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ABSTRACT
Reward shaping is a well-known technique applied to help
reinforcement-learning agents converge more quickly to near-
optimal behavior. In this paper, we introduce social reward
shaping, which is reward shaping applied in the multiagent-
learning framework. We present preliminary experiments
in the iterated Prisoner’s dilemma setting that show that
agents using social reward shaping appropriately can be-
have more effectively than other classical learning and non-
learning strategies. In particular, we show that these agents
can both lead —encourage adaptive opponents to stably
cooperate— and follow —adopt a best-response strategy
when paired with a fixed opponent— where better known
approaches achieve only one of these objectives.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Performance, Experimentation

Keywords
Reinforcement learning, leader/follower strategies, iterated
prisoner’s dilemma, game theory, subgame perfect equilib-
rium

1. INTRODUCTION
The field of reinforcement learning [8] is concerned with

creating agents that act to maximize received reward in com-
plex, dynamic environments. The majority of work has fo-
cused on single agent environments, often conceptualized as
Markov decision processes [6], where optimal behavior can
be identified independently of the effect of the agent on the
environment.

Researchers have developed reinforcement-learning algo-
rithms for general-sum games, with a variety of research
goals. In this work, we are concerned with what is called
the “prescriptive non-cooperative” agenda [7]. That is, we
want to develop techniques for learning that result in agent
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behaviors that are effective in a variety of settings in which
agents act independently and not necessarily cooperatively.

More concretely, the experiments we report below address
the following scenario. Our learning agent will be playing
an iterated two-player matrix game. This kind of scenario
is commonly studied in game theory and it is known that
there can be benefits to agents maintaining some history of
recent interactions [5]. It has been noted that the amount of
history an agent assumes its opponents have is significant [1],
so we have decided to restrict all agents to a common, fixed
history length.

In this setting, a dichotomy can be made between leader
and follower agents [2]. A follower is an agent that implic-
itly assumes its opponent is playing a fixed strategy and it
attempts to maximize its own reward against this fixed strat-
egy. In contrast, a leader assumes its opponent will adapt to
its decisions, and so behaves in a way that encourages the op-
ponent to adopt mutually beneficial behavior. When leaders
and followers are paired up, the result is usually harmonious.
However, when leaders play leaders or followers play follow-
ers, the result is unpredictable and often quite poor. Our
interest in this work is in developing an algorithm that can
either lead or follow, as appropriate.

In the next section, we describe our experimental setting
for studying leaders and followers. Section 3 proposes our
new approach, social reward shaping, that biases a follower
to display leader-like tendencies. In Section 4, we evaluate
the resulting algorithm, along with several well-known al-
ternatives. We find that our approach is able to both lead
and follow, depending on the situation. Section 5 concludes
with a discussion of how the approach can be generalized
and applied in other multiagent scenarios.

2. EVALUATING LEADERS/FOLLOWERS
In this preliminary work, our empirical testbed for study-

ing leading and following is the iterated Prisoner’s dilemma.
On each round, both players choose to either cooperate (C)
or defect (D). Players receive rewards according to the fol-
lowing scheme:

player opponent reward description
C C 3 mutual cooperation
C D 0 sucker payoff
D C 4 temptation
D D 1 mutual defection

To evaluate a pair of strategies, we have them play 40,000
rounds each run and average 1,000 runs. On each round,
players choose C or D and are given one step of history as



state grim alwaysC alwaysD TFT Pavlov
CC C C D C C
CD D C D D D
DC D C D C D
DD D C D D C

Table 1: A set of fixed history strategies. State XY
means the agent chose X in the previous round and
the opponent chose Y.

input. They then are informed of their opponent’s choice
and their own reward.

Our assessment of a strategy comes from evaluating it
against two opponents: a fixed strategy (leader) and an
adaptive strategy (follower). We are interested in whether
strategies can follow the leader and lead the follower, that is,
can they attain (nearly) the highest reward possible against
each kind of opponent.

Before we describe the opponent strategies we used in eval-
uation, we take a moment to describe fixed history strategies
more generally.

2.1 Fixed History Strategies
A fixed history strategy is one that maps the action choices

of both players in the past k rounds to a fixed probability
distribution over action choices. In our studies, k is set to
1, so a fixed history strategy maps from a pair of actions
(those chosen by the two players in the previous round).

Table 1 catalogs several fixed history strategies. The first,
“grim” cooperates until defected upon. The next two, “al-
waysC” and “alwaysD” pay no attention to their history and
always cooperate or defect, respectively. “TFT” (tit for tat)
chooses its action to match the opponent’s previous action.
“Pavlov” cooperates if both players agreed in the previous
round and otherwise defects.

When faced with a fixed history strategy, like any of those
just described, an agent’s environment can be modeled as
a Markov decision process (MDP). MDPs are defined by
states, actions, rewards, transitions, and a discount factor
0 ≤ γ ≤ 1. An agent in an MDP chooses actions to max-
imize its total expected discounted reward over the infinite
horizon.

Any fixed history strategy maps to an MDP. Specifically,
each history corresponds to a state. Transitions between
states are a function of the agent’s choice and the behavior
of the fixed history strategy. For example, an agent playing
alwaysC inhabits the MDP depicted in the top of Figure 1.

In the diagram, circles represent states (histories) consist-
ing of the agent’s previous action and the opponent’s previ-
ous action. Arcs are labeled with a choice of action for the
agent along with its immediate reward. An arc points to
the next state that results from the agent’s choice and the
implicit choice of the opponent.

When facing alwaysC, there are only two states that can
be reached. Regardless of the state, the agent chooses be-
tween D (reward +4) and C (reward +3). The optimal
strategy here is clear—alwaysD.

Against TFT, depicted in the bottom of Figure 1, the sit-
uation is more complex. Starting from CC, the agent can
choose C and get +3 or D and get +4. Choosing D re-
sults in a transition to the state DC. Because TFT repeats
the agent’s previous choice, it will choose D from state DC,
leaving the agent with two low-scoring options. If the dis-
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Figure 1: The MDPs induced when an agent faces
an opponent playing alwaysC and TFT.
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count factor is set sufficiently close to 1 (γ = 0.9 works), the
optimal action to take in CC is C because the immediate
benefit of D (+4 vs. +3) is washed out by the decreased re-
wards the agent receives on future steps. The best response
to TFT, therefore, is alwaysC.

2.2 Follower: Q-learning
Q-learning [8] is a family of algorithms for addressing

reinforcement-learning problems. A Q-learning agent main-
tains a data structure, the Q function, that maps each state
and action combination to an estimate of the long-term re-
ward received. Symbolically, if s is a state and a is an action,
then Q(s, a) is an estimate of the total expected discounted
reward the agent will receive if it takes action a in state s,
then chooses actions to maximize total expected discounted
reward.

A Q-learner updates its Q function after each experience
〈s, a, s′, r〉, where s is the state it was in, a is the action
it took, s′ is the resulting state, and r is its reward. The
update is

Q(s, a) := (1 − α)Q(s, a) + α(r + γ max
a
′

Q(s′, a′)),

where 0 ≤ α ≤ 1 is the algorithm’s current learning rate.
Variants of Q-learning differ along three dimensions: (1)

how they initialize the Q function before beginning learning,
(2) how they select actions during learning, and (3) how
they change their learning rates over time. In our work, we
initialize the Q function to zero, select actions using the ǫ-
greedy rule (take the estimated best action with probability
1 − ǫ and a random action otherwise), and use a constant
learning rate. We made these decisions to keep the algorithm
simple and also to allow it to continue exploring and reacting
to changes in the opponent’s behavior.

Against a fixed history opponent, Q-learning is an excel-
lent follower. It provably finds an approximation of the op-
timal strategy.

2.3 Leaders: Tit-for-Tat and alwaysC
The tit-for-tat strategy, the fourth listed in Table 1, is an

effective leader in the iterated Prisoner’s Dilemma. In par-
ticular, the optimal strategy for its opponent is to cooperate,
resulting in average rewards of 3 for both players. It is not
feasible to reliably score higher against a Q-learner, since a
Q-learner will not tolerate acting as a sucker indefinitely.

The alwaysC strategy can also be thought of as a leader
in that it adopts a fixed strategy and invites its opponent to
optimize against it. In this case, a follower should learn to
play alwaysD and exploit the leader. Q-learning will do so,
resulting in a consistent reward of 4.

In our experiments, we test strategies by how well they
perform against alwaysC (a leader) and Q-learning (a fol-
lower). We declare an algorithm a good follower if it obtains
average rewards close to 4 against alwaysC and a good leader
if it obtains average rewards close to 3 against Q-learning.

3. SOCIAL REWARD SHAPING
In this section, we propose social reward shaping.

3.1 Reward Shaping
Simply put, shaping rewards are imaginary rewards that

are presented to a reinforcement-learning algorithm as an
addition to the actual environmental reward. Their purpose

is to encourage desirable behavior during the learning pro-
cess.

Potential-based shaping has been shown to provide a prin-
cipled approach to reward shaping [4]. Here, the idea is that
every state s is assigned a potential, Φ(s). The reward ob-
tained from a transition from state s to state s′ is augmented
by γΦ(s′) − Φ(s). Because of the (telescoping) form of this
function, the added rewards can speed learning but do not
interfere with the final learned behavior—after learning, the
best action choice in each state is unchanged.

Although the choice of potential can be arbitrary, assign-
ing Φ(s) to be the maximum total expected discounted re-
ward from s can make learning optimal behavior nearly im-
mediate. In the context of Q-learning, adding potential-
based shaping rewards via potential function Φ(s) has the
same effect as initializing the Q function to Φ(s) [9]. In
our algorithm, we derive a good choice of potential function
from an analysis of subgame perfect equilibria, as described
next.

3.2 Subgame Perfect Equilibria
A fixed history strategy provides an action choice for all

possible histories. In an iterated matrix game, two fixed his-
tory strategies constitute a subgame perfect equilibrium [5]
if each strategy, for each possible history, chooses the action
that maximizes its total expected discounted reward with
respect to its opponent.

It is instructive to consider the case of TFT. Although
TFT vs. TFT results in mutual cooperation, the combina-
tion is not a subgame perfect equilibrium. The unique best
response to TFT is alwaysC. Any other choice is suboptimal
for some history. In particular, from the state CD, TFT
chooses D, but C leads to higher total expected discounted
reward (for a sufficiently high discount factor).

Note that two Q-learners with ǫ-greedy action selection
cannot converge to anything other than a subgame per-
fect equilibrium—for every state, the Q-learner will (nearly
always) choose the best action according to its estimates.
Therefore, it is useful to consider the set of subgame perfect
equilibria under ǫ-greedy action selection. That is, we are in-
terested in any strategy that, when it plays against a copy of
itself, will choose the same actions as what ǫ-greedy action
selection would choose given that the Q functions contain
the actual total expected discounted reward for each state–
action pair.

We enumerated all sixteen deterministic 1-step history
strategies and checked each to determine whether it con-
stitutes a subgame perfect equilibrium if paired with itself.
Three are: alwaysD, grim, and Pavlov. Of these, Pavlov
has, by far, the highest average reward.

3.3 Social Reward Shaping
Our proposal is to use a mutually beneficial subgame per-

fect equilibrium, in this case Pavlov, as the basis for a potential-
based shaping function. The combination, which we call
Q+shaping, is produced by first computing the state values
(the potentials) for Pavlov, and initializing the function esti-
mate with this potential-based function. This initialization
is equivalent to adding shaping rewards during the learning
process [9].

4. RESULTS



follower leader
(Q-learning) (alwaysC)

alwaysC [0.100, 0.105, 0.110] [3.000, 3.000, 3.000]

Q-learning [1.507, 2.781, 2.923] [3.963, 3.965, 3.967]

TFT [2.926, 2.930, 2.933] [3.000, 3.000, 3.000]

Q+shaping [2.253, 2.786, 2.811] [3.963, 3.965, 3.967]]

Table 2: Comparison of the ability of four strategies
to lead (score nearly 3 against Q-learning) and follow
(score nearly 4 against alwaysC) in at least 75% of
the runs. Boxed results meet the criterion. Of the
four, only Q+shaping is able to both lead and follow
consistently.

In our experiments, all Q-learners used ǫ-greedy explo-
ration (ǫ = 0.1) and used a discount factor of γ = 0.9.

We compared the performance of four algorithms: al-
waysC, Q-learning (α = 0.01), TFT, and Q+shaping (α =
0.01) against two test opponents: Q-learning (α = 0.02)
and alwaysC. The reason we included alwaysC and TFT
in the comparison is that these strategies can arise natu-
rally if shaping rewards are added carelessly to Q-learning
in an attempt to encourage more cooperation or retaliation
for defection. We ran each algorithm against each oppo-
nent for 40,000 rounds each run and averaged over the last
5,000 rounds. Table 2 shows the percentiles obtained in a
collection of 1000 runs. These results demonstrate the abil-
ity of our algorithm to teach and follow another algorithm
consistently.

We found that Q-learning and Q+shaping both follow the
fixed opponent, scoring nearly 4 on average against alwaysC.
(The observed value is slightly lower than 4 because the ǫ-
greedy exploration causes the agents to sometimes choose
C, against their better judgment.) In contrast, TFT and
alwaysC both cooperate when they play against alwaysC,
which results in a lower score of 3. On the other hand,
TFT is able to lead the Q-learner, reaching nearly the mu-
tual cooperation reward of 3. Of course, alwaysC cooperates
with the Q-learner, which correctly learns to exploit it, leav-
ing alwaysC with nearly the sucker reward of 0. The most
interesting cases are when learners play against each other.
As Table 2 shows, Q+shaping leads Q-learning to consistent
convergence to cooperation (average reward around 3 for all
percentiles), whereas two “plain” Q-learners stumble around
for quite a bit longer, often ending in suboptimal perfor-
mance (average reward closer to 1.5 at the 25th percentile).
To convey a sense of the behavior of the two different strate-
gies, Figure 2 plots a learning curve with the performance of
Q-learning and Q+shaping both playing against Q-learning.
These curves are somewhat typical.

5. CONCLUSION AND FUTURE WORK
We have shown that providing shaping rewards derived

from a mutually beneficial subgame perfect equilibrium yields
a promising multiagent-learning algorithm. In particular,
these Q+shaping agents effectively lead a learning opponent
to adopt mutually beneficial behavior. However, against a
fixed history agent, the shaping bias is overcome and the
algorithm finds a reward-maximizing behavior.

One concern with the current algorithm is that its success
appears to be sensitive to the selected learning rate. If the

opponent’s learning rate is too low, Q+shaping will end up
acting as a follower, and the advantage of shaping is lost.
We feel this issue is an unavoidable consequence of simul-
taneously acting as a leader and a follower, but we hope
to increase the robustness of Q+shaping without greatly in-
creasing its complexity.

These results show how Q+shaping is able to efficiently
lead a learning algorithm consistently. This characteristic of
being able to guide the early experience of a learning pro-
cess has many benefits. For example, a teacher can help
guide convergence to a specific beneficial equilibrium point
in games with asymmetric equilibria like chicken or Bach &
Stravinsky. In fact, we have performed other experiments
that suggest social reward shaping is able to accomplish
this goal. Note that on the test case reported here (PD),
we found that two plain Q-learners are able to converge to
mutual cooperation, although they do so less reliably.

Future work will examine other iterated matrix games
that require longer fixed history strategies. For example,
Prisoner’s Dilemma with a temptation reward of 5 requires
2 steps of history for a mutually beneficial subgame per-
fect equilibrium. This extension should be relatively sim-
ple, since polynomial-time algorithms for finding subgame
perfect equilibria exist [3]. We will consider extending our
approach to more general stochastic games, which appears
more challenging.
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