

DN =

2 Social Planning Tasks

We are interested in a class of tasks — which we call social
planning — that can be characterized by three primary fea-
tures. First, they are situated in a physical setting with two
or more agents, including a primary agent whose beliefs and
goals drive the planning process. Second, they involve not
only knowledge about the conditional effects of physical ac-
tions on the environment, but also knowledge about the ef-
fects of social actions, such as communication, on the men-
tal states of agents. Finally, each participating agent, not just
the primary one, can access this knowledge.

We have developed scenarios similar to Aesop’s fables to
study this cognitive ability. They are brief, goal-directed,
focused on high-level social interactions, and involve agents
who reason about others’ mental states. Table 1 presents
four such vignettes, each described in terms of their ini-
tial state, the goals of the primary agent (here an intelligent
crow), and a target plan that achieves those goals.

The first scenario, Hungry Deer And Friendly Crow, il-
lustrates basic social planning: the crow works to achieve its
goal of satisfying one of the deer’s goals. The agents only
model each others’ mental states to the extent required by
this basic joint activity. The second scenario, Crow Fleeces
the Sheep, is more nuanced: the crow recognizes the sheep’s
false belief (the sheep believes that both he and the crow be-
lieve that the pebbles have medium value) and capitalizes on
it for his own ends. In the third scenario, Crow Manipulates
the Cheetah, the crow intentionally causes the cheetah to ac-
quire a false belief. This leads the cheetah to adopt a goal to
injure the lion, which produces a result the crow desires but
cannot achieve directly without harming itself.

The ability to utilize another agent’s belief or lack of be-
lief as part of a social stratagem can also arise at an embed-
ded level. The most sophisticated scenario, Cunning Crow
and Greedy Sheep, features a double bluff. The sheep has
found a high-value jewel, but believes it to be a worthless



paste gemstone. He wants the crow’s medium-value apple.
The crow cannot ask to trade with the sheep, as it believes
the sheep does not think the two objects have equal value.
Instead the crow comments aloud that the jewel must be of
medium value, knowing that the sheep does not agree and
leading him to think he can make a dishonest trade with the
crow. However, the crow intended for this to occur, and in
reality the trade the sheep initiates is in the crow’s favor.

Planning for such social vignettes appears to require ca-
pabilities for encoding and reasoning about agents’ models
of others’ mental states, representing social operators, and
reasoning about how others make inferences. We address
each of these issues below, but we must first review the ar-
chitecture in which we embed our responses.

3 An Architecture for Social Planning

We have chosen to implement our ideas on social planning
within the FPS problem-solving architecture (Langley et al.
2013). We will not claim that FPS is superior to other
problem-solving frameworks, but we found it easy to adapt
to the social planning task. In this section, we briefly review
the architecture’s representation and processes. After this,
we discuss extensions to support social planning, starting
with its representations and then turning to problem-solving
mechanisms. We will refer to the extended architecture as
SEPS, for Social Flexible Problem Solver.

3.1 A Review of FPS

Like many architectures, FPS contains a working memory
and a long-term memory. The primary structure in the for-
mer is the problem, which includes a state description and a
goal description. Another important structure is an intention
or operator instance. A solution to problem P comprises an
applied intention I, a subproblem for transforming P’s state
into one that meets I's conditions, a subproblem for trans-
forming the state produced by applying I into one that satis-
fies P’s goals, and solutions to both subproblems. The base
case is a trivial solution in which the state satisfies the goals.

Long-term memory contains two forms of content: do-
main knowledge, which defines predicates, operators, and
inference rules for a given problem domain, and strategic
knowledge, which is domain independent. Domain content
provides the material that planning uses to generate new sub-
problems, intentions, states, and goals; strategic content de-
termines the details of the problem-solving process.

As in Newell, Shaw, and Simon’s (1958) theory, problem
solving in FPS involves transforming an initial state into one
which satisfies the goal description by applying operators
that manipulate state information. The architecture operates
in cognitive cycles that involve five stages, each of which
uses structures in long-term memory to update the contents
of working memory. These include selecting a problem P on
which to focus, selecting an operator instance I relevant to P,
generating new subproblems based on I, checking for failure
(e.g., loops), and checking for success (e.g., satisfied goals).

For our work on social planning, we incorporated strate-
gic knowledge that combines iterative-sampling search,
backward chaining, and eager commitment methods. Our

pilot studies suggested that goal-driven problem solving is
more focused when tasks involve altering other agents’ men-
tal states, although another approach like forward chaining
might find the same solutions with additional search.

3.2 Representational Extensions

Before SFPS can generate social plans, it must first be able
to represent social situations and relations. The most im-
portant feature here is the ability to encode models of other
agents’ goals and beliefs. To this end, we have augmented
FPS’s notation for problem states. Propositions that de-
scribe a situation are stored in working memory as beliefs of
the primary agent.! Literals of the form belief(Agent, Con-
tent) specify that Agent believes Content. Embedded struc-
tures can denote beliefs about other agents’ beliefs, as in be-
lief(lion, belief(sheep, belief{lion, not(sick(lion))))), which
encodes the lion’s belief that the sheep believes the lion be-
lieves that he is not sick. SFPS represents an agent’s lack
of belief in some proposition Q by asserting the absence of
belief in either Q’s truth or falsehood. For example, taken
together belief(lion, not(belief(sheep, sick(lion))) and be-
lief(lion, not(belief(sheep, not(sick(lion))))) denote that the
lion believes the sheep does not know if the lion is sick.

The extended notation uses analogous literals of the form
goal(Agent, Content) to specify agents’ goals, which differ
from beliefs by describing propositions an agent wants to
hold. For example, goal(lion, located(sheep, cave)) encodes
the lion’s wish for the sheep be located in the cave. Em-
bedded structures may include goals as well as beliefs, as in
goal(lion, belief(sheep, goal(lion, has(lion, apple)))), which
says the lion wants the sheep to believe the lion’s wants the
apple. The primary agent’s goals are not embedded within
beliefs, but appear at the top level of memory.

In addition to domain-level operators, which alter the en-
vironment, SFPS also allows social operators that alter the
mental states of other agents. Each of the social operators,
which typically involve communication, are associated with
an acting agent, and may refer to agents’ beliefs and goals
in both its conditions and effects. For example, the operator

bluff-inform(Al, A2, Content, Place) [Al = actor] :
alive(Al), alive(A2), at(A1, Place), at(A2, Place)
belief(A2, not(Content))
belief(A1l, belief(A2, not(Content)))
not(belief(A2, belief(A1, not(Content))))
belief(A1, not(belief(A2, belief(A1, not(Content)))))
%
belief(A2, belief(A1, Content)) [main effect],
belief(A1l, belief(A2, belief(A1, Content))) [side effect]

defines a communicative action in which the acting agent,
Al, informs the other agent, A2, about a proposition that A2
already believes to be false. The action causes A2 to believe
that A1 believes the proposition is true.

"We do not assume the primary agent is omniscient: it does not
necessarily believe all true propositions about the world it inhabits.
It starts only with the beliefs specified in the initial state, which
may not be a complete world description.



As seen in the example, operators can have both main and
side effects, typically one of the former and several of the
latter. This distinction is useful when the primary agent must
incorporate other agents’ actions into its plans. The primary
agent should not assume that others will willingly perform
any action that helps achieve its goals. To this end, SFPS’s
intentions for nonprimary agents include an extra field to
specify the goal that motivated its selection.

3.3 Processing Extensions

These representational changes let SFPS encode the infor-
mation needed for social planning, but their effective use de-
pends on extended mechanisms. The basic problem-solving
cycle remains similar, but we have modified the architecture
in two primary ways. The first adds the ability to elaborate
states using query-driven deductive inference. This mecha-
nism operates during the intention generation, subproblem
creation, and termination checking stages, where it aids in
determining whether preconditions and goals are satisfied.

This reasoning process has more general applicability, but
it is especially important in social settings. The inference
stage can operate over domain rules, but SFPS also takes
advantage of conceptual rules like

not(belief(A, X) < belief(A, not(X)) and

not(belief(A, not(X)) < belief(A, X) .

These let the primary agent infer the truth of propositions
about lack of belief. For example, the first one lets it con-
clude, from belief(lion, hungry(crow)), that not(belief{lion,
not(hungry(crow)))).

Like its predecessor, SFPS adopts the closed world as-
sumption at the top level of the primary (planning) agent’s
beliefs. If this agent does not have a belief in working mem-
ory, and if it cannot infer it, then it does not hold that belief.
For another agent, A2, whose beliefs the primary agent at-
tempts to model, checking whether A2 is ignorant of some
proposition Q involves checking that both Q and its negation
appear within A2’s negated beliefs in the proper embedding.

However, to generate plans that incorporate the beliefs
and goals of other agents, SFPS must sometimes carry out
embedded inference. The application of social operators, for
example for communicating beliefs , produces some of these
directly. However, once these have been added to working
memory, the new stage applies inference rules for any em-
bedded context. For instance, given the rule

not(safe_at(A, P)) <— could_harm(B, A) N located(A, P)
and the working memory elements

belief(lion, belief(sheep, could_harm(lion, sheep)))
belief{lion, belief(sheep, located(lion, cave))) ,

the inference stage would add the working memory element
belief{lion, belief(sheep, not(safe_at(sheep, cave)))) .

for this state, even though the inference rule was defined
outside the context of any mental states.

Another extension involves the intention selection stage,
which SFPS must invoke not only for the primary agent
but also for other agents in the scenario. Recall that opera-
tors now distinguish between a main effect and side effects.
When selecting operator instances for nonprimary agents,

SFPS has a higher probability of selecting candidates that
achieve a goal through the main effect. This strategy does
not rule out entirely consideration of nonprimary intentions
that utilize side effects, but it discounts them and biases the
search process to favor plans that rely on main effects.

3.4 Illustrative Example

To explain the process of social planning, we examine a trace
of SFPS’s steps as it generates a solution for the Cunning
Crow and Greedy Sheep scenario from Table 1. We will
refer occasionally to issues of backtracking and search, but
we will focus mainly on choices included in the final plan.

The goal associated with the top-level problem is for the
primary agent, the crow, to have the jewel. SFPS uses back-
ward chaining to generate a set of candidate intentions based
on operators that would produce a state which satisfies the
goal description. These intentions include each agent trad-
ing their objects (both honestly and dishonestly), as well as
the sheep simply giving the crow the jewel.

The system rates each intention’s potential on the basis
of its unsatisfied conditions and the goals it would achieve.
Based on this rating, SFPS creates subproblems for each of
the give intention’s conditions, but attempts to solve them
fail, and it eventually selects a dishonest-trade intention with
the sheep initiating the trade, then uses the intention’s condi-
tions to specify the goals for a new subproblem. These goals
include certain beliefs about the relative values of the objects
being traded. For example, one of the operator’s conditions,
belief(Al, not(>worth(Obl, Ob2))), is not in working mem-
ory, so SFPS successfully deduces this relation using an in-
ference rule that states >worth(Objl, Obj2) if Objl’s value
is greater than or equal to Obj2’s value.

However, two conditions of the dishonest-trade(sheep,
crow, jewel, apple, field) intention are still not met in the ini-
tial state: belief(sheep, belief(crow, >worth(jewel, apple)))
and belief(sheep, belief(crow, >worth(apple, jewel))). No
operator achieves >worth directly, so SFPS resorts to em-
bedded inference to find operators whose application would
satisfy the current subproblem’s goals. In this case, it finds
that an operator with the effect belief(sheep, belief{crow,
value(jewel, med))), when combined with the existing ele-
ment belief(sheep, belief(crow, value(apple, med))), would
serve this purpose indirectly.

At this point, SFPS realizes that one of its communicative
actions will have the desired effect. The system selects the
intention bluff-inform(crow, sheep, value(jewel, high), field)
and finds its conditions are all satisfied. Applying it to the
initial situation produces a successor state that satisfies the
previously unsatisfied conditions of the dishonest-trade in-
tention. SFPS notices that applying this operator achieves
the top-level goal, and thus recognizes it has produced a plan
that solves the original problem, and halts its search.

This example demonstrates the system’s ability to con-
struct plans that are quite complex — not in their length, but
in their manipulation of others to the primary agent’s own
ends. Here the crow believes that the sheep does not believe
the crow thinks the objects have similar value, and that the
sheep actually believes the opposite, so the crow cannot ini-
tiate the trade. However, by tricking the sheep into believing



the crow has a false belief about the jewel’s value, he ma-
nipulates the sheep into capitalizing on what it incorrectly
views as the crow’s ignorance. This is a prime example of
what we call social planning.

3.5 Central Features

We can summarize these extensions in terms of three capa-
bilities that appear central to the task of social planning:

e Storing the primary agent’s beliefs/goals about others’
beliefs/goals, which may differ from its own structures;

e Elaborating upon states using inference, including apply-
ing rules within different levels of embedding;

e Incorporating other agents’ goals into plans, but prefer-
ring candidates that use operators’ main effects.

The first capability supports reasoning about the effects of
communication and interaction, whereas the second lets the
primary agent apply its knowledge to elaborate on the beliefs
of others. Without the final capability, nonprimary agents
would be mere extensions of the primary agent’s will, auto-
matically performing any action it desires and thus avoiding
the need for social manipulations. SFPS combines these ca-
pabilities into a novel architecture for social planning that
operates from the primary agent’s perspective in scenarios
that involve others who may hold fewer or different beliefs.

4 Empirical Evaluation

We have described extensions to FPS designed to let it en-
gage in the task of social planning, but whether they work as
intended is an empirical question. In this section, we present
three hypotheses about the system’s abilities and report ex-
periments designed to test these assertions.

4.1 Claims and Methodology

We are interested in SFPS’s ability to generate plausible
plans from the perspective of an agent in a social scenario.
These scenarios involve not simply interactions with other
agents, but also interactions that involve incomplete infor-
mation, reasoning based on false or incomplete beliefs, and
other agents who do not cooperate by default.

We can transform these ideas into three hypotheses about
the extended system’s ability to carry out social planning:

e SFPS can create plausible plans for achieving goals in
social scenarios;

e This ability relies on embedded inference to generate
models of others’ beliefs; and

e This ability also relies on SFPS’s capacity to incorporate
the actions of other agents in its plans.

We have tested these hypotheses experimentally using two
fables for each level of complexity, including those de-
scribed in Table 1. The target plans for this fable set have
an average of 3.2 operators. We addressed the first hypothe-
sis simply by running SFPS on each scenario and measuring
its success rate. To test the second claim, we removed the
ability to model the reasoning of nonprimary agents using
embedded inference. We evaluated the final hypothesis by
preventing creation of plans containing nonprimary actions.

Table 2: Experimental results. The rows describe, for each
level of sophistication, the number of runs in which SFPS
generated a plausible plan, generated an implausible plan,
or failed to generate a plan within 10,000 cycles. We ran the
system 50 times on each of the eight scenarios.

Level of Sophistication | Plausible | Implausible | Did Not
Plan Plan Finish
Basic Social Interation 75 25 0
Capitalize on Misbeliefs 78 22 0
Deceive Other Agents 68 29 3
Encourage False Beliefs 86 10 4

In order to determine SFPS’s proficiency in each condi-
tion, we must be able to measure its behavior. Our depen-
dent variable is the number of plausible plans generated. We
view a plan as plausible if its operator sequence transforms
the initial state into a goal-satisfying state with nonprimary
agents that only apply actions to achieve those operators’
main effects. We consider runs that generate plans violat-
ing this condition, or that exceed 10,000 cycles, to be fail-
ures. SFPS is nondeterministic, in that it selects intentions
probabilistically, so we ran it 50 times on each of the eight
problems and report summary results from these runs.

4.2 Experimental Results

Table 2 presents the results of our first experiment, ad-
dressing our basic claim, that SFPS can generate plans that
achieve the primary agent’s goals in a social setting. The
system found valid plans in 97 percent of runs, with the fail-
ures caused by reaching the cycle limit. These plans ranged
from two to six operators, with 3.2 on average. Some 38 per-
cent of these operators involved nonprimary agents. Success
rates differed slightly across levels of social sophistication.

However, SFPS did produce plans that involved nonpri-
mary agents carrying out actions involving unusual ‘side-
effect’” motivations in 22 percent of the completed runs. In
one run, a sheep asked a fox to adopt the goal of being in-
jured, so the fox would try to start a fight that benefited the
primary agent (injury of the acting agent being a side effect).
In this case, the bias against wishful thinking was ineffective
due to the probabilistic character of intention selection.

Our second hypothesis was that SFPS’s ability to gener-
ate social plans relies on its capability for embedded infer-
ence. With this facility disabled, the system found plans on
only 193 of the 400 problem runs. Of these, 38 had ac-
tions selected for their side effects. Most of the 207 failures
occurred before the cycle limit was reached, as the system
had generated all plans that it was possible to create without
embedded inference. This omission meant that the system
failed to realize that some operators would lead — indirectly
— to satisfaction of certain goals, which it did when embed-
ding was available. Despite this hindrance, SFPS still pro-
duced plans on nearly half of the runs (when those runs did
not rely on inference over the beliefs of nonprimary agents).



Our final claim focused on incorporating the actions of
other agents into plans. As this facility plays a central role
in our definition of social planning and was emphasized by
our scenarios, it is not surprising that, without this ability,
SFPS could find plans for only one of the eight problems.
However, it produced plausible solutions on all 50 runs for
that problem because there was a valid plan that only re-
quired actions of the primary agent. Of course, we might
have increased the system’s success rate if we had made ad-
ditional operators available to the primary agent, but these
would not have been social plans as we have defined them.

In summary, our experiments on the eight scenarios
demonstrated that SFPS can, in many cases, generate plau-
sible social plans that range from simple helping activities
to Machiavellian schemes that take advantage of false belief
and intentionally deceiving the other party. The studies also
revealed, as expected, that drawing inferences from the per-
spective of other agents and incorporating their actions into
plans were crucial to success on these tasks.

5 Related Research

As noted earlier, our approach to social planning borrows
ideas from a number of paradigms that we cannot review in
detail here. However, our research incorporates three key
ideas about social cognition, and we should briefly review
efforts related to each one.

Our account of social planning relies centrally on en-
coding the primary agent’s beliefs and goals about oth-
ers’ mental states and operators for altering them. There
is a substantial body of research on reasoning about other
agents’ mental states, including Fahlman’s (2011) work on
‘contexts’ in Scone, and Bello’s (2011) use of ‘worlds’ in
Polyscheme, but these and most other efforts have focused
on reasoning rather than on goal-directed planning, as in
our framework. Levesque et al. (1990) also discuss reason-
ing about others’ beliefs and goals, but only in the context
of cooperative activities. Perrault and Allen (1980) ana-
lyzed speech acts in terms of operators for altering mental
states, but they did not use such operators for plan gener-
ation. Briggs and Scheutz (2013) have used them to plan
role-specific dialogues, but only for cooperative scenarios.

A related assumption is that social planning benefits from
inference about problem states, including application of
rules at different levels of embedding. Some classical plan-
ning systems carry out inference over state descriptions, but
these do not reason about others’ mental states. Scone and
Polyscheme utilize default reasoning by inheritance to sup-
port this ability, which SFPS achieves by nested application
of inference rules. Bridewell and Isaac (2011) analyze de-
ception in terms of reasoning about other agents’ goals and
beliefs, which they store in distinct partitions, but, again,
they do not address plan creation.

The final idea is that social planning requires incorporat-
ing other agents’ intentions into plans, but only in a con-
strained way that avoids wishful thinking. Early work in
this area includes Mueller and Dyer’s (1985) computational
model of daydreaming, which also explored social interac-
tions but which actually emphasized wishful thinking. Mee-
han’s (1977) early approach to story generation, as well as

Riedl and Young’s (2010) more recent system, also gener-
ate plans for social interaction. The latter supports scenarios
that involve deception, but both focus on producing interest-
ing stories rather than achieving a primary agent’s goals.
Our approach to social plans contains elements that have
appeared in earlier systems, but it combines them in novel
ways to support generation of plans that achieve goals by
manipulating the goals and beliefs of others. At first glance,
Pontelli et al.’s (2012) work on planning with physical and
communicative actions, as well as inference over effects, ap-
pears to address similar issues. However, they do not model
other agents’ goals or bias their behavior toward actions that
would achieve them, as does our account of social planning.

6 Concluding Remarks

In this paper, we introduced the task of social planning, in
which an agent attempts to achieve its goals by altering oth-
ers’ mental states, and we presented a theory of the represen-
tations and processes that underlie this high-level cognitive
ability. Our account includes the representational claim that
social planning requires encoding others’ mental states and
how activities alter those states. In terms of processes, it
posits that planning mechanisms must include the ability to
elaborate mental models using embedded inference and to
select operators for nonprimary agents using main effects.
No other changes are required to support this functionality.

We implemented these theoretical assumptions by extend-
ing FPS, a flexible problem-solving architecture. We tested
the resulting system, SFPS, on eight scenarios that involved
social planning at increasing levels of sophistication. In
addition to demonstrating a basic capability for producing
plans that involve influencing others’ beliefs and goals, we
reported lesion studies that showed the role played by em-
bedded inference and nonprimary agents’ operators. We also
reviewed prior research that shares theoretical assumptions,
although we found none that have combined them to support
social planning in the sense we have defined it.

Although our work to date offers a promising account of
this important cognitive ability, we can still extend it along
a number of fronts. First, we must develop more robust
methods for avoiding wishful thinking, such as assuming
other agents have default goals like remaining healthy and
rejecting plans that voilate them. Second, we should address
scenarios that involve more complex forms of manipulation,
such as those arising in confidence tricks. These will re-
quire us to provide SFPS with additional social knowledge,
but changes to the architecture itself should not be neces-
sary. Third, we should tackle cases in which inference about
others’ mental states involves abductive rather than deduc-
tive inference to provide belief ascription. These will require
changes to the architecture, but we should be able to build on
recent work by Meadows et al. on abductive reasoning. Fi-
nally, we should note that our work to date has assumed that
social actions have deterministic effects. Future versions of
SFPS should reflect the fact that outcomes are uncertain and
support conditional plans that offer the agent multiple paths
to its goals in case early efforts fail. Taken together, these
extensions will provide a more comprehensive account of
the structures and processes that arise in social planning.
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