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Research shows that particular social robots are effective in interactions with people, from teaching young children to supporting
older adult’s healthcare. There is little research, however, that examines how people form the interpersonal impressions of social
robots that influence whether these interactions are effective or not. We report two studies that look at the differences between social
robots with the goal of identifying those impressions. In Study 1, we examined 10 years of published articles about social robots and
identified 342 robots for coding on a variety of attributes, from perceived gender to surface textures and their range of motion. We
asked participants (N = 4,415) to evaluate each robot along these attributes. A complete catalog of the robots is posted here, and an
overall description of the sample is included in the article. In Study 2, we asked people (N = 3,920) to evaluate the 342 robots and
found that two impressions of the robots, competence and warmth, were as important for the evaluation of robots as they have been
for perceptions of people in prior literature. Using the 21 attributes identified in Study 1, we found that the best predictors of robot
competence were a robot’s mobility (degrees of freedom) and surface textures, while age, the absence of mechanical features, and
mobility were the best predictors of robot warmth. We end with comments about the design and success of social robots in assistive
applications.
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There have been over one thousand published scholarly articles
about social robots in the academic literature, indicative of consid-
erable interest as evidenced by new research labs, conferences,
journals, TED talks, companies, patents, and products. The social
robots of interest are autonomous physical embodiments (i.e., they

exist in the real world not just on a screen), and they communicate
with humans via social behaviors (e.g., speech, gestures, and
movement) that mimic human interactions that are linked with
particular social roles that a robot might play. The proposed roles
for the robots vary, from teaching to childcare to toys to elder
companionship, but the underlying rationale for their popularity is
similar across contexts. Social robots can be designed with human-
like features, textures, and movements, and programmed to behave
in variety of social or helpful ways, enough so that the people who
use them could interact via familiar and pleasurable and even
emotional connections. Robots have the added advantage of lower
cost, continuous availability, and constancy of responses compared
to human counterparts. The potential for robots to improve human
life across a range of capacities is high.

How might social robots achieve this potential? To date, there is
limited conceptualization or generalized theory of robots as a
category of social actors. Instead, research has favored the study
of specific robots in unique contexts without substantial consider-
ation of the generalizability of particular attributes to other robots.
Examples of social robots, both in the marketplace and in academic
research, have grown so fast that it is been difficult to collect and
understand them as a category of technology. Three examples from
the collection of robots described in this article highlight this issue.
There is a 16-in. tall bear with a plush coating of fur, large friendly
eyes, and a screen embedded in its chest; a printed-book sized
cardboard box on tractor tires with two half-inch lenses for eyes; and
a 4-ft tall bipedal creature with intricate mechanical and electrical
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parts clearly visible on limbs and body but no facial features at all on
a human sized head (see Figure 1).
These examples easily meet the description of social robots in the

first paragraph, but they also have obviously quite different psy-
chological prospects with respect to a social evaluation by humans.
Consequently, we need research that both collects and describes
social robot attributes across a large sample of robots and explores
how people perceive the combinations of these attributes with
respect to impressions people form about the robots as social actors.
If we understand how people differentiate this diverse group of
stimuli, and which evaluations are attributable to different robot
features, then we would have a start on a basic understanding of
human perceptions of robots that could be used to study and design
better human–robot interactions.
We draw on research from psychology that has examined how

people perceive other people to explore whether those perceptions
also apply to social robots. For example, research examining how
people form first impressions and stereotype others suggests that we
perceive people along two primary dimensions, warmth and com-
petence. One prominent model, the stereotype content model (SCM,
Fiske, 2018; Fiske et al., 2002) argues that we use these primary
dimensions to stereotype people. Do we also evaluate social robots
along warmth and competence dimensions (Russell & Fiske, 2008)?
And do people stereotype the robots along these same dimensions?
The research reported here addresses these questions by examin-

ing what makes robots similar and different across a range of robot
examples. In Study 1, we collect and describe a large sample of
social robots on an array of attributes thought to be influential in
social interaction. A goal of the study was to characterize the larger
category of social robots on features that may determine how people
interact with them. In Study 2, we evaluate the combination of
possible descriptors of social robots that people use to differentiate
the large sample of robots, concentrating on hypothesized similari-
ties between humans and robots with respect to the social attributes
of warmth and competence. Once confirmed, we then looked at
which attributes of robots were the best predictors of the central
perceptual dimensions of warmth and competence.

Background: Sampling and Describing Social Robots

Much of the past research has studied social robots by demon-
strating that there are example single robots that can play specific
roles, such as teaching, or accomplish particular tasks, such as

providing emotional support to an older adult, that are typically
performed by humans. Research often creates experimental com-
parisons between robots and humans (Kanda et al., 2004); for
example, comparing how autistic children learn a social behavior
from a robot compared to an adult instructor (Cabibihan et al.,
2013). Social robots often perform well, or at least well enough to
be potentially valuable human surrogates. Other research tries to
identify the features, appearances, mechanics, movements, and
behaviors that will make robots successful for one particular task.
This question is often studied by having the same robot perform or
behave differently while interacting with people, highlighting
different capabilities, or appearances during an interaction (Bruce
et al., 2002; Kidd et al., 2006). For example, the same robot might
move quickly or slowly during an interaction (Satake et al., 2009),
speak confidently or hesitatingly about a topic (Lee et al., 2006), or
look directly at or away from a human during interaction (Kozima
et al., 2003). In addition to these controlled experiments, there are
also numerous qualitative observations of human–robot interactions
that provide rich descriptions of when and how interactions appear
to succeed in specific contexts (e.g., Sabanovic et al., 2006).

Most research explores social robots one robot at a time, a
strategy that limits research to the particular qualities of specific
robots. This approach ignores important qualities that differentiate
the robots and that might explain their success generally. There have
been attempts to develop databases of social robots (Juarez et al.,
2011; Kalegina et al., 2018; Phillips et al., 2018); however, they
often focus on specific robot designs, such as rendered robot faces
(Kalegina et al., 2018), or on specific characteristics such as anthro-
pomorphism (Phillips et al., 2018).

There is value in continuing to collect multiple examples of social
robots that capture the variance across an increasingly large number
of robot designs. Social robots are a new category of interactive
technology (e.g., like computer interfaces, virtual social agents, or
virtual reality games). The boundaries of this category, however, are
still fuzzy operationally given that new examples appear often.
Given the heterogeneity of the robots, it is currently difficult to know
with confidence how they will be perceived when studies choose
only a single example of a diverse and large technology category.
Similarly, single examples of robots make it impossible to compare
attributes between different robots with respect to their importance
for human perceptions.

In psychology generally, this is a problem of stimulus sampling.
For example, if you are interested in how an individual’s personality
might influence impressions of that person in a relationship, you
should not choose a single individual to represent all introverts and
one other person to represent all extroverts. Too many other
attributes of the two people chosen may influence the results. For
example, the introvert may be physically attractive and the extrovert
physically awkward; the introvert might be well spoken and the
extrovert linguistically hesitant, and so on across many other
common characteristics of people. It is critical to sample people
of each personality, ensuring the distribution of nonrelevant attri-
butes is equivalent across the stimulus examples for each category,
just as would be true for samples of people that might respond to the
stimuli. In psychological research, this is discussed as treating
stimuli (i.e., social robots in the present case) as a separate source
of random variance (Judd et al., 2012), just like the variance
between people in an experiment. Research that ignores stimulus

Figure 1

Examples of Social Robots
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variance cannot draw inferences, even if the sample of participants
who participate in the research is otherwise adequate.
For social robots, the issue of stimulus sampling may be more

important than it is generally in psychology, for two reasons. First,
the stimuli (robots) are the entrée to research. A main purpose of the
research is to know which robots will be more successful than
others, at least as much as knowing how different groups of people
will respond to particular ones. Consequently, as a research invest-
ment, sampling the variance between robots is critical, perhaps more
so than sampling the variance among the people that respond to
them. We note that this may not be the same research investment
required for other areas of robotics. Testing the effectiveness of
mechanics, materials, electronics, or software, for example, may be
done adequately in a single robot body without jeopardizing con-
clusions about value across the category of robots.
Second, the variance between social robots is likely quite large

because it is possible to build robots to extremes on multiple
dimensions. Far beyond the range for humans, they can be tiny
or huge, have no eyes or eyes as large as their face, have more or
fewer than four limbs, possess animal or machine features, and all
other sorts of humanly impossible appendages, sensors, screens, and
shapes. Consequently, the large variance among social robots may
require sample sizes larger than would be required to represent
humans.

Study 1: Social Robots Collection in Published Research

Our first task was to assemble a large sample of social robots.
There is no published review of the different examples of social
robots that could guide research about how robots are different or
whether any of their differences matter in human–robot interactions.
In an attempt to sample as many current robots as possible, we
reviewed the research on social robots over a 10-year period and
cataloged the social robots in the published literature. A review of
academic literature might miss robots that have been in the market-
place but never used in research; however, our goal was only to
create a large sample of robots rather than to build a census of all that
have been built for any reason.
Google Scholar was used to search the keyword combination of

“social robot” for each year from 2005 to 2016. The complete list of
studies was reduced to those conducted about human responses to
the robots. Six research assistants reviewed each article to determine
if it should be included in our final sample. Three inclusion criteria
were used as follows: (a) a social robot must be named in the article
as the focus of the research; (b) there must be a picture(s) of the robot
in the article or in supplemental materials; and (c) the relationship of
the social robot with people must be discussed and studied. This
excluded articles that only referenced social robots by category, and
studies that focused only on the technical features of robots.
All of the articles are referenced in the Stanford Social Robot

Collection, a database that is publicly available (https://goo.gl/
eejbV7), including citations, brief notes about the articles, the
type of research (experiment, discussion, survey, and review), the
name of the robots referenced in the article, and links to pictures of
the robot if they were separate from the article. A more detailed
compilation of the robots can also be found in the Stanford Social
Robot Collection (https://goo.gl/Gqpzkx) including multiple per-
spectives of the robots where available.

Our review produced a total of 6,960 articles that referred to
“social robots.” The distribution of the articles by year is shown in
Table 1. From these articles, we identified 1,471 studies that
examined human responses to specific robots, and that also included
an image of the robot. From these studies, our sampling produced a
total of 342 specific social robots. This collection of robots reason-
ably represents the current population of machines that operationally
define this category of technology, at least with respect to the robots
used in research. All of the robots are shown with small icons in
Figure 2.

The entire collection of robots represents significant breadth of
design and substantial differences across the robots on qualities
known to be influential in social and person perception generally. As
a preview to our empirical analysis of different robot impressions
and attributes, we mention literature that suggests the most impor-
tant features of robots that could be coded and analyzed. For
example, an eye tracking study found that humans pay most
attentions to the head area of the social robots (Dziergwa et al.,
2013). For trait perceptions of robots, researchers favor composites
of facial and bodily features in single studies. Researchers have
compared human-like versus machine-like presentations that use
collections of different attributes (Bartneck et al., 2009; Broadbent
et al., 2013; DiSalvo et al., 2002; Fiske, 2015; Goetz et al., 2003;
Haring et al., 2016; Hegel et al., 2008; Li et al., 2010; Phillips et al.,
2017; Walters et al., 2009). In those studies, human-like included
eye size, facial features, and human body shapes; machine-like
included shapes, text, and movements. Others studies have exam-
ined categories of features, for example, those associated with
animals (Lakatos et al., 2014; Lohse et al., 2007; Miklósi &
Gácsi, 2012; Yanco & Drury, 2004). Isolated attributes are occa-
sionally studied, including examination of overall height, head size,
arm length, and skin color, all predictors of believability
(Bogdanovych et al., 2016), and chin size, gender, movement,
and masculinity, all found to be related to impressions of social
robots (Lehmann et al., 2015; Powers & Kiesler, 2006). Fischer
et al. (2012) showed that physical embodiment influenced how
much a robot is perceived as an interaction partner and showed
degrees of freedom in motion affected how users evaluate the
suitability of a robot for different tasks.

Four studies have used collections of robots to investigate the link
between their physical characteristics and human perceptions.

Table 1

Total Number of Articles and Inclusion-Satisfying Articles by Year

Year
Total Google
Scholar entries

Articles satisfying
inclusion criteria

2005 120 35
2006 175 59
2007 221 56
2008 260 63
2009 363 106
2010 441 171
2011 542 148
2012 695 82
2013 916 194
2014 1010 249
2015 1,280 204
2016 937 104
Total 6,960 1,471
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von der Pütten and Krämer (2012) studied 40 images of robots and
found that tall and bipedal robots invoked feelings of threat. Disalvo
et al. (2002) used images of 48 robots to study robot humanness and
showed that the dimensions of the head and the total number of
facial features influenced the perception of humanness. Kalegina
and colleagues (2018) build a database of rendered robot faces
and explored features that included variations in the mouth, nose,
eyebrows, colors, eye size, cheeks/blush, and face shape. They
surveyed participants and asked them to assess the robots on
several measures (machine-like–human-like, unfriendly–friendly,
unintelligent–intelligent, untrustworthy–trustworthy, childlike–
mature, and masculine–feminine). They found that the faces with

no pupils and no mouth were consistently ranked as unfriendly,
machine-like, and unlikable. Robots with pink or cartoon-styled
cheeks were consistently ranked as feminine across both studies.
Phillips and colleagues (2017) analyzed 155 drawings of robots to
understand a priori expectations about robot appearance. They
found that people’s visualizations of robots have common attributes
including human-like motion, human facial and body features, and
gendered appearance. In another study, Phillips and colleagues
collected and analyzed 200 images of robots with at least one
human-like feature and they found four distinct appearance dimen-
sions that characterize anthropomorphic robots: Surface look (eye-
lashes, head hair, skin, genderedness, nose, eyebrows, and apparel),

Figure 2

Images of all Social Robots From 2005 to 2016
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body manipulators (hands, arms, torso, fingers, and legs), facial
features (face, eyes, head, and mouth), and mechanical locomotion
(wheels and treads/tracks).
From this research and our own examination of the robots in our

database, we developed a collection of 21 attributes that we applied
to the sample of the 342 robots. These features are listed in Table 2
and include descriptive attributes (e.g., has a face or not and
mechanics are visible) and subjectively perceived attributes (e.g.,
masculinity and femininity and age).

Method

We reviewed our entire database of social robots to identify the
physical characteristics considered in the design of social robots.We
randomly selected 10% of the sample of social robot photos to
develop the coding scheme that included the 21 attributes described
in Table 2. Thirteen of these attributes are descriptive and are coded
by our research team, including whether the robot has a face or not,
has vision or not, its skin type is (e.g., furry and metallic), shape
(humanoid or not), and capacity for motion (degrees of freedom,
locomotion, and bipedal). Eight attributes required perceptual judg-
ments, including perceived gender, masculinity, femininity, devel-
opmental category, eye/head ratio, head/body ratio, height, and age.
We recruited participants to provide their evaluations on these eight
attributes.
A total of 4,415 participants recruited from Amazon’s

Mechanical Turk service evaluated each robot on the eight attri-
butes. Of the participants, 54.9%were male and 44.0%were female,

0.5% were not binary, and 0.6% prefer not to report their gender.
The mean age of the participants was 39.3 (SD = 11.7) and 78.7%
of the participants wereWhite, followed by Asian (10.12%), African
American (8.08%), Latino (5.07%), and others (2.08%).

Each participant was randomly assigned to rate one robot, and
each robot received at least 10 ratings. The ratings were averaged to
produce a score for each item for each robot (Salganik, 2019). The
minimum of 10 evaluations was allowed for stable averaging across
the evaluations for each robot. We calculated the mean of the 10
scores from participants on the six continuous variables: eye/head
ratio, head/body ratio, height, masculinity score, femininity score,
and age. We calculated the mode on two categorical variables:
gender and age categories (data available at https://shorturl.at/
zACIP). We have also made the study materials, data, and analytic
methods publicly available.

Results

We calculated the Pearson correlations among the 21 attributes
(see Table 3) and then conducted a principle component analysis to
explore the connections among the 21 variables. We used categori-
cal principal components analysis (CATPCA) with Varimax rota-
tion to explore grouping dimensions of the coded social robot
physical characteristics. The results explained 34.82% variance.
The data were grouped into two dimensions, one machine-like and
one human-like. The first factor, machine-like, contained physical
characteristics of metal skin, locomotion, size, masculinity, femi-
ninity, age, degrees of freedom, fur skin, animal shape, and visibility
of mechanics. The second factor, human-like, had items related to
face, vision, speech, age group, eye versus body ratio, and head
versus body ratio (Table 4).

Discussion

The entire collection of robots represents significant breadth of
design and shows substantial differences across the robots on
qualities known to be influential in social and person perception
generally. Estimated sizes ranged from 0.3 to 6.0 ft; visibility of
electronics and mechanical features was obvious for some and
hidden for others; materials could be anything from soft fur to
human-like plastic to metal; there were caricatures of humans and
some with uncanny human similarity; and facial features from
puppet-like and humorous to serious all-business expressions.

A main purpose of the literature review was to discover the
variance in social robots used in research that should be represented
in empirical studies about how robots are perceived. If the sampling
of robots is considered as a random factor in research, as we have
argued it should be, then this is the variance that needs to be sampled
to allow the best generalizations possible for models of robots and
social dynamics. The 342 robots found in the literature are a useful
collection to bring to new research. Before reporting psychological
responses to this collection, it is possible to make several comments
about the robot collection per se. First, the literature, almost seven
thousand citations, is large and now comprises over 3,000 separate
studies. This is largely because of the promise, mentioned in the
introduction to almost every article we reviewed, that social robots
may help solve important social problems, mostly in the areas of
education and healthcare.

Table 2

Features of Social Robots

Features Coding type Descriptive statistics

Head
Eye:head ratio Perceived M = .11, SD = .06
Head:body ratio Perceived M = .15, SD = .07
Has face Descriptive No: 32.5%, yes: 67.5%
Has vision Descriptive No: 30.7%, yes: 69.3%

Skin type and shape

Plastic Descriptive No: 39.8%, yes: 60.2%
Metal Descriptive No: 51.8%, yes: 28.2%
Fur Descriptive No: 88.6%, yes: 11.4%
Silicone Descriptive No: 90.4%, yes: 9.6%
Mechanics visible Descriptive No: 59.4%, yes: 40.6%
Animal shape Descriptive No: 79.5%, yes: 20.5%
Height Perceived M = 3.02, SD = 1.38

Communication ability

Has speech Descriptive No: 50.6%, yes: 49.4%
Has digital presentation Descriptive No: 73.7%, yes: 26.3%

Motion
Degrees of freedom Descriptive M = 4.35, SD = 4.67
Locomotion Descriptive No: 34.8%, yes: 58.8%,

cannot tell: 6.4%
Bipedal Descriptive No: 76.3%, yes: 23.7%

Gender

Gender displayed Perceived Male: 42%, female: 12.2%,
not displayed: 45.8%

Masculinity Perceived M = 53.62. SD = 19.12
Femininity Perceived M = 33.75, SD = 20.02

Age

Developmental category Perceived Child: 42.7%, adult: 32.5%,
senior: 0.9%

Age Perceived M = 21.65, SD = 11.43
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Second, only a minority (21%) of the published research we
examined measured human responses to robots. Much of the
research is devoted to proposals for different uses (e.g., this is
how a social robot might assist with elder care), and specifications
for different mechanical or computing features of the robots. It is
understandable that much of the literature should address questions
about how to build the machines, and where and when they might be
useful. Progress on the grand challenge of building machines that
simulate human social interaction, however, will require more
empirical work that measures human responses and participation
in the interactions.
Third, the group of robots used in research with humans is

impressive in breadth. For us and for colleagues who have seen
Figure 2, social robots are considerably more varied than most
think, even if you follow the literature. One cannot look at
Figure 2 without concluding that radically different machines
make up a technology category that many are comfortable defining
with exact boundaries, in spite of the variance within the category.
Also, there is no single robot or even small group of them that
dominate the literature. Although some robots have been used in
multiple studies (e.g., Paro, AIBO, Nao, Robovie, and iCat), the
number of citations using the same robot was low (with the
exception of Nao which was used in 225 papers or 15% of
the papers with robots). The top five most studied robots in addition
to Nao are Paro (73 papers, 5%), Robovie (71 papers, 5%), AIBO
(66 papers, 5%), and iCat (59 papers, 4.0%).
The large variance in robots is both a problem and an opportunity.

The opportunity is that the variance allows for better definitions of
the attributes that might differentiate robots, and discovery of those
attributes should be useful in discussions about designing new ones.
The dimensions that might emerge from new research will be
more accurate because they will more completely represent robot

possibilities. The problem with the large variance, however, is that it
signals concerns about stimulus sampling should be paramount.
Research about a single robot, an attribute of many of the studies we
examined, severely limits the generalization of research about social
robots to other robots not included in the research.

Study 2: Warmth and Competence

What are the most important descriptions of the 342 robots?
Two questions help define a path to an answer. The first is whether
there is something special about mechanical robots that require an
understanding of how humans might perceive them as a special
category of objects. Robots are certainly special for the people who
build and design them, requiring new ideas about materials, elec-
tronics, mechanics, and software. But are they unique as social
actors in social interactions? Is there something about their exag-
gerated attributes, their obvious machine characteristics, or the
contexts in which they operate that requires a separate psychology
of robots?

We think that the answer to this question, based on a considerable
literature, is no. With respect to features of social interaction,
research shows that human responses to technology, including
robots, are fundamentally social and natural, just like human
responses to other people (Moon & Kim, 2001; Reeves & Nass,
1996). Technology is sufficiently human-like that people use the
same perceptual strategies and biases that exist for negotiating real
human interactions. This has been found across a broad range of
social characteristics; for example, with respect to the personalities
of television characters (Hoffner & Buchanan, 2005) (they are the
same as those for real people); personality of computer interfaces
(Nass & Lee, 2001) (introverted and extroverted interfaces cause the
same impressions as for real people); politeness rules that people use
to evaluate computers and other technology (Nass, 2004) (people are
polite to computers in the same ways there are other people); and
similar results for several other social evaluations, including reci-
procity (Katagiri et al., 2001), gender stereotypes (Lee et al., 2000),
specialization of expertise (Koh & Sundar, 2010), and team mem-
bership (Nass et al., 1996). One recent study even found that
physiological responses to touching robots produced the same
differences in arousal levels depending where on a mechanical
body people were asked to touch (Li et al., 2017).

If the psychology of human perception applies to robots, then
what are the aspects of human social perception that might deter-
mine what people think about any social actor, human, or robot?
Previous research has found several attributes important for robots,
including anthropomorphism (Kamide et al., 2013), familiarity
(Baddoura & Venture, 2013; Baddoura et al., 2012), perceived
intelligence (Haring et al., 2016; Hegel et al., 2008), sociability,
likeability (Li et al., 2010), and trustworthiness (Mathur &
Reichling, 2016). Researchers have also developed measures to
capture how people perceive robots. Kamide et al. (2014) developed
the PERNOD (PERception to humaNOiD) scale that measures the
attribute of humanoid. They found five basic dimensions for per-
ceiving humanoid robots: familiarity, utility, motion, controllability,
and toughness. Similarly, Bartneck et al. (2009) identified five basic
attributes that professionals and researchers use to evaluate robots:
anthropomorphism, animacy, likeability, perceived intelligence,
and perceived safety. Gray et al. (2007) proposed two dimensions
of perceptions of robots: agency and experience. Agency referred to

Table 4

Factor Loadings of 21 Features of Robots

Component 1
(machine-like)

Component 2
(human-like)

Has a face (1: no; 2: yes) −0.223 0.771

Bipedal (1: no; 2: yes) 0.260 0.379
Metal skin (1: no; 2: yes) 0.533 −0.174
Vision (1: no; 2: yes) −0.239 0.822

Plastic skin (1: no; 2: yes) 0.194 0.036
Speech (1: no; 2: yes) −0.151 0.662

Locomotion (1: no; 2: yes) 0.509 −0.107
Age range (1: child; 2: adult; 3: senior) −0.196 −0.721

How many feet 0.640 0.353
Ratio of head and body size −0.507 0.582

Gender display (1: male; 2: female;
3: not displayed)

0.103 −0.073

Masculinity score (1–100) 0.537 −0.158
Femininity score (1–100) −0.479 0.189
Age score (1–100) 0.533 −0.10
How many degrees of freedom 0.519 0.302
Ratio of eyes and head size −0.082 0.742

Fur skin (1: no; 2: yes) −0.655 −0.007
Rubber/silicone skin (1: no; 2: yes) 0.026 0.181
Animal shape (1: no; 2: yes) −0.638 −0.011
Has digital presentation (1: no; 2: yes) 0.037 −0.034
Visibility of mechanics (1: no; 2: yes) 0.527 −0.057
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the capacity to act and experience referred to ability to experience
feelings and emotions.
Across these robot studies, there seem to be two attribute clusters:

one reflecting feelings of familiarity, warmth and friendliness, and
another representing perceived competence and intelligence. Both
clusters compare well to attributes that humans use to form im-
pressions of other humans. The SCM argues that, like all perception,
social perception depends on evolutionary pressures, and most
importantly the pressure to determine quickly whether another
social actor is friend or foe, and whether that social actor has the
ability to act on friendly or aggressive intentions (Fiske et al., 2007).
Decades of research has verified that these dimensions, named
warmth (and also trustworthiness, sincerity, friendliness, helpful-
ness, or morality) and competence (and also intelligence, skill,
creativity, and efficacy), represent the quick evaluations that people
make of individuals from presidential candidates, to well-known
people, to meetings with strangers, and that these two dimensions
appear stable across cultures and over time (Fiske, 2018).
It is important to note that these evaluations are not thought to be

opinions about people based on extended interactions or consider-
able thought and contemplation. The judgments of warmth and
competence are unconscious, automatic, and reflexive and are the
basis of stereotypes we hold for various categories of people (Eyssel
& Hegel, 2012). They are made because of the constraints imposed
by evolutionary pressures to survive, yet they are applicable to
contemporary social interactions even though the original situations
that favored their evolution are no longer as important as they were
in our distant past. Importantly for application to robots, the trait
judgments that people make in response to faces occur in an instant,
as quickly as 33–38 ms after exposure to a face, even if the face is
chosen to be as emotionally neutral as possible (Bar et al., 2006).
These are primitive, quick, and consequential judgments.
The SCM builds on these two core evaluation dimensions to

predict the content of stereotypes that people have of others (Fiske
et al., 2002). The model describes four quadrants based on combi-
nations of the dimensions. For example, people perceived as high in
warmth but low in competence evoke paternalistic stereotypes (e.g.,
elderly people) while people low in warmth but high in competence
evoke envious stereotypes (e.g., rich people). People judged low in
both warmth and competence evoke contemptuous stereotypes (e.g.,
welfare recipients) while those judged high in both warmth and
competence evoke admiration (e.g., ingroup and allies) (Fiske et al.,
2002).
Our question in Study 2 was whether people use these same two

dimensions to differentiate a broad range of social robots. The same
evaluations have been used occasionally in the past research to
comment on particular attributes of robots (Bergmann et al., 2012;
Eyssel & Hegel, 2012), but no research has looked at their applica-
bility across a large sample of robots. Our first test of human
responses, based on evaluations from 3,920 people evaluating all
of the 342 robots, used standard warmth and competence evaluative
scales from human studies (Fiske et al., 2002).
Knowing that impressions are quickly and reliably defined by

warmth and competence can alert a robot designer to important
parameters that will determine the success of their machines.
Knowledge of the parameters, however, does not determine exactly
how to build the machines. In Study 2, we try to answer that
question: What does a warm or competent robot look like?

Method

Our goal was to obtain a large human sample for the evaluations
of the robots to allow averaging across the evaluations for each
robot. We recruited N = 3,920 participants from Amazon’s
Mechanical Turk. This study was approved by Stanford
Institutional Review Board. Participants were randomly assigned
to the robot images resulting in a minimum of 10 evaluations for
each robot (some robots received more than 10). Each participant
was presented with a single image of one of the 342 social robots.
Participants then rated their own perceptions of the social robot on
the nine-itemwarmth and competence scale (Fiske et al., 2002). The
items included tolerant, warm, good natured, sincere, competent,
confident, independent, competitive, and intelligent, with the par-
ticipant rating the social robot on each dimension on a five-point
Likert scale, from “not at all” to “extremely.” Following our method
in Study 1, the ratings were averaged to produce a score for each
item for each robot. We have made the study materials, the data, and
analytic methods publicly available. We were not able to collect
demographic information about the participants who participated
via Mechanical Turk, which is a limitation of the current study.

We then used the ratings of the robot attributes to explore how the
ratings predicted perceived warmth and competence. Specifically,
we used the ratings of perceived warmth and perceived competence
of social robots as the dependent variables and used the judgments
about attributes from Study 1 as predictors (data available at
https://shorturl.at/sFJO3).

Results

The standard analysis strategy for examining the dimensionality
of a set of social actors is to factor analyze several evaluations,
paying attention to whether the traits cluster within the larger
categories of warmth and competence, and to how much of the
total variance across the evaluations can be explained by these two
dimensions as opposed to others. Although these warmth and
competence items have been used in numerous studies applied to
the perceptions of humans (Fiske, 2018), the application of these
items to the perceptions of a large sample of social robots is novel.
We therefore conducted an exploratory factor analysis (EFA) with
principle axis factoring with oblique rotation to examine whether the
dimensions of warmth and competence emerged. The analysis
produced a two-factor solution. The first factor was comprised of
the four warmth items (tolerant, warm, good natured, and sincere)
(M = 3.38, SD = .39, α = 0.89) that explained 31% of the vari-
ance. The second factor was comprised of the five competence items
(competent, confident, independent, competitive, and intelligent)
(M = 3.46, SD = .30, α = 0.82) that explained 30% of the vari-
ance. The factor loadings are described in Table 5.

This two-factor structure for perception of social robots is con-
sistent with the warmth-competence factor structure from human
studies described in the SCM (Fiske, 2015, 2018) both in the relative
ordering of the components of each dimension, and in the total
relative variance explained by the two dimensions.

To answer the second research question, which is how perceived
warmth and perceived competence can be explained by the attri-
butes of the robots, we first used the machine-like factor score and
the human-like factor score generated from Study 1 to predict
perceived warmth and perceived competence. We conducted a
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linear regression and found that for perceived warmth, human-like

positively predicted perceived warmth (β = 0.33, SE = 0.02, p <

.001), while machine-like negatively predicted it (β = −0.30,

SE = 0.019, p < .001). The regression was significant F(2, 339) =

43.32, p < .001, with the two factors accounting for 19.9% of the

variance in perceived warmth. Tests to see if the data met the

assumption of collinearity indicated that multicollinearity was not a

concern (human-like, tolerance = 1.0 and Varience Inflation Factor

(V) = 1.0; machine-like, tolerance = 1.0 and Varience Inflation
Factor = 1.0).

We conducted a second linear regression with perceived compe-
tence as the dependent variable. Machine-like was significantly
associated with perceived competence (β = 0.42, SE = 0.015,
p < .001), while human-like was not (β = 0.033, SE = 0.015, p =

.51). The regression was significant F(2, 339) = 35.53, p < .001
and these two factors explained 16.8% of the variance in perceived
competence. Tests to see if the data met the assumption of collin-
earity indicated that multicollinearity was not a concern (human-
like, tolerance = 1.0 and VIF = 1.0; machine-like, tolerance = 1.0
and VIF = 1.0).

We then used the attributes to predict perceived warmth and
competence. Two separate linear multiple regressions were con-
ducted with perceived warmth and competence as the dependent
variables. We used multiple dummy codes for the gender displayed,
developmental categories, and locomotion.

A robot was perceived with higher warmth if its mechanics were
invisible (β = −0.13, SE = 0.05, and p < .05), it had more degrees
of freedom for movement (β = 0.12, SE = 0.01, p < .05), younger
age (β = −0.14, SE = 0.01, p < .05), and displayed as a child
(β = −0.14, SE = 0.01, p <.05). The regression was significant
F(25, 316) = 5.90, p < .001 with the four factors explaining 26.4%
of the variance in perceived warmth. The standardized beta coeffi-
cients are presented in Table 6.

Table 6

Robot Features Predicting Warmth and Competence Regression

Features Type

Warmth Competence

Tolerance VIFβ SE β SE

Head
Eye:head ratio Continuous 0.10 0.45 0.00 0.36 0.44 2.26
Head:body ratio Continuous 0.04 0.38 −0.01 0.31 0.46 2.16
Has face Categorical 0.04 0.06 −0.12 0.05 0.44 2.29
Has vision Categorical 0.14 0.07 0.10 0.06 0.32 3.10

Skin type and shape
Plastic Categorical 0.01 0.05 −0.04 0.04 0.67 1.50
Metal Categorical −0.04 0.05 0.05 0.04 0.56 1.78
Fur Categorical 0.05 0.09 −0.24** 0.07 0.45 2.22
Silicone Categorical −0.05 0.07 −0.01 0.06 0.70 1.43
Mechanics visible Categorical −0.13* 0.04 −0.08 0.04 0.72 1.39
Animal shape Categorical −0.01 0.06 −0.13 0.05 0.52 1.94
Height Continuous −0.03 0.02 0.01 0.02 0.44 2.27

Communication ability
Has speech Categorical −0.03 0.05 −0.02 0.04 0.62 1.61
Has digital presentation Categorical 0.09 0.04 0.07 0.03 0.93 1.07

Motion
Degrees of freedom Continuous 0.12* 0.01 0.24* 0.00 0.66 1.51
Locomotion no vs. yes Categorical 0.11 0.08 0.00 0.07 0.21 4.83
Locomotion no vs. not sure Categorical 0.16 0.08 0.07 0.07 0.20 4.94
Bipedal Categorical 0.02 0.05 0.01 0.04 0.71 1.40

Gender
Gender displayed: not displayed vs. male Categorical 0.04 0.04 −0.01 0.03 0.85 1.18
Gender displayed: not displayed vs. female Categorical −0.08 0.06 0.05 0.05 0.85 1.18
Masculinity Continuous −0.15 0.00 −0.08 0.00 0.17 5.80
Femininity Continuous 0.00 0.00 −0.09 0.00 0.18 5.56

Age
Developmental category: child vs. adult Categorical −0.11 0.06 0.03 0.05 0.45 2.24
Developmental category: child vs. senior Categorical 0.02 0.22 0.05 0.18 0.75 1.33
Developmental category: child vs. not applicable Categorical −0.14* 0.06 0.01 0.05 0.44 2.26
Age Continuous −0.14* 0.00 0.04 0.00 0.46 2.19

Adjusted R2 0.24 0.20

Table 5

Item Loadings for Robot Perceptions on the Warmth-Competence

Scale

Item
Component 1
(warmth)

Component 2
(competence) Mean (SD)

Competent −.11 .85 3.65 (.38)
Tolerant .60 .27 3.57 (.37)
Confident .23 .69 3.58 (.38)
Warm .92 −.13 3.11 (.55)
Independent .09 .64 3.41 (.36)
Good natured .94 −.01 3.50 (.47)
Competitive −.12 .49 2.98 (.40)
Sincere .78 .17 3.35 (.40)
Intelligent .00 .81 3.68 (.41)
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A robot was perceived as a more competent the more degrees of
freedom for movement (β = 0.24, SE = 0.00, p < .01) and if it did
not have fur skin (β = −0.24, SE = 0.07, p < .01). The regression
was also significant F(25, 316) = 4.06, p < .001. The two factors
explained 18.3% of the variance in perceived competence. We
reviewed the tolerance and variance inflation scores to check multi-
collinearity and found that masculinity and femininity had VIF
scores of 5.80 and 5.57, respectively. The rest of the variables did
not exhibit multicollinearity. Figure 3 shows how a sample of 100
robots from our larger collection is arrayed in the two-dimensional
space of warmth and competence.

Discussion

These results show that perceptions across a large sample of social
robots are like those for real people. The evolutionary pressures that
shaped evaluations of warmth and competence, developed thou-
sands of years before friends and foes could be anything other than
humans or animals, are nonetheless applicable to the evaluation of
21st century technology. Social robots engage similar social per-
ception and impression formation processes as real people. This is
supported in spite of obvious differences in their appearance, and
especially in the appearance of extreme attributes that often are their
most desirable and purposive qualities (e.g., wheels for legs, digital
displays in place of a face, metallic surfaces with visible internal
wiring, and unusual animal-like forms).
Although the primacy of these evaluations, applied both to

humans as well as nonhuman forms, may seem uncontroversial,
we note that quite often robots are given special psychological
status. For example, many studies, and especially popular

conversations about robots, discuss how robots may form special
relationships over extended time periods (Gockley et al., 2005;
Leite et al., 2013) or how repetition in behaviors may cause
boredom or evaluations of unnaturalness (Baxter et al., 2011).
Although these more elaborate and slower responses are possible,
and may be important for evaluations about how or whether
relationships with a robot may change and endure over time, it is
the faster automatic responses that will set the basic parameters for
how people respond to the machines. Warmth and competence
evaluations should determine whether people will walk toward a
robot or back away, whether friendly or aggressive intentions will be
assumed, or whether the intensity of any of those evaluations should
be increased because a robot appears to have the means to follow
through on whatever behaviors seem most possible.

One limitation of this study is that impressions of the 342 robots
were based on looking at pictures. How might results change if
people were responding to the actual machines, and watching them
move and interact? There is no doubt that much more information
about the robots would be available during live interactions, and
where possible, research about social responses should include as
much richness in the interaction as possible. It is also worth noting,
however, that the primitive interactions considered here happen
quickly (Willis & Todorov, 2006). When people are shown pictures
of human faces, the same two dimensions of warmth (trustworthi-
ness) and competence (dominance) are found after extremely brief
exposures (Todorov et al., 2008). Further, impressions that are
given within 100 ms are highly correlated with evaluations made
in the absence of time constraints (Leite et al., 2013). So this is a fast
process that is influential from the very beginning of an interaction.

Figure 3

Sample of 100 Social Robots in Warmth-Competence Space Taken From the Population of 342 Robots in the

Published Literature From 2005 to 2016 Where Each Robot Is Placed Along the Dimensions of Competence and

Warmth
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We note three other conclusions. First, we can say that it is
possible to successfully predict warmth and competence responses
to robots using a mix of attributes similar to human evaluation and
ones that are unique to robots. The level of prediction is sizable,
suggesting that these attributes can be used as design guidelines with
some confidence. Second, for evaluation of warmth, age is a primary
predictor. When people perceive a robot as young they are more
likely to perceive the robot as warm. In Figure 3, Paro and Pepper
are good examples. A second predictor of warmth was mechanical
visibility. Warm robots do not have as much visible machinery like
wiring, servos, and gears. In Figure 3, good examples of robots of
each extreme are Paro and Qin for warm, and Youbot andMentorbot
for cold.
Third, a robot’s perceived mobility, in particular its perceived

degrees of freedom, predicts both perceived warmth and compe-
tence. This was the only feature to predict both warmth and
competence. Although further research is required to understand
why this might be, it is likely that these perceptions rely on the
ability to carry out being either warm or competent. People naturally
made evaluations of actionability, a judgment that is both primitive
and connected to more obvious subjective judgments about a robot’s
warmth or competence. Recall, for example, that primitive judg-
ments were about the perceived ability of people we encounter to act
regardless of whether the actions would be perceived positively or
negatively. We found a comparable judgment for robots.
An important caveat about these judgments about robots is that

they are made quickly, within milliseconds. Consequently, a robot
that looks like it could or could not move to help a human may be an
important precursor to more elaborate evaluations that may develop
over time—ones that would be determined also by whether or not a
robot could actually follow through on initial perceptions. But
robots that do not look warm or competent, even if they might
perform good naturedly or competently over time, may not get a
chance to offer any proof if rejected after first impressions.
Finally, competence is also defined in the social robot population

as being nonanimal, at least enough so that fur is not apparent.
Contrary to stereotype, the presence of fur does not make a robot
more warm.

Stimulus Sampling

The collection of robots shown in Figure 2 highlights the large
diversity of social technology in this category and makes salient the
issue of stimulus sampling for advancing the field of social robots.
The practicality of sampling multiple robots for a single study,
however, is obviously difficult. Although psychologists can sample
relatively easily from some stimulus categories (e.g., emotional
faces and categories of text), it is hard to include multiple robots in
experiments because each machine is expensive to produce or
purchase, and because different robots, each with their own soft-
ware, would need to be programmed to do similar tasks. There are,
however, methods to accomplish improved sampling with social
robots. One possibility is to increase the use of between-study meta-
analyses that allow researchers to compare how different robots
perform on a given task by comparing them across (rather than
within) studies. Another approach is to standardize robots across
studies. It may be useful, for example, to build common robots for
use in a particular types of research (e.g., teaching young students
and creating assistive social robots for a specific population)

(Baxter et al., 2017; Ueyama, 2015). This kind of standardization
would make comparison across studies much easier, as would
develop a more standardized set of tasks and dependent variables.
This approach has led to significant advances in other fields with
high diversity with stimulus samples, such as the advance of natural
language processing with standardized tasks.

The Stereotyping of Social Robots

In social psychology, the SCM describes how the two dimensions
of warmth and competence produce stereotypes about humans
that drive emotional and behavioral responses (Fiske, 2015,
2018; Fiske et al., 2002). We looked to see if similar stereotyping
might also have occurred with the robots. The SCM lays out the two-
dimensional warmth-competence space into four quadrants, with
those in the high warmth, high competence quadrant (the upper right
in Figure 4) representing stereotypes from the in-group for that
specific culture. In the U.S. studies, for example, in-group stereo-
types include Americans, Christians, housewives, and the middle
class. Figure 4 shows six social robots at the extremes of the high
warmth and competence in-group quadrant. They are strikingly
similar, and exclusively human-like (no animals and no toys), and
they each have four limbs, a head proportionate to human body size,
and they appear dominant and even athletic. These may be, at least
for our sample of evaluators, the in-group stereotype of social
robots.

The other three quadrants in the SCM space describe different
out-groups, based on fundamental intergroup biases from social
psychology (Fiske, 2015, 2018). For human stereotypes, the quad-
rant lowest on both dimensions includes homeless people and
immigrants. The social robots in that group (line 4 in Figure 4)
are some of the least action-oriented of the larger group (e.g., a sad
yellow gumby-style figure, a flattened bear), and all appear without
noticeable emotion.

The other two quadrants represent more ambivalent stereotypes.
Low warmth and high competence people, in research done in the
United States, stereotypically include groups like rich people and
Asians, and they are viewed with envy and jealousy, and perceived
to have prized abilities but suspect intentions. Figure 4 shows six
social robots in that quadrant. They are much less human-like, have
exaggerated mechanical features (e.g., antennae and spidery legs),
sometimes no identifiable body, and wheels instead of legs. These
may be attributes that suggest competence, but they also may signal
ambiguous intentions. In contrast, high warmth and low competence
robots are shown in the third line of Figure 4. Human stereotypes in
that quadrant include the elderly and disabled. The corresponding
attributes for robots are plush animal bodies (e.g., dogs, bears, and a
llama), and toy-like representations of objects.

Importantly, the SCM describes how groups represented in each
quadrant evoke different emotional reactions. People high on both
warm and competence dimensions (e.g., in-group allies) evoke
admiration, while people low in both dimensions (e.g., poor and
homeless) evoke disgust. People in the quadrant of low warmth but
high competence (e.g., rich people and professionals) evoke envy,
while people in the high warmth but low competence quadrant (e.g.,
older and disabled) evoke pity. Given how closely the evaluations of
robots tracked the evaluations people, the SCM suggests that robots
in the different quadrants may evoke classical stereotypes,
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regardless of whether the robot designers had these stereotypes in
mind or not.
Finally, the SCM also argues that there are important behavioral

implications with respect to each quadrant. High warmth is associ-
ated with helping and protecting while low warmth is associated
with attacking and fighting. High competence is associated with
affiliation while low competence is associated with neglect. Combi-
nations of the two dimensions could create behavioral responses to
the social robots that could dramatically change their value in the
primary contexts in which they are considered.

Warmth and Competence for Design

Now that there is evidence that warmth and competence are
important evaluations of robots, and we know some of the attributes
that encourage those judgments, we can think about implications for
the design of robots. Based on the extensive literature about warmth
and competence judgments about real people (Fiske et al., 2002),
what does this mean for the design of social robots?
First, according to the impression literature, warmth judgments

are primary and quick (Fiske, 2018). That trait is judged before
competence, presumably because the determination of another
social actor’s friend or foe intent is more important than the
judgment about whether that actor will be able to deliver on the
intentions. This suggests that if signaling warmth is critical, those
attributes most predictive of warmth in robots (e.g., surface materi-
als and perceived age) should be emphasized unambiguously.
Judgments about warmth may predict success of an entire relation-
ship. Examples of good models from Figure 3 include Paro, Qin,
and Autom.
Second, warmth and competence judgments drive the perception

of stereotypes and associated emotional and behavioral reactions
described by the SCM. Regardless of whether a designer of robots

tries to use or change these responses to stereotypes, it is clear that
the worlds of social robots and human social actors may not be very
different. Our data suggest that human partners will perceive a
robot’s warmth and competence to determine the robot’s social
standing. Researchers and designers must explicitly reject drawing
on problematic stereotypes associated with racism and sexism in the
design of social robots. These stereotypes will guide how people
will interact with the robot, with crucial implications for the social
dynamics of the interaction.

Conclusion

What makes a social robot different or similar to another robot?
Our collection of 342 social robots reveals that social robots are
remarkably diverse in appearance. Nonetheless, people’s percep-
tions of this large sample of robots conformed to the same primary
and rapid evaluations we make of other humans, suggesting that
people differentiate robots along the dimensions of warmth and
competence, with specific design attributes determining where in
that two-dimensional space a robot will be located. In her overview
of research examining person perception, Fiske (2018) details how
the primacy of warmth and competence spans cultures and has
endured over time. Our research indicates that perceptions of
warmth and competence extend to our understanding of robots.
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