
074 0 -74 5 9 /12 / $ 31. 0 0 © 2 012 I E E E JULY/AUGUST 2012 | IEEE SOFTWARE 53

The major problems of our work are

not so much technological as socio-

logical in nature.1 —Tom DeMarco

and Timothy Lister

IN A RECENT IEEE Software arti-

cle, Sallyann Freudenberg and Helen

Sharp unveiled a burning question:

what personalities constituted success-

ful or failed agile teams?2 This stems

from the widely held belief that if we

can �nd the right mix of individual per-

sonalities, we’ll end up with a success-

ful team. Intuitively, this makes sense.

If group members are all introverted,

they might be too shy to communicate

well. If they’re all type-A personalities,

they might all clamor over one another

to lead, and no one would follow any

instructions. Ideally, teams should pick

and mix personalities to get the right

group.

Several approaches to the

personality-combining strategy exist.3,4

Basically, they identify team members’

personality archetypes and then deter-

mine the most effective combination.

But smart combining can be tricky. Al-

though studies have identi�ed traits and

characteristics that can aid in building

effective teams,5 these traits often have

little predictive value.6

Whether individuals “click” enough

to effectively carry out a task is more

than just a function of personality com-

patibility7 or competency.8,9 Group

success relies on group norms, which

are derived as much from the group’s

context as from the people in it.10

We performed a small, preliminary

study of how norm manipulation af-

fects groups performing requirements

elicitation. The results show that the

groups performed this task better when

norms emphasized creativity rather

than agreeability. More generally, our

study suggests that norm manipulation

might provide a practical way to en-

hance group performance in software

engineering tasks.

Group Norms
Even in the most arti�cial and mini-

mal conditions, groups will develop

personalities or identities that over-

ride the individual members’ personali-

ties.11 These group norms are similar

to codes of conduct that are accepted

by the group members. They regulate

the members’ behaviors, thoughts, and

personality traits, and ultimately deter-

mine group communication, creativity,

and productivity.

Norms can be imposed (top-down)

Social
Psychology and
Software Teams:
Establishing
Task-Effective
Group Norms
Alvin Teh, Elisa Baniassad, Dirk van Rooy, and Clive Boughton,

Australian National University

// Group success relies on group norms.

Norm manipulation can help groups perform

software engineering tasks better. //

FEATURE: SOCIOLOGY

54 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FEATURE: SOCIOLOGY

on a group as part of a larger orga-

nizational culture or through direct

management. They can also arise or-

ganically (bottom-up) from social inter-

action between group members. In the

latter case, the norms might differ con-

siderably from those of nearby groups,

even in the same organization. Usually,

a mix of both top-down and bottom-up

processes will give rise to an emerging

group identity and its associated norms.

When norms enhance group effec-

tiveness, communication �ows well and

individuals don’t interfere with one an-

other’s progress. Other times, however,

groups don’t function properly, perhaps

exhibiting any number of harmful be-

haviors. In these cases, productivity suf-

fers and communication is ineffective.12

Conformity versus
Individualism
Strong group cohesion is often good for

group performance. Communication

within a group tends to be much more

extensive, and the group will act more

as a whole than as separate individuals.

Most important, cohesive groups are

typically more successful in achieving

their goals because members are more

motivated to achieve them. There’s also

a socioemotional aspect: members of a

highly cohesive group are more satis-

�ed with that group, more willing to

stay, and more likely to recommend the

group to others.

Nevertheless, for some tasks, some

degree of individualism rather than

conformity is preferable. In particu-

lar, cohesion can pose limitations for

groups seeking creative solutions. For

instance, although brainstorming aims

to generate a variety of ideas, evalua-

tion apprehension often keeps people

from expressing ideas perceived as too

strange or unrealistic. (For more infor-

mation on evaluation apprehension, see

the sidebar.)

Dissent (even when wrong) can

cause groups to think more divergently

and ultimately to solve problems more

creatively.13 The resultant disharmony

changes the group’s dynamic and en-

courages the other members into more

lateral thinking.

Any application of group norms

must be preceded by an analysis of the

task. Does it require creativity? Does it

require a cohesive group working to-

ward a clearly de�ned goal? Ultimately,

the key is to have the right norm for the

right task at the right time.

Encouraging Helpful
Group Norms
Social psychology suggests a number

of ways to encourage groups to develop

task-appropriate norms. In an experi-

mental setting, there are many options

for coercing people to behave in cer-

tain ways. One researcher, in trying to

instill the right communication path-

ways, put participants into cubicles and

forced them to communicate through

small slots. However, in the �eld, peo-

ple don’t appreciate the strong-arm ap-

proach. Instead, researchers can use

less intrusive interventions:

•	 give simple, noninvasive

instructions,

•	 place someone with a speci�c

agenda into the group (like a mole),

or

•	 ask groups to perform warm-up

tasks (priming tasks) that promote

the desired norms.

Tom Postmes and his colleagues,

for instance, used priming to discour-

age groupthink (see the sidebar for

more information on groupthink) by

encouraging a critical norm (one that

promotes critical thinking).14 To estab-

UNHELPFUL GROUP NORMS
AND COUNTERMEASURES
In production blocking, group members must take turns express-

ing their ideas. This leads to them expending energy to assert their

turn, forgetting their ideas, or not listening to others while trying to

rehearse presentation of their own ideas. One way to counteract

this is the nominal-group technique, which separates individu-

als during the initial ideas phase and then brings them together to

build on pooled ideas.

In social loa�ng, members self-regulate contributions because

they perceive low group performance. This might be because they

don’t wish to outperform other members if they won’t receive suf-

�cient credit. You can counteract this by increasing member par-

ticipation’s visibility and accountability.

In evaluation apprehension, group members are unwilling to

state their ideas for fear of negative judgments by the group. You

can address this by convincing group members they’re more ex-

pert than they thought. This belief has been shown to cause indi-

viduals to increase their contributions.

In groupthink, a group adopts a strong mindset against exter-

nal in�uences, rejecting input contrary to their views. In extreme

cases, the in-group excludes members who criticize their beliefs.

This results in an “information vacuum”: any con�icting input is

rejected. You can counteract groupthink by instilling a critical-

thinking norm that encourages group members to be less accept-

ing of one another’s views.

 JULY/AUGUST 2012 | IEEE SOFTWARE 55

lish the counteracting norm, Postmes

and his colleagues gave special priming

tasks to two sets of groups. They told

the critical-norm set to judge a policy

proposal and reach a common opin-

ion. They told the other set (called the

consensus-norm set) to create a poster

that required input from all members,

and the topic was open (“do anything”).

The groups then performed their

main tasks (which involved choosing

a candidate for a university lecture-

ship). During those tasks, the critical-

norm set formed groups that exhibited

a dynamic involving debate, tolerance

of outlying opinions, and an attempt

to promote objective understanding.

The consensus-norm set, conversely,

showed evidence of groupthink.

Norm manipulation not only regu-

lates behavior in new groups but also

nudges existing groups into a state in

which members will more likely ex-

press sets of traits. Modi�cations to

a group’s norms resonate throughout

the group, encouraging individuals to

adjust their own characteristics to ac-

commodate the new codes of behav-

ior. For example, when a subordinate

is promoted to a position equal to that

of his or her supervisor, the norms of

the relationship between individuals

change: they must now communicate

as peers. The apparent characteristics

of the individuals involved could also

change slightly, because the subordi-

nate might become more con�dent in

expressing assertiveness in certain situ-

ations where he or she used to defer to

the supervisor.

Current social psychological re-

search takes an interactionist (rather

than reductionist) approach to the

study of group processes. Rather than

looking solely at how individual traits

contribute to a group’s functioning, the

focus is on how the interaction between

different levels of a group (that is, the

individual and group levels) gives rise

to a particular type of group norm.

The interactionist viewpoint is use-

ful for dealing with norm manipulation.

In our previous example, the individual

reason for the subordinate’s change

might be unknown. The subordinate

could have become more aggressive or

might have been previously suppressing

aggression owing to the prevailing so-

cial norms. However, the subordinate’s

starting personality type and underly-

ing attitudes are less important (and

less straightforward to analyze) than

the relative change in his or her actions

caused by the norm alteration.

Eliciting task-appropriate norms can

align group members to a common goal,

perhaps by overcoming initial individ-

ual differences. Essentially, the “right”

norms encourage an optimal level of in-

formation sharing and, in general, en-

courage different behavior styles that

enable a group to perform ef�ciently.

Group Norms in a Software
Engineering Context
Although social psychology has repeat-

edly shown that you can nudge group

norms to enhance creativity (by in-

creasing individualism), we wanted

to explore this nudging in a software

engineering context. First, we exam-

ined whether we could use priming in

a controlled setting (as Postmes did) to

enhance effectiveness in a software en-

gineering task requiring creative input.

As a starting point, we chose re-

quirements elicitation (speci�cally, the

facilitated-meetings format described

in the SWEBOK Guide, chapter 2).

From a psychological perspective, re-

quirements elicitation can be seen as an

information-sampling task—to develop

an appropriate piece of software, stake-

holders must collect and share critical

information. Using existing social psy-

chological approaches for these studies

let us analyze requirements elicitation

in terms of underlying, critical so-

cial psychological processes related to

memory and communication.

To translate requirements elicitation

to the laboratory, we created a model of

the task. We would ask groups of par-

ticipants to combine (from memory)

prewritten requirements, which we de-

liberately made unique though overlap-

ping across participants in each group,

to synthesize a full set of system require-

ments. Participants would have to use

their memories of what was important

from their own perspectives and would

have to be comfortable enough to force

their requirements onto the group-

created artifact. An optimal result would

be a speci�cation with many require-

ments, many of which were originally

known only by individual members.

Before asking the groups to start

their task, we would give them a short

priming task aimed at forming either a

critical or consensus norm. In accord

with social psychology, we hypoth-

esized that because information gath-

ering and sharing was an important

aspect of the task, the process would

bene�t from the critical norm.

Participants

The 21 participants were software en-

gineers with one to �ve years of indus-

try experience, enrolled in a master’s

program. This study ran within their

requirements engineering course.

Step 1: Norm Manipulation

through Priming Tasks

We randomly assigned the participants

to groups of three, or triads. We then

assigned these triads the critical or con-

sensus norm.

Critical norm. We instructed these tri-

ads to debate and reach consensus on

the statement, “Requirements speci-

�cations should always re�ect design

constraints.” We told them, “To be

successful in this task, the information

contributed by all three members of the

group needs to be evaluated critically.”

Consensus norm. We instructed these

triads to list what they had learned in

their requirements-analysis course. Each

56 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FEATURE: SOCIOLOGY

member was to contribute at least one

item to a written list. We told them,

“To be successful in this task, the group

must reach consensus on the system

speci�cation.”

Step 2: The Main Task

We assigned the same task to both

groups. We presented each member of

the triad with a set of speci�cations for

a library management system with dif-

ferent types of users, each afforded

different borrowing privileges (see Fig-

ure 1). Each participant received a dif-

ferent set of requirements:

•	 a shared basic block of require-

ments, consistent in every speci�ca-

tion in the triad, and

•	 an unshared block, which per-

tained to either �nes, destruc-

tion of worn books, or borrower

treatment.

We arranged the source documents

given to participants so that the un-

shared requirements affected one an-

other and needed to be combined to

create a full picture of the system. For

instance, one triad member knew that

different user classes had different �nes

but didn’t know what the user classes

were. Another triad member knew the

different classes. Combining these two

pieces of information would allow the

group to write a more complete require-

ment—that certain classes of users had

certain �nes.

We gave the participants 15 minutes

to silently study the speci�cations. Be-

cause we wanted to examine how our

norm manipulation affects information

retrieval and sharing, we didn’t let par-

ticipants take notes. Then, we took away

the requirements and asked the triads

to form a full set of requirements from

memory. They didn’t know that each

member had distinct (but overlapping)

sets of requirements. We also didn’t tell

them that they needed to use knowledge

from one another to better contextual-

ize their own view of the system.

Measures

We measured group performance in

two ways. Output involved the num-

ber of correct requirements contrib-

uted; content involved the number of

requirements included from the un-

shared-requirements block. A group

producing many shared requirements

but few unshared ones has high output

but minimal content. Ideally, a group

would show both high output and

rich content. We considered contribu-

tions incorrect if they either weren’t re-

quirements or were semantically incor-

rect (for example, “superuser manages

books” instead of “superuser manages

user accounts”).

We also conducted a short survey

to determine what the perceived group

cohesiveness was and how interesting

participants found the task.14

Results
Figure 2 shows the study results. The

critical-norm triads had, on average,

more unique contributions than the

consensus-norm triads. They also had

more correct contributions overall, sug-

gesting that this norm manipulation af-

Unique portion

Shared portion

Each triad

rReconstructed requirements

Task: the same for each triad

Critical norm condition

PARTICIPATION DISTRIBUTION (each assigned to a triad)

Constructive norm condition

Priming:

list what they had learned in their

requirements-analysis course

Told: to be successful in this task, the

information contributed by all three

members of the group must be

evaluated critically

Priming:

debate and reach consensus on the statement

“Requirements specifications should always

 reflect design constraints”

Told: to be successful in this task, the group must

reach consensus on the system specification

FIGURE 1. The norm manipulation study. We asked triads of engineers to synthesize

requirements. Triangles indicate shared requirements; stars, crosses, or clouds indicate

unshared requirements.

 JULY/AUGUST 2012 | IEEE SOFTWARE 57

fected both output and content, posi-

tively affecting group performance.

We used resampling to avoid some of

the limitations of traditional statistical-

signi�cance testing.15 Using BCa (bias

corrected and accelerated) bootstrap-

ping (with 99,999 resamples), we tested

the median models for the number of

critical and consensus requirements.

Table 1 presents the point estimates

and 90 percent con�dence intervals

around each coef�cient. It shows mini-

mal overlap in con�dence intervals for

the number of critical and consensus

requirements. The sampling distribu-

tions show us that in 90 percent of the

cases, the range of median values in the

consensus condition would fall well be-

low that of the critical condition.

Groups showed no corresponding

change in perceived group norms. Criti-

cal and consensus triads felt equally

cohesive and equally interested in and

focused on the task. And, in both

conditions, triads reported that their

groups communicated freely. This

isn’t uncommon. Research shows that

groups can become more critical in

terms of asking more questions or be-

ing more attentive to details without

becoming less friendly.14

Limitations and
Future Directions
Requirements elicitation is critical to

software development but is dif�cult

and complex to study. Studies must �nd

a balance between having a design that

affords internal validity with suf�cient

control of critical independent variables

and maintaining (as much as possible)

realism and generalizability.

We focused heavily on internal

validity, but we aimed to maximize

generalizability by using the sample

of software engineers from a gradu-

ate requirements engineering course.

This setup gave us access to a small,

yet representative sample and task,

while letting us manipulate norms in

a controlled way. We addressed our

study’s lack of power owing to the

small sample by using resampling.

We plan to con�rm our results using

larger samples.

As with many studies that empha-

sized how norm manipulation affects

groups’ ability to retrieve and share

information, our study lacked a nomi-

nal control condition. This means that

we didn’t compare our groups’ per-

formances against summed individual

performances. We plan to perform

such a comparison.

I
nstead of asking what the per-

sonalities in successful teams are,

social psychology suggests ask-

ing a slightly different question: How

can we nudge groups into a productive

state by cultivating appropriate group

norms? This distinction is important.

In practice, identifying the “right” per-

sonalities is dif�cult; even if we could,

there’s no guarantee that this would

result in successful groups. Moreover,

we rarely have the luxury of creating

groups from scratch. Although our

study was small and the results should

be considered only indicative, our �nd-

ings do align with evidence from the

body of work in social psychology.

Priming let us improve group creativ-

ity in-place, by nudging groups toward

individualistic behavior.

Social psychology provides three

suggestions to practitioners. First, work

with whom you’ve got. Look more at

norms than at individual team mem-

bers’ personality types or intelligence.

In
p
u
ts

X

X X

X

Consensus

groups

Critical

groups

FIGURE 2. The study results. Triangles

indicate shared requirements, ovals indicate

unshared requirements, and Xs indicate

incorrect contributions. The results suggest

that manipulation toward a critical norm

affected both output and content, positively

affecting group performance.

T
A

B
L
E

 1 Bootstrapped point estimates and 90 percent
con�dence intervals for the median number of

requirements in the critical and consensus conditions.

Type of

requirements Condition Median

Limits of con�dence

interval (exclusive)

Lower Upper

Unshared Critical 14 12 16

Consensus 11 10 11

Shared Critical 4.5 2 5.5

Consensus 2 0 2

58 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FEATURE: SOCIOLOGY

Second, nudge the teams. Use primes

that are lightweight, unobtrusive, and

transparently relevant to the main task.

A priming activity can last as few as

15 minutes (10 minutes from Postmes’s

method and �ve more for instruction)

for the prime to take hold and encour-

age the desired norm.

Finally, choose norms to suit the

task. Consider whether your task will

require diversity of thought or would

bene�t from agreement. When gather-

ing requirements from a heterogeneous

group of stakeholders, a priming task

that maintains tolerance of outlying

opinions and keeps people from con-

verging too quickly can bring more elu-

sive or uniquely held requirements into

the open.

We’re further investigating the effec-

tiveness of nudging group dynamics in

an industrial setting. By using this in-

teractionist approach, we can focus on

the relevant variables such as the nature

of a task, the broader context in which

the group operates, and how these

variables interact to produce emergent

group dynamics.

References
 1. T. DeMarco and T. Lister, Peopleware: Pro-

ductive Projects and Teams, Dorset House,
1999.

 2. S. Freudenberg and H. Sharp, “The Top 10
Burning Research Questions from Practitio-
ners,” IEEE Software, vol. 27, no. 5, 2010, pp.
8–9.

 3. M. Belbin, Team Roles at Work, Butterworth-
Heinemann, 1993.

 4. S. Nash, Turning Team Performance Inside
Out, Davis-Black, 1999.

 5. L.F. Capretz, “Personality Types in Software
Engineering,” Int’l J. Human-Computer Stud-
ies, vol. 58, no. 2, 2003, pp. 207–214.

 6. I. Ajzen, “The Theory of Planned Behav-
ior,” Organizational Behavior and Human
Decision Processes, vol. 50, no. 2, 1991, pp.
179–211.

 7. N. Gorla and Y.W. Lam, “Who Should Work
with Whom? Building Effective Software
Project Teams,” Comm. ACM, vol. 47, no. 6,
2004, pp. 79–82.

 8. B.W. Boehm, Software Engineering Econom-
ics, Prentice Hall, 1981.

 9. W. Scacchi, “Managing Software Engineer-
ing Projects: A Social Analysis,” IEEE Trans.
Software Eng., vol. SE-10, no. 1, 1984, pp.
49–59.

 10. S. McDonald and H.M. Edwards, “Who
Should Test Whom?,” Comm. ACM, vol. 50,
no. 1, 2007, pp. 66–71.

 11. H. Tajfel et al., “Social Categorization and
Intergroup Behaviour,” European J. Social
Psychology, vol. 1, no. 2, 1977, pp. 149–177.

 12. P.B. Paulus et al., “Social and Cognitive
In�uences in Group Brainstorming: Predicting
Production Gains and Losses,” European Rev.
Social Psychology, vol. 12, no. 1, 2002, pp.
299–325.

 13. C.J. Nemeth and J. Wachtler, “Creative Prob-
lem Solving as a Result of Majority vs. Minor-
ity In�uence,” European J. Social Psychology,
vol. 13, no. 1, 1983, pp. 45–55.

 14. T. Postmes, R. Spears, and S. Cihangir,
“Quality of Decision Making and Group
Norms,” J. Personality and Social Psychology,
vol. 80, no. 6, 2001, pp. 918–930.

 15. B. Efron, “Bootstrap Con�dence Intervals for
a Class of Parametric Problems,” Biometrika,
vol. 72, no. 1, 1985, pp. 45–58.

ALVIN TEH is a PhD student in software engineering at the Australian

National University. His research interests include group dynamics in

the context of software engineering groups and how to harness them

for productivity gains. Teh has a BEng in software engineering from

Curtin University of Technology. Contact him at alvin.teh@anu.edu.au.

ELISA BANIASSAD is a senior lecturer at the Australian National

University’s School of Computer Science. Her research interests

include empirical studies of programmers at all stages of the software

life cycle, and exploration of experimental programming models

based on user-driven abstractions. Baniassad has a PhD in computer

science from the University of British Columbia. Contact her at elisa.

baniassad@anu.edu.au.

DIRK VAN ROOY is a lecturer at the Australian National University’s

School of Psychology. His research interests include computational

models of social behavior, including connectionist and multiagent mod-

els. Van Rooy has a PhD in social and experimental psychology from the

Free University of Brussels. Contact him at vanrooy@anu.edu.au.

CLIVE BOUGHTON is a senior lecturer at the Australian National

University’s School of Computer Science and the director of Software

Improvements, a consulting company that produces software for large-

scale organizations. Boughton has a PhD in physics from the Australian

National University. Contact him at clive.boughton@anu.edu.au.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

Selected CS articles and columns

are also available for free at

http://ComputingNow.computer.org.

