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Abstract

Better machine understanding of pedestrian behaviors

enables faster progress in modeling interactions between

agents such as autonomous vehicles and humans. Pedestrian

trajectories are not only influenced by the pedestrian itself

but also by interaction with surrounding objects. Previous

methods modeled these interactions by using a variety of

aggregation methods that integrate different learned pedes-

trians states. We propose the Social Spatio-Temporal Graph

Convolutional Neural Network (Social-STGCNN), which

substitutes the need of aggregation methods by modeling the

interactions as a graph. Our results show an improvement

over the state of art by 20% on the Final Displacement Error

(FDE) and an improvement on the Average Displacement Er-

ror (ADE) with 8.5 times less parameters and up to 48 times

faster inference speed than previously reported methods. In

addition, our model is data efficient, and exceeds previous

state of the art on the ADE metric with only 20% of the train-

ing data. We propose a kernel function to embed the social in-

teractions between pedestrians within the adjacency matrix.

Through qualitative analysis, we show that our model inher-

ited social behaviors that can be expected between pedestri-

ans trajectories. Code is available at https://github.

com/abduallahmohamed/Social-STGCNN .

1. Introduction

Predicting pedestrian trajectories is of major importance

for several applications including autonomous driving and

surveillance systems. In autonomous driving, an accurate

prediction of pedestrians trajectories enables the controller

to plan ahead the motion of the vehicle in an adversar-

ial environment. For example, it is a critical component

for collision avoidance systems or emergency braking sys-

tems [2, 18, 16, 22]. In surveillance systems, forecasting

** Equal advising.
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Figure 1. Pedestrian future trajectories prediction using the Social-

STGCNN model. The social interactions between pedestrians and

their temporal dynamics are represented by a spatio-temporal graph.

We predict the future trajectories in a single pass.

pedestrian trajectories is critical in helping identifying suspi-

cious activities [15, 28, 20].

The trajectory of a pedestrian is challenging to predict,

due to the complex interactions between the pedestrian with

the environment. Objects potentially influencing the trajec-

tory of a pedestrian include physical obstacles such as trees

or roads, and moving objects including vehicles and other

pedestrians. According to [19], 70% of pedestrians tend to

walk in groups. The interactions between pedestrians are

mainly driven by common sense and social conventions. The

complexity of pedestrian trajectory prediction comes from

different social behaviors such as walking in parallel with

others, within a group, collision avoidance and merging from

different directions into a specific point. Another source of

complexity is the randomness of the motion, given that the

target destination and intended path of the pedestrian are

unknown.

The social attributes of pedestrian motions encouraged

researchers in this area to focus on inventing deep methods

to model social interactions between pedestrians. In the

Social-LSTM [1] article, deep learning based model is ap-

plied to predict the pedestrians trajectories by modeling each

pedestrian trajectory via a recurrent deep model. The outputs

of recurrent models are made to interact with each other via

a pooling layer. Several articles [17, 14, 30] followed this

direction. Social-LSTM [1] modeled the pedestrian trajec-

14424



tories as a bi-variate Gaussian distribution, while some of

others aimed at predicting deterministic trajectories. Another

direction is to use Generative Adversarial Networks (GANs)

for this task, assuming that the distribution of trajectories

is multi-modal. Several articles [6, 23, 13] used GANs to

predict distributions of future trajectories. For these models,

generators are designed using recurrent neural networks, and

again, aggregation methods are relied upon to extract the

social interactions between pedestrians. We argue that a

limitation of earlier articles comes from the use of recurrent

architectures, which are parameter inefficient and expensive

in training [3]. We overcome this limitation through the use

of temporal convolutional architectures.

In addition to the limitation of recurrent architectures,

aggregation layers used in earlier works can also limit their

performance. The aggregation layer takes the hidden states

of the recurrent units as inputs. It is expected to assimilate a

global representation of the scene, since each recurrent unit

models a pedestrian trajectory. However, there are two is-

sues within this type of aggregation. First, the aggregation in

feature states is neither intuitive nor direct in modelling inter-

actions between people, as the physical meaning of feature

states is difficult to interpret. Second, since the aggregation

mechanisms are usually based on heuristics like pooling,

they could fail in modeling interactions between pedestrians

correctly. For example, the pooling operation is known to

be leaky in information [26]. In order to directly capture

the interactions between pedestrians and predict future paths

from these, the recent article social-BiGAT [10] relies on

a graph representation to model social interactions. As the

topology of graphs is a natural way to represent social inter-

actions between pedestrians in a scene, we argue that it is a

more direct, intuitive and efficient way to model pedestrians

interactions than aggregation based methods. We also argue

that social-BiGAT did not make the most of the graph rep-

resentation, since they used it only as a pooling mechanism

for recurrent units states. Social-STGCNN benefits more

from graph representation through modeling the scene with

as spatio-temporal graph and performs on it.

We designed Social-STGCNN to overcome the two afore-

mentioned limitations. First, we model the pedestrians tra-

jectories from the start as a spatio-temporal graph to replace

the aggregation layers. The graph edges model the social

interactions between the pedestrians. We propose a weighted

adjacency matrix in which the kernel function quantitatively

measure the influence between pedestrians. To address is-

sues associated with recurrent units, our model manipulates

over the spatio-temporal graph using a graph Convolutional

Neural Networks (CNN)s and a temporal CNNs. This al-

lows our model to predict the whole sequence in a single

shot. Due to the above design, our model outperforms previ-

ous models in terms of prediction accuracy, parameters size,

inference speed and data efficiency.

2. Related work

The recent interest in autonomous driving has lead to in-

creasing focus on pedestrian trajectory prediction. Recently,

new deep models are making promising progresses on this

task. In this section, we give a brief review of related work.

Human trajectory prediction using deep models Social-

LSTM [1] is one of the earliest deep model focusing on

pedestrian trajectory prediction. Social-LSTM uses a re-

current network to model the motion of each pedestrian,

then they aggregated the recurrent outputs using a pooling

mechanism and predict the trajectory afterwards. Social-

LSTM assumes the pedestrian trajectory follow a bi-variate

Gaussian distribution, in which we follow this assumption

in our model. Later works such as Peek Into The Future

(PIF) [14] and State-Refinement LSTM (SR-LSTM) [30] ex-

tends [1] with visual features and new pooling mechanisms

to improve the prediction precision. It is noticeable that

SR-LSTM [30] weighs the contribution of each pedestrian

to others via a weighting mechanism. It is similar to the idea

in Social-BiGAT [10] which uses an attention mechanism

to weigh the contribution of the recurrent states that repre-

sent the trajectories of pedestrians. Based on the assumption

that pedestrian trajectories follow multi-modal distributions,

Social-GAN [6] extends Social LSTM [1] into a Recurrent

Neural Network (RNN) based generative model. Sophie [23]

used a CNNs to extract the features from the scene as a whole

then a two way attention mechanism is used per pedestrian.

Later on, Sophie concatenates the attention outputs with

the visual CNN outputs then a Long Short Term Memory

(LSTM) autoencoder based generative model is used to gen-

erate the future trajectories. The work CGNS [13] is similar

to Sophie [23] in terms of the architecture but they used a

Gated Recurrent Units(GRU)s instead of LSTMs. We notice

that most previous works were circulating around two ideas,

model each pedestrian motion using a recurrent net and com-

bine the recurrent nets using a pooling mechanism. Recent

work Social-BiGAT [10] relies on graph attention networks

to model the social interactions between pedestrians. The

LSTM outputs are fed to the graph in Social-BiGAT. One key

difference between our model Social-STGCNN and Social-

BiGAT is that we directly model pedestrian trajectories as a

graph from the beginning, where we give meaningful values

for vertices.

Recent Advancements in Graph CNNs Graph CNNs were

introduced by [8] which extends the concept of CNNs into

graphs. The Convolution operation defined over graphs is

a weighted aggregation of target node attributes with the

attributes of its neighbor nodes. It is similar to CNNs but the

convolution operation is taken over the adjacency matrix of

the graphs. The works [9, 4, 24] extend the graph CNNs to

other applications such as matrix completion and Variational

Auto Encoders. One of the development related to our work

is the ST-GCNN [27]. ST-GCNN is a spatio-temporal Graph
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CNN that was originally designed to solve skeleton-based

action recognition problem. Even though the architecture

itself was designed to work on a classification task, we adapt

it to suit our problem. In our work, ST-GCNNs extract both

spatial and temporal information from the graph creating a

suitable embedding. We then operate on this embedding to

predict the trajectories of pedestrians. Details are shown in

section 4.

Temporal Convolutional Neural Networks (TCNs) Start-

ing from [3], the argue between the usage of Recurrent Neu-

ral Networks (RNN)s versus the usage of temporal CNNs

for sequential data modeling is highlighted. Introduced

by [3], Temporal Convolutional Neural Networks(TCNs)

take a stacked sequential data as input and predict a sequence

as a whole. This could alleviate the problem of error accu-

mulating in sequential predictions made by RNNs. What is

more, TCNs are smaller in size compared to RNNs. We were

inspired by TCNs and designed a temporal CNN model that

extends the capabilities of ST-GCNNs. More details about

this are in the model description section 4.

3. Problem Formulation

Given a set of N pedestrians in a scene with their cor-

responding observed positions trno , n ∈ {1, . . . , N} over

a time period To, we need to predict the upcoming trajec-

tories trnp over a future time horizon Tp. For a pedestrian

n, we write the corresponding trajectory to be predicted as

trnp = {pn
t = (xn

t ,y
n
t ) | t ∈ {1, . . . , Tp}}, where (xn

t ,y
n
t )

are random variables describing the probability distribution

of the location of pedestrian n at time t, in the 2D space. We

make the assumption that (xn
t ,y

n
t ) follows bi-variate Gaus-

sian distribution such that pn
t ∼ N (µn

t , σ
n
t , ρ

n
t ). Besides,

we denote the predicted trajectory as p̂n
t which follows the

estimated bi-variate distribution N (µ̂n
t , σ̂

n
t , ρ̂

n
t ). Our model

is trained to minimize the negative log-likelihood, which

defined as:

Ln(W) = −

Tp
∑

t=1

log(P((pn
t |µ̂

n
t , σ̂

n
t , ρ̂

n
t )) (1)

in which W includes all the trainable parameters of the

model, µn
t is the mean of the distribution,σn

t is the variances

and ρnt is the correlation.

4. The Social-STGCNN Model

4.1. Model Description

The Social-STGCNN model consists of two main parts:

the Spatio-Temporal Graph Convolution Neural Network

(ST-GCNN) and the Time-Extrapolator Convolution Neu-

ral Network (TXP-CNN). The ST-GCNN conducts spatio-

temporal convolution operations on the graph representation

of pedestrian trajectories to extract features. These features

are a compact representation of the observed pedestrian tra-

jectory history. TXP-CNN takes these features as inputs and

predicts the future trajectories of all pedestrians as a whole.

We use the name Time-Extrapolator because TXP-CNNs

are expected to extrapolate future trajectories through con-

volution operation. Figure 2 illustrates the overview of the

model.

Graph Representation of Pedestrian Trajectories We

first introduce the construction of the graph representation

of pedestrian trajectories. We start by constructing a set

of spatial graphs Gt representing the relative locations of

pedestrians in a scene at each time step t. Gt is defined as

Gt = (Vt, Et), where Vt = {vit | ∀i ∈ {1, . . . , N}} is the

set of vertices of the graph Gt. The observed location (xi
t, y

i
t)

is the attribute of vit. Et is the set of edges within graph Gt

which is expressed as Et = {eijt | ∀i, j ∈ {1, . . . , N}}.

eijt = 1 if vit and vjt are connected, eijt = 0 otherwise. In

order to model how strongly two nodes could influence with

each other, we attach a value aijt , which is computed by

some kernel function for each eijt . aijt s are organized into

the weighted adjacency matrix At. We introduce aijsim,t as a

kernel function to be used within the adjacency matrix At.

aijsim,t is defined in equation 2. We discuss the details of At

kernel function later in section 6.1.

aijsim,t =

{

1/‖vit − vjt ‖2 , ‖vit − vjt ‖2 6= 0

0 , Otherwise.
(2)

Graph Convolution Neural Network With the graph repre-

sentation of pedestrian trajectories, we introduce the spatial

convolution operation defined on graphs. For convolution

operations defined on 2D grid maps or feature maps, the

convolution operation is shown in equation 3.

z(l+1) = σ(

k
∑

h=1

k
∑

w=1

(p(z(l), h, w)).w(l)(h,w)) (3)

where k is the kernel size and p(.) is the sampling func-

tion which aggregates the information of neighbors centering

around z [5] and σ is an activation function and (l) indicates

layer l.
The graph convolution operation is defined as:

vi(l+1) = σ(
1

Ω

∑

vj(l)∈B(vi(l))

p(vi(l), vj(l)).w(vi(l), vj(l)))

(4)

where 1
Ω is a normalization term, B(vi) = {vj |d(vi, vj) ≤

D} is the neighbor set of vertices vi and d(vi, vj) denotes

the shortest path connecting vi and vj . Note that Ω is the

cardinality of the neighbor set. Interested readers are referred

to [8, 27] for more detailed explanations and reasoning.
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Figure 2. The Social-STGCNN Model. Given T frames, we construct the spatio-temporal graph representing G = (V,A). Then G is

forwarded through the Spatio-Temporal Graph Convolution Neural Networks (ST-GCNNs) creating a spatio-temporal embedding. Following

this, the TXP-CNNs predicts future trajectories. P is the dimension of pedestrian position, N is the number of pedestrians, T is the number

of time steps and P̂ is the dimensions of the embedding coming from ST-GCNN.

Spatio-Temporal Graph Convolution Neural Network

(ST-GCNNs) ST-GCNNs extends spatial graph convolu-

tion to spatio-temporal graph convolution by defining a

new graph G whose attributes are the set of the attributes

of Gt. G incorporates the spatio-temporal information of

pedestrian trajectories. It is worth noticing that the topol-

ogy of G1, . . . , GT is the same, while different attributes

are assigned to vit when t varies. Thus, we define G
as (V,E), in which V = {vi | i ∈ {1, . . . , N}} and

E = {eij | ∀i, j ∈ {1, . . . , N}}. The attributes of ver-

tex vi in G is the set of vit, ∀t ∈ {0, . . . , T}. In addition, the

weighted adjacency matrix A corresponding to G is the set

of {A1, . . . , AT }. We denote the embedding resulting from

ST-GCNN as V̄ .

Time-Extrapolator Convolution Neural Network (TXP-

CNN) The functionality of ST-GCNN is to extract spatio-

temporal node embedding from the input graph. However,

our objective is to predict further steps in the future. We

also aim to be a stateless system and here where the TXP-

CNN comes to play. TXP-CNN operates directly on the

temporal dimension of the graph embedding V̄ and expands

it as a necessity for prediction. Because TXP-CNN depends

on convolution operations on feature space, it is less in pa-

rameters size compared to recurrent units. A property to

note regards TXP-CNN layer that it is not a permutation

invariant as changes in the graph embedding right before

TXP-CNN leads to different results. Other than this, if the

order of pedestrians is permutated starting from the input to

Social-STGCNN then the predictions are invariant.

Overall, there are two main differences between Social-

STGCNN and ST-GCNN [27]. First, Social-STGCNN con-

structs the graph in a totally different way from ST-GCNN

with a novel kernel function. Second, beyond the spatio-

temporal graph convolution layers, we added the flexibility

in manipulating the time dimension using the TXP-CNN.

ST-GCNN was originally designed for classification. By

using TXP-CNN, our model was able to utilize the graph

embedding originating from ST-GCNN to predict the futuree

trajectories.

4.2. Implementing Social­STGCNN

Several steps are necessary to implement the model cor-

rectly. We first normalize the adjacency matrix for the

ease of learning. The adjacency matrix A is a stack of

{A1, . . . , AT }, we symmetrically normalize each At using

the following form [8]

At = Λ
−

1
2

t ÂtΛ
−

1
2

t

where Ât = At + I and Λt is the diagonal node degree

matrix of Ât. We use Â and Λ to denote the stack of Ât and

Λt respectively. The normalization of adjacency is essential

for the graph CNN to work properly, as outlined in [8]. We

denote the vertices values at time step t and network layer l

as V
(l)
t . Suppose V (l) is the stack of V

(l)
t . With the above

definitions, we can now implement the ST-GCNN layers

defined in equation 4 as follows.:

f(V (l), A) = σ(Λ−
1
2 ÂΛ−

1
2V (l)W(l)) (5)

where W(l) is the matrix of trainable parameters at layer l.
After applying the ST-GCNN, we have features that com-

pactly represent the graph. The TXP-CNN receives features

V̄ and treats the time dimension as feature channels. The

TXP-CNN is made up of a series of residual connected

CNNs. Only the first layer in TXP-CNN does not have a

residual connection as it receives V̄ from the ST-GCNNs, in

which they differ in terms of the dimensions of the observed

samples and the samples to be predicted.

5. Datasets and Evaluation Metrics

The model is trained on two human trajectory predic-

tion datasets: ETH [21] and UCY [11]. ETH contains two

scenes named ETH and HOTEL, while UCY contains three

scenes named ZARA1, ZARA2 and UNIV. The trajectories

in datasets are sampled every 0.4 seconds. Our method of
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training follows the same strategy as Social-LSTM [1]. In

Social-LSTM, the model was trained on a portion of a spe-

cific dataset and tested against the rest and validated versus

the other four datasets. When being evaluated, the model

observes the trajectory of 3.2 seconds which corresponds to

8 frames and predicts the trajectories for the next 4.8 seconds

that are 12 frames.

Two metrics are used to evaluate model performance: the

Average Displacement Error (ADE) [21] defined in equa-

tion 6 and the Final Displacement Error (FDE) [1] defined

in equation 7. Intuitively, ADE measures the average pre-

diction performance along the trajectory, while the FDE

considers only the prediction precision at the end points.

Since Social-STGCNN generates a bi-variate Gaussian dis-

tribution as the prediction, to compare a distribution with a

certain target value, we follow the evaluation method used in

Social-LSTM [1] in which 20 samples are generated based

on the predicted distribution. Then the ADE and FDE are

computed using the closest sample to the ground truth. This

method of evaluation were adapted by several works such as

Social-GAN [6] and many more.

ADE =

∑

n∈N

∑

t∈Tp

‖p̂nt − pnt ‖2

N × Tp

(6)

FDE =

∑

n∈N

‖p̂nt − pnt ‖2

N
, t = Tp (7)

6. Experiments and Results Analysis

Model configuration and training setup Social-STGCNN

is composed of a series of ST-GCNN layers followed by

TXP-CNN layers. We use PReLU[7] as the activation func-

tion σ across our model. We set a training batch size of 128
and the model was trained for 250 epochs using Stochastic

Gradient Descent (SGD). The initial learning rate is 0.01,

and changed to 0.002 after 150 epochs. According to our

ablation study in table 6, the best model to use has one ST-

GCNN layer and five TXP-CNN layers. Furthermore, it is

noticeable that when the number of ST-GCNN layers in-

creases, the model performance decreases. Apparently, this

problem of going deep using graph CNN was noticed by

the work in [12], in which they proposed a method to solve

it. Unfortunately, their solution does not extend to temporal

graphs.

6.1. Ablation Study of Kernel Function

In this section, our objective is to find a suitable kernel

function to construct the weighted adjacency matrix. The

weighted adjacency matrix At is a representation of the

graph edges attributes. The kernel function maps attributes

at vit and vjt to a value aijt attached to eijt . In the implemen-

tation of Social-STGCNN , At weights the vertices contribu-

1 3 5 7

1 0.47 / 0.78 0.47 / 0.84 0.44 / 0.75 0.48 / 0.87

3 0.59 / 1.02 0.52 / 0.92 0.54 / 0.93 0.54 / 0.92

5 0.62 / 1.07 0.57 / 0.98 0.59 / 1.02 0.59 / 0.98

7 0.75 / 1.28 0.75 / 1.27 0.62 / 1.07 0.75 /1.28

Table 1. Ablation study of the Social-STGCNN model. The first

row corresponds to the number of TXP-CNN layers. The first

column from the left corresponds to the number of ST-GCNN

layers. We show the effect of different configurations of Social-

STGCNN on the ADE/FDE metric. The best setting is to use one

layer for ST-GCNN and five layers for TXP-CNN.

tions to each other in the convolution operations. The kernel

function can thus be considered as a prior knowledge about

the social relations between pedestrians. A straightforward

idea in designing the kernel function is to use the distance

measured by the L2 norm defined in equation 8 between

pedestrians to model their impacts to each other. However,

this is against the intuition that the pedestrians tend to be

influenced more by closer ones. To overcome this, we use

similarity measure between the pedestrians. One of the pro-

posals is to use the inverse of L2 norm as defined in equation

10. The ǫ term is added in denominator to ensure numerical

stability. Another candidate function is the Gaussian Radial

Basis Function [25], shown in equation 9. We compare the

performance of these kernel functions through experiments.

The case that all the values in adjacency matrix between

different nodes are set to one is used as a baseline.

According to results listed in table 6.1, the best perfor-

mance comes from aijsim,t defined in function 2. The differ-

ence between functions 10 and 2 exists in the case where

‖vit − vjt ‖2 = 0. In function 2, we set aijsim,t = 0 when

‖vit − vjt ‖2 = 0 because it is assumed that the two pedes-

trians can be viewed as the same person when they stay

together. Without it, the model will have an ambiguity in the

relationship between pedestrians. For this, we use aijsim,t in

the definition of the adjacency matrix in all of our experi-

ments.

aijL2,t
= ‖vit − vjt ‖2 (8)

aijexp,t =
exp (−‖vit − vjt ‖2)

σ
(9)

aijsimǫ,t
=

1

‖vit − vjt ‖2 + ǫ
(10)

6.2. Quantitative Analysis

The performance of Social-STGCNN is compared with

other models on ADE/FDE metrics in table 2. Overall,
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ETH HOTEL UNIV ZARA1 ZARA2 AVG

Linear * [1] 1.33 / 2.94 0.39 / 0.72 0.82 / 1.59 0.62 / 1.21 0.77 / 1.48 0.79 / 1.59

SR-LSTM-2 * [30] 0.63 / 1.25 0.37 / 0.74 0.51 / 1.10 0.41 / 0.90 0.32 / 0.70 0.45 / 0.94

S-LSTM [1] 1.09 / 2.35 0.79 / 1.76 0.67 / 1.40 0.47 / 1.00 0.56 / 1.17 0.72 / 1.54

S-GAN-P [6] 0.87 / 1.62 0.67 / 1.37 0.76 / 1.52 0.35 / 0.68 0.42 / 0.84 0.61 / 1.21

SoPhie [23] 0.70 / 1.43 0.76 / 1.67 0.54 / 1.24 0.30 / 0.63 0.38 / 0.78 0.54 / 1.15

CGNS [13] 0.62 / 1.40 0.70 / 0.93 0.48 / 1.22 0.32 / 0.59 0.35 / 0.71 0.49 / 0.97

PIF [14] 0.73 / 1.65 0.30 / 0.59 0.60 / 1.27 0.38 / 0.81 0.31 / 0.68 0.46 / 1.00

STSGN [29] 0.75 / 1.63 0.63 / 1.01 0.48 / 1.08 0.30 / 0.65 0.26 / 0.57 0.48 / 0.99

GAT [10] 0.68 / 1.29 0.68 / 1.40 0.57 / 1.29 0.29 / 0.60 0.37 / 0.75 0.52 / 1.07

Social-BiGAT [10] 0.69 / 1.29 0.49 / 1.01 0.55 / 1.32 0.30 / 0.62 0.36 / 0.75 0.48 / 1.00

Social-STGCNN 0.64 / 1.11 0.49 / 0.85 0.44 / 0.79 0.34 / 0.53 0.30 / 0.48 0.44 / 0.75
Table 2. ADE / FDE metrics for several methods compared to Social-STGCNN are shown. The models with * mark are non-probabilistic.

The rest of models used the best amongst 20 samples for evaluation. All models takes as an input 8 frames and predicts the next 12 frames.

We notice that Social-STGCNN have the best average error on both ADE and FDE metrics. The lower the better.
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Figure 3. Qualitative analysis of Social-STGCNN . We compare models trained with different kernel functions (Kernel 1: equation 8 and

Kernel 2: equation 2) versus previous models. Social-GAN [6] is taken as a baseline for the comparison. Illustration scenes are from the

ETH [21] and UCY [11] datasets. We used the pre-trained Social-GAN model provided by [6]. A variety of scenarios are shown: two

individuals walking in parallel (1)(2), two persons meeting from the same direction (3), two persons meeting from different directions (4)

and one individual meeting another group of pedestrians from an angle (5). For each case, the dashed line is the true trajectory that the

pedestrians are taking and the color density is the predicted trajectory distribution.

Social-STGCNN outperforms all previous methods on the

two metrics. The previous state of art on the FDE metric

is SR-LSTM [30] with an error of 0.94. Our model has an

error of 0.75 on the FDE metric which is about 20% less

than the state of the art. The results in qualitative analysis

explains how Social-STGCNN encourages social behaviors

that enhanced the FDE metric. For the ADE metric, Social-

STGCNN is slightly better than the state-of-art SR-LSTM by

2%. Also, it is better than the previous generative methods

with an improvement ranging in between 63% compared to

S-LSTM [1] and 4% compared to PIF [14]. Interestingly, our

model without the vision signal that contains scene context

outperforms methods that utilized it such as SR-LSTM, PIF

and Sophie.

Inference speed and model size S-GAN-P [6] previously

had the smallest model size with 46.3k parameters. The

size of Social-STGCNN is 7.6K parameters only which is

about one sixth of the number of parameters in S-GAN-P.

In terms of inference speed, S-GAN-P was previously the

fastest method with an inference time of 0.0968 seconds per

inference step. The inference time of our model is 0.002

seconds per inference step which is about 48 × faster than

S-GAN-P. Table 6 lists out the speed comparisons between

our model and publicly available models which we could

bench-mark against. We achieved these results because we

overcame the two limitations of previous methods which

used recurrent architecture and aggregation mechanisms via

the design of our model.

Data Efficiency In this section, we evaluate if the efficiency

in model size leads to a better efficiency in learning from
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Figure 4. The first column is the ground truth, while the other columns illustrate samples from our model. The first two rows show two

different scenarios where pedestrians merge into a direction or meet from opposite directions. The second and third columns show changes

in speed or direction in samples from our model. The last column shows undesired behaviors. The last row show failed samples.

Parameters count Inference time

S-LSTM [1] 264K (35x) 1.1789 (589x)

SR-LSTM-2 [30] 64.9K (8.5x) 0.1578 (78.9x)

S-GAN-P [6] 46.3K (6.1x) 0.0968 (48.4x)

PIF [14] 360.3K (47x) 0.1145 (57.3x)

Social-STGCNN 7.6K 0.0020

Table 3. Parameters size and inference time of different models

compared to ours. The lower the better. Models were bench-marked

using Nvidia GTX1080Ti GPU. The inference time is the average

of several single inference steps. We notice that Social-STGCNN

has the least parameters size compared and the least inference time

compared to others. The text in blue show how many times our

model is faster than others.

Kernel function ADE / FDE

aijL2,t
0.48 / 0.84

aijexp,t 0.50 / 0.84

aijsimǫ,t
0.48 / 0.88

Just ones 0.49 / 0.79

aijsim,t 0.44 / 0.75

Table 4. The effect of different kernel functions for the adjacency

matrix At over the Social-STGCNN performance.

fewer samples of the data. We ran a series of experiments

where 5%, 10%, 20% and 50% of the training data. The

training data were randomly selected. Once selected, we

fed the same data to train different models. Social-GAN is

employed as a comparison baseline because it has least train-

able parameters amongst previous deep models. Figure 6.2

shows the data learning efficiency experiments results with

mean and error. We notice that our model exceeds the state

of the art on the FDE metric when only 20% of training data

is used. Also, Social-STGCNN exceeds the performance

of Social-GAN on the ADE metric when trained only on

with 20% of the training data. The results also show that

S-GAN-P did not improve much in performance with more

training data, unlike the present model. It is an interesting

phenomenon that S-GAN-P does not absorb more training

data. We assume that this behavior is due to the fact that

GANs are data efficient because they can learn a distribution

from few training samples. However, the training of GANs

can easily fall into the problem of mode collapse. In com-

parison, the data efficiency of our model comes from the

parameter efficiency.

20 40 60 80 10
0

Training data %

0.4

0.6

0.8

1.0

1.2

1.4

FDE SOTA
ADE SOTA
FDE Ours
FDE S-GAN
ADE Ours
ADE S-GAN

Figure 5. Model performance versus shrinked training dataset. The

x-axis shows several randomly samples shrink percentages. The

shade represents errors. The same shrinked data were used across

the models. The figure shows our performance versus Social-GAN

which is the closest model in terms of parameter size to ours.
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6.3. Qualitative Analysis

The quantitative analysis section shows that Social-

STGCNN outperforms previous state-of-art in terms of

ADE/FDE metrics. We now qualitatively analyze how

Social-STGCNN captures the social interactions between

pedestrians and takes that into consideration when predict-

ing the distributions. We show cases in which Social-

STGCNN successfully predicts collision free trajectories

between pedestrians coming from different angles, main-

tains parallel walking, and correctly predicts the outcome of

situations where person meets with a group of pedestrians.

We qualitatively compare the prediction results between

Social-GAN [6], Social-STGCNN with L2 norm (equa-

tion 8) as the kernel function and Social-STGCNN with

inverse L2 norm (equation 2) as the kernel function.

Parallel walking In scenarios one and two in figure 3, two

pedestrians are walking in parallel. Usually, when people are

walking in parallel they are tightly connected to each other

and their momentum will be preserved in the future. The

predictions by Social-STGCNN and Social-GAN all show

that these two pedestrians will keep walking in parallel in the

future. However, the predicted density by Social-STGCNN

closely matches with the ground truth trajectory unlike the

deviation we see in Social-GAN.

Using our proposed kernel function asim,t defined in

equation 2 for weighted adjacency matrix helps us model

the social influences between pedestrians better than using

the regular L2 norm kernel function defined in equation 8. It

is shown in scenes one and two that the model with asim,t

preforms much better in maintaining the relative location

between people walking side by side. In scene five, similar

behavior is observed.

Collision avoidance Scenario three and Scenario four in

figure 3 are scenarios in which two pedestrians are heading

towards similar or opposite directions. A collision could

happen if they maintain their momentum. In scenario 3, two

pedestrians are walking towards a similar direction. The

forecast by Social-GAN acts linearly based on the momen-

tum of the pedestrians and may lead to a collision. In the

forecast of Social-STGCNN , we notice that the trajectories

are adjusted slightly such that they both avoid collision and

align well with the observed momentum of pedestrians. As a

result, Social-STGCNN matches better with ground truth. In

scenario four, Social-GAN fails to avoid the collision, while

ours shows a realistic collision free path prediction.

Individual meeting a group A more complex scenario is

case five in figure 3, in which one person meets a group of

parallel walking individuals. Our model suggests that the

group of people still walk in parallel while adjusting their

heading direction to avoid collision. In this case, although

neither our model nor Social-GAN capture the ground truth

trajectory very well, the predicted distribution by our model

still makes sense from the social interaction point of view.

Diversity in samples and social behaviors In order to un-

derstand in detail how Social-STGCNN generates samples,

we plot the samples generated from predicted bi-variate

Gaussian distributions. There are two different scenarios

in figure 4. In the first scene, three people meet from op-

posite directions. In the other scene, two people merge at

an angle. Several patterns of samples could be generated

by the predicted distributions. In column two in figure 4,

the generated samples adjusts the advancing direction to

avoid possible collisions in both scenes. Another social at-

tribute of pedestrians is to slow down or accelerate to avoid

crash. Samples in the third column in figure 4 capture this

attribute. This analysis shows that our samples encode dif-

ferent expected social behaviors of pedestrians. However,

some samples show undesired behaviors such as collision or

divergence in the last column. More cases of these undesired

behaviors are in the last row of figure4.

7. Conclusion

In this article, we showed that a proper graph-based

spatio-temporal setup for pedestrian trajectory prediction

improves over previous methods on several key aspects, in-

cluding prediction error, computational time and number

of parameters. By applying a specific kernel function in

the weighted adjacency matrix together with our model de-

sign, Social-STGCNN outperforms state-of-art models over

a number of publicly available datasets. We also showed

that our configuration results in a data-efficient model and

can learn from few data samples. We also qualitatively ana-

lyze the performance of Social-STGCNN under situations

such as collision avoidance, parallel walking and individual

meeting a group. In these situations, Social-STGCNN tend

to provide more realistic path forecasts than several other re-

ported methods. Furthermore, Social-STGCNN is extremely

efficient computationally, dividing the number of required

parameters by a factor of 8.5, and boosting the inference

speed by up to 48 × comparing to previous models. In the

future, we intend to extend Social-STGCNN to multi-modal

settings that involve other moving objects including bicycles,

cars and pedestrians.
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