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Abstract—A Delay Tolerant Network (DTN) is a type of
wireless mobile network that does not guarantee continuous
network connectivity. One application can be found in the social
communication networks that are becoming ever more ubiquitous
with the development of more portable, affordable, and powerful
mobile devices. In such a network, people move around and
contact each other based on their common interests. Recently,
some social-feature-based routing protocols that take advantage
of recorded social features to steer the routing in the right
direction have been proposed. In such protocols, every node finds
its differences in social features with the destination. The routing
hence becomes a process to resolve the social feature differences
between a source and a destination. However, we believe that
merely distinguishing nodes by “same” or “different” social
features is insufficient in reflecting nodes’ dynamic behavior.
Therefore, we put forward SOSIM, a novel routing algorithm
that uses similarity metrics from data mining on nodes’ contact
history to more accurately evaluate social similarities between
nodes. To improve efficiency, we apply delegation forwarding
in our algorithm. Analysis indicates that our algorithm can
improve routing performance with a low implementation cost.
The simulation results using real trace also show that our
algorithm outperforms the existing ones.

Index Terms—delay tolerant networks, delegation forwarding,
routing, similarity, social features

I. INTRODUCTION

A Delay Tolerant Network (DTN) is a type of wireless mo-
bile network that may lack continuous network connectivity.
It can appear in the following applications: satellite commu-
nication networks [14], village area networks [6], connected
vehicle networks [1], and social communication networks [7].
As more portable, affordable, and powerful mobile devices
such as smartphones, tablets, and laptops are developed, social
communication networks are becoming more ubiquitous. In
such a network, people move around and contact based on
their common interests. Because of this, the social features of
people play an important role in their contact patterns.
Recently, several social-feature-based DTN routing schemes

have been proposed [5], [13]. The idea is to use the social
features of a node (an individual) for routing guidance. The
features F1, F2, · · · may refer to nationality, city, language,
and so on. The intuition is that people come in con-
tact more frequently if they have more social features
in common. In the routing process, feature differences
are resolved hop-by-hop until the destination is reached.

For example, assume we consider four social features:
〈Nationality, City, Affliation, Language〉. Suppose des-
tination D’s values in these four social features are:
〈USA,NewY ork, Student, English〉. These are the target
social features that a source wants to reach, so we set the vector
ofD to 〈1, 1, 1, 1〉. Suppose there is a source that wants to send
a message to D. If it has the same value for feature Fi, then
the value in its Fi dimension is set to 1, otherwise it is set to 0.
Suppose a source has nothing in common with the destination,
so its vector is 〈0, 0, 0, 0〉. The routing process then attempts
to resolve the differences between 〈0, 0, 0, 0〉 and 〈1, 1, 1, 1〉
via intermediate nodes. A possible path, represented by nodes’
social feature vectors, would be 〈0, 0, 0, 0〉 → 〈1, 0, 0, 0〉 →
〈1, 0, 1, 0〉 → 〈1, 1, 1, 0〉 → 〈1, 1, 1, 1〉.

In this paper, we take the idea a step further, motivated
by the reality that people’s social features do not always
reflect their dynamic behavior. For example, consider people
from New York who actually spend most of their time in
Texas. A simple feature value in their profiles will not reflect
their dynamic behavior. Another situation is that in real life,
people mostly communicate with people who have many social
features in common. So if we just look at 1 or 0 difference
in social features, then it is hard to tell which one is better.
For example, assume we just consider social features like
〈City, Affiliation〉. Suppose destination D’s social feature
values in these two dimensions are 〈NewY ork, Student〉.
Then the vectors of two candidate forwarders A and B who
have the same social feature values as D will both be set to
〈1, 1〉, which makes them indistinguishable.
Therefore, we propose a more accurate way to evaluate

social closeness or similarity of nodes that takes their dynamic
behavior into account. Our method uses nodes’ meeting ratios
with other nodes having these social feature values in his-
tory. For the above example, if node A meets New Yorkers
90% of the time and students 80% of the time while B’s
frequencies for the same meetings are 〈60%, 40%〉 during the
time we observe, then we can tell candidate A is a better
choice. Generally speaking, a better candidate should be the
one who is more socially similar to the ideal candidate R

who has a vector of 〈100%, 100%〉, meaning that it meets
people like the destination all the time. So the key to more
accurately evaluate candidate forwarders is to calculate the
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social similarity between nodes based on their contact history.
We derive the similarity metrics from those in data mining [3]
and will explore Euclidean, Weighted Euclidean and Tanimoto
similarity metrics.
Based on the above idea, we put forward a novel routing

algorithm called SOSIM based on SOcial SIMilarities of
nodes if their contact history is considered. In addition, to
achieve efficient routing, we apply delegation forwarding [2].
Delegation forwarding is known to bring down the expected
cost of delivery from O(n) to O(

√
n), where n is the number

of nodes in the network. In delegation forwarding, a copy is
transferred to a newly encountered node if the node is “closer”
to the destination than other nodes that the current node has
already met. Here, we use social similarity as a forwarding
metric. Analysis indicates that SOSIM can improve delivery
ratio and reduce latency with a low implementation cost. The
simulation results comparing SOSIM to existing algorithms
also exhibit its efficiency.
The rest of the paper is organized as follows: Section II

references the related works; Section III presents our routing
algorithm; Section IV gives the analysis; Section V shows the
simulation results; and the conclusion is in Section VI.

II. RELATED WORKS

Many DTN routing protocols have been proposed in the
literature. In the beginning there were rudimental approaches
such as Flooding [11], [12] and Wait [4]. More recently,
algorithms were proposed to utilize social features in DTN
routing [5], [13]. The details are as follows.

A. Rudimental Approaches

One rudimental routing approach in DTNs is to perform a
Flooding-based route discovery as in [12] where a host will
forward a message to all hosts it comes into contact with
so that the spread of the message is like an epidemic of a
disease. The Flooding-based routing and its derivatives use
multiple copies of a single message to decrease latency and
improve delivery ratio and robustness. However, they have a
high cost [10]. Another basic algorithm in DTNs is Wait (or
direct delivery) [4], where the source does not forward copies
to any intermediate nodes at all. It just waits and sends the
message to the destination when they meet. In this approach,
the number of copies is low (only one copy) but the latency
can be very high. The Flooding and Wait algorithms will be
used as benchmarks for our simulations.

B. Social-feature-based Approaches

Some more recent DTN routing algorithms use social fea-
tures to guide routing. In [5], Mei et al. found that individuals
with similar social features tend to come into contact more
often in DTNs. The individuals are characterized by high
dimensional feature profiles, though usually only a small
subset of important features are extracted from feature profiles.
Although the initial idea of social feature-based routing was
proposed by [5], Wu et al. [13] provide a systematic approach
to multi-path routing in the feature-space by taking advantage

of the structural property of hypercubes to resolve social
feature differences between a source and a destination. The
advantage of the social-feature-based approach is that it does
not need to record nodes’ contact history. The drawback is
that it can not accurately capture the dynamic behavior in the
network. Therefore, a new routing algorithm that can adapt to
a node’s dynamic behavior is needed.

III. ROUTING PROTOCOL

In this section, we put forward a routing algorithm called
SOSIM that identifies the best forwarding candidate using
nodes’ social similarities based on their contact history.

A. Routing Algorithm

The routing algorithm is shown in Fig. 1, where we consider
m social features in the network. Each individual node has
a vector based on its social features. For convenience, we
use the node’s label as its vector’s label. Thus, a node X

has a vector of X 〈x1, x2, · · · , xm〉 and a node Y has a
vector of Y 〈y1, y2, · · · , ym〉. Metric S(X,Y ), whose details
are described in the next section, is used to calculate social
similarity between two nodesX and Y . In the routing process,
we apply the idea of delegation forwarding proposed by
Erramilli et al. [2] because it can bring down the expected cost
of delivering messages from O(n) to O(

√
n), where n is the

number of nodes in the network. The main idea of delegation
forwarding is that it assigns a quality and a level value to each
node. The quality value of a node here is S(X,Y ) and the level
value is τ . Initially, the level value of each node is equal to
its quality value. During the routing process, a message holder
compares the quality of the node it meets with its own level. It
only forwards the message to a node with a higher quality than
its own level. In addition, the message holder raises its own
level to the quality of the higher quality node. The result of
delegation forwarding is that a node will forward a message
only if it encounters another node whose quality metric is
greater than any seen by the node so far.

B. Social Similarity Metrics S(X,Y )

To evaluate the similarity of two nodes in a more accurate
way, we look at the nodes’ past meeting ratios. Each individual
node X has a vector of length m: 〈x1, x2, · · · , xm〉, where
xi =

Mi

Mtotal
. That is,

< x1, x2, · · · , xm >=

〈
M1

Mtotal

,
M2

Mtotal

,
M3

Mtotal

, · · · Mm

Mtotal

〉

(1)
whereMi is the number of meetings ofX with nodes whose

social feature Fi is the same as the destination’s feature Fi,
and Mtotal is the total number of meetings of X with any
other node in the history we observe. Thus 0 ≤ xi ≤ 1 for all
1 ≤ i ≤ m. With the node’s vector defined, the next task is to
use similarity metrics to compare the similarity of two vectors.
Now the heuristic for selecting the best forwarder in routing
becomes the selection of the node whose vector is most similar
to that of the ideal forwarder R for the destination node. An
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Algorithm SOSIM: routing algorithm using SOcial SIMi-
larity metrics

1: Let B1, B2, · · · , Bn be nodes. Each node has a vector of
〈Bi1, Bi2, · · · , Bim〉 (1 ≤ i ≤ n)

2: R is an ideal node who meets nodes like D all the time
and has a vector of 〈100%, 100%, · · · , 100%〉

3: INITIALIZE ∀i : τi ← S(Bi, R)
4: On contact between message holder Bi and node Bj :
5: if Bj is the destination D then
6: Bi forwards the message to Bj and the algorithm is

terminated
7: else if τi < S(Bj , R) then
8: τi ← S(Bj , R)
9: if Bj does not have the message then
10: Bi forwards the message to Bj

11: end if
12: end if

Fig. 1. The DTN routing algorithm based on social similarities

ideal forwarder R is a theoretical node who meets people like
destination D all the time. Hence its vector consists of m

100%s: 〈100%, 100%, · · ·100%〉.
The various similarity metrics we use in our routing algo-

rithm are derived from those in data mining [3]. In our metrics,
1 means 100% identical and 0 means not similar at all. To deal
with various values of social data, we normalize the outputs
of all metrics to the range of [0, 1]. The details are as follows:
1) Tanimoto Similarity: The Tanimoto coefficient to mea-

sure the similarity of X and Y is:

S(X,Y ) =
X · Y

X ·X + Y · Y −X · Y (2)

where X · Y is the dot product of the two vectors.
For example, suppose we look at three social fea-

tures: City, Language, and Position in the network. If
the values of the social features of destination D are:
〈NewY ork,English, Student〉 and node X has met people
from New York 70% of the time, people that speak English
93% of the time of the time, and students 41% of the time
in the history we observe, then node X has a vector of
X = 〈0.7, 0.93, 0.41〉. And an ideal forwarder R for D should
have a vector of R = 〈1, 1, 1〉. Using the Tanimoto metric in
equation (2), S(X,R) = 0.82.
2) Euclidean Similarity: We can also use the Euclidean

distance to measure a node’s social similarity to another node.
To make the similarity definition consistent, we normalize the
original definition of Euclidean similarity to the range of [0, 1]
and subtract it from 1. Now the Euclidean similarity of X to
Y is defined as:

S(X,Y ) = 1−
√∑m

i=1
(yi − xi)2√
m

(3)

3) Weighted Euclidean Similarity: In addition to the basic
Euclidean similarity mentioned above, we also employ the
weighted Euclidean similarity. To determine the weight of

DBjBiB1 Bn−1

Fig. 2. The routing process

a social feature, we use the Shannon entropy [9] which
quantifies the expected value of the information contained
in the feature [13]. The Shannon entropy for a given social
feature is calculated as:

wi = −
k∑

i=1

p(fi) · log2(fi) (4)

where wi is the Shannon entropy for feature Fi, 〈f1, f2, · · · fk〉
are the possible values of feature Fi, and p denotes the
probability mass function of Fi. The weighted Euclidean
similarity normalized to the range of [0, 1] is as follows:

S(X,Y ) = 1−
√∑m

i=1
wi · (yi − xi)2√∑m

i=1
wi

(5)

IV. ANALYSIS

In this section, we show that our algorithm can improve
routing performance over the social-feature-based algorithm
with a low implementation cost.
Our social-similarity-based delegation routing process can

be described by Fig. 2. B1, B2, · · · , Bn−1 represent nodes.
Assume B1 is the source and node D is the destination. The
solid arrow between two nodes represents that they directly
meet each other. From B1 to Bn−1 on the horizontal path in
Fig. 2, the similarity of the node to the ideal nodeR who meets
nodes like the destination all the time is increasing and the
possibility to meet the destination is also increasing. With each
hop of forwarding, the message gets to a node that is more
similar than previous to the ideal forwarder of the destination.
The latency to deliver a message from a node Bi to the

destination D can be expressed as:

LBiD = min(JBiD, LBiBi+1
+ JBi+1D, LBiBi+2

+ JBi+2D,

· · · , LBiBj
+ JBjD, · · · , LBiBn−1

+ JBn−1D)

where JXY represents the latency if node X directly meets
node Y , and LXY refers to the latency needed for the message
to go from X to Y through direct meeting of the two or
through some intermediate nodes. In other terms, the formula
means that the latency of message from Bi to D is the
minimum latency of the following: Bi meets D directly, the
message is delivered to Bi+1 from Bi and then Bi+1 meets D
directly, the message is delivered to Bi+2 from Bi and Bi+2

meets D directly, and so on.
Now take any two nodes Bi andBj (i < j) on the horizontal

path from B1 to D. If they have the same social feature values
asD, for example, both of them are New Yorkers and Students,
but Bi lives in Texas and Bj lives in New York. In the existing
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social-feature-based routing algorithm, both of their vectors
are 〈1, 1〉 and they are not distinguishable. In our algorithm,
node Bj is closer in similarity to the ideal forwarder R of
D because it meets New Yorkers more. If it is chosen as the
next forwarder, then it is more likely to reduce the latency and
has a higher chance to deliver the message to the destination.
Also, our algorithm can be implemented with a low cost if a
node uses m counters (for m features) to record the number
of meeting times with other nodes having the same value in
each feature and a counter for the total number of meetings
in the observed time period to calculate the meeting ratios.

V. SIMULATIONS

This section describes the simulations we conducted using
a custom simulator written in Java. We first performed sim-
ulations to select the social similarity metric to use for our
protocol. We then compared our algorithm with the existing
ones. Finally, we showed that our protocol performs well on
sparse networks.
For all of our simulations, we used the INFOCOM 2006

trace [8]. This data set consists of two parts: contacts between
the iMote devices that were carried by participants and the
self-reported social features of the participants. The six fea-
tures we used for all social protocols were Affiliation, City,
Nationality, Language, Country, and Position.
In our simulations, we utilized the first two days of the data

as the initial history for SOSIM and performed our simulations
on the remaining three days. We generated messages from
a randomly chosen source to a randomly chosen destination
every two seconds in the first 24 hours of the simulation. We
then averaged five separate simulations of each algorithm with
identical setups to mitigate the effect of any outliers in the
performance. To perform a fair comparison of the algorithms,
the time to live of all packets (except for those created in the
Flooding simulation) was set to 9, meaning that a given packet
can be transferred at most nine times.
In order to compare the routing strategies, we define three

important metrics to evaluate their performance:

1) Delivery ratio: The fraction of generated messages that
are correctly delivered to the final destination since the
beginning of the simulation.

2) Delivery latency: The time between when a message is
generated and when it is received.

3) Packet duplication: The number of duplications needed
to deliver a message to its destination.

Efficient routing entails a high delivery rate and low latency
with an acceptable number of duplications.

A. Social Similarity Metrics Comparison

To find the best fit for our simulated context, we com-
pared Tanimoto, Euclidean, and Weighted Euclidean social
similarity metrics by performing delegation forwarding based
on S(X,Y ) for each algorithm. Results in Fig. 3 show that all
of the metrics performed similarly in delivery ratio, latency,
and duplication because their lines are overlapped. With the
Weighted Euclidean Similarity metric, we hoped to make the

protocol favor the social features of the destination that were
more influential to the delivery of the packet through the use
of weights. However, this approach seemed to have negligi-
ble significance in our simulated environment. We therefore
decided to use the Euclidean metric since it did not require
the calculation of additional weighting values and performed
slightly better than the Tanimoto similarity in latency.

B. Comparison with Existing Algorithms

Simulations were conducted to compare our algorithm with
the social-feature-based algorithm. The Flooding and Wait
algorithms were included as benchmarks in the comparison.

1) The Flooding Algorithm (Flooding): Every message is
spread epidemically throughout the network until it
reaches its destination.

2) The Wait Algorithm (Wait): The source holds the mes-
sage until it meets the destination.

3) The SOSIM Algorithm (SOSIM): Our algorithm, using
the Euclidean distance as the social similarity metric.

4) The Social-Feature-based Algorithm (Social): This al-
gorithm takes the idea from [13] and converts it into
a single-copy delegation forwarding scheme for fair
comparison where routing is guided by resolving social
feature differences between source and destination.

The results in Fig. 4 show that, as expected, Flooding has the
highest delivery ratio and lowest delivery latency but highest
number of packet duplications. Wait has the lowest number
of packet duplications but lowest delivery ratio and highest
delivery latency. SOSIM outperforms Social in delivery ratio
and latency with a little increase in the number of duplications.
The little increase in the number of duplications indicates that
SOSIM is more active in delivering the message to better
forwarders because it can more accurately identify them. The
simulation results confirm our analysis.

C. Sparse Networks

In the experiments above, we used all 62 available nodes
in the INFOCOM 2006 trace. We also tested our algorithm
on a smaller random subset of the trace with 16 nodes which
results in a sparse network. The results in Fig. 5 are consistent
with those in the denser network.

VI. CONCLUSION

In this paper, we have proposed a novel algorithm named
SOSIM for DTN routing that uses similarity metrics on nodes’
contact history to more accurately evaluate the social similarity
between nodes and guide routing towards the destination. The
analysis has indicated that our algorithm can improve the
performance of DTN routing with a low implementation cost.
The simulation results using real trace have also shown that
our algorithm outperforms the existing social-feature-based
algorithm. In our future work, we plan to test our algorithm
using more traces with social features as they become available
and to find better metrics to improve routing efficiency.
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Fig. 3. Comparison of Euclidean, Weighted Euclidean, and Tanimoto social similarity metrics
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Fig. 4. Comparison of SOSIM with Flooding, Social, and Wait algorithms using all devices in the trace
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Fig. 5. Comparison of SOSIM with Flooding, Social, and Wait algorithms on sparse networks
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