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Social Sparsity! Neighborhood Systems Enrich

Structured Shrinkage Operators
Matthieu Kowalski, Kai Siedenburg, Monika Dörfler

Abstract—Sparse and structured signal expansions on dic-
tionaries can be obtained through explicit modeling in the
coefficient domain. The originality of the present article lies in the
construction and the study of generalized shrinkage operators,
whose goal is to identify structured significance maps and give
rise to structured thresholding. These generalize Group Lasso
and the previously introduced Elitist Lasso by introducing more
flexibility in the coefficient domain modeling, and lead to the
notion of social sparsity. The proposed operators are studied
theoretically and embedded in iterative thresholding algorithms.
Moreover, a link between these operators and a convex functional
is established. Numerical studies on both simulated and real
signals confirm the benefits of such an approach.

Index Terms—Structured Sparsity, Iterative Thresholding,
Convex Optimization

I. INTRODUCTION

A wide range of inverse problems arising in signal pro-

cessing have benefited from sparsity. Introduced in the mid

90’s by Chen, Donoho and Saunders [1], the idea is that a

signal can be efficiently represented as a linear combination

of elementary atoms chosen from an appropriate dictionary.

Here, efficiently may be understood in the sense that only few

atoms are needed to reconstruct the signal. The same idea

appeared in the machine learning community [2], where often

only few variables are relevant in inference tasks based on

observations living in very high dimensional spaces.

The natural measure of the cardinality of a support set, and

hence its sparsity, is the ℓ0 “norm” which counts the number

of non-zero coefficients. Minimizing such a penalty leads to

a combinatorial problem which is usually relaxed into a ℓ1
norm which is convex.

Solving an inverse problem by using the sparse principle

can be done by the following steps:

• Choose a dictionary where the signal of interest is sup-

posed to be sparse. Such a choice is driven by the nature

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

M. Kowalski is with Laboratoire des Signaux et Systèmes, UMR 8506
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Fig. 1. Time-frequency images. Top: signal samples, bottom-left: represen-
tation adapted to transients. Bottom-right, representation adapted to tonals.

of the signal: Gabor dictionaries (for audio signals for ex-

ample), wavelet dictionaries (for images) are commonly

used, among others. The dictionary can even be learned

directly on a class of signals [3]. In order to be able to use

the sparse principle, this step of choosing an appropriate

dictionary is obviously crucial.

• Choose a loss in order to link the observations, or

measured signals, to the sought signals. While other loss

functions, such as the logistic loss, may be used, in the

current contribution, we focus on the classical ℓ2 norm

used with success in various problems.

• Apply an ℓ1 penalty on the coefficients of the signal

expanded in the dictionary.

The resulting convex optimisation problem is known as the

Basis Pursuit (Denoising) [1] or the Lasso [2]. This approach

can be viewed as a synthesis model of the signal: one directly

estimates its coefficients inside a dictionary in order to syn-

thesize the signal from these coefficients.

One of the main limitations of this approach to sparse

modeling is that all the coefficients are treated independently.

Most natural signals are highly structured, however, and the

structures which become visible in an analysis of a signal

correspond to the physical prior which could be used for

its processing. We instance such an observation on an audio

signal.

A. From sparsity to the need of structures

Fig. 1 displays the time samples of a glockenspiel sig-

nal, and two time-frequency representations using a modified

discrete cosine transform (MDCT), one with a narrow band

analysis window adapted for the tonal part (well localized

in frequency) and one with a large band analysis window
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(well localized in time). Clearly, the time samples are not a

sparse representation. The two time-frequency representations

display only few “big” coefficients (in dark gray), while the

organisation of these coefficients (their structure) depends

on the choice of the basis. Hence an idea is to construct

a dictionary as a union of two others, each adapted to the

“morphological layer”. Such an approach has been proposed

in [4] as hybrid model for audio signals, and in [5] as

morphological model for images. A more theoretical study

has been performed in [6], where sufficient conditions that

guarantee the uniqueness of a sparse representation in union

of orthogonal bases were obtained.

In addition to these observations, we notice a grouping

effect of the coefficients in both time- and frequency-direction,

for each of the dictionaries used. The main motivation for

the work presented in this article is to better understand how

this grouping effect can be taken into account in this and

similar situations, in order to obtain a more reliable sparse

representation in a corresponding dictionary.

Our main contribution is to propose the concept of social

sparsity: a certain, possibly weighted, neighborhood of a given

coefficient is considered for deciding whether to keep or

discard the coefficient under consideration. This idea was first

introduced in [7]; it was equipped with weights and evaluated

for various audio applications in [8]. For the realization of

the intuitive idea that a coefficient’s neighborhood should

be relevant for its impact, we construct structured shrinkage

operators which are directly derived from classical proxim-

ity/shrinkage operators such as the Group-Lasso. However,

while the classical proximity operators are directly linked to

convex regression problems with mixed norm priors on the

coefficients, the new, structured, shrinkage operators can not

be directly linked to a convex minimization problem. While

the convergence of related iterative algorithms for the classical

shrinkage operators and their generalizations was studied

in [9] in a rather general setting, the theoretical properties

of the new operators have not been considered so far. In the

current contribution, we establish a formal relation between

the structured shrinkage operators and the minimization of

a convex functional by introducing an expansion operator,

which maps the coefficient space into a higher-dimensional

space. Exploiting this extension, the shrinkage operators are

linked to a related convex problem, whose convergence prop-

erties are known. While proving convergence of the initial

algorithm associated with the new shrinkage operators remains

an open problem, numerical experiments show that its behavior

is sufficiently similar to the behavior of the algorithm derived

from the more formal convex formulation. By replacing an

oblique by an orthogonal projection, we also propose another

alternative operator, for which the convergence to a fixed point

is warranted. Our framework also allows the inclusion of the

recently introduced Latent-Group-Lasso [10], [11], to whose

performance the new algorithms will also be compared.

B. Outline

Section II introduces the mathematical framework used for

this article and Section III presents the state of the art related

to this framework. The structured shrinkage operators are in-

troduced in Section IV where their theoretical study is derived.

We show in Section V some practical implementation of our

approach and present numerical results of its performance in

denoising tasks on audio and image-signals.

II. MATHEMATICAL FRAMEWORK

This section introduces notation used throughout the paper

as well as some useful results from convex analysis.

A. Notation

We will denote the observed signal as y ∈ R
L, obtained

from the signal of interest s ∈ R
L corrupted by an additive

noise b ∈ R
L, i.e.

y = s+ b .

The matrix of the dictionary is denoted by Φ ∈ C
L,N and the

synthesis coefficients of s in Φ are denoted by α ∈ C
N , such

that

y = s+ b = Φα+ b .

A sparse estimation of s is given by the Lasso [2] or Basis

Pursuit Denoising [1]:

ŝ = Φ argmin
α∈CN

1

2
‖y −Φα‖22 + λ‖α‖1 , λ > 0 . (1)

In this article we choose to use the general convex formulation

ŝ = Φ argmin
α∈CN

1

2
‖y −Φα‖22 + λΩ(α) (2)

where Ω is a convex penalty. Depending upon the choice made

for Ω, different kinds of sparsity or structure can be enforced.

Remark 1. We choose to limit our purpose to the case of

sparse regression, where the synthesis coefficients α of the

signal of interest s are estimated from a single measurement

y only corrupted by an additive noise. However, this approach

can be extended to more general inverse problems where sev-

eral signals have to be estimated from several measurements

such as in source separation [12].

Remark 2. The functionals appearing in (1) and (2) are

convex but not necessarily strictly convex. Then, the set of

minimizers is not necessarily a singleton. However, with a

slight abuse of notation, we choose the notation argmin
to represent any minimizer, as the choice of a particular

minimizer has no consequences for the rest of the paper. One

can refer to [13] and [14] for discussions of the uniqueness

of the ℓ1 problem.

B. Short reminder of Convex optimization

The algorithms proposed in this paper are issued from

convex optimization methods and rely on the notion of the

proximity operator, introduced by Moreau [15], which allows

to deal with non-smooth functionals.
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Definition 1 (Proximity operator). Let ϕ : CN → C
N be a

lower semicontinuous, convex function. The proximity operator

of ϕ denoted by proxϕ : CN → C
N is given by

proxϕ(z) = argmin
u∈CN

1

2
‖z− u‖22 + ϕ(u). (3)

The most well-known example of such an operator is the

shrinkage given by the ℓ2 Tikhonov regularization and the

soft-thresholding given by the ℓ1 norm.

If one is able to compute the proximity operator of a convex

regularizer Ω, then the minimizer of the convex functional (2)

can be obtained by using proximal algorithms. The simplest

proximal algorithm was found in the ℓ1 case by several re-

searchers using very different approaches. In [16] Daubechies

and coauthors derived the thresholded Landweber iterations

using a surrogate and proved the convergence using Opial’s

fixed point Theorem. In [17], Figueiredo et al. found the same

algorithm thanks to an expectation/maximization formulation.

A more general version using the proximity operators was

given by the forward-backward algorithm studied by Com-

bettes et al. [18]. We will refer to this algorithm as the Iterative

Shrinkage/Thresholding Algorithm (ISTA) as in [19] and we

restate it in Algorithm 1 for the problem studied here.

Algorithm 1: ISTA

Initialization: α(0) ∈ C
N , k = 1, γ = ‖ΦΦ∗‖

repeat

α
(k) = proxλ

γ
Ω

(

α
(k−1) + 1

γΦ
∗(y −Φα

(k−1))
)

;

k = k + 1;

until convergence;

ISTA can be viewed as a generalization of the gradient

descent for the non smooth functional (2). The algorithm is

very simple, but converges slowly in practice. Recent advances

in convex optimization lead to more efficient algorithms, we

refer to [20] for a thorough discussion of proximal algorithms

and their accelerations. Algorithm 2 describes the Fast Iterative

Shrinkage/Thresholding Algorithm as proposed in [19]. The

Algorithm 2: FISTA

Initialization: α(0) ∈ C
N , k = 1, γ = ‖ΦΦ∗‖,

z(0) = α
(0), τ (0) = 1.

repeat

α
(k) = proxλ

γ
Ω

(

z(k−1) + 1
γΦ

∗(y −Φz(k−1))
)

;

τ (k) = 1
2

(

1 +
√

1 + 4τ (k−1)2
)

;

z(k) = α
(k) + τ (k−1)−1

τ (k) (α(k) −α
(k−1));

k = k + 1
until convergence;

choice γ = ‖ΦΦ∗‖ is a sufficient condition in order to ensure

the convergence of ISTA and FISTA. In some cases, it can

be useful to perform a line search for γ at each iteration

(see [19]). However, we observed that when the matrix ΦΦ∗ is

not “too badly conditioned”, such a line search does not bring

any computational advantage. In particular in the experiments

performed in Section V, the default constant choice for γ
works well.

Having introduced practical algorithms to deal with convex

functionals as in (2), in the next section, we turn to reviewing

some state-of-the-art approaches that go beyond the simple

sparsity paradigm.

III. STATE OF THE ART

Considering grouping structures of coefficients appears as

a natural idea in the sparse regression context. A simple way

to obtain such groupings is the use of mixed norms, which

allows to regroup coefficients. We first give the definition of

mixed norms and their proximity operators which will be used

later. Other kinds of grouping structures which appear in the

literature are presented afterwards.

A. Mixed norms

Mixed norms were introduced by Benedek and Panzone [21]

in the early 1960’s in mathematics.

1) Definition on two levels: We give here the general

definition as in [7], [9].

Definition 2 (Two-level mixed norms). Let x ∈ R
N = R

G×M

be indexed by a double index (g,m) ∈ N
2 such that x =

(xg,m).
Let p, q ≥ 1, and w ∈ R

N
+,∗ be a sequence of strictly

positive weights labeled by double index (g,m). We call ℓw;p,q

the mixed norm of x ∈ R
N defined by

‖x‖w;p,q =





G
∑

g=1

(

M
∑

m=1

wg,m|xg,m|p
)q/p





1/q

.

The cases p = +∞ and q = +∞ are obtained by replacing

the corresponding sum by the supremum.

Two mixed norms appear quite naturally by playing with the

different values of p and q: the ℓ21 and ℓ12 norms. The ℓ21
norm was used with the name Group-Lasso [22] (G-Lasso) in

machine learning, but also Multiple Measurement Vectors [23]

or joint sparsity [24] in signal processing. In the context of

regression, the main aim of such a norm is to keep or discard

entire groups of coefficients. Indeed, if we consider the special

case of an orthogonal basis, only the most energetic groups

remain.

The ℓ12 norm was introduced under the name of Elitist-

Lasso [7], [9] (E-Lasso), and latter called Exclusive Lasso

in [25]. With such a penalty, and if Φ is an orthogonal

basis, we keep the biggest coefficients relative to the others .

Such behavior can be expected in applications such as source

separation [12].

2) Extension to 3 levels: This notion of mixed norms can

be extended to more than two levels. On three levels, the

definition becomes [26]

Definition 3 (Three-level mixed norms). Let x ∈ R
N =

R
K×G×M be indexed by a triple index (k, g,m) ∈ N

3 such

that x = (xk,g,m). Let p, q, r ≥ 1 and w ∈ R
N
+,∗ a sequence
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of strictly positive weights. We call ℓw;p,q,r the mixed norm

of x defined by

‖x‖w;pqr =







K
∑

k=1





G
∑

g=1

(

M
∑

m=1

wk,g,m|xk,g,M |p
)q/p





r/q






1/r

.

The cases p = +∞, q = +∞ and r = +∞ are obtained by

replacing the corresponding sum by the supremum.

The ℓ212 mixed norm was used with success in Magne-

toencephalography inverse problems [26] and could be called

Elitist-Group-Lasso (EG-Lasso).

3) Proximity Operators: In order to optimize certain convex

problems using mixed norms, their proximity operator needs

to be computed. The following proposition summarizes the

different operators for various norms, cf. [9].

Proposition 1 (Proximity operators for mixed norms). Let x ∈
R

N and z ∈ R
N . Let w ∈ R

N
+,∗ be a vector of weights. We

suppose that x, z and w are indexed by (g,m).
G-Lasso ℓw;21 norm: In this case, the vector of weights w

is used to weight each group, i.e. ∀m,wg,m = wg .

The proximity operator associated to the ℓw;21 norm is given

by x = proxλ‖.‖w,21
(z) where x reads for each coordinate:

xg,m = zg,m

(

1− λ
√
wg

‖zg‖2

)+

,

and zg is the vector formed by the coefficients indexed by m.

E-Lasso ℓw;12 norm: Let rg,m
def
= |zg,m|/wg,m and for

each g, let the indexing denoted by m′
g be defined such that

∀m′
g, rg,m′

g+1 ≤ rg,m′

g
and re-order the zg,m according to this

index. Let the index Mg be such that:

λ

Mg
∑

m′

g=1

w2
g,m′

g

(

rg,m′

g
− rg,Mg

)

< rg,Mg

≤λ

Mg+1
∑

m′

g=1

w2
g,m′

g

(

rg,m′

g
− rg,Mg

)

The proximity operator x = proxλ‖.‖w,12
(z) is given

coordinate-wise:

xg,m =
zg,m
|zg,m|



|zg,m| − λ

1 + λKwg

Mg
∑

m′

g=1

|zg,m′

g
|





+

,

where Kwg
=
∑Mg

m′

g=1 w
2
g,m′

g
.

EG-Lasso ℓw;212 norm: Let x be indexed by (h, g,m).
Let w ∈ R

N be a vector of positive weights such that

∀m, wh,g,m = wh,g . Let us define rh,g
def
= ‖zh,g‖2/√wh,g .

For each h, let the indexing denoted by g′h be defined such

that ∀g′h, rh,g′

h
+1 ≤ rh,g′

h
. Let the index Gh be such that:

λ

Gh
∑

g′

h
=1

wh,g′

h

(

rh,g′

h
− rh,Gh

)

< rh,Gh

≤ λ

Gh+1
∑

g′

h
=1

wh,g′

h

(

rh,g′

h
− rh,Gh

)

.

Denoting by [zh,g′

h
] =

√
wh,g′

h
‖zh,g′

h
‖2 and supposing that

they are ordered by g′h, then x = proxλ‖.‖2
w;212

(z) is given,

for each coordinate (h, g,m), by:

xh,g,m = zh,g,m













1− λ
√
wh,g

1 + λKwh

Gh
∑

g′

h
=1

[zh,g′

h
]

‖zh,g‖2













+

,

where Kwh
=
∑Gh

gh=1 wh,gh .

Remark 3. The proximity operators of the ℓ121 mixed norms

and of general mixed norms defined on more than three levels

are not computable in a closed form. In fact, one needs to

compute a “Group-Lasso” proximity operator with weights

varying in groups, which does not admit a closed form.

It is interesting to note that in [27] a hierarchical formulation

of the dependencies leads to a ℓ1, 43 mixed norm.

Notice that the mixed norms as defined here do not consider

any overlap between the groups. The need for overlapping

groups was recognized by many authors, see [10], [28]–[30],

and different strategies have been proposed.

B. A step beyond mixed norms

In [10], [11], starting from the observation that the Group-

Lasso discards all coefficients in a given group, the authors

define a new norm in order to deal with overlapping groups:

the Latent-Group-Lasso. This definition of a new convex

penalty leads to the desired results: all coefficients belonging

to the same group are kept, even if they also belong to another

group which is discarded. The remaining support is thus a

union of groups instead of the complement of a union as in the

Group-Lasso. However, in general, there is no closed form for

the proximity operators corresponding to the Latent-Group-

Lasso. The authors propose a reformulation and solution of

the convex problem by introducing a latent variable in a high

dimensional space through the duplication of the variables

belonging to overlapping groups.

In the particular case where the groups are all the subsets

of a given cardinality, the proximity operator can be computed

exactly. This particular case corresponds in fact to the so called

k–support norm [31], which is closely related to the elastic

net [32]. Furthermore, iterative algorithms exist, cf. [33] if

one needs to compute the proximity operator in the general

case.

Despite the “discarding” behavior of the Group-Lasso,

mixed norms with overlaps have been studied in [29]. Again,

the proximity operator has no closed form, but an iterative

scheme is proposed. The mixed norm with overlaps corre-

sponds actually to a particular case of the regularizer proposed

in [30], where a partition function is introduced to construct

a convex penalty.

As we will see in Section IV-C2, all these methods are

closely related. The study of the proposed structured shrinkage

operators naturally leads to convex functionals which corre-

spond to the problems proposed in the previously mentioned

contributions.
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Various other kinds of structures have been proposed for

refining the model of group based sparsity. For example,

in [34] a hierarchy on groups was introduced. Such a behavior

allows for sparsity inside the group, in addition to sparsity

between the groups. In particular, their hierarchical sparse

coding included the sums of convex penalties such as a

ℓ21 + ℓ1 composite norm, also known as the HiLasso [35].

Such a composite norm was used with success for Mag-

netoencephalography inverse problems with respect to time-

frequency dictionaries [36]. In [37], the authors studied a very

general mixed norm, allowing to generalize the Group-Lasso

and the hierarchical sparse coding.

In [38], the authors propose a family of “convex penalty

functions, which encode this prior knowledge by means of

a set of constraints on the absolute values of the regression

coefficients”. In practice, the structure is encoded by means

of an auxiliary variable. This formulation is general enough

to obtain the Lasso and the Group-Lasso as special cases.

The drawback of this flexibility may lie in the difficulty to

define the desired structure, and the computational complexity

of optimization when the problem lives in a high dimensional

space.

In addition to the convex approaches, several other solutions

were proposed for the structured sparsity problem. Among

others, we can cite the model-based compressive sensing [39],

and approaches based on coding theory [40] or Bayesian

methods (see e.g. [41] and references therein).

IV. STRUCTURED SHRINKAGE

One of the main shortcomings of the various “structured

block sparsity” approaches exposed above, is that the def-

inition of the groups must be done a priori. However, in

many situations, we just have a general idea of the grouping

structure, and fixing the groups can be too rigid.

Instead of defining groups, and therewith keeping or dis-

carding entire blocks of coefficients, a notion of neighborhood-

based selection was proposed in [42]. The introduction of

this neighborhood gives rise to “social sparsity”: a decision

can be made coefficient by coefficient by taking into account

the “weight” of a coefficient’s neighborhood. The latter still

has to be defined a priori, but the possibility of overlap

between neighborhoods instead of groups relaxes the rigor of

the (Group-)Lasso approaches. For application, neighborhoods

then should be chosen according to the grouping structures

observed in the specific signal class under observation, as

e.g. the persistence of tonal and transient parts in audio

signals noted above or the father-son persistence in wavelet

expansions of images to be addressed below.

In order to present this approach, we first give the definition

of the neighborhood and re-state the shrinkage operators

empirically introduced in [42] and equipped with weights

in [8].

A. Structured shrinkage operators

To exploit structures in the synthesis coefficients, (like

persistence in time or frequency in audio signals as in Fig. 1

in the introductory Section I), we will refine some classical

shrinkage operators by taking into account the neighborhood

of a coefficient. To an index k in a set I, we associate a

weighted neighborhood N (k) = {k′ ∈ I : w
(k)
k′ 6= 0} with

weights w
(k)
k′ such that w

(k)
k′ ≥ 0 for all k′ ∈ I, w

(k)
k > 0

and
∑

k′∈N(k) w
(k)2

k′ = 1. This notion of neighborhood is

illustrated on Fig. 2.

N(k2)
k1

k2

N(k1)

Fig. 2. The neighborhood of the coefficient k1 is given by the red
window, and the neighborhood of the coefficient k2 by the blue one. These
two neighborhoods share one coefficient. When considering the red group,

coefficients are weighted by some weights w
k1
k′

> 0, k′ ∈ N (k1). Outside
the red group, the weights are equal to zero. When considering the blue group,

coefficients are weighted by some weights w
k2
k′

> 0, k′ ∈ N (k2).

Once the neighborhood is defined, we can define shrinkage

operators on it. These operators are constructed with the

shrinkage operators given by the proximity operator corre-

sponding to the Group/ Elitist/ Elitist-Group-Lasso defined in

Section III, Proposition 1, by considering the “groups” formed

by the neighborhood.

1) WG-Lasso: We first introduce the Windowed-Group-

Lasso [42] shrinkage operator, defined as

S
wgl
λ (α) : CN → C

N

α 7→ α

such that for all k ,

αk = αk









1− λ
√

∑

k′∈N (k)

w
(k)
k′ |αk′ |2









+

. (4)

The idea of this shrinkage operator is to select a coefficient

if the energy of its neighborhood is sufficiently large. Conse-

quently, an isolated “big” coefficient can be discarded, but a

“small” coefficient in the middle of big ones can be kept. Such

a notion of neighborhood can also be found earlier in [43],

where a similar thresholding rule was studied in the context

of SURE wavelet estimation.

2) WE-Lasso: Instead of considering a positive correla-

tion between the coefficient in the neighborhood, one can

consider a negative correlation as in the Elitist-Lasso. This

leads to the following shrinkage operator, which we will call

the Windowed-Elitist-Lasso. For each neighborhood N (k),
let the indexing denoted by k′ be defined such that ∀k′ ∈
N (k), w

(k)
k′+1|αk′+1| ≤ w

(k)
k′ |αk′ |. Let the index Kk be such
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that:

λ

Kk
∑

k′=1

(

w
(k)
k′ αk′ − w

(k)
Kk

αKk

)

< αKk

≤ λ

Kk+1
∑

k′=1

(

w
(k)
k′ αk′ − w

(k)
Kk

αKk

)

Then the Windowed-Elitist-Lasso shrinkage operator is

given by

S
wel
λ (α) : CN → C

N

α 7→ α

such that k ,

αk =
αk

|αk|









|αk| −
λ

1 + λKwk

Kk
∑

k′=1
k′∈N (k)

w
(k)
k′ |αk′ |









+

. (5)

where Kwk
=

Kk
∑

k′=1
k′∈N (k)

w
(k)2

k′ .

These two heuristic shrinkage operations are computed

on singly-indexed coefficients by taking into account their

neighborhood. Thus the definition of neighborhood induces

a double indexing in the end: one to index the neighborhood,

another to index the element which belongs to a neighborhood.

The shrinkage is then defined by applying the proximity

operator given by the Group-Lasso or the Elitist-Lasso by

using this induced double indexing.

3) PE-Lasso: Now, if we consider a set of coefficients

which is already doubly indexed by (g,m), we can define

two kinds of neighborhoods: a first neighborhood on m and a

second neighborhood on g. This will lead to triply-indexed co-

efficients and we can apply the Elitist-Group-Lasso shrinkage

operator, as done above with Group-Lasso and Elitist-Lasso,

to obtain the Persistent-Elitist-Lasso [42].

To an index (g,m) in a structured set I = Ig × Im, we

associate a weighted neighborhood N (g,m) = {m′ ∈ Im :

w
(g,m)
g,m′ 6= 0} with weights w

(g,m)
g,m′ defined on I |I|, such that

w
(g,m)
g,m′ ≥ 0 for all (g,m) ∈ I, m′ ∈ Im, and w

(g,m)
g,m > 0.

For defining the operator, let [α]g,m
def
=

√

∑

m′∈N (g,m)

w
(g,m)
g,m′ α2

g,m′ . For each g, let the indexing

denoted by m′
g be defined such that ∀m′

g, [α]g,m′

g+1 ≤ [α]g,m′

g

and re-order the [α] according to this index. Let the index

Mg be such that:

λ

Mg
∑

m′

g=1

(

[α]g,m′

g
− [α]g,Mg

)

< [α]g,Mg

≤ λ

Mg+1
∑

m′

g=1

(

[α]g,m′

g
− [α]g,Mg

)

.

Then the Persistent-Elitist-Lasso shrinkage operator [42] is

given by

S
pel
λ (α) : CN → C

N

α 7→ α

where for all g,m ,

αg,m = αg,m













1− λ

1 + λMg

Mg
∑

m′

g=1

[α]g,m′

g

‖αm′∈N (g,m)‖2













+

. (6)

Here, a coefficient will be selected if its neighborhood is

sufficiently energetic compared to the others. Such a structure

is illustrated in Fig. 3.

G
ro

up
 (

g)

Member (m)

Fig. 3. Persistent Elitist-LASSO. Coefficients are doubly index by (g,m).
For each we are considering the left and the right neighbor to define the
neighborhood. Then, an E-Lasso selection is done between these groups.

The new operators constructed above are based on the

shrinkage/thresholding operators of the proximity operators

associated to the convex prior given in Proposition 1. In the

present form, they are not directly associated to a convex

problem themselves. In the following, we set up an explicit

connection between the proximity operators from Proposi-

tion 1 and the newly introduced structured shrinkage operators

(4) - (6). For this purpose, the next subsection defines a

mapping into a bigger space where the proximity operator can

be applied.

B. Neighborhoods with latent variables

The neighborhoods, and the groups they implicitly induce,

can be formally defined via an expansion operator. This

operator maps the original coefficients into a bigger space,

where its image consists of copies of the coefficients such that

independent groups can be defined over the neighborhood of

the coefficients.

Definition 4 (Expansion operator). Let α ∈ C
N . Let E :

C
N → C

N×N be an expansion operator such that

α = (α1, . . . , αN ) 7→

(

√

w
(1)
1 α1, . . . ,

√

w
(1)
N αN , . . . ,

√

w
(N)
1 α1, . . . ,

√

w
(N)
N αN )

with w
(j)
i ≥ 0 and

∑

j w
(j)
i = 1 for all i.



IEEE TRANSACTIONS ON SIGNAL PROCESSING 7

In practice, the non-zeros weight are the same as the weights

as in the definition of the social shrinkage operators above.

We thus have constructed one group for each coefficient,

regrouping all its neighborhood by “copying” the coefficients.

Due to the condition on the weights, we can state the following

proposition which will be crucial later on.

Proposition 2. E is isometrical, and E∗(E(α)) = α.

Proof: Let E be an expansion operator as defined in

Definition 4. Then, for any α ∈ C
N , we have

‖E(α)‖2 =
∑

i

∑

j

|
√

w
(j)
i αi|2 =

∑

i

|αi|2
∑

j

w
(j)
i

=
∑

i

|αi|2 = ‖α‖2 .

Hence the proposition.

Let E denotes the matrix associated with E . This matrix can

be viewed as a N2 × N matrix where each row contains at

most only one non-zero element, corresponding to the weights

associated to the elements of a neighborhood:

E = [E1, . . . ,EN ]T , (7)

with Ei ∈ R
N×N

Ei = [

√

w
(i)
1 eT1 , . . . ,

√

w
(i)
N eTN ]T ,

where ej is the jth canonical base vector of R
N . A similar

expansion matrix has also been used in the context of over-

lapping groups in [30], [44].

A direct consequence is that one can simply go back to the

original space by using the adjoint operator. However, in order

to be able to establish a link between the heuristic shrinkage

operators previously defined and the common proximity oper-

ator, we need to introduce the following left inverse of E:

D : C
N×N → C

N

z = (z11 , . . . , z
1
N , . . . , zN1 , . . . , zNN ) 7→ x

such that ∀k, xk =
1

√

w
(k)
k

zkk (8)

One can easily check that we have DE = I and then

ED is a bi-orthogonal (oblique) projection. Moreover D is

such that DDT = diag

(

1

w
(k)
k

)

. Using these operators,

one immediately obtains the following proposition linking

the heuristic structured shrinkage and the proximity operators

from Section III-A.

Proposition 3. Let S be the shrinkage operator of the WG-

Lasso (4), WE-Lasso (5) or PE-Lasso (6) and Ω the regularizer

of the G-Lasso, E-Lasso and GE-Lasso, respectively (see

Prop. 1). Let E be the expansion operator (7) and D its left

inverse (8). Then

Sλ = D ◦ proxλΩ ◦E
Proof: For the sake of brevity, we give the proof for the

WG-Lasso, i.e. Ω = ‖ · ‖21. The proofs for WE-Lasso and

PE-Lasso are similar.

Thanks to the introduction of the expanded operator E

in Definition 4, we have for α ∈ R
N and for a given

neighborhood N on its indices:

N
∑

k=1

√

∑

ℓ∈N (k)

w
(k)
ℓ |αℓ|2 = ‖Eα‖21 .

Then, z = proxλΩ(Eα) is given coordinatewise by:

∀ℓ ∈ N (k), zkℓ = w
(k)
ℓ αk









1− λ
√

∑

k′∈N (k)

w
(k)
k′ |αk′ |2









+

.

Therefore, by Definition (8) of D the claim follows.

Having established the link between social shrinkage and

proximity operators, we can construct various algorithms to

deal with the problem of “social sparsity”.

C. Algorithms for social sparsity

We proceed by introducing heuristic algorithms, based on

popular algorithms presented in Section III, in order to embed

the previously introduced “social-shrinkage” operators. We

then derive a more conventional convex approach thanks to

the previously introduced expansion operator, and compare the

advantages and shortcomings of the different algorithms.

1) ISTA with social sparsity operator: A natural question

is how these operators behave if they are used inside iterative

thresholding algorithms. Algorithm 3 rewrites ISTA with a

given shrinkage operator S.

Algorithm 3: ISTA with heuristic shrinkage

Initialization: α(0) ∈ C
N , k = 1, γ = ‖ΦΦ∗‖

repeat

α
(k) = Sλ/γ

(

α
(k−1) + 1

γΦ
∗(y −Φα

(k−1))
)

;

k = k + 1;

until convergence;

As the shrinkage operators S defined in Equations (4), (5)

and (6) are not even non-expansive, the convergence study of

Algorithm 3 is difficult and remains an open problem. How-

ever, experiments show a very good behavior of Algorithm 3

with any left inverse of E. Our observations are specified in

the following

Conjecture 1. Let S be the shrinkage operator of the WG-

Lasso (4), WE-Lasso (5) or PE-Lasso (6), and set γ = ‖ΦΦ∗‖.

Let us introduce the operator

T (α) = Sλ/γ

(

α+
1

γ
Φ∗(y −Φα)

)

. (9)

Then the sequence {αk}, generated by Algorithm 3, converges

to a fixed point of T .

Moreover, we have also used the same shrinkage operators

with FISTA, and have observed the same accelerating effect on

the speed of convergence compared to the switch from ISTA

to FISTA in the classic convex case.
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In the next subsection, we conceptually link the heuristic

ISTA with the optimization of a convex functional.

2) Neighborhood as a convex prior: Thanks to the expan-

sion operator E, we can introduce new convex priors which are

closely related to our shrinkages, which we denote as cvx-*.

Definition 5 (Social Sparsity Convex Regularizers). Let α ∈
C

N and let E be the expansion operator (7).

cvx-Windowed-Group-Lasso:

Ωwgl(α) =

N
∑

k=1

√

∑

ℓ∈N (k)

w
(k)
ℓ |αℓ|2

= ‖Eα‖21 (10)

cvx-Windowed-Elitist-Lasso:

Ωwel(α) =

N
∑

k=1





∑

ℓ∈N (k)

√

w
(k)
ℓ |αℓ|





2

= ‖Eα‖212 (11)

cvx-Persistent-Elitist-Lasso:

Ωpel(α) =

|Im|
∑

m=1





|Ig|
∑

g=1

√

∑

ℓ∈N (g,m)

w
(g,m)
ℓ |αℓ|2





2

= ‖Eα‖2212 (12)

A natural convex functional is then

F (α) =
1

2
‖y −Φα‖2 + λΩ(α) , (13)

where Ω is one of the convex penalty defined above, and one

can look for

α̂ = argmin
α∈CN

F (α) .

Such an approach was also proposed to deal with “overlap-

ping” groups in [30]. Moreover, if all the weights in E are

equal, then we found the mixed norms with overlaps studied

in [29]. Notice that the operator E appears in the penalty,

and can then be thought of as an analysis prior. Using the

results discussed in [45], we can reformulate it as a constrained

synthesis problem:

α̂ = ET argmin
u,s.t.u=EETu

‖y −ΦETu‖2 + λ‖u‖∗

where ‖ ‖∗ is the corresponding (possibly squared) norm used

to define the penalty Ω (say Ωwgl(α) = ‖Eα‖∗ = ‖Eα‖21).

Interestingly, as u = EETu ⇒ Du = ETu, we have

α̂ = ET argmin
u,s.t.u=EETu

FE(u) = D argmin
u,s.t.u=EETu

FD(u) ,

with the two following functionals:

FE(u) = ‖y −ΦETu‖2 + λ‖u‖∗ (14)

and

FD(u) = ‖y −ΦDu‖2 + λ‖u‖∗ . (15)

The functional (14), which corresponds to a pure synthesis

approach, is actually exactly the problem of the latent-Group-

Lasso [10], [11].

Seeking an estimate of α as a minimizer of F , it is possible

to apply an algorithm as the one proposed in [46], where

the proximity operator of the sum of two convex functions is

derived from a Douglas Rachford Algorithm. We present such

an algorithm with the “ISTA” framework in Algorithm 4, but

it can be embedded in FISTA instead. Other approaches such

as augmented Lagrangian can also be used (see [30]).

Algorithm 4: Proximal algorithm to minimize F (13).

Initialization: α(0) ∈ C
N , k = 1, γ = ‖ΦΦ∗‖

repeat –ISTA loop–

α
k+1/2 = α

(k) + 1
γΦ

∗(y −Φα);

v = Eα
k+1/2;

repeat –Douglas-Rachford loop–

u = EET (v+Ey

2 );
v = v + proxλ

γ
‖.‖∗

(2u− v)− u

until convergence;

α
k+1 = ETu;

k = k + 1;

until convergence;

Coming back to ISTA with social-shrinkage operators, Al-

gorithm 3, we can rewrite the main iteration as

Sλ
γ
(α+

1

γ
Φ∗(y −Φα)) =

D argmin
u

ℓFE
(u,Eα) +

γ

2
‖u−Eα‖2 .

where ℓFE
(u,Eα) is the linearization of FE in Eα:

ℓFE
(u,Eα) =

1

2
‖y−Φα‖2+〈EΦ∗(y−Φα),u−Eα〉+‖u‖∗ .

Moreover, using a latent variable z such that α = Dz, due to

the bi-orthogonality of ED, the main iteration of Algorithm 3

becomes

z(k) = ED proxλ
γ
‖.‖∗

(

z̃(k−1)
)

α
k = Dzk

where z̃(k−1) = z(k−1) +
E

γ
Φ∗(y −ΦET z(k−1))

This can be seen as a the gradient-proximal step followed by

an oblique projection.

This remark further leads to the application of the natural

left inverse ET instead of D in Proposition 3. We thus obtain

a new “WG-Lasso-like” shrinkage operator, the orth-WG-

Lasso:

Sλ(α) : CN → C
N

α 7→ α

where for all k ,

αk = αk

∑

j

w
(j)
k









1− λ
√

∑

j′∈N (j)

w
(j)
j′ |αj′ |2









+

. (16)
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One can see in (16) that in this case, a coefficient will be set to

zero only if all the coefficients belonging to its neighborhood

are also set to zero.

In this case, Algorithm 3 can be seen as the composition of

a proximity operator and an orthogonal projection:

z(k) = EET proxλ
γ
‖.‖∗

(

z̃(k−1)
)

(17)

α
k = ET zk

where z̃(k−1) = z(k−1) +
E

γ
Φ∗(y −ΦET z(k−1))

As EET is an orthogonal projection, this algorithm converges

to a fixed point by applying [47, Theorem 6.3 and Corollary

6.5].

In summary, the introduction of the social sparsity operators

has led to various algorithms related to the minimization

of (13). Additionally to Conjecture 1 on the convergence of

ISTA in conjunction with the social sparsity operators, we

remarked that the social sparsity operators are the composition

of an oblique projection and a proximity operator, which

makes it possible to instead use an orthogonal projection ap-

proach. Thirdly, we noted that (13) can be minimized directly

using a Douglas-Rachford algorithm to compute the proximity

operator of the corresponding regularizer Ω. Finally, we have

established a link to the previously existing methods [10],

[29], [30]. Let us stress that using the social sparsity operators

(such as WG-Lasso or orth-WG-Lasso) in ISTA as proposed in

Algorithm 3 enables to always work directly on the coefficients

α without the need of the latent variables. Indeed, an obvious

advantage of the WG-Lasso and orth-WG-Lasso over cvx-

WG-Lasso and the latent-Group-Lasso is their computational

speed. WG-Lasso can be computed in O(NK) operations

where N is the number of coefficients, and K the size of

the neighborhood. orth-WG-Lasso has a similar complexity

in O(2NK) while cvx-WG-Lasso must be solved by convex

optimization. Moreover, both cvx-WG-Lasso and the latent-

Group-Lasso have a fingerprint memory proportional to NK,

while their social structured sparse operator WG-Lasso and

orth-WG-Lasso have a fingerprint memory proportional to N ,

independently of the size of the neighborhood.

V. SOCIAL SPARSITY IN PRACTICE

While the idea of social sparsity was motivated from the

stance of time-frequency analysis in the introduction, it can be

in fact employed with any type of dictionary. Here, we focus

on time-frequency and wavelet-dictionaries and evaluate the

developed concepts with respect to audio and image denoising

tasks. Although we formally proposed a variety of different

shrinkage operators above, their practical exploration will

stay confined to the WG-Lasso for the sake of brevity. For

applications using other social sparse operators, see [8], [12],

[26].

The following numerical evaluation proceeds in three steps.

Firstly, the behavior of the WG-Lasso (4) and its coun-

terparts cvx-WGL (10), orth-WGL (16) is characterized by

experiments in significance map estimation and denoising

employing synthetic signals and a MDCT-dictionary. In order

to set our results into context, we additionally include both

the basic Lasso and the latent-Group-Lasso in evaluations.

Testing for real-life audio signals, it is secondly argued that

WGL is a valuable alternative to the state of the art in audio

denoising in conjunction with Gabor dictionaries. Finally, it is

suggested how to use the social sparse approach with wavelet-

dictionaries for image denoising.

Concerning the choice of weights, the necessary condition
∑

j w
(j)
i = 1 on the weights in order to have the isometrical

property and the condition
∑

i w
(j)
i = 1 given in the definition

of the neighborhood are of course totally compatible. The sim-

plest case is when each coefficient is repeated the same number

of times, say K, and then the non zero weights are equal to 1
K .

When a “sliding” window is used, the condition is obviously

satisfied. Such a window also bears the advantage that the

corresponding sums in the persistent shrinkage operators can

be computed by fast convolution algorithms. However, it can

be interesting to have an asymmetric or a smoother window.

A more detailed link between (audio) signal characteristics

and optimal neighborhood choice is given in [48]. Here, we

rather stick with basic neighborhood shapes in order to clearly

present the underlying principles.

Finally, let us note that for all the experiments, we chose to

initialize the algorithms with the null vector. We interestingly

observed that WG-Lasso and orth-WG-Lasso was scarcely

sensitive to the choice of the initialization: we always obtained

the same results, independent of the particular initialization.

A MatLab toolbox available at

http://homepage.univie.ac.at/monika.doerfler/StrucAudio.html

provides most of the social shrinkage operators and

corresponding algorithms for audio denoising.

A. Time-Frequency Dictionaries

Time-frequency dictionaries as Gabor frames (a.k.a. the

short-time Fourier transform) or the MDCT are extensively

used in a variety of audio-processing tasks. In order to show

the relevance of the social sparsity approach, we perform two

kinds of experiments. First, we simulate a signal in order

to show the ability of our approach to accurately recover

its significance map (i.e. the set of non-zero coefficients).

Then, we compare several approaches for a standard denoising

problem on real audio signals.

1) Simulations in the orthogonal basis case: Let us assume

that {ϕ(k)}k=1,...,N is a MDCT basis. The following exper-

iment uses such an orthonormal basis with window lengths

of 2048 samples. The time-persistent neighborhoods are con-

structed by setting for any time-frequency index k = (g,m),
N (k) = N (g,m) = {(g − 2,m), . . . , (g,m), . . . , (g + 2,m)}
with g referring to time indices, i.e. each neighborhood com-

prises two coefficients before and after the centered one.

Here, we consider signals of the form y =
∑

k∈∆ xkϕk + b
where b is an additive Gaussian noise, and ∆ is a structured

sparse significance map. The latter is generated using fixed

frequency Markov chains as introduced in [49], drawing the

synthesis coefficients xk from a standard normal distribution.

An example of such a map is displayed in Fig. 4. This produces

an overall signal to noise ratio of about 5 dB.
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Fig. 4. Time-frequency significance map with 9% non-zero coefficients.

We first compare the ability of various approaches (Lasso,

WG-Lasso, orth-WG-Lasso, latent-Group-Lasso and cvx-WG-

Lasso) to recover the significance map ∆. For such a task, we

use Type 1 and Type 2 errors defined in the following.

Type 1: π1 = P{(t, f) /∈ ∆̂ | (t, f) ∈ ∆} ;

Type 2: π2 = P{(t, f) ∈ ∆̂ | (t, f) /∈ ∆}.

where ∆̂ is the estimated significance map. In other words,

Type 1 error refers to the number of false positives, Type 2

error to the number of false-negatives. Fig. 5 depicts the two

error types as functions of the estimated significance map

size. Clearly, the three structured estimators WG-Lasso, cvx-

WG-Lasso and orth-WG-Lasso outperform the non-structured

Lasso and the latent-Group-Lasso. While the behavior of

cvx-WG-Lasso and orth-WG-Lasso seem to be almost in-

distinguishable, WG-Lasso appears to perform slightly worse

regarding type one errors in a certain sparsity range. However,

it exhibits behavior very similar to the two minimization-

functional-based estimators for Type 2 errors.

Fig. 6 shows the corresponding denoising results measured

in SNR (dB). We choose to display evolution of the SNR

versus the number of non-zeros coefficient, and versus the

hyperparameter λ. While the WG-Lasso achieves significantly

higher SNR than the plain Lasso, its convex counterpart, cvx-

WG-Lasso performs slightly better, although only for much

higher number of non-zero coefficients. In terms of SNR there

does not seem to be a difference between the orth-WG-Lasso

and the WG-Lasso, except that the WG-Lasso achieves the

same SNR with fewer coefficients. In conclusion, the exper-

iments using signals generated from structured significance

maps demonstrate that the WG-Lasso behaves not identically,

but quite similar to its convex and orthonormal counterparts.

It thus appears as an efficient alternative to these operators,

tractable for many real-life applications.

In light of Fig. 7, it is visible that the cardinality of the

social sparsity maps presents a fast transition with respect

to hyperparameter λ, compared to the Lasso approach. And

even for the latent-Group-Lasso, the size of the estimated

significance map starts to decrease for smaller λ. Moreover,

as shown on the top of Fig. 6, the SNR of the three social-

sparsity approaches reaches its maximum quickly and then

decreases slowly. A practical implication of these remarks is

that the hyperparameter tuning for social sparsity operators

might be more straight-forward than in the Lasso case, since
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Fig. 5. Top: type 1 error. Bottom: type 2 error.

a fairly good SNR can be reached by choosing λ within

the transition phase, which shows a sharp and thus more

determined behaviour.

The performances of the latent-Group-Lasso may appear

slightly disappointing here. However, we must insist that in

the proposed experiments, we used a sliding window in time

to construct the neighborhood. In this situation, the discarding

versus selecting problem, which was the main motivation of

the latent-group-lasso, is less important. Indeed, in this par-

ticular situation, configurations obtained by discarding groups

or selecting them can be very close.

2) Real signals and the overcomplete case: We proceed

to demonstrate the benefits of the social sparse approach for

audio denoising, using “real-life” signals and an overcomplete

Gabor-dictionary. The latter dictionary was also employed by

the state of the art in audio denoising, namely the Block-

Thresholding algorithm [50]. To compare these approaches,

we use WG-Lasso with a neighborhood extending over time

with 4 coefficients before and after the center coefficient and

employ a tight Gabor-frame with Hann-window of length 1024

samples and overlap 4. The chosen test signal is a 6-sec

excerpt of a Jazz-quintet producing a complex mixture of

drums, double-bass, piano, saxophone and trumpet. In [50],

the variance of the noise is supposed to be known, but we

choose here to use its value as a parameter of the method.

Then, all algorithms depend on only one parameter, which

can be tuned according to the variance of the noise.

Fig. 8 shows the corresponding denoising results measured

in SNR as functions of the hyperparameter λ for ground-

noise levels of 0 and 20 dB SNR. While the Lasso performs

constantly worse, Block-Thresholding performs better than

WG-Lasso for the 0 dB noise level, and vice versa for the 20
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Fig. 6. Top: snr vs non zeros coeff. Bottom: snr vs hyperparameter λ
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Fig. 7. Evolution of the cardinality of the estimated map

dB case. Let us note that WG-Lasso, orth-WG-Lasso and cvx-

WG-Lasso perform almost identically. The latent-Group-Lasso

performs a bit worse than the other structured methods. We

also have noticed that the dependence between the size of the

maps and the hyperparameter λ is similar to our observations

in the simulated case. In particular, WG-Lasso reaches its

maximum for sparser significance maps than the orth-WG-

Lasso and cvx-Lasso.

For the same signal and noise level of 20 dB, Fig. 9

compares different sizes of neighborhoods (each extending in

time). It seems clear that the algorithm is relatively robust w.r.t.

the choice of the neighborhood: there is a significant increase

in performance from the Lasso to WGL with 2 coefficients

in time, before and after the center, but further enlarging the

neighborhood does not change results dramatically.

It has to be noted that in terms of SNR, block-thresholding

seems to be favorable for some other signals and noise

levels we tested. On the contrary, the social sparse approach
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Fig. 8. SNR vs hyperparameter λ for the six operators Lasso, WG-Lasso,
orth-WG-Lasso, cvx-WG-Lasso, latent-G-Lasso and Block-Thresholding us-
ing a 6 sec complex audio signal containing drums, double-bass, piano,
saxophone and trumpet.
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bears many important advantages over block-thresholding: It

is computationally much more efficient (in our setting around

a factor 2, obviously depending on the number of iterations)

and seems to provide perceptually preferable results, cf. [48].

It should also be noticed that no post-processing was executed

here on the results given by the various *-Lasso approaches,

and in particular, we did not perform any Wiener estimate

contrary to the Block-Thresholding algorithm. Such a post-

processing can increase the SNR [50], but we choose to show

the raw results of the *-Lasso.

From a computational point of view, cvx-WG-Lasso is very

time-consuming and intractable in practice. Fig. 10 depicts the

evolution of the value of the functional (13) over the number

of iterations for cvx-WG-Lasso, and the FISTA and ISTA
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versions of the orth-WG-Lasso and WG-Lasso for the 20 dB

case and λ ≃ 10−3. cvx-WG-Lasso was implemented with

ISTA with only one iteration of the Douglas-Rachford inner

loop: this strategy appeared to be the most efficient to obtain

our results; in particular, FISTA was divergent in practice

because of its sensibility to the error done to approximate the

proximity operator with the Douglas-Rachford inner loop.
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Fig. 10. Functional (13) value with respect to the time for the five algorithms
used.

We close the practical investigation of audio denoising

with a comparison of the time-frequency maps given by the

Lasso, WG-Lasso and orth-WG-Lasso in the 20 dB case for

λ ≃ 10−3. One can observe in Fig. 11 very structured time-

frequency maps for WG-Lasso and orth-WG-Lasso compared

to the Lasso, and in particular their ability to keep high

frequency coefficients. Moreover, it can be seen, that sparsity

is more expressed in the map obtained with WG-Lasso; this

observation confirms the results shown Fig.10, namely, that

WG-Lasso promotes sparser representations than orth-WG-

Lasso.

B. Wavelet Dictionaries

While the proposed approach might be particularly intuitive

for exploiting persistence in time-frequency representations, it

turns out to be similarly promising in conjunction with wavelet

dictionaries for applications in image processing, for instance.

Here, structures such as sharp edges are sparsely represented,

but at the same time exhibit persistence properties along the

wavelet tree: if a given coefficient is active, it is highly

likely that its respective “father” is so, as well. We hence

explore the usage of an asymmetric neighborhood system

which emphasizes this directed relation between “father and

son”, as depicted in Fig. 12.

Notice that the idea of taking into account the persistence

of the wavelet coefficients along the tree is not new. Several

works propose to modelize this case of “structured sparsity”

such as [39], [40], [51].

Initial experiments on image denoising were conducted

using the well-known Lena-image to which a Gaussian white

noise was added, yielding a peak signal to noise ratio (PSNR)

of 20 dB. Fig. 13 compares the performance of the WGL-

operator using the described neighborhood system with the

plain Lasso estimate, depicting PSNR of the reconstruction

as function of the number of non-zero coefficients. Clearly,
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Fig. 12. Asymmetric neighborhoods of wavelet coefficients: each coefficients
at scale j − 1 is grouped with its father at scale j.

WG-Lasso outperforms the Lasso leading to a gain in SNR of

about 1 dB.

VI. CONCLUSION

Social sparsity operators allow to shrink dictionary coeffi-

cients with respect to their weighted neighborhoods. In sum-

mary, three different but related approaches were presented:
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the oblique projected proximal algorithm, an orthogonal pro-

jected proximal algorithm and the minimization of a convex

functional.

While the convergence of the last two approaches can be

proven, the convergence of the oblique projected proximal

algorithm remains an open problem. Moreover, the algorithm

can be accelerated with FISTA as for classical convex opti-

mization. These approaches are complemented by the latent-

Group-Lasso which corresponds to the unconstrained synthesis

version of the proposed convex functional. In particular for

WG-Lasso, various experiments on both simulated and real

signals demonstrate a very good behavior in denoising tasks:

its performance is comparable to the state of the art Block-

Thresholding algorithm but it is considerably faster.

Further studies will be devoted to two aspects. On the one

hand, a theoretical study of the oblique-projected proximal

algorithm must be conducted. On the other hand, we plan

to build a practical audio restoration algorithm, using social

sparsity operators as the WG-Lasso with hybrid decomposi-

tions [4] and a few instinctive, or ideally none, hyperparame-

ters.
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