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Social stress increases expression of hemoglobin
genes in mouse prefrontal cortex
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Abstract

Background: In order to better understand the effects of social stress on the prefrontal cortex, we investigated

gene expression in mice subjected to acute and repeated social encounters of different duration using microarrays.

Results: The most important finding was identification of hemoglobin genes (Hbb-b1, Hbb-b2, Hba-a1, Hba-a2,

Beta-S) as potential markers of chronic social stress in mice. Expression of these genes was progressively increased

in animals subjected to 8 and 13 days of repeated stress and was correlated with altered expression of Mgp

(Mglap), Fbln1, 1500015O10Rik (Ecrg4), SLC16A10, and Mndal. Chronic stress increased also expression of Timp1 and

Ppbp that are involved in reaction to vascular injury. Acute stress did not affect expression of hemoglobin genes

but it altered expression of Fam107a (Drr1) and Agxt2l1 (Etnppl) that have been implicated in psychiatric diseases.

Conclusions: The observed up-regulation of genes associated with vascular system and brain injury suggests that

stressful social encounters may affect brain function through the stress-induced dysfunction of the vascular system.
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Background
Psychosocial stress affects immune system [1-3], in-

creases the risk of mental health disorders, such as de-

pression [4,5] and anxiety [4], and predisposes to

vascular diseases [6,7]. Prefrontal cortex belongs to a

neuronal circuitry controlling fear and emotion related

behaviors, and is involved in regulation of animal reac-

tion to stressful events [8-10]. The aim of the present

study was to investigate transcriptomic changes in pre-

frontal cortex during stress of social encounter in mice.

The main problem in microarray experiments is poor

replicability caused by signal noise, fluctuation of gene

expression [11-13] and difficulty to select key genes from

large amount of transcriptomic data [14,15]. Therefore, we

investigated gene expression in 4 groups of mice subjected

to acute and chronic stress of different duration in order

to find consistent transcriptomic changes that are corre-

lated with duration of stress. In order to check the revers-

ibility of the stress-induced transcriptomic changes, we

also determined gene expression after a recovery period

following chronic stress. Previously, similar approach but

limited to two groups differing in duration of chronic

stress has been applied in only two studies investigating

brain transcriptome in pigs (frontal cortex and hippocam-

pus) [16] and mice (hippocampal tissue) [17]. Our expe-

riment revealed that expression of hemoglobin genes and

Mgp was correlated with duration of chronic social stress.

Animals that displayed the highest level of hemoglobin

genes mRNA had also increased level of genes associated

with function of vascular system and injury response. Ob-

tained results suggest that chronic stress may affect brain

function through the stress-induced dysfunction of vas-

cular system.

Methods
Animals

Ninety-six (8 groups × 12 individuals) Swiss–Webster

male mice (weighing 38.3 ± 0.3 g, 12 weeks of age) were

used in the microarray experiment and 18 male Swiss–

Webster mice (weighing 33 ± 2 g, 9 weeks of age) were

used to test the acute effect of stress procedure on blood

corticosterone concentration. Additional several cages of

group-housed animals (four to five male Swiss Webster

mice, 4 months old) were used to stress the experimental
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mice (see Social stress procedure below). Animals were

housed in temperature (22 ± 1°C) and humidity-controlled

(52 ± 2%) rooms with 12-hour day cycles and provided

with ordinary daily care and free access to food and water.

Before the start of the experiment mice were housed three

to six per cage. All procedures were performed in accord-

ance with the Guiding Principles for the Care and Use of

Research Animals and were approved by the Third Local

Ethical Committee in Warsaw (permission No. 37/2009).

Experimental procedure

At the age of 12 weeks the animals that were used in the

microarray experiment were moved from their family

cages to individual cages and were single housed until

the end of the experiment. Immediately after separation

mice were assigned to one of the stress group or to the

corresponding control group. Next, they were moved

from the main colony room to the behavioral laboratory.

Mice assigned to stress groups and control groups were

kept during the entire period of the experiment in the

separate, adjacent rooms. Mice were habituated for

22 days to their new conditions, and next they were sub-

jected to social stress (stress groups) or were left undis-

turbed (control groups). Mice assigned to the stress

group were divided into 4 subgroups (n = 12) described

in Table 1. For each stress group, there was a separate

control group (n = 12) composed of siblings to enable

the comparison between stressed and unstressed bro-

thers. Each stress group and corresponding control

group contained at least 10 pairs of siblings derived from

different parents. Mice used to test the effect of stress pro-

cedure on corticosterone concentration were treated simi-

larly to mice used in the microarray experiment and were

singly housed for two weeks before the stress procedure.

Food intake measurement

Food consumption was recorded to control the process of

habituation and stress procedure. Each mouse received 4

large pellets (about 3 cm long) of standard murine chow.

The pellets were weighed and placed on standard stainless

steel top grill containing place for food and bottle [18].

Pellets were separated from the bottle by a metal plate to

prevent moistening. After 24 hours pellets were weighed

again to assess the consumption. Was the pellet about

1.5 cm long or shorter at the time of weighing, it was re-

moved and replaced with a large one. This was done to

avoid the possibility that during following 24 h it would be-

come small enough to be pulled into the cage and covered

with sawdust. The consumption was recorded from Mon-

day to Friday during habituation period, and from Monday

to Sunday during the main part of the experiment.

Social stress procedure

Social stress was performed by placing an intruder

(a stressed animal) into a cage housing four to five male

Swiss Webster mice (4 months old). Each session lasted

for 10–15 minutes and was performed once or repeated

two or three times per day depending on the phase of

the microarray experiment (Table 1). Cages with the

group-housed mice were rotated after each social en-

counter. Animals used to test the effect of stress proce-

dure on corticosterone concentration were submitted to

a single social encounter lasting for 15 minutes. Animals

were observed during the stress procedure to ensure that

mice displayed agonistic behaviors such as fights, up-

right postures, aggressive grooming, and escape [19,20].

Second, behavior was monitored during social encoun-

ters to control for the level of aggression and to prevent

mice from injuring each other. Because, there was an in-

crease in aggression between mice on the second day of

stress procedure, the duration of single encounters was

shortened from 15 to 10 minutes. This duration was suf-

ficient to avoid injures. Additionally, number of encoun-

ters was increased to prevent potential stress adaptation

suggested by a gradual normalization of food intake dur-

ing the course of experiment. In case of the microarray

Table 1 The design of the microarray experiment

Group Habituation Day 1 Day 2 Day 2 - 4 Day 5 - 8 Day 9 Day 9 - 13 Day 14 Day 14 - 19 Day 20

Stress 1 ×
15 min

Decap Stress 2 ×
10 min

Stress 3 ×
10 min

Decap Stress 3 ×
10 min

Decap No stress Decap

Stress 1 V V V

Control 1 V V V

Stress 2 V V V V V

Control 2 V V V V V

Stress 3 V V V V V V

Control 3 V V V V V V

Stress 4 V V V V V V V

Control 4 V V V V V V V

Decap – decapitation.

V denotes that animals were subjected to specified procedure.
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experiment mice from stress groups and corresponding

control groups were decapitated twenty-four hours after

the last social encounter. Their brains were removed,

while spleens, thymi and adrenal glands were weighed

and expressed as percentage of body weight. Changes in

the weight of these organs are used as a sensitive meas-

ure of stress reactivity in rodents [21-23]. Furthermore,

both thymic involution and adrenal gland enlargement

are considered to be classic symptoms of stress de-

scribed originally by Hans Selye [21]. Importantly, these

measures of stress reactivity do not interfere with experi-

mental setup. Mice used to test the effect of stress on

corticosterone concentration were decapitated 5 minutes

after the termination of stress procedure. Immediately

before decapitation each animal was individually moved

to a separate room designed for dissections.

Corticosterone assay

Plasma concentration of corticosterone was determined

using a high performance liquid chromatography (HPLC)

according to modified method described by Ling and

Jamali [24]. Blood was collected in 1.5 ml Eppendorf

tubes containing EDTA and centrifuged. Corticosterone

was extracted from 0.1 ml of plasma samples using ethyl

acetate with betamethasone that was added as internal

standard. The medium after extraction was centrifuged

and the supernatant washed with 0.1 M sodium hydroxide

and water. After overnight evaporation of ethyl acetate,

the dried samples were dissolved in the HPLC mobile

phase, i.e. 35:65 v/v acetonitrile/water. To analyze corti-

costerone concentration in each sample, we used isocratic

HPLC system with UV-DAD detector (Agilent 1100

Series). Detection wavelength was set at 250 nm, RP-

C18 analytical column (250 × 3.0 mm, Zorbax, Agilent)

and 40°C in column cabinet was kept. Flow rate of mobile

phase was maintained at 1.0 ml/min. The extraction effi-

ciency was around 90% and the detection limit of cortico-

sterone was about 1 ng/ml of plasma, with 0.1 ml plasma

sample.

Sample preparation for the microarray experiment

The frontal pole was separated with surgical razor blade

in the coronal plane on ice-cold glass dish. Dissected

slice (1 mm thick) contained orbital, prelimbic and

frontal association cortex located from bregma 3.56 mm

to bregma 2.58 mm [25]. This part of brain can be easily

recognized because slices consist of the frontal pole and

olfactory bulb that are detached from each other. Dis-

sected tissues were inserted into freezing vials, frozen in

liquid nitrogen and stored at −80°C until further pro-

cessing. Total RNA was extracted separately from the in-

dividual brain samples using NucleoSpin RNA II kit

(Macherey-Nagel, Germany) according to the manufac-

turer’s protocol. Quantity and quality of RNA samples

was estimated using spectrophotometry (ND-1000,

Nanodrop, USA) and microcapilary electrophoresis

(Bioanalyzer 2100, Agilent, USA). All of the samples

chosen for further analysis were of high quality (RIN > 9,

260/280 ~ 2.1).

Microarray procedures

From each group nine high quality samples that contained

the highest amount of isolated RNA were selected. Three

independent RNA pools per each experimental group

were prepared (24 in total). Each pool consisted of equal

amounts of total RNA from 3 mice. Siblings from the

stress and control groups were compared on a single

microarray. Pairs of animals assigned for each pool were

selected randomly. 50 ng of total RNA from each pool was

converted to cDNA, then amplified and labeled with cya-

nine 3 or 5 (Two-Color Low Input Quick Amp Labeling

Kits, Agilent, USA). Resulting cRNA was hybridized (Gene

Expression Hybridization Kit, Agilent, USA) on Agilent’s

Mouse GE 4x44K v2 microarrays. Six slides containing 24

microarrays were used in the experiment. Twelve microar-

rays were dye-swaps (analyzing the same samples as those

in “original” microarray, but labeled inversely) that were

included to control the unequal fluorescence of the dyes.

Data were extracted using G2565CA Microarray Scanner

(Agilent, USA) and Agilent Feature Extraction Software

(Agilent, USA) on default settings.

Real-time quantitative PCR (qPCR)

Microarray data were validated utilizing SYBR Green-based

qPCR performed in 96-well plates on the LightCycler® 480

II thermocycler (Roche, Germany). We validated expression

level of Agxt2l1 and Fam107a in animals subjected to acute

stress, and Hbb-b1, Mgp and 1500015O10Rik in animals

subjected to 13 days of social stress. Genes selected for

validation were representative for clusters with the most

consistent pattern of expression across the pools of RNA

used for microarray analysis. Tbp was used as a reference

gene. Total RNA samples from each animal were individu-

ally analyzed. PCR validation was extended also to samples

omitted in microarray analysis. The number of animals

in control groups was reduced to 11 because some sam-

ples did not contain enough RNA or did not meet the

quality requirements.

Primers (see Table 2 for details) were designed using

OligoAnalyzer 3.1. (http://eu.idtdna.com/analyzer/appli-

cations/oligoanalyzer/) and Primer-BLAST tools (NCBI,

Bethesda, USA) with murine RefSeq database. Primers

produced amplicons, which spanned two exons and in-

cluded all known alternatively spliced mRNA variants.

250 ng of total RNA from each sample was retrotran-

scribed to cDNA (First Strand cDNA Synthesis Kit,

Roche, Germany). qPCR was ran using LightCycler® 480

SYBR Green I Master Kits (Roche, Germany) according
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to manufacturer’s recommendations. All of the genes

were run in triplicate (3 independent runs). All runs

contained a negative control (without cDNA) as well as

5-fold dilution series of cDNA to determine PCR effi-

ciency. Melting curve analysis was performed to verify

the presence of one gene-specific peak and the absence

of primer-dimer peaks. Raw Ct values were calculated

on Lightcycler, using 2′nd derivative method. For each

sample the relative expression ratio (R) was calculated

according to Pfaffl model [26].

Data analysis and statistics

Stress parameters and real–time quantitative PCR

Weight of body and internal organs, food intake and cor-

ticosterone data were subjected to one-way analysis of

variance followed by Levene’s test of variance homogen-

eity. Data that did not meet the requirement of variance

homogeneity were subjected to a square root transform-

ation and then were analyzed again following the data

normalization guidelines [27]. PCR data were initially sub-

jected to one-way ANOVA followed by Levene’s test of

variance homogeneity. Because not all PCR data met the

requirement of variance homogeneity, the nonparametric

Wilcoxon signed-rank test was applied [28,29]. Relation-

ship between the weight of organs and gene expression

was assessed with Pearson Correlation coefficient (nor-

mally distributed data) or with Spearman’s rank correl-

ation coefficient (data that were not distributed normally).

Normality of data was assessed with Lilliefors test. Statis-

tical analysis was performed with Statistica software, re-

lease 7.1. Values are presented as mean ± SEM.

Analysis of microarray data

Statistics

Raw data files were analyzed with the Limma package

from Bioconductor [30] using the same criteria for all

files. Background correction method “normexp” [31] was

used and followed by within-array normalization carried

out with the “loess” procedure and between-array

normalization conducted with the “Aquantile” method

[32]. Genes showing logarithmic fold changes greater

than 0.5 (logFC > 0.5) and adjusted p-values less than

0.05 (p < 0.05) were considered differentially expressed.

Benjamini and Hochberg method controlling for false

discovery rate [33] was used for p-value adjustment.

Clustering analysis

Genes that were found to be significantly up- or down-

regulated were included in clustering analysis. For these

genes logarithmic fold changes (logFC) for each tech-

nical replicate (original array + dye-swaped array) were

calculated. LogFC values of different probes for the same

gene were averaged using median. These values were

used as an input for clustering. Clustering was carried

out with the use of the Cluster 3.0 software (Stanford

University, USA) and results were visualized in Java

TreeView [34]. UPGMA clustering algorithm with abso-

lute centralised correlation as a similarity matrix was

used [35]. Correlation coefficient (r) > 0.5 was used to

assign genes to different clusters.

Results
Stress indices

Mice displayed cyclic fluctuation in food intake after

separation from littermates (Figure 1). These fluctua-

tions were associated with the cycle of work of personnel

responsible for maintenance of the mouse colony. Cyclic

changes in food intake stabilized during the period of

habituation. Social stress significantly decreased food in-

take in all stressed groups (Figure 1). After several days

of repeated social stress, food intake returned to the

baseline and then increased during the recovery period

Table 2 Sequences, anealing temperatures, efficiencies and amplicon lengths of primers used for qPCR

Gene Name Forward or reverse primer Primer sequence Anealing temperature PCR efficiency (%) Amplicon lengths

1500015O10Rik F TGGGTCCAGATGGCATAAGTGG 60 82** 105

R TTGCTGTGTTCTCGGCTACAG

Agxt2l1 F GCTCTCCGTTTGCTACTTCAC 60 83* 182

R CCCTCTTGACATCTTTGCCCTT

Fam107a F CGCTGGTCAGTGTGGTGATT 62 97* 206

R AGAGCACCGTCGCAGGAAT

Hbb-b1 F CTGATTCTGTTGTGTTGACTTG 60 87** 188

R AGGTCTCCAAAGCTATCAAAGT

Mgp F ACCCTGTGCTACGAATCTCAC 60 95** 140

R TTGTTGCGTTCCTGGACTCT

Tbp F GCAGTGCCCAGCATCACTATT 60 93*,102** 162

R AAGCCCTGAGCATAAGGTGG

* - PCR efficiency in “acute stress” time point analysis, ** - PCR efficiency in “13 days of stress” time point analysis.
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(Figure 1). Total weight of mice has not been signifi-

cantly altered by stress (Figure 2) but there was a signifi-

cant decrease in body weight gains in all stressed groups

24 h after first social encounter (Figure 3). Thymi were

significantly lighter and spleens were significantly heav-

ier in the stressed animals (Figure 4A and B). In case of

adrenal glands the results were characterized by lack

of stable baseline and large differences in variability

Figure 1 Effect of stress on food intake. Black bar depicts duration of social stress. Values are presented as mean ± SEM. N = 12, * - p < 0.05,

** - p < 0.01, *** - p < 0.001; compared with corresponding control group.
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between groups (Figure 4C). High variability could result

from difficulty to precisely separate small adrenal glands

from surrounding adipose tissue. Differences in weight

of adrenal glands were insignificant although the p value

approached the level of significance in case of animals

subjected to 13 days of stress (p = 0.09). In a separate ex-

periment it was found that a single social encounter with

a group of mice induced large increase in blood cortico-

sterone concentration 5 minutes after the termination of

stress procedure (Figure 5).

General genome-wide expression

The analysis of microarray data revealed significant dif-

ferences in transcriptomic profiles between stressed and

control mice at all of the studied time points (Additional

file 1). Although we detected 662 transcripts that were up-

or down-regulated by different stress regimes (Table 3),

only few genes were significantly regulated at more than

one treatment group (Figure 6). The analysis revealed that

significantly regulated genes could be grouped into 11

clusters characterized by distinct pattern of expression

(Figures 7 and 8; Additional file 1). The most consistent

transcriptomic changes that correlated with duration of

stress were found in cluster 7 (Figure 7). The core of this

cluster contained highly correlated genes coding for

hemoglobin (Hbb-b1, Hbb-b2, Hba-a1, Hba-a2, Beta-S)

and two other genes involved in heme synthesis (Alas2)

and vascular homeostasis (Mgp). Expression of these genes

was not altered by acute stress, but was progressively in-

creased in animals subjected to 8 and 13 days of stress

(Figure 7, Additional file 1). Cluster 7, additionally, con-

tained 14 genes that were up- or down- regulated only

after 13 days of stress (Figure 7). Consistent pattern of ex-

pression was also found in cluster 9, which contained

transcripts of unknown functions that were down-

regulated after acute and chronic stress (Figure 7). This

cluster contained also 4 other transcripts that were signifi-

cantly up-regulated (Agxt2l1, Clcnka, Fam107a) or down-

regulated (Abpa) but only after acute stress (Figure 7).

The remaining clusters displayed much less consistent

pattern characterized by high variability between the

different pools of RNA (Figure 8). In most cases, genes

belonging to these clusters were significantly regulated

only in one of the stress groups and, frequently, large

differences were restricted to one out of three pools

from the group. Exceptions were Timp1 (cluster 10),

Figure 2 Effect of stress on total body weight. Black bar depicts

duration of social stress.

Figure 3 Body weight gain 24 h after the first social encounter in

all four groups used in the microarray experiment. Values are

presented as mean ± SEM. N = 12,* - p < 0.05, ** - p < 0.01,

*** - p < 0.001; compared with corresponding control group.
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which was up-regulated in all 3 pools from the chronic

stress group (13 days of stress), and Tgtp2 (cluster 11),

which was down-regulated in all 3 pools from the recov-

ery group (Figure 8).

Validation of microarray results

qPCR confirmed that Agxt2l1 and Fam107a were signifi-

cantly up-regulated by acute stress, whereas Hbb-b1,

Mgp and 1500015O10Rik were significantly up-regulated

by chronic stress (Figure 9).

Correlation between organ weights and gene expression

Acute stress

Thymic weight was negatively correlated with expression

of Agxt2l1 and this relationship was significant for the

pooled data containing results from the control and

stressed mice (Figure 10A). Expression of Fam107a was

positively correlated with weight of spleen and this rela-

tionship was significant both in case of pooled data (p <

0.001; Figure 10B) and within control (p < 0.05) and

stress group (p < 0.01). Finally, there was also a correl-

ation between weight of thymus and spleen in control

group (p < 0.05). Other correlations were not significant

(Additional file 2).

Chronic stress

Thymic weight was negatively correlated with expression

of Hbb-b1 and Mgp (Figure 11A and D) while weight

spleen was positively correlated with expression of Hbb-b1

(Figure 11B). Weight of adrenal glands correlated posi-

tively with expression of Mgp but this effect was signifi-

cant only within the stress group (Figure 11E). There

was also a significant correlation between expression of

Hbb-b1, Mgp and 1500015O10Rik (Figure 11F,G and H).

Other correlations were not significant (Additional file 2).

Discussion
Indices of stress reactivity

Differences in corticosterone concentration, food intake,

body weight gain and size of thymus and spleen con-

firmed effectiveness of the applied stress paradigm. The

observed thymic involution is a classic early symptom of

Figure 4 Effect of stress on the weight of thymus (A), spleen (B)

and adrenal glands (C). Values are presented as mean ± SEM. N = 12.

* - p < 0.05, ** - p < 0.01, *** - p < 0.001; compared with corresponding

control group.

Figure 5 Effect of a single social encounter lasting for 15 min

on blood corticosterone concentration measured 5 min after

termination of stress. Values are presented as mean ± SEM. N = 9;

*** - p < 0.001.
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stress that was originally described by Hans Selye [21,36]

and since then has been shown repeatedly to be a sensi-

tive and reliable index of stress in rodents [23,37,38]. In

our experiment, the degree of thymic involution corre-

lated with the duration of stress and was partly reversed

during the recovery period consistently with previously

published data [37]. The weight of spleen was less sensi-

tive measure of stress reaction because significant differ-

ences were seen only in mice subjected to the longest

period of social stress. Previously, it has been shown that

splenic enlargement is a typical symptom of chronic social

stress in rodents [22,23,39,40]. The observed stress-

induced changes in feeding behavior and body weight gain

are consistent with the literature data [41]. Decreases in

food intake and body weight gain were induced by acute

stress and returned to the baseline during the course of

experiment. Increased food intake proved also to be

sensitive index of recovery processes following chronic

social stress.

Hemoglobin (Hbb-b1, Hbb-b2, Hba-a1, Hba-a2, and Beta-S)

genes

The most important finding of our study was identifica-

tion of hemoglobin genes as potential markers of chronic

social stress in mice. First, expression of Hbb-b1 was cor-

related with weights of spleen and thymus that were used

as indices of stress reactivity (Figure 11A and B). Second,

prefrontal cortex expression of (Hbb-b1, Hbb-b2, Hba-a1,

Hba-a2, Beta-S) was not altered by acute stress, but was

progressively increased in animals subjected to 8 and

13 days of repeated social stress (Figure 7, Additional

file 1). It is important to note that these transcriptomic

changes constitute an independent replication of re-

sults because each stress group was compared with its

own separate control group. Furthermore, changes in

expression of hemoglobin genes were not restricted to

prefrontal cortex because similar pattern of expression

was found in hippocampal tissue collected from the same

mice (Stankiewicz et al., unpublished data). These data are

also consistent with the results obtained in tethered pigs

that displayed increased expression of hemoglobin beta

both in the hippocampus and frontal cortex [16]. Further-

more, the level of hemoglobin expression correlated with

the duration of stress both in pigs [16] and mice (present

study). Therefore, our mouse model of social stress mir-

rored transcriptomic indices of stress observed in another

species. Comparison of published data shows, however,

that this transcriptomic pattern is not consistent across

different models of stress in rodents. Partly overlapping

results were obtained in the mouse model of chronic

mild stress (CMS), which is characterized by successive

application of various stressors, such as cage tilting,

immobilization, altered lighting cycle, and social en-

counters. Lisowski et al. [42] reported increased hippo-

campal level of Hba-a1 transcript in two different lines

of mice subjected to CMS, but these results were not

reproduced in prefrontal cortex [43-45]. Opposite

changes in hippocampus and amygdala expression of

hemoglobin alpha and beta (Hba-a2 and Hbb) were

found in rats subjected to chronic restraint stress [46].

However, changes in expression of hemoglobin were not

reported in other models of stress, such as repeated forced

swimming [47], unavoidable electric shocks [48,49], sub-

chronic restraint [50], and chronic inflammatory pain [51].

Relatively low reproducibility of results is not surprising

considering recent meta-analysis of microarray experiments

investigating pain-induced changes in brain transcriptome

[14]. Comparison of data from 20 papers yielded list of

2254 pain-related genes but only seven genes were reported

in at least 7 independent studies [14]. In the field of stress

research there is a high variability of applied procedures

and, therefore, the replicability of stress-induced changes

can be even lower than in the case of pain studies.

Table 3 Summary of microarray data

Acute stress 8 days of stress 13 days of stress 13 days of stress +5 days of recovery Total

Up-regulated transcripts 145 70 56 47 318

Down-regulated transcripts 138 48 65 93 344

Total 283 118 121 140 662

Figure 6 Venn diagram showing differences and similarities in

gene expression between different stress regimes. Each

colored ellipse represents one treatment group. Numbers of genes

common between treatment groups are depicted on intersections

between ellipses.
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An important question is physiological mechanism

underlying changes in brain expression of hemoglobin.

Hemoglobin is expressed at high level in erythrocytes but

it is also present in neurons [52-55]. Hemoglobin plays an

important role in neuronal respiration, oxidative stress,

and response to injury [52-54]. Additionally, neuronal

hemoglobin is used by cells to produce hemoglobin-

derived peptides (hemorphins, neokyotrophin and hemo-

pressins) acting at opioid and cannabinoid receptors [56].

Increase in frontal expression of hemoglobin genes (Hba-

a1, Hba-a2, Hbb-b1) was induced by chronic peripheral

inflammation [57] and neuronal expression of Hba and

Hbb genes was increased after intracerebral hemorrhage

[53] and ischemia [58]. Up-regulation of Hba-a1 and Hbb

has been also found in brains of aged rats [59]. Human

HbA2 and HbF were associated with disease severity in bi-

polar disorder with a likely protective role of HbA2 against

post-partum episodes [60]. Therefore, increased level of

hemoglobin genes is observed in different pathological

states. Unfortunately, we do not know whether the stress-

induced changes in expression of hemoglobin genes result

from increased expression in neurons, increased blood

flow or from increased accumulation of blood in tissue

because of changes in local vascular tone, decreased

flexibility or occlusion of vessels. However, the fact that

expression of hemoglobin was correlated with weight of

thymus and spleen suggests that expression of hemoglobin

reflected general changes in the state of organism exposed

to chronic stress.

Heme synthesis (Alas2) and vascular homeostasis (Mgp)

genes

The increased expression of hemoglobin genes in pre-

frontal cortex was associated with increased expression

of Alas2 and Mgp in animals subjected to 8 and 13 days

of stress (Figure 7, Additional file 1). Expression of Mgp

was correlated with weight of adrenal glands in stressed

animals and with weight of thymus (Figure 11D and E).

Prefrontal up-regulation of Mgp and Alas2 was also

found in hippocampal tissue collected from the same

mice (Stankiewicz et al., unpublished). Alas2 codes for a

key enzyme involved in heme synthesis. Previously, up-

Figure 7 Expression pattern of genes assigned to cluster 7 and 9.
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regulation of both Alas2 and hemoglobin genes was

found in brain tissue after cerebral artery occlusion [61],

prolonged peripheral inflammation [57], in spinal cord

after MPTP intoxication [62], and in brain arteriovenous

malformations [63]. The same pattern of increased ex-

pression of Alas2, Hba-a1 and Hbb was also reported in

brains of aged rats [59]. Matrix Gla protein (Mgp/Mglap)

is expressed in bones [64,65], cartilage [65] and vascular

smooth muscles [66]. In vascular system MGP plays a

homeostatic role in preventing pathological calcification

in response to increased level of calcium ions [67]. In-

creased expression of Mgp is associated with different

pathological states, such as vascular calcification [68,69],

vascular response to renal failure [70], myocardial in-

farction, and pressure overload [71]. Previously, up-

regulation of Mgp together with increased level of Alas2

and hemoglobin genes was found 3 days after cerebral

artery occlusion [61] and in cortex of mice with chronic

Figure 8 Expression pattern of genes assigned to cluster 1–6, 8 and 9–11. Dendrograms show only examples of genes belonging to each

cluster with the exception of cluster 1 and 11. For full list of genes see Additional file 1.
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peripheral inflammation [57]. Our experiment showed

that animals subjected to the longest period of stress had

also increased level of other genes related to vascular sys-

tem, such as Fbln1, Ppbp and Timp1. Fibulin-1 (Fbln1) is

a calcium-binding component of the extracellular matrix

that surrounds vascular smooth muscle and is involved in

thrombosis and platelet adhesion after vascular injury

[72-74]. Fibulin-1 was also found to be a component of ath-

erosclerotic lesions [75]. PPBP (pro-platelet basic protein/

Nap-2) is a chemoattractant that guides leukocytes to sites

of vascular injury [76]. The pattern of increased expression

of Ppbp, Alas2 and hemoglobin genes was found previously

in spinal cord of mice exposed to toxic effect of MPTP

[62]. Expression of Timp1 (tissue inhibitor of metallopro-

teinase 1) is increased after focal cerebral ischemia induced

by cerebral artery occlusion [61,77] and intracerebral

hemorrhage [78]. Furthermore, it has been also showed that

ischemia-induced up-regulation of Timp1 was associated

with increased expression of three other aforementioned

genes (Alas2, Hbb-b1 and Mgp) [61] while hemorrhage

induced pattern of increased expression of Timp1 and hu-

man hemoglobin genes (Hbb, Hba1, Hba2) [78]. Experi-

ments performed in knockout mice show that Timp1 is

involved in vascular wound healing [79] and confers protec-

tion against blood–brain barrier disruption [77] and pro-

gression of vascular pathologies [80].

Elevated brain level of hemoglobin genes mRNA in

animals subjected to chronic social stress was also asso-

ciated with increased level of other genes (Cntfr,

1500015O10Rik, SLC16A10 and Mndal) involved in in-

jury and inflammatory responses. Cntfr (ciliary neuro-

trophic factor receptor) has been found previously to be

up-regulated after brain injury [81-83] and to protect

against neuronal death [84,85]. 1500015O10Rik (Ecrg4)

codes for a hormone-like peptide called augurin and is in-

volved in the injury response [86,87] and brain aging [88].

Prefrontal up-regulation of 1500015O10Rik was also found

in mice subjected to chronic mild stress [43]. SLC16A10

(monocarboxylic acid transporter) has been previously

reported to be closely related to cerebral ischemia [89],

whereas Mndal (myeloid nuclear differentiation antigen-

like) is an interferon-inducible gene expressed during

inflammation [90]. Likewise, two poorly described genes

from cluster 6 (BC006965 and Trbv13-2 encoding

ENSMUST00000103270) participate in cytokine signal-

ing pathways [91,92].

The observed up-regulation of genes associated with

vascular system suggests that stress may affect brain

function through the stress-induced dysfunction of the

vascular system. It is well known that acute stress triggers

sharp increases in blood pressure [93,94] and that chronic

stress causes hypertension in genetically predisposed indi-

viduals [95,96]. It has been found that acute stress induces

damage to vascular endothelium in animal studies [97,98]

and triggers endothelial dysfunction in humans [99,100].

Clinical data indicate also that hemodynamic changes

caused by hypertension affect cognition because increased

blood pressure triggers alterations in cerebral artery

Figure 9 Quantitative PCR validation of microarray data. Values

are presented as Mean ± SEM. N = 11–12, * - p < 0.05, ** - p < 0.01;

compared with corresponding control group.

Figure 10 Correlation between expression of genes affected by acute stress and weight of thymus (A) and spleen (B) calculated per

1 g of body weight. C + S denotes that presented are data from both control and stressed animals.
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structure and function [101,102]. Vascular remodeling,

in turn, impairs both blood flow and blood–brain bar-

rier and induces inflammation and oxidative stress

[101,102]. Therefore, vascular system may constitute a

link between stress and stress-induced brain pathology.

Another important finding was up-and down-regulation

of several genes constituting cluster 9. Most of these genes

were significantly regulated by acute stress. Perhaps the

most interesting is Fam107a (Drr1) and Agxt2l1 (Etnppl)

that are highly expressed in brain [103,104]. Function of

Agxt2l1 is poorly characterized but it is known that

Fam107a is linked to such crucial processes as long-term

potentiation (LTP) and cognition [105]. Increased expres-

sion of Fam107a was found in hypothalamus, hippocam-

pus and lateral septum after acute glucocorticoid receptor

activation and after exposure to various stressors such as

maternal deprivation, food deprivation and social defeat

[105,106]. Our study showed for the first time that

Figure 11 Correlation between expression of genes affected by chronic stress (13 days) and weight of thymus (A, C, D), spleen (B) and

adrenal glands (E) calculated per 1 g of body weight. Correlation between Mgp, 1500015O10Rik and Hbb-b1 is presented in panel F, G and

H. C + S denotes that presented are data from both contron and stressed animals, S denotes correlation only within stress group.
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expression of Fam107a is also increased in prefrontal

cortex after acute social stress. Interestingly, Fam107a

and Agxt2l1 are deregulated in prefrontal cortex of pa-

tients with schizophrenia and bipolar disorder [107,108].

Moreover, Agxt2l1 gene expression was changed in mice

brain after lithium treatment; a mood stabilizer for bipolar

disorder [109]. There is some evidence that psychogenic

stress modulates development and severity of psychiatric

diseases, such as schizophrenia and bipolar disorder

[110-112]. Therefore, these two genes may constitute a

link between stress and psychiatric diseases. Another

prominent part of cluster 9 is comprised of transcripts

ENSMUST0000009935/-46/-42/-50/-83, that are products of

closely related genes (Gm10715/10718/10717/10720/10800,

respectively) belonging to family ENSFM00360000113264

[113]. Function of these predicted protein-coding genes is

yet unknown, as are their human homologs. Our findings

provide first report of their regulation in context of stress

in the brain.

Methodological consideration

In our study we focused on genes with stable expression

across pools of RNA to avoid the effect of biological out-

liers that can significantly affect results obtained in the

pooled samples [114]. Second, we searched for transcrip-

tomic changes that were independently replicated in at

least two groups of stressed animals. This approach

allowed us to limit large amount of data to several genes

that were consistently affected by social encounters. Im-

portantly, expression of these genes was correlated with

physiological indices of stress. Microarray analysis yielded

also large number of genes characterized by high variability

of expression between the pools of RNA. Furthermore,

most of genes were not replicated in different groups of

stressed animals consistently with previous experimen-

tal and review studies [14,115]. Difficulty to generalize

most of the obtained results highlights the need for

focusing on replicability of transcriptomic changes de-

tected by microarrays.

Conclusions
The most important finding is identification of hemoglobin

genes as potential markers of chronic social stress in mice

(Hbb-b1, Hbb-b2, Hba-a1, Hba-a2, Beta-S). Up-regulation

of genes associated with injury, inflammation and vascular

system suggests that social stress may affect brain function

through the stress-induced dysfunction of the vascular

system. This data are consistent with recent finding that

repeated social defeat promotes migration of peripheral

macrophages to the brain [39]. Furthermore, there is an in-

creasing interest in function of brain hemoglobin [52-55]

and some other genes such as 1500015O10Rik that codes

for a hormone-like peptide called augurin [86,88]. Finally,

we report stress-induced changes in expression of genes

involved in psychiatric diseases such as Fam107a and

Agxt2l1. Therefore, the observed transcriptomic changes

may constitute a link between stress and mental health.

Additional files

Additional file 1: Complete list of genes that were significantly
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