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Social Structure from Multiple Networks. 

11. Role Structures1 

Scott A. Boorman 
University of Pennsylvania 

Harrison C. White 
Harvard University 

Role structures in small populations are given operational meaning 
as algebras generated from the sociometric blockmodels of Part I 
by Boolean multiplication (matrix multiplication employing binary 
arithmetic). Many different sociometric structures can yield the same 
algebraic multiplication table, which captures a different level of 
social structure. Elements of the algebras are interpreted concretely 
as compound roles, and interlock among these roles is studied through 
investigation of their algebraic properties (equations and inclusions). 
Similarities and differences among algebras from six case studies are 
explored by means of homomorphisms as well as by multidimen- 
sional scaling on a derivative numerical distance measure. Results 
for particular populations, including reliability and stability tests, 
are summarized through simple target tables reporting aggregations 
of more complicated role structures. 

Roles have long fascinated sociologists and lay people alike. Particular 

kinds and classes of role have received meticulous and often insightful 

treatments. Many of these treatments have been by professional sociol-

ogists and anthropologists (for sick people, Parsons [I9491 ; for Italian 

immigrants in an American city, Whyte [I9431 ; for members of the Inter- 

national Typographical Union, Lipset, Trow, and Coleman [ 19561 ). Some 

of the best analyses have been by amateurs (for diplomats, Nicolson 

[I9321 ; for federal judges, Wyzanski [I9521 ; for soldiers, Hackett 

[I9631 ; for bureaucrats, Tullock [I9651 ; for scientists, Davis [I9681 ) .  

Within this vast body of work, almost all useful insights have remained 

particular. There is no model for roles comparable with the fundamental 

models in other areas of analytic sociology: the industrial mobility of 

1 Support from the National Science Foundation under grant GS-2689 is gratefully 
acknowledged. Phipps Arabie supervised the multidimensional scalings. Fran~ois 
Lorrain contributed an elegant algorithm which serves as an independent check on 
the JNTHOM algorithm. Nicholas and Carolyn Mullins supplied helpful critiques of 
an earlier draft, as did the anonymous referees and our coauthor for Part I, Ronald 
L. Breiger. Thanks are also owed to Luis Boza of Bell Telephone Laboratories for 
the opportunity to present this material at a seminar there in May 1974. Part I of this 
article, by White, Boorman, and Breiger, appeared in the January 1976 issue of this 
Journal. 
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labor (Blumen, Kogan, and McCarthy 1955) ; social hierarchies (Landau 

1965); population dynamics (Lotka 1925);  attitude change (Coleman 
1965) ; social networks (Moreno and Jennings 1945). I n  dealing with 

roles, anthropologists more than sociologists have tried to break beyond 

the limits of their specific examples (Rivers 1924) ; however, their chief 

success in constructing general role theories has been in the specialized 

areas of kinship and kinship semantics (e.g., LCvi-Strauss 1949; Romney 

1965; but see Schneider 1965). Almost alone, Nadel (1957) attempted to 

set up a formalism for describing roles and role interlock in greater gen- 

erality. Nevertheless, his effort also remains unsatisfying, mainly because 

his formal descriptions have little bearing on concrete population^.^ 

Any attempt to develop a general theory of roles is audacious by defini- 

tion. An excellent a priori case can be made that such generality is in 

fact not possible: for quite different reasons economists, social psychol- 

ogists, and lawyers would feel sympathetic to such a viewpoint. By com- 

parison, the vision of the classical sociologists, particularly Durkheim and 

Simmel, is notably more optimistic. These early theorists were committed 

to the possibility of a unified treatment of roles, crystallized from the 

multiple relationships among men in groups. 

This paper is a direct theoretical attack on the problem of role structure. 

As in the tradition of French structural anthropology through LCvi-Strauss 

and Lorrain (and as also influenced by Jakobson and the linguists), the 

approach is a l g e b r a i ~ . ~  Role structure is modeled as an algebra, the ele- 

ments of which are compound roles formed from a fixed set of primitive 

roles; different role structures are compared by algebraic mappings (homo- 

morphisms). The quest is for a dual description of social structure of the 

kind which classical balance theory suggests in principle but is unable to 

extract from data. On one level are networks, which Part I aggregates 

into blockmodel images. On a second and distinct level are roles. Con-

necting the two levels are statements (equations and inclusions) in the 

appropriate algebra. These statements formally describe role interlock. 

Transitivity is a familiar example, though a very restrictive one. 

Throughout the paper, all developments proceed from a central belief 

that generalizations about role structure should be inductively obtained 

ZNadel's formalism shows him to have been deeply influenced by symbolic calculi 
in the tradition of Russell and the young Keynes (1921). This bias was unfortunate, 
since it distracted him from the development of techniques with computational power. 
Poincark (1913) is a biting criticism of formal calculi possessing chiefly definitional 
uses; see also Lewis (1960) for a fascinating historical review of classical systems of 
logistic which bears directly on the problems of constructing novel formalisms. 

3 The French structuralist tradition is filled with attempts to translate structural 
ideas into some kind of algebraic or quasi-algebraic language. In  addition to Lkvi-
Strauss (1949), see Courrkge (1965), Foucault (1966), and Lacan (1957). Lorrain's 
(1975) developments are by far the most sophisticated. 
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by comparing results based on concretely presented social structures. The 

key is the word "concrete": adoption of a concrete viewpoint sets the 

present work apart from the long tradition of algebraic models of kinship 

which may be grounded on purely cultural constructs not tied to any 

particular population (Weil 1949; White 1963).4 Below, we always derive 

role structure starting from networks of social relations in a concrete 

population. 

This paper is more complicated technically than Part  I. Several levels 

must be kept in view: (1)  the raw networks on a concrete population; 

( 2 )  blockmodels of those data, obtained by the methods of Part  I ;  (3) 
role structures (semigroups) formed from the blockmodels; (4 )  compari- 

sons of role structures, using homomorphisms and derived measures of 

structural distance; and (5) sets of algebraic equations (target tables) 

obtained from the semigroups, which may be given substantive interpreta- 

tions with reference to the original data. At a11 times it is crucial to 

separate formal constructions from their associated interpretations. One 

of the problems with sociological language is that it is inherently rich, 

so rich as to evade the capacity of any formalism to capture it entirely 

(Boudon 1968). We will speak of roles, role structures, and positions both 
in a specific technical sense and in a broader empirical one. The context 

should make the intention clear. 

In  a strictly ancillary (though extremely important) way, we will also 

make use of certain additional technical methods. Most important is our 

use of the MDSCAL-5 algorithm based on the work of Shepard and Kruskal 

(as a means of representing similarities among role structures in a 

Euclidean space) as well as our use of inclusion partial orders (to suggest 

simplifications of role structures). 

SUMMARY OF BLOCKMODELS (SYNOPSIS OF PART I )  

Each of several networks of ties on a concrete population is reported as a 

square binary (0-1) matrix reporting the incidence of the given type of 

tie. The rows and columns of each matrix are then identically permuted 

in a self-consistent search with two objectives. First, the population of 

4 An additional difference of great technical importance is that the algebraic work of 
Weil and of White is strictly group theoretic. As such, it applies only to a very re-
stricted class of social structures, chiefly represented by the Australian classificatory 
systems. The crucial step from groups to semigroups was taken in the late 1960s, in 
independent contributions by Boyd (1966, 1969a, 19696) and White (1969). This 
transition relinquishes the great power of group theory as a branch of mathematics 
in exchange for the far wider substantive applicability of semigroup algebra. (For 

mathematical definitions see the section cjn methods below.) T o  some extent, a 
parallel course of evolution has been independently followed by mathematical lin-
guistics, which has increasingly come to trade mathematical power for breadth of 
application (see Harris 1968; Chomsky and Halle 1968). 
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persons is to be partitioned into positions; second, for each type of tie 

there is to be a specified network of bonds connecting positions. Follow- 
ing rearrangement, the rectangular submatrix reporting ties from persons 

in one position to persons in a second position is termed a block for that 

type of tie. The specific aim of rearrangement is to reveal zeroblocks, 

blocks containing no ties; all other blocks correspond to bonds between 

positions. The image of a type of tie is a square binary matrix reporting 

the bonds. A block??rodel for a population is the set of images obtained 

from the separate types of tie. The term block will also be used for the 

set of members of a position. 

Mathematically, a blockmodel is a homomorphic image of the original 

~nultigraph (Ore 1962). 

Thus in Part I the concept of a position (in a social structure) is given 

operational content as a set of persons who are structurally equivalent in a 

blockmodel. Furthermore, to each position is associated a well-defined 

role set, which is that position's row and column across all blockmodel 

images; this definition is consistent with Merton's (1957, p. 369) usage. 

Both ideas take simultaneity into account: the fact that all positions and 

role sets are determined relative to one another. But the blockmodels of 

Part I fail to deal with interrelations among different perspectives. A role 

set may be seen as one position's view of the interlock of roles. But each 

position has its own viewpoint, and one may hope for global regularities 

which reflect a structure of roles not limited to any one position. 

The task of Part I1 begins here. A number of case studies are treated, 

involving six small populations: (1 )  an industrial work group, ( 2 )  the 

management of an industrial firm, (3 )  a contemporary American monas- 

tery, ( 4 )  a research network of biological scientists, ( 5 )  and (6 )  two 

different experimental college fraternities. Five of the populations were 

discussed in Part I ;  one of the fraternity cases is new. Positive and nega- 

tive affect, in various guises, are the types of tie most commonly repre- 

sented in these case studies. A major part of our results hence concerns 

role structures based on sentiment. 

Alternative blockmodels for a given case are suggested in Part I (see 

also Breiger, Boorman, and Arabie 1975), depending on the strictness 

with which the sociometric data are assessed and on the level of aggrega- 

tion sought. A major concern of the present paper, and a principal cause 

of its length, is identifying a nucleus of role structure which is robust 

across all blockmodels suggested for a given case (see figs. 13 and 14).  

Three distinctive properties of the blockmodels of Part I are crucial in 

the development of role structure models. First, a bond may obtain from 

one position to another on each of several types of ties-"ambiguity" in 

the overall quality of relations from one position to another is considered 

normal. Second, no special weight is given to reciprocated choices-a bond 
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may or may not be reciprocated by a bond of that or another type from 

the other position. Third, a bond from a position to itself is treated on 

the same footing as one to another position-"reflexivity" is a separate 

substantive issue for each position on each type of tie. 

The organization of Part  I1 is conventional: Theory, Methods, Results, 

and Conclusion. Each section is as self-contained as possible. 

THEORY 

The main ideas build from one axiom, the Axiom of Quality, together 

with one definition, that of role structure (see below). Mathematical 

details are deferred to the section on methods; here, only minimal formal- 

ism is introduced to allow initial discussion of examples. 

The Basic Ideas 

1nt~oduction.-Several different contributions to role theory serve as 

points of reference. Our approach resembles that of Gross, Mason, and 

McEachern (1958) in its co~nmit~nent to deriving roles from data on 
concrete populations. However, they studied only a single, focal position 

(that of school superintendent) possessing a single incumbent. Their 

problem was the nature and degree of role consensus among occupants 

of certain other positions with formally prescribed ties to the focal position 

(e.g., teacher, principal, school-board member, finance-committee member, 

selectman). They collected varied data, often in metric form, on a few 

selected roles vis-A-vis the focal p ~ s i t i o n . ~  I n  contrast, our own emphasis 

is on closu~e: we will be concerned with setting up a concept of a closed 

system of roles and with exploring the properties of such closed system^.^ 
Kinship suggests a second contrast. The present approach has its roots 

in kinship (specifically, in the Australian classificatory systems), and 

several of our major themes will reflect that origin (see also White 1963, 

chap. 1 ) .  Howevcr, those classificatory systems are less descriptions than 

brilliant ideologies of social structure evolved by aboriginal civilizations. 

I n  them, as in all viable kinship systems, the whole point of the system 

is to provide a set of rules and nomenclature for the benefit of participat- 

5 Observe how ordinary language tends to confuse differences between positions on 
the one hand and relations between positions on the other. Many of the operative 
features of social structure are lost thereby: it is possible to think of a worker as a 
person who works, independently of his relationship to a foreman; it is not possible 
to think of a vassal independently of his relationship to a lord (see Dibble r1972, 

p. 1561, as well as Sim [19661).  

6 In  this respect, the present developments follow the pattern set by economic theory, 
where closed systems provide the basic model, rather than of classical sociological role 
theory. 
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ing members. Anthropologists have sensed this utilitarian point when 

they have talked of coding and of the information content of a kinship 

~ y s t e m . ~  role structures which interest hereBy contrast, the kind of us 

are descriptions of actual overall structure not accessible to any unaided 

observer, whether participant or not. Upon reflection, this should not be 

surprising: there is no inherent reason why the global properties of a 

social structure should be transparent to its members, though each may 

know his own position well e n ~ u g h . ~  

Recent developments in sociological role theory are surveyed by Mirra 

Komarovsky in her "Presidential Address" (1973). She differentiates 

sharply between "formal, Simmelian" and "substantive" aspects of roles, 

the latter of which enters through an accounting of prevailing "rights and 

obligations." Such a distinction is in fact well founded in the literature. 

However, it is also largely artificial and is perhaps best viewed as another 

manifestation of the heritage from kinship (where formal terminological 

studies may represent an exercise in formalism which is almost totally 

content free).%s in Part I, we try explicitly to do away with the dis- 

tinction. I n  contrast with Komarovsky's "rights and obligations," sub-

stantive content now enters as the incidence of bonds in a blockmodel, 

which in turn is based on the incidence of ties in a concrete population. 

The present work then builds role structures in a formal way but always 

with this substantive foundation. 

Like Gross et al., Komarovsky rightly emphasizes the importance of 

recognizing as a variable the degree of consensus on role expectations. 

However, she is handicapped by the absence of basic phenomenology. 

Consensus is a concept with strong connotations of equilibrium, but 

sociology has never developed any counterpart to the general equilibrium 

conditions forming the basis of economic theory (which have been opera- 

tionalized through input-output tables, among other methods). Below, we 

treat the weakness of phenomenology as fundamental, the problem of 

defining and measuring consensus as secondary. Only when the concept of 

role structure has been operationalized can issues of expectations be 

approached. 

7 See Wallace (1961) for attempts to estimate upper bounds to  the complexity of folk 
taxonomies. 

8Once again, this observation will seem a commonplace to economists, who take 
for granted that  the interactions of economic forces transcend the information-process- 
ing capabilities of any single agent. This is the traditional explanation of why cen-
tralized economic planning is so difficult to  make efficient (Koopmans 1957; see also 
Kornai 1971). For a sensitive analysis of the limits of observer perception in a com-
plex role setting, see Ekvall (1960), which is a description of the author's experiences 
as U.S. army interpreter for the United Nations at  the Korean cease-fire talks. 

V e e ,  for example, Kay (1965) on Dravidian systems; Buchler (1966) on Omaha 
systems; and Romney (1965) for the Kalmuk case, which is a lineal type of Omaha 
classification. 
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Komarovsky also poses three main criticisms of existing role analysis. 

The first concerns neglect of individuality. We do not deal with this 

directly, but i t  should be pointed out that blockmodels suggest a highly 

natural way of measuring individual differences. Only rarely will bonds 

in a blockmodel image correspond to completely filled matrices in the 

original data;  pulling back from images to data accordingly suggests that 

individuality may be captured by the pattern of the variability. 

She directs a second criticism against the static flavor of role analyses, 

the awkwardness of discussing change and manipulation. Here again we 

treat as fundamental the descriptive problem: that of comparing block- 

models over time, and perhaps across different numbers of blocks as well. 

This problem is approached using the algebraic concept of homomorphism 

and the JNTHOM algorithm (see section on methods below). 

Komarovsky's third criticism of role analysis is phrased in terms of a 

denial that norms determine role behavior and thus explain conformity 

and the social order (but see Rommetveit 1953). Our agreement with her 

on this point should already be clear. Returning, however, to our starting 

emphasis on multiple levels of structure, it should be stressed that our 

present approach does not exclude norms and in some instances may 
actually serve as a search procedure for cultural regularities. Certain 

aspects of role interlock (algebraic equations) will be given a significance 

as abstract regularities emerging from particular blockmodels. Where such 

equations arise and are interpretable, they may fulfill the same function as 

the analogous equations in classificatory kinship, of which they are 

reminiscent: the equations generated from a blockmodel may represent 

nascent cultural roles, perhaps even positive norms. More complex models 

will obviously be needed, but the principle is an important one: abstract 

cultural regularities are patterns emergent from concrete networks among 

particular persons.1° 

Role reciprocity.-In the sociological literature the concept of role has 

long been associated with a second concept, role reciprocity; one might 

almost say that the idea of reciprocity has been the main contribution to 

role theory which is distinctly sociological and not psychological in con-

tent. Included in it is the notion that alter should accept ego's expecta- 

tions of him (and conversely), as well as the further notion that the 

converse expectations alter holds of ego should mirror in some sense 

(though perhaps not duplicate) ego's expectations of alter. I n  our terms, 

loThis agrees with the view expressed by Zetterberg (1965) that the primitive terms 
of sociology should arise directly from human agents and their actions. The views 
of Homans on this subject are well known (see Homans 1962). I t  is interesting that 
certain areas of contract law have recently begun to move in a direction suggestive 
of blockmodels, particularly the zeroblock concept (see the preface to Reitz 1975). 
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"ego" is to be thought of as a representative incumbent of one position 

and "alter" as that of a second (perhaps the same) position. 

What has already been said suggests that reciprocity is far too restric- 

tive and also too slippery a notion on which to build a theory of roles. 

Reciprocity focuses on two positions in isolation. As such, it fails to ac- 

count for indirect causal effects arising from the wishes and expectations 

of third positions, perhaps many of them.ll Also, the usual concept of role 

reciprocity remains heavily tied to subjective perceptions by the parties 

which are at  once very difficult to establish and often not relevant to the 

objective structure.12 

Suitably formulated, however, the concept of reciprocity does suggest 

the two main ideas of the present theory. The first is that one role 

generates another: A's expectations toward B generate reciprocal (though 

perhaps very different) expectations toward A. The second is the idea of 

chaining: taking the generation process one step further, B's expectations 

toward A may interact with A's original expectations toward B to produce 

new expectations. The difficulty with reciprocity lies in the fact that it 

does not push the implications of either of these ideas to their natural 

conclusion on a social structural level, as we now proceed to do.13 

Compound images.-In Part I, a separate image was found for each 

type of tie. This image reported as a binary matrix the incidence of bonds 

of that type among positions. Now generate compound images: each 

11 LCvi-Strauss makes much the same point in distinguishing "restricted exchange" 
from "generalized exchange" (see discussion in Ekeh 1974). 

1'1s my liking for James a social fact or only a psychological quirk if any of the 
following hold true: ( i )  he does not reciprocate my liking; (ii) he does not re-
ciprocate with any other type of tie; (iii) he is not aware of my sentiment toward 
him; (iv) he does not know my name; (v)  he does not know whom I am tied in 
to ;  (vi) he does not recognize me; (v)  no one else in the population is aware of my 
liking for James? Can such questions be answered by either observation or question- 
naire? (see Brown 1965). For roles defined culturally, on the other hand, in abstrac- 
tion from particular populations, the meaning of reciprocity may be clear. I t  is in- 
conceivable that a person can be kin to me without my being kin to him. So my 
kinship role to  him necessarily implies some reciprocal role from him to  me. In  addi- 
tion, each of the two roles is recognized, and is known by all to  be recognized, by 
me and by him and by all other members of our society. This is role reciprocity in 
the full sense. Other sorts of cultural roles imply reciprocity. I t  is hard to think of 
lawyers without clients. However, once a whole set of roles and positions is included, 
the issue of reciprocity becomes murkier. How many of us know the court's clerk is 
the bailiff's superior in the legal role frame? 

l3I t  is instructive to  point up a contrast with the model of Friedell (1969). That  
model has a very similar starting point in a concern with unfolding the implications 
of reciprocity. However, the idea of longer chains is developed at  a purely psycho- 
logical level in a two-party interaction, with the chains being of the form "he thinks 
that I think that he thinks . . . ," etc. This kind of analysis is Schelling's forte. 
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such image is again a binary matrix reporting which positions are joined 

by a chain of bonds of specified types. Formally: 

A compound image 1*2 is represented by a square binary matrix, whose 
(i,j)th entry is 1 if and only if there is a bond of type I from i to some third 

position k (which may coincide with i or j )  and a bond of type 2 from 
k to j. 

In  an obvious way, this definition may be extended to compounds of 

type 1*2*3 . . . through more than one intermediate position. Much has 

been written about the sociological meaning of compound relations in 

kinship (LCvi-Strauss 1949) and in more general kinds of formal and 

informal social structure (White 1969; Lorrain and White 1971; Fararo 

1973). The innovation is that compounds are now being formed starting 

with blockmodel images, not with raw sociometric or observer-reported 

network data (e.g., Luce and Perry 1949). 

Various features of the definition deserve emphasis: 

1. Any position k may be a "middleman" with respect to any other 

position on any type of compound image. 

2. The binary coding ignores the absolute number of possible inter- 

mediaries k between a given i and a given j. This is consistent with the 
way in which the underlying blockmodel has already imposed a binary 

coding of block densities (discriminating only between bonds and zero-

blocks); it is also consistent with any prior disregard of the "strength" 

of ties in coding the original data. 

3. The constituent images of compound images need not be of different 

types, and any number of repetitions is allowed; for example, 3':'3*1, 
2"1"2) /1'1*1*1,etc. 

4. In  particular, there will be a reflexive entry from position i to itself 

in the compound image of type 1 : g I  if i has a reciprocated bond of type 1 

with some other position j. Thus reflexive entries in certain compound 

images may indicate a weak form of reciprocity (see also Lorrain 1975). 

5. A position may appear repeatedly as an intermediary in a chain 

contributing to a given entry in a compound image. Indeed, a position 

may appear a t  successive steps of the chains. This is legitimate, since a 

bond from a position to itself in a blockmodel is comparable with a bond 

to a different position (contrast the sociometric level of the original data, 

where the diagonal of a sociomatrix is inherently meaningless). 

6. The order of images in the compound is material: 1*2 need not 

equal 2:$1 and usually will not (contrast the well-known principle of 

balance theory that my friend's enemies are my enemy's friends, P N  = 
N P ) .  

7. On the other hand, in computing the compound of several images, 

say 3*1*2, it does not matter whether one first computes the incidence of 
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bonds for 3*1 and then for (3*1)"2, or instead first finds 1" and from 

that finds 3*(1*2). 

In  mathematical terms, the binary matrix representing a compound 

image of type 1*2'1'3 . . . is the Boolean matrix product of the specified 

image matrices (see section on methods). 

Just as we earlier examined different types of tie, each type of com-

pound image is now to be examined separately in terms of the matrix 

which represents it. I t  is natural to adopt the following: 

Axionz of Q~ality.~*-Two types of compound image are to be identified 

if and only if their associated matrices coincide. 

Given this axiom, there can be only a finite number of distinct types of 

compound image for a given blockmodel; usually, there are but a handful 

for the blockmodels in our case studies. Of particular importance is the 

special case in which one or more com1)ounds are identical with the initial 

images; we now turn to such a case as our first illustration. 

An example.-Go back to Sampson's (1969) study of an American 

monastery, and adopt Part 1's three-block split of his 18-man population 

into Loyal Opposition, Young Turks, and Outcasts. From among 

Sampson's four types of sociometric choice, select the Sanction choice and 

impose the three-block split on two separate matrices reporting top three 

choices on Positive and Negative Sanction, respectively. Weighting entries 

by +3 (top choice), +2 (second choice), and +1 (third choice), obtain 

the following density matrices (see also table 1 below) : 

.548 .020 ](Positive Sanction) .905 .0!6[ .1;9 .I79 .333 

0 .204 

(Negative Sanction)  .286 .048 I[ . lo7 1 4 3  5 i 6.41 7 

(Both row and column orderings follow the sequence: Opposition, Turks, 

Outcasts.) Observing that there are no entries in the range (.05, . I ) ,  i t  

is natural to convert to binary form using a .1 cutoff for coding a block 

as a zeroblock; thus (following Part 1's notation) obtain1" 

14 In axiomatic set theory, this same principle goes under the name of the "Axiom 
of Extensionality." 

15 Detailed notation is developed below in table 1. Later we show that role structure 
is robust with respect to refinement of blocks and to the binary coding of density 
matrices. 
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Thus each block directs a positive bond to itself, and the Outcasts also 

direct positive bonds toward each of the other two factions. At the same 

time, each pair of different blocks reciprocates a negative bond, and the 

Outcasts direct a negative bond to themselves. 

Now form compound images: K is transitive,16 

but this statement is comparatively vacuous since there are only three 

distinct blocks and K is not a linear hierarchy. Also uninteresting are the 

further equations 

1 1  

1 

1 1 ,B K z B 2 = [  1 11 1 1  

the universal pattern in which all pairs of blocks exchange bonds.  

Finally, however, one also has  

and this last equation is neither a tautology nor trivial. I t  represents the 

intersection of two separate statements about images: 

B KB. (2)  

Statement (1)  may be taken to imply a kind of loyalty: I will support 

my "friends" by taking on their "enemies." Statement (2 ) )  on the other 

hand, describes a pattern of social reinforcement: whoever my enemy is, I 

will have a friend or friends who share my enmity. 

Of course, these cultural interpretations with their implicit time-ordered 

dynamics centered on some individual are not the only ones possible, and 

i t  is also possible to interpret KB =B without cultural or psychological 

premises, simply as a convenient summary of certain properties of K and 

B a t  the blockmodel level. Statement 2 is then seen as reporting a pattern 

of social reinforcement among positions: every position which has enmities 

also is friendly to positions which share those enmities. 

I n  any case, the fundamental importance of the equation lies in its 

invariance (Stevens 1975) : the social structure is described in a way 

which is independent of the limited viewpoint of any particular ego 

16Because reflexivity is an important substantive variable (see earlier), we adopt 
a strict mathematical definition of transitivity for blockmodel images. An irreflexive 
graph K is transitive by the standard definition (Ore 1962, p. 191) if K2 C K. Many 
earlier investigators (notably Davis 1970; Holland and Leinhardt 1976) have demon- 
strated that graphs representing positive affect tend to  be transitive (see also the 

explicitly hierarchical models derived by Bernard [I9741 for Coleman's high schools 
[19611). 
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position. Such invariance means that equations will be a natural approach 

to comparing blockmodels with different numbers of blocks and on different 
populations (see below). Yet an equation need have no direct incidence 

upon a particular position (save possibly as a middleman) : the role struc- 

ture will not usually be homogeneous. 

Whether K B  =B is in some sense fundamental, as suggesting a general 

interlock pattern basic to the Sampson social structure, will be apparent 

only later, once the formalism has been fully developed. I n  the section on 

results, KB =B (suitably reinterpreted employing homomorphisms) will 

be shown to be a robust characteristic of the Sampson structure. This 

characteristic will be used to distinguish the monastery from Newcomb 

year 2 ,  among other data cases. 

Role Structure in a Population 

Multiplication tables for conzpounds.-We seek evidence of role struc- 

ture in a population with two or more reported types of tie. Assume a 

particular blockmodel, which will remain fixed throughout subsequent 

analysis. Call the blockmodel images gene~ators when they are used to 

form compound images; refer to both generators and compound images 

as words (drawing terminology from the theory of generative grammars). 

Thus, in the K B  example, K B  is a word; so also are K ,  BK,  BK2, BKBK, 

B2. In  classical sociometry, the concept of word formation is implicit in 

the notion of forming the transitive closure of a single relation R: 

The classical approach, however, never formed compounds on more than 

a single generator in this way, and it never distinguished words as sepa- 

rate entities (but see &loon and Pullman [1967], following up the 

phenomenology of Landau [ 195 1 ] ) . 
A role s t ructu~e is the set of all identifications among words obtained 

by applying the Axiom of Quality to the compound images formed by 

multiplying generators. 

Mathematically, a role structure is therefore simply the Boolean matrix 

semigroup formed by taking Boolean matrix products of the specified 

generators (see section on methods). 

In  the K B  example already introduced, the role structure has only 

three distinct words: K, B, and the universal element U .  We have already 

studied role structure for this case, and our findings may be systematically 

summarized by means of what algebraists call the nzultiplication table of 

the algebra. This is the array showing all possible products of the words 

K, B, and U. Figure 1 displays this table in two alternative forms. The 

first is concrete and represents the structure as a set of matrices together 
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(a)  M a t r i x  p r o d u c t s  

(b )  L e t t e r  p r o d u c t s  

FIG. 1.-KB3 role structure. In  the notation introduced in table 1, the generators 

are S M ( 4 ) - 3 - K ( 3 ) B ( 3 )> .l. 

with their matrix products (by closure, these must be elements of the 

original set) .  The second is symbolic and employs letters (or later, 

numerals) to represent the three distinct elements of the structure. Al- 

though obtained directly from the concrete matrix table, the symbolic table 

retains only the abstract pattern of role interlock implied by the former 

one. W e  employ the  symbolic table as our central tool for operationalizing 

a new level of social structure. This level may be inferred from block- 

models, but we will see below that recovery in the reverse direction is not 

necessarily or even normally possible: very different blockmodels may 

generate role structures giving rise to identical symbolic tables (figs. 5 
and 6 below). 
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Before developing this point, first consider a second and much richer 
example. Taking all eight Sampson relations, consider our usual three- 

block split and code entries as bonds using only the top two choices and 

a strict zeroblock criterion. This leads to seven distinct generators, since 

Disesteem and Antagonism produce identical images and are therefore 

identified (fig. 2) .  Forming all possible compounds now produces only 

four new compound roles whose matrices are also shown (together with 

the informationally vacuous U pattern, which is generated as no. 10). 

When there is tight-knit role structure, there should be a high incidence 

of compound words having multiple representations as products of gen- 

erators; various alternatives are shown in figure 2. Because of this char- 

acteristic nonuniqueness, figure 3 shows the symbolic form of the multi- 

plication table using an arbitrary integer coding for the distinct words. 

We have identified the generator rows in figure 3, in anticipation of the 

distinctive significance of generators in later comparison of tables (see 

section on methods). 

Examine the figure 3 table more carefully. I t  is a complete statement 

of role structure in the given data;  however, much of the information is 

redundant and only a few equations in the table convey interesting struc- 

tural descriptions. We already saw this in the figure 1 table, where only 

one equation in nine is of interest. The following general points apply: 

1. Many equations are simply definitions of a new word (although 

this will depend on the order in which compounds are generated). Thus, 

starting from words 1 and 2,  the equations 2*1 = 8, 2*2 = 10 simply 

define two new words which are not in the generator set. Once these 

words have been generated, however, the further equations 2*8 = 10 and 
1*10 = 2'VO = 10:" 110*2 are no longer definitional (although, return- 

ing to the graph level, equations involving 10, the filled matrix, are 

interpretively uninteresting). 

2. Many more equations will simply be logical consequences of ones 

already derived, and therefore redundant. Thus if one has L2 =L3 ( a  
weak form of transitivity found in certain of the Newcomb year 1 cases) 

he must also have L U  =L3A, L2AL =L3AL, etc., and these apparently 

new equations contain no new information. I t  is a mathematical fact that 

the complete table of any role structure with g generators and e words can 

be filled out from information contained in the g X e subtable corre-

sponding to the generator rows. This is inductively clear, since any word 

can be built up from generators through multiplying generators by words 

already formed. 

3. Finally, equations involving zeros assume a special significance. 

Formally, a (structural) "zero" in a multiplication table is an element 0 

whose product by any element is itself: O*x =x+O = 0. A structural zero 

in this sense need not correspond to a Z (empty) image pattern a t  the 



W e r d s  Matrix 

12 .  KN 

FIG.2 .Sampson  role structure on eight generators. In table 1 notation, this is 
SM(4)-3-E(Z)D(2)I(Z)N(Z)K(Z)B(2)L(Z), Each compound word is labeled by its 
representations as a product of two generators; there will be additional representa- 
tions as products of three or more generators. 
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Genera to r s  

FIG.3.-Multiplication table for Sampson generators shown in fig. 2.  Numbering 
follows fig. 2.  

blockmodel level, although any such empty pattern will act as a zero in a 

table. Thus 10 is a zero in figure 3 even though the graph corresponding 

to 10 is in fact the full graph ( U  pattern). From the standpoint of the 

structural information conveyed, zeros in a table are effectively "garbage" 

elements, since they are capable of generating no novel patterns of role 

interlock. If a table contains a zero, the frequency of the zero element is 

usually high, as is therefore the frequency of uninteresting equations. For 

example, in figure 1 the U pattern is a zero and accounts for 78% of the 

table; in figure 3 the frequency of the zero is about 70%. 

These are three reasons to expect rather few interpretable equations in 

any particular table. Much of the apparent structure formally implied in 

a multiplication table is thus actually bogus; only a part of the table is 

operative in defining role interlock. At the same time, it is not always 

easy to exclude particular equations in preference to others, and we have 

seen that the outcome may be affected by purely arbitrary factors such 

as the order in which words are generated. These are strong grounds for 

rejecting a case-by-case approach to equations such as was followed above 

in the KB example and instead developing ways of treating entire tables 
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as integrated structures. This shift in emphasis is developed below through 

the concept of a homomorphism. 

For the moment, i t  should be stressed that there is no necessity that 

all tables be equally informative or even that a particular table reveal 

any significant role interlock a t  all. An extreme example is the degenerate 

table shown in figure 4a, where every element multiplies to give a single 

(a)  Week  4 ,  Newcomb Y e a r  2 

(b) Week 8,  Newcomb Y e a r  2 

-2 4 5 3 3 3 

-3 3 3 3 3 3 

-4 3 3 3 3 3 

-5 3 3 3 3 3 

FIG.4.-Role tables with complete or partial degeneracy. In table 1 notation, a is 
NF2 ( 4 )- 3 - L ( 3 )A ( 3 )  > . l ;  generators are 

Similarly, b is NF2 ( 8 )- 3 - L ( 3 )A ( 3 )  > . l ;  generators are 

garbage element, which is also a structural zero. In  figure 4b, again the 
zero fills out most of the table. This makes excellent sense: these tables 

are for blockmodels obtained from weeks 4 and 8 in the Newcomb year 2 

sequence, imposing a three-block split from week 15 (the last week). As 

was already argued in Part  I, the social structure remains amorphous a t  

the blockmodel level until about week 4 or 5 .  One would therefore be 

justified in expecting trivial role structure in figure 4a and perhaps rather 

little in figure 4b. 
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From blockmodel to role structure.-Figure 5 brings out another aspect 

of the kind of structural information contained in role tables. Figure 5a, 

of course, is the table familiar from classical balance theory (Abelson and 

Rosenberg 1958). I n  our scheme, every word is identified with one or the 

other of the generators by the Axiom of Quality. The table is unusual in 

(a)  Multiplication table 

(b)  Class ica l  blockmodel 

( c )  Another blockmodel 

FIG.5.-Two blockmodels, each yielding the multiplication table of classical balance 
theory. 

that all equations are interpretable and none is excluded on any of the 

three grounds given above. Each individual equation has been discussed 

extensively in the literature (e.g., for N 2  =P see Aronson and Cope 

1968) ; collectively, the equations are always associated in the literature 

with a two-clique structure of the kind shown in figure 5b (and are inter- 

preted a t  the level of individuals, not blocks). 
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Surely this algebra contains no surprises, although its applicability to 

real data may be questioned. But now look a t  figure 5c. Here are two 

graphs which may be interpreted as Like and Antagonism images in a 

six-block model. Taking these graphs as generators, proceed to fill out a 

compound role structure as in earlier examples. Astonishingly, for the two 

graphs bear little resemblance to a balanced graph, the role structure they  

generate satisfies exactly the familiar equations of figure Sa! This proposi- 

tion may be made tighter: using the notation of figure 2 in Part I, and 

applying the BLOCKER algorithm, there is no way of collapsing the given 

six blocks into a (P,N) model at  the two-block level (although [V,  F] 
blocking is possible). I n  a very strong sense, the figure 5c graphs are 

inherently different from the 5b ones.17 

A parallel finding arises in many cases generated by actual data: dis- 

tinctk-often highly distinct-blockmodels may generate identical role 

tables. Figure 6 gives two examples. For instance, in figure 6b two different 

Sampson pairs of generators for three blocks give the same role table. 

This table is also given by a pair of generators on four blocks for New- 

comb's first fraternity (shown in fig. 6b, 3 ) .  Identical equations may  be 
satisfied b y  social structures that  appear distinct at the blockmodel level. 
Such coalescence may appear reminiscent of the way in which different 
networks may produce identical blockmodels. However, the latter possi- 

bility is simply an obvious by-product of aggregation. The present instance 

is different: a role table is a kind of "unfolding" of the generators, and 

i t  is correspondingly a strong assertion to say that two "unfoldings" coin-

cide while the generators do not. 

Passing to the role table therefore involves a fundamental loss of infor- 

mation, in exchange for obtaining a level of description which is invariant 

across positions in the sense discussed above. Assessing the net value of 

this transaction must await the section on results. 

Similarity of Role Structures 

Orientation.-Is a given role table reliable, that is, will alternate block- 

models from different codings of sociometric indicators yield essentially 

the same table? Is  there a way to distill just the essential features of 

role interlock from a large table, however reliable it is? Can one determine 

what two role structures from different cases have in common? To  develop 

the theory, in this section we propose answers to these three interrelated 

questions of robustness, aggregation, and similarity for role structures. 

The answers build upon one concept, homomorphism, and will lead us to 

17This example was contributed by Mr. Kazuo Seiyama (1975). As in most actual 
cases studied, not all bonds are reciprocated. 
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( a )  Newcomb Y e a r  1 ,  Weeks  8  and 1 3  ( N F l ( i  ) -4-L(3)A(3)  > 0 . 1 ,  i =8 , 1 3 )  

1. Week 8 

2. Week  1 3  

( b )  M o n a s t e r y  and f r a t e r n i t y  m o d e l s  

1 .  SM(4)-3-1(2)N(2) ( iden t i ca l  t oSM(4) -3 - I (3 )N(3)  > 0. 1 )  

0 0 1 1  1 1 0 0  

FIG.6.-Identical role tables from distinct blockmodels 

identify a handful of smalI target tables with simpIe substantive inter- 

pretations. 

The concept of honzomorphic reduction.-Start with a given role struc- 

ture such as that for which the table is shown in figure 7a. We seek a 

concept of aggregation which is consistent with the compounding of roles 

through which the table was originally generated. The following definition 

translates this consistency requirement into formal terms: 

A lzomomorphic redz~ction of a role table is a partition of its words into 
equivalence classes C,, C2, . . . , C,  in such a way that class membership 
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is consistent with the operation of forming the compound. That is, if 
el,ez E Ciand f l , f z  E C,, then e l f l  and e z f z  fall in the same class C,. 

Thus, a homomorphic reduction aggregates a role table by imposing new 

equations, those between the words in a class of the partition, in a way 

consistent with the equations in the full table. 

An example is shown in figure 7 .  Here the original role structure is 

based on a five-block model for Sampson I (Influence) and N (Negative 

Influence). Following what will later be our standard convention, 1 is 

taken to represent the positive generator here ( I )  and 2 is taken to repre- 

sent the negative generator here ( N ) .  There are nine further compounds, 

so that the entire structure contains 11 roles. There is a structural zero 

(element 8 )  which fills out much of the table, but the upper left corner 
contains nondefinitional structure not involving 8 (thus ld'l= 1*3 = 
3'" -- y3"3--3 ) .  

Figure 7 b  now shows a homomorphic reduction of the structure. There 

are three classes Ci, 

and i t  is directly apparent that the aggregation preserves consistency of 

compounds. Relying on this consistency, we may in turn replace the 7 b  

table with the three-element table in figure 76. Note that this last table is 

very simple in structure and that we have already seen i t  in a different 

context, through the KB example introduced in figure 1. 

We will refer to the 7c table as a homomorphic reduction of the original 

table in 7a. 

Homomorphic reduction will serve as our operational concept of role 

structure aggregation. Two comments should be made: 

1. Aggregation is not unique: role structures will always possess 

numerous alternative reductions (compare the general observations on 

aggregation in Leijonhufvud [I9681 ) .  Each reduction may be viewed as 

one possible simplified description of the original structure, and not all 

such simplifications need be equally useful. For example, it is obviously 

possible to reduce the 7a table down onto the degenerate table 

but this further reduction is clearly uninformative. 

Later, in the section on results, we will compare Sampson and New- 

comb role tables by examining their alternative aggregations into non-

degenerate three-word tables. 



( a )  Role table - - original  f o r m  

1 2 3 4 5  

-1 3 5 3 8 9 

-2 4 6 7 8 1 0 

-3 3 9 3 8 9  

4 7 1 0 7 8 8 -

-5 8 1 1 8 8 8 

-6 8 8 8 8 8 

-7 7 8 7 8 8 

-8 8 8 8 8 8 

-9 8 1 1 8 8 8 

-1 0 8 8 8 8 8 

-11 8 8 8 8 8 

(b) Role table -- permuted and partitioned 

(c )  Image table 

FIG.7.-Homomorphic reduction: mapping a Sampson IN5 table down onto a 
three-word table. In  a, the role table is shown in unpermuted form as originally 
generated. In  later notation, a is for SM(4)-5-1(3)N(3) > . I .  In  b, the same table 
is shown in permuted and partitioned form. In  c, the multiplication table of the 
reduction is shown: this is the same table directly obtained in the KB3 example of 
fig. 1. 
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2.  Aggregation by homomorphic reduction is a purely algebraic con-

cept: the reduction possibilities make use of structural information in 

the role table only, and there need not be any consistent parallel reduction 

a t  the level of blockmodel graphs.18 I n  particular, i t  is not usually true 

that a homomorphic reduction may be generated as a Boolean matrix 

semigroup from matrices which are unions of words mapped into gen- 

erators under the homomorphism. A more abstract way of making the 

same observation is to lay emphasis on the decoupling of structural levels. 

There is a first level of graphs, s'tarting with blockmodel images and later 

forming compounds in Boolean arithmetic. There is a second level of 

equations, summarized in the role table. I n  all cases we have met thus 

far, the abstract form of a role table may be introduced merely as a 

shorthand for the matrix form of the table (see again fig. 1 ) .  I n  defining 

the concept of homomorphic reduction, we are making the promised tran- 

sition to a genuinely separable level of social structure--one where certain 

operations may be possible that need have no counterpart a t  the level 

of graphs. 

The joint table of two role structures.-Continuing to develop this point 

of view, we turn to the problem of comparing two role tables. The two 

tables may come from blockmodels for the same case derived by different 
codings of the data, or they may be from entirely distinct cases. It must 

be possible to identify generator symbols across cases to be compared. 

Thus, in figure 8, cases I1 and I11 are each generated by elements 1 and 2 

(which, by reference to the data, correspond, respectively, to positive and 

negative sentiment). Now define: 

The joint reduction of two role structures on the same set of generators 
is the largest table consistent with both original role tables, that is, the 
most refined role table which is a homomorphic reduction of both given 
tables. 

I n  substantive terms, the joint reduction is the outcome of abstracting 

structure common to both original role systems; it is the common de-

nominator of the two role structures being compared. I n  mathematical 

terms, the joint reduction may be characterized as the intersection (great- 

18There is such a parallel reduction in the example of fig. 7. Consider the Boolean 
union of the words in each of the three classes Ci. This gives: 

a bar has been added to the four 1's in C1 which are not already present in the first 

generator, and similarly for C2, to show the impact of unioning. I t  is easy to verify 

that C1 and C2 as generators yield exactly the three-word table of fig. 76. 
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est lower bound) of two given semigroups in the reduction lattice (see 

section on methods). I n  figure 8, table ZV is in fact the joint reduction of 
tables I1 and ZIZ (and of Z and IZZ as well). Thus the simple three-word 

table of figure I is just what the monastery and fraternity cases of figure 

8 have in common. 

( I V  is the joint 
reduction of I1 
and 111) 

FIG.8.-Homomorphisms and the joint table. In each of I-111, 1 is the positive 
sentiment generator and 2 is the negative sentiment generator. Table 11 is S M ( 4 ) - 3 -

1 ( 2 ) N ( 2 )  and also S M ( 4 ) - 3 - 1 ( 3 ) N ( 3 )> . l .  Table 111 is N F 2 ( 1 0 ) - 3 - L ( 3 ) A ( 3 )> . l .  
Partitions: 

I n  the section on methods, we develop a numerical measure (6) of how 

far apart two role tables are through their joint reduction (see Boorman 

and Olivier [I9731 for the mathematical basis of this strategy). The 

distance is used to assess reliability across different codings of one case, 

as well as to measure the similarity of different cases. When reliability is 

high, the joint reduction table is the robust statement of role structure. 

Inclusion orders and generators.-Before the joint reduction of role 

tables from two cases can be obtained, the respective generators must be 

identified with one another. The face definitions of sociometric indicators 
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can be misleading, and their various labels are often incomparable. A 

generalization of the Axiom of Quality suggests one objective criterion: 

if one image wholly contains another, the former type of tie is a weakened 

form of the latter and a candidate for homomorphic identification with it. 

This criterion cannot be directly used to compare different cases, the 

blockmodels for which may be on different numbers of blocks. Instead, 

the overall structure of inclusions among distinct words in one blockmodel 

can be compared with that for another. The rationale will be further 

developed in the next subsection. 

Figure 9 reports inclusion orderings typical for two generators repre- 

senting positive and negative affect. They are for the fraternity data 

Newcomb designed to pick up precisely this affect dimension and come 

from the blockmodels of the last five successive weeks of the first experi- 

ment (year I ) ,  when clear social structure had emerged among the four 

blocks. The similarities among these five orderings are striking, and there 

seems to be a progression over time. 

Now consider figure 10, the inclusion order for the monastery block- 

model in figure 2 .  There are eight generators, as defined by Sampson (or 

seven, since D and A coincide). Yet in its gross features figure 10 resem- 
bles the typical inclusion ordering for a p a i ~of generators: D, A, and B 

are weakened forms of N; I, E, and L are weakened forms of K. The 

positions of the compounds fit with the former four representing negative 

affect and the latter four representing positive affect: cross-products 

appear as additional weakened forms of N whereas powers and products 

of the positive four are weakened forms of K. 

I n  the section on results we exploit this simplification of the Sampson 

case. A large role table by itself can be opaque: it may not only be hard 

to identify the nature of the generators relative to other cases but may 

also be difficult to see the main features of role interlock within the single 

table itself. 

Inclusions, equations, and social economy.-There may be no compara- 

ble cases, and no alternate blockmodels for a given case, from which to 

derive a joint homomorphism. Imposing a single additional equation upon 

a role table defines a homomorphism, sometimes a sweeping one with just 

a few equivalence classes because of the large number of other equations 

implied by the given one. In  such an attempt to identify main features 

of role interlock, one wishes to equate two words which are similar. A 

word W just above another word X in the inclusion order is a weakened 

form of it,  as suggested earlier, and more similar to X than words else- 

where in the inclusion order. 

Such a procedure can also help to identify which of the equations im- 

posed on a role table by a joint reduction are the strategic ones sufficient 

to imply the rest. The likely candidates are equations of compound words 
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Week Descr ip t ion  O r d e r i n g  

L A L  (=U)  

~ ~ 1 ( 1 5 ) - 4 - L ( 3 ) A ( 3 ).15 > 1 L ' j ' b v L A

I 
L A A 

L A L  ( = U )  

A L  L A  

L' 

FIG.9.-Inclusion orderings for Like and Antagonism in final weeks of Newcomb 
year 1. Notation follows table 1. 

to generators. (Note that the words high in the inclusion ordering are 

"garbage" words in the sense discussed earlier for U.) If an imposed 

equation is inconsistent with the detailed interlock in the full table, the 

resulting reduced table will be degenerate. 

Take the inclusion orderings of figure 9 as an  example. One obvious 



10: Universal  

\ \ 

NE=NI=NK 

FIG. 10.-Inclusion ordering for words in Sampson eight-generator case (fig. 2 ) .  Note the "butterfly" pattern. The order- 
ing forms an upper semilattice. 
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candidate for a simplifying equation is transitivity of the positive gen- 

erator: L2=L. There are two competing candidates for the other strategic 
equation : 

A L =  A, and LA = A .  

The latter is the one observed in the full role table of figure 1, the one 

imposed successfully in figure 7, and the one resulting from the joint 

reduction in figure 8. I n  the discussion of results we shall always see 

degenerate results from imposing both a t  once, for all Sampson and 

Newcomb cases. 

As a second example, recall the Bank IViring Room blockmodel which 

splits the population into three hierarchical strata. The role structure 

generated by Like and Antagonism has 11 words, and figure 11 shows 

both the multiplication table and the inclusion ordering. The latter is 

strikingly different from figures 9 and 10. There is no overall division 

into words of positive and of negative quality; there is a word, LAL, with 

empty image (2 ); and AL, as well as LA, is contained in A instead of 

the reverse. The only equation clearly suggested is transitivity of L; the 

main features of interlock are otherwise not obvious. 

An equation is the intersection of two inclusions. The equation in the 

first example (fig. 1)  was discussed in those terms, and the two inclusions 

were named. In  default of the equation, does an inclusion hold, and if so 

is it always the same one? The typical inclusion orderings for friendship 

and enmity (figs. 9 and 10) show that the inclusion called social reinforce- 

ment holds, but not the one called loyalty. That is, typically any position 

antagonistic to some given position can count on having friends also 
antagonistic to the latter position (A c LA, but not the reverse). Figures 

9 and 10 also show another, less auspicious, face of this social reinforce- 

ment: a position can also count on having other enemies who are friends 

with a given enemy (A C AL but not the reverse). 

Against this background the equation LA =A can be interpreted as a 

developn~ent of social economy in affective structure, a tightening of the 

pattern of social reinforcement into the discipline of a role structure. I n  

the example of figure 1, not only do friends share one's own enmities but 

also each position shares all the enmities of its friends: the latter tighten- 

ing could be sought by a particular ego either through adopting as his 

own enemies all enemies of friends, and/or by dropping friends who have 

enemies not already his own. 

I t  does not follow that the cognate equation, AL =A,  need develop 

from its pattern of social reinforcement. Not only can one equation hold 

without the other, as illustrated by figures 1, 7c, and 8ZV, but also their 

developments would be quite different. An ego does not control the bonds 

sent by intermediary positions; so in achieving the economy of AL =A 
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( a )  Generators (BW-3-LA) 

(b )  Role table 

( c )  Inclusion ordering 

7: LAL ( = Z )  

FIG.11.-Bank Wiring Room: Like and Antagonism on three blocks (stratified 
model) with zeroblock cutoff. 

from the base of A C AL, each ego would have a most delicate synchroni- 

zation task whether he added or dropped enemies. Nor is the motivation 

apparent for making enemies of all friends of one's enemies. 

The previous paragraphs illustrate a general point: the interpretation 

of any one equation in a role table depends on what other equations also 
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hold-and thus on what equations do not hold. The phrase "role inter- 

lock" refers to just this point. The main kinds of role interlock are 

brought out next through systematic examination of possible small role 
tables. 

Target tables.-We construct a guide to the outcomes of joint reduc- 

tions and other homomorphisms for role tables with two generators. I t  

takes the form of an annotated set of eight tables, each with just three 

words. Two of the tables are typical in cases with positive and negative 

affect, three occur where neither generator is of negative quality, and 

three may result from data sets of either sort. 

Joint reductions to tables with no distinct compound words mean there 

is nothing, or very little, in common between the original role tables. This 

is so if the tables are 

1 1 1 2 

1 1, 2 2, or the equivalent. 

(Hereafter we suppress the row and column headings for these multiplica- 

tion tables in the symbolic form introduced by figure 3,  since these will 

always be the integers in ascending order.) The first table above, for 

example, means that all compounds had to be equated to a generator in 

order to find a common, and nil, role table. 

There is a very strong structure in common, however, if the joint reduc- 

tion is to the table shown in figure 5a: viz., 

This is the table for classical balance theory, with 1 the positive generator, 

which is transitive, and 2 the generator for negative affect. I t  has not 

emerged from any of the joint or other reductions applied to our collection 

of empirical cases; in particular, there is rarely any basis for equating 

2*2 with 1 (enemies' enemies with friends). 

There are two other significant possibilities for tables of two words 

alone: 

1 1 2
First Letter = and Last Letter = 

2 2 '  1 2 

By the First Letter table, any compound word of whatever length is 

equated to the generator which occurs first in the word (that  is, leftmost). 

A substantive interpretation is that any type of indirect bond takes on 

the quality of the direct tie to the first intermediary. The Last Letter 

table is, formally, simply the dual in which the last generator determines 

the quality of each type of compound. The First Letter table, or a refine- 
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ment of it, is often found when one generator is for an objective, though 

positive, sort of tie (e.g., similar policy), whereas the other denotes posi- 

tive affect: thus one's tie to any kind of contact of one's business associate 

takes on the color of a business association, whereas one views in affective 

terms any kind of contact through a friend. This kind of ego-oriented 

interpretation does not extend to the Last Letter table, where the com-

pound tie is colored by the kind of tie from the last middleman in the 

compound. 

When not all compounds are equated to one or another of the gen- 

erators, a broader spectrum of role interlock can be specified through 

tables with just one distinct compound. In  particular, significant refine- 

ments of the two useful smaller tables (First Letter and Last Letter) 

may be distinguished. The resulting tables will be assigned labels TI-Ts 

for reference in the section on results. At least one generator, for con-

venience the first, will always be assumed transitive: 1*1= I. 

Two of these tables, found for positive and negative affect cases, have 

already been discussed and contrasted a t  some length: 

1 2 3  1 3 3  

T , = 3  3 3 ,  and T z = 2  3 3 .  

3 3 3  3 3 3 

In  all eight tables, the distinct compound, labeled 3, acts as the garbage 

word discussed earlier: entries of 3 in a table do not convey positive 

information but permit and contrast with equations to the generators. 

The natural contrast to both T I  and T2 is 

in which the two generators commute. In  classical balance the generators 

also commute, but T3does not have the classical balance table above as a 

homomorphic reduction, because 2*2 in this table cannot be mapped into 

1without inducing total degeneracy. 

James A. Davis ( 1968) has developed an alternative to classical balance 

in which, in our terms, he rejects the equation of 2*2 with 1but does not 

specify a unique alternative. The population must be split into a t  least 

three blocks, and with three blocks the extreme form of the Davis theory, 

expressed as a blockmodel, is 

1 0 0  0 1 1  

L = O  1 0 ,  and A = 1  0 1 .  

0 0 1  1 1 0  

The role table of this extreme Davis blockmodel is precisely T3.We shall 
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see that T3 also does not emerge from our empirical reductions, so that 

commutativity of the generators is suspect, even without the mapping of 
2'"2 into 1.1" 

When neither generator represents negative affect, a role table showing 

no interlock between the generators, but only transitivity for each, is T8, 

shown below with four other possibilities: 

The other four are variants of the First Letter table (T5 and T6) or the 

Last Letter table (T4 and T i ) :  T4 is like T I  but with an additional im- 

portant equation, namely transitivity of 2, which changes the significance 

of the existing equation; T4 will be found to result also from cases with 

negative generators, where the negative bonds are so directed toward one 

block as to make the negative image transitive (compare fig. 16 below 

for Newcomb year 2).20 

I t  is not necessary to turn to tables with two or more distinct com-

pound words in order to distinguish the main kinds of role interlock found 

in our cases. There are other tables on three words than the eight above, 

but none have been found useful. Associativity, a requirement imposed 

lnLike classical balance, Davis balance assumes, in our terms, that positive and 
negative images have no overlap; there is no ambiguity. Other blockmodels con-
sistent with Davis's theory yield the multiplication table 

but so does the blockmodel 

and 

the generators of which do overlap. This table, in contrast to T,, has the classical 

balance table as a reduction, because the table equates 2*2*2 with 2 (semitransitiv-
ity) although not 2*2 with I .  Thus some cases of Davis's theory are consistent with 
the multiplication table of classical balance, but so are other blockmodels exhibiting 
ambiguity. 

20As emphasized earlier, many blockmodels can yield any given role table. Each of 
these eight tables of three words can be produced by some blockmodel on just two 
blocks: in the notation of fig. 2 in Part I, such pairs of generators are T1(V, F )  ; 

T,(V, EE); T,(P, F ) ;  T,(V, T ) ;  T,(V, G ) ;  T,(G, E l ;  Ti(H, E ) ;  and Ts(V, W ) .  
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by the nature of matrix multiplication, precludes many possibilities. For 

example, T gwith the transitivity entry replaced by 1*1=3 is impossible: 

commutativity of generators is possible only if in addition a t  least one is 

transitive (or if one is semitransitive; see n. 19).  

METHODS 

Our models for role structure are semigroups (Clifford and Preston 1961 ; 
Kurosh 1965). 

Definition 1.An abstract semigroup is an ordered pair (S,") where S 

is a set and ':' is a +:) binary operation *:S X S -+ S which satisfies asso-

ciativity, that is, for which 

a*(b*c) = (a*b)*c 

for all a,b,c E S. 

As long as S is finite, the entire structure of the semigroup can be sum- 

marized through the multiplication table of the operation *. We have 

already seen examples (e.g., fig. I ) . 
We make use only of concretely presented semigroups in which gen-

erators have been identified. 

Definition 2 .  A semigroup with generators is a triple (S,  G, '$) where 

( S , *) is a semigroup, G S ,  and any element a of S may be expressed 
as a product of elements in G: 

a =gl$:g2~. . . *gk, gi E G. 

Thus in the examples of figure 1, G = {K,B) ,  while in figure 2, 

G = {E,D, L, A, I, N, K, B ) ,  and in figure 6a, G = {L, A),  etc. As those 

examples made clear, the selection of generators is a substantive matter. 

A useful alternative way to characterize the structure of a semigroup 

with generators proceeds through the intermediate concept of a jree 
semigroup : 

Definition 3. The free semigroup generated by a set G consists of all 

possible finite strings of elements gi E G with multiplication * given by 

the operation of concatenating strings. 

Thus if W1 =ALA, and W2 =AL2 in the free semigroup on G = 
{L, A), W1*W2 is ALAX2, the result of concatenating the two sequences. 

Designate the free semigroup on G by FS(G).  Note that FS(G) will 

always be infinite even though G contains only one letter. In category 

theory (Mitchell 1965), FS(G) may also be characterized as a universal 

object in the relevant semigroup category. 

Then if (S, G, is any semigroup with generators, the structure of 

(S, G, *) is uniquely characterized by the partition P of FS (G) obtained 

by putting two words in FS(G) in the same equivalence class of the parti- 

tion if and only if they evaluate to the same element of S in the multiplica- 

tion table of (S, G, ::). 
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Note that the partition P will have a finite number of cells as long as S 
is finite, but certain cells must then have an infinite number of members 

(pigeonhole principle). This means that although some words may have 

unique expressions as a product of generators, a t  least one must have an 

infinite number of alternative expressions. Accordingly, the letter form 

of the multiplication table is in part arbitrary. This is a basis for prefer- 

ring the numerical form of tables (e.g., fig. 3),  even though it  is more 

abstract and less immediately interpretable. 

Our semigroups result from computations with matrices. 

Definition 4. A Boolean matrix semigroup is a semigroup generated by 

one or more specified binary matrices under Boolean matrix multiplication. 

In  all our examples, the generator matrices are blockmodel images 

rather than matrices representing raw network data; this is a basic dif- 

ference between the point of departure of the present paper and the earlier 

approaches of White ( 1969) and Lorrain and White (197 1).  

I t  is important to distinguish between the matrix representation of a 

particular role structure obtained from Definition 4 and the purely 

algebraic interpretation of the same structure under Definition 2. The 

matrix representation obviously subsumes all information contained in 

the abstract multiplication table. I t  also contains additional information 

associated with the matrices representing particular compound words. 

Both levels should be clearly kept in view at  all times, since certain inter- 

pretations consistent with the algebraic level will be inconsistent with the 

matrix level, as was discussed in the section on theory. 

After some brief comments on the mathematical and statistical prop- 

erties of Boolean matrix semigroups, we will move to the concept of a 
homomorphism and its application to measuring distance between semi-

groups. 

Boolean Matrix Semigroups 

Computation of all distinct product words generated from a particular 

blockmodel, and thereby the multiplication table of the associated role 

structure, was speeded by use of a computer program named T A B W D L . ~ ~  

Normally, all distinct compounds were found using only words of three or 

fewer letters, and never of more than five letters. The semigroups obtained 

are In cases involving three to five blocks, most sizes are in the 

' ~TABWDL,  in the APL language, is available upon request. I t  was adapted by the 
second author from an annotated package of APL programs created by Mr .  G. H. 
Heil (see Heil and White 1976) to analyze homomorphisms of blockmodel semi-
groups. 

'2 Working in the context of the old approach using sociometric matrices as gene-
rators (Lorrain and White 1971), we performed a Monte Carlo investigation of 
semigroup sizes. Taking populations of sizes about 10, two random square matrices 
of fixed dimension were formed on each trial, using a fixed probability p for a 1 in 



American Journal of Sociology 

range 3-15, with a mild tendency for more blocks to generate larger 

semigroups (see the several series of semigroup sizes in the second 

columns of figs. 15-18). As is also reasonable, semigroups on three gen- 

erators are somewhat larger than those on two, but sizes are still in the 

indicated range. We have seen one example (fig. 3)  in which the semi- 

group of an eight-generator model gives only 12 words; various alterna- 

tive cutoff densities for the same generators give semigroups of sizes up to 

25. 

Inclusion orderings.-Given any Boolean matrix semigroup, the asso-

ciated inclusion ordering is the partial ordering obtained from the natural 

ordering of matrices: 

MI  <M ZW MI(;, j) <M2(i, j )  for all (i, j ) .  

This suggests the following class of structures: 

Definition 5 .  A partially ordered (p.0.) semigroup with generators is a 

quadruple (S, G, d', <)where (S, G, *) is a semigroup with generators 

and < is a partial ordering of S. 
This is a somewhat more general characterization than usually adopted 

by algebraists, where monotonicity of * with respect to < is assumed 

(thus a ,(6 j c*'a < cd'b and a*c < b*c for all a,b,c E S [see Fuchs 
1963; Vinogradov 19691 ) . 

I t  is obvious that (S, G, *, <) contains new information that cannot 

be obtained from (S,  G, <:). In  the cases we consider, i t  is not usually 

possible to place additional a priori restrictions on the ordering, such as re- 

quiring i t  to be a lattice or an upper semilattice (Friedell 1967). Notice, 

however, that a U pattern will always be a maximum element and a Z 

pattern a minimum element (cf. fig. I lc,  where both elements appear). 

Because they tend to be more densely filled as matrices, longer words 

usually occupy higher positions in a semigroup p.0.; generators are often 

(though not necessarily) minimal elements. 

Homomorphisms 

Starting from Definition 2, one may define a homomorphism as follows: 

Definition 6. If (S1, GI, 4:), (Sz, Gz, o)  are semigroups with specified 

generator sets G1 and Gz, a homomorphism +:ST+ Sz is a mapping 

which: ( i )  preserves semigroup operations: +(adCb)=+ (a ) o+(b) ; 
(ii) maps generators to generators: +(gl)  =g2 E Gz for all g, E GI. 

each entry. The results indicated that semigroups would be quite small for p under 
about .08 and above about .25. In the .08-.25 range, sizes were larger and it was 
difficult to compute the mean size since limited storage capacity compelled truncation 
of semigroup sizes at  N = 65 elements. (Interestingly, many sociometric relations 
have densities in exactly the difficult .08-.25 range.) I t  may be possible to obtain a t  
least asymptotic estimates and bounds on semigroup sizes by adapting the prob-
abilistic methods of the Hungarian school of combinatorics. We are indebted to Paul 
Erdos for discussion of technical aspects of this problem. 
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Our attention is confined to homomorphisms having two additional 
properties as follows: 

Definition 7. A homomorphism + is a homomorphic reduction of 

(S1,GI, *) if 4 maps S1onto S2, that is, for any c E S2one has +(a)  = c 

for some a E S1. 
As already explained, a homomorphic reduction is an algebraic concept 

of aggregation, and (S2, G2, o) is a coarser version of the structure 

(Sl, Gl,  *). 
Definition 8.  A homomorphism 4 preserves generators if 4 maps GI 

onto G2 in a 1-1 way, that is, 4 sets up a 1-1 correspondence between 

generators. 

Definition 8 clearly implies that (S2, G2, 0)  is also a homomorphic 

reduction of (S1, GI,  *), since every word in S2 can be expressed as a 

product of generators in G2. In earlier discussion of homomorphisms, we 

assumed Definition 8 implicitly, because the identification of a generator 

from one empirical case with one of the generators from another case is 

an important substantive issue. 

The Joint Reduction of Two Semigroups 

Given any semigroup with generators, we have already noted that i t  is 

possible to interpret i t  as a partition of FS(G).  If two semigroups 

(S1, G,  *:) and (S2, G, 0)  have the same generator set (or identified 

generator sets), each may therefore be interpreted as a partition of the 

same free semigroup. Since partitions form a natural lattice (Birkhoff 

1967)) this suggests that the set of all semigroups generated by G may 

also be endowed with a lattice ordering. This is in fact correct and is the 

formal basis of our approach to comparing role structures. 

Without loss of generality, we will now assume that all semigroups to 

be compared are formed from a common generator set G. I n  this case, 

by a generator-preserving (GP)  homomorphism, we will mean a homo-

morphism which is the identity mapping on generators, that is, $(g) = g 

for all g E G. 

In  order to define the semigroup which we call the joint reduction of 

(ST ,  G, $') and (S2, G, 0 ) ,  it is necessary to characterize the natural semi- 

group lattice in more exact terms. 

Definition 9. Consider the family of all finite semigroups (S, G, 4:) on 

the fixed generator set G, and define the relation @where 

(S1, G, ') @ (S2, G, o )  (S1, G, *) is a GP homomorphic 

reduction of (S2, G, 0 ) .  

I t  is immediately obvious that @is  a partial ordering. The statement 

that @ also forms a lattice is embodied in the following proposition: 

Proposition: @is a lattice ordering, that is, for any two semigroups 
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(S1, G, *) and (Sz, G, o ) ,  ( i)  there is a semigroup (Sr,ue, G, x) which 

is a least upper bound for (S1, G, *) and (S2, G, 0) in the ordering, that 

is, for which (1)  there are GP homomorphic reductions C#I and I) 

and (2) if one is given GP reductions f and g from some third semigroup 

down onto (S1, G, :':) and (Sz, G, o ) ,  

i t  is possible to construct the indicated GP reduction h. (ii) There is a 

semigroup (SGLB, G, X )  which is a greatest lower bound for (S1, G, :$) and 

(S,, G, o )  : that is, for which (1)  there are GP reductions 0 and h 

and (2) if f: 2 are also GP reductions 

the indicated GP reduction j exists. 

Proof: See Birkhoff ( 1 9 6 7 ) ,  where the same statement is established 

for an arbitrary abstract algebra, of which semigroups are one special 

case. 
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Given this proposition, the definition of the joint reduction immediately 

follows: 

Definition 10. The joint reduction of two semigroups (S1,G, *) and 

(SZ, G,  0)  is the semigroup (SGLn, G,  x) whose existence and uniqueness 

follows immediately from the above proposition. 

I n  looser but more intuitive terms, i t  is possible to characterize the 

joint reduction as the result of imposing the union of all equations implied 

by each of the multiplication tables of (S,, G, *) and (Sz, G, 0 ) .  Viewed 

as a partition of FS(G),  the GLB semigroup is hence the union of the 

partitions corresponding to (S1,G, '1') and (Sz, G, o)  (Birkhoff 1967). 

This makes clear that the joint reduction is generally a coarser structure 

than either of the original semigroups, since in it more words are forced 

to be equal. Obviously, the size of the joint reduction is bounded above 

by the sizes of S, and SB. Note that a fixed 1-1 mapping of generators 

in S1 to those in Sz is implied throughout the construction: if a di jerent  
matching is used, a n  entirely di jerent  joint reduction will probably result. 

A special case exists when one of (S1, G, *) and (S2, G, o )  is already a 

GP reduction of the other. Without loss of generality, assume that (S1, G, *) 

is a GP reduction of (S2,  G, 0 ) .  Then the joint reduction is itself 

(S,, G, *), as may be verified formally from the above proposition. This 

makes sense: if two semigroups are already homomorphically comparable, 

the result of imposing the equations of both should lead identically to 

the coarser structure. 

Observe that if (S,, G, *) and (Sz, G,  o)  are each Boolean matrix semi- 

groups, there is no implication that the joint reduction will also possess a 

naturally induced matrix representation. The joint reduction is therefore a 

purely algebraic measure of the consistency of two role structures and 

has no necessary correlates a t  the matrix level. 

Actual computation of a joint reduction may be complicated. I t  is 

effected by a computer program, JNTHOM, which contains a separate sub- 

program for effecting arbitrary homomorphisms.23 The resulting inter-

section table may itself be large and complex, and i t  may appear much 

closer to one than to the other of the original tables. For both reasons an 

objective measure of distance between the original tables is desirable. 

Distance measure.-Using the joint reduction, we seek a numerical 

measure of distance between two role structures. We require the respective 

generator sets to be in one-to-one correspondence. From data already 

given, it is apparent that the raw size of a role structure is not a stable 

measure across closely related blockmodels. Accordingly, we are led to 

23 The JNTHOM program is available upon request; it is written by the second author 
in the APL language. We are indebted to Dr. Fran~ois Lorrain for supplying an alter- 
native program, MASTERGLB, based on an independent approach, together with an 
elegant proof of its validity. 
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reject the naive alternative of defining similarity (and thus distance) 

through the size of the joint reduction. 

Instead, return to figure 8 and consider the dist~ibutions of words in 

S1 and Szwhich are implied by the joint reduction. Specifically, consider 

the partitions of S1 and Sz, respectively, that are obtained from the in- 

verses of the reductions (b and +: 

a s6 (in S1) <L_j + ( a )  = (b(b) 

c =d (in S.) $(c) = $(d) .  

We are accordingly led to equate words in S1 (respectively, in Sz) which 

map similarly under (b (respectively, +). This gives rise to a partition 

of S1and a partition of Sz: it makes sense to treat the coarseness of these 

partitions as a measure of the extent of aggregation in passing from S1 

or Sz to the joint reduction, in other words, as a measure of distance to 

the joint reduction (Boorman 1970: Boorman and Arabie 1972). 

The coarseness of a partition is a standard concept familiar from the 

entropy measure of information theory. For present purposes, we adopt a 

somewhat different definition, which has been shown to have more de-

sirable numerical properties than an entropy measure when used in con- 
junction with multidimensional scaling (Arabie and Boorman 1973). This 

measure is: 

where 

P = (61, CZ, . . . ,cm) is a partition of a finite set S into 
nonempty and disjoint subsets ci; 

/ ci I = size of ci: 

N = size of S. 

The measure h ( P )  assumes a maximum value of 1 if P is the "lumper" 

partition in which S is not divided a t  all: h (P)  assumes a minimum value 

of 0 if P is the "splitter" partition which places each element of S in a 

separate cell. This last possibility will occur when one of S1,Sz is itself 

the joint reduction, so that one of the mappings (b, + is the identity map- 

ping. 

Applying this measure to the present problem, define P$ and P* to be 

the partitions of S1 and Sz, respectively, which are induced by the joint 

reduction (see fig. 8 for an example). Define h (P@)  (respectively, h ip*] )  

to be the distance between (S1, G,  *) (respectively, [SZ, G, 01) and the 

common joint reduction. Finally, therefore, one has: 
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Definition 11. The distance between two semigroups (S1, G, *) and 

(S2, G, o) is 6([S1, G, *I ,  [S2, G, 01) = h(P6) + h(P*),  where and 

P* are determined by the joint reduction. 

The measure 6 will be our basic tool of numerical comparison. I ts  range 

is from 0 to 2. The maximum value is attained when all entries in the 

joint reduction table are the same; that is, maximum degeneracy. For the 

case shown in figure 8, h(Pd)  =0.200 and h(P*) =0.167, whence 6 = 
0.367. This indicates that the semigroups are quite close, even though the 

multiplication tables are superficially quite different. 

From a formal standpoint, the measure 6 has two relevant formal prop- 

erties: 

I .  I t  makes full use of the structure of both (S1, G, *) and (S2, G, o), 

since it depends on P6 and P* and these partitions depend on the reduc- 

tions 4 and $, respectively. 

2 .  I t  is a semimetric, that is, it has the following two properties: 

i )  ~ ( [ S I , G , * ] ,  [S2 ,G,o] )  2 0 ,  and=Oif  andonlyif  

[Sl, G, '" , [SZ, G, 01 coincide (i.e., are isomorphic). 

ii) ~ ( [ S I , G , ~ ' ] , [ S Z , G , O ] ) =S ( [ S z , G , o l ,  [S1,G,*]).  

The measure 6 is not a metric, that is, it is possible to construct examples 

violating the triangle inequality so that 

I t  would be possible to eliminate this apparent difficulty directly by an 

appropriate transformation of 6. Since, however, we are going to use 6 ex-

clusively in conjunction with scaling, we will use the uncorrected measure 

as input and allow the scaling itself to determine an appropriate trans- 

formation through the Shepard diagram. 

Multidimensional scaling.-When a large number of blockmodel role 

structures are to be compared with one another, it would be hopeless to 

try to discuss explicitly all the possible joint reductions. Even the nu-

merical distances among all possible pairs may be quite difficult to assess 

as a set (see fig. 12 below for an example). In  such situations, a natural 

strategy is to scale the half-matrix of distances using some form of multi- 

dimensional scaling (see Shepard 1962a, 19626; Kruskal 1964; Shepard 

1974). 

In the present paper, all scaling applications use the MDSCAL-5algorithm 

with the Euclidian metric ( r = 2 in the scaling solution), stress formula 1 

(Kruskal and Carroll 1969) and the primary approach to ties (Kruskal 

1964). Scalings were obtained from a substantial number of alternative 
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random initial configurations, and the solution giving the best (i.e., lowest) 

stress was chosen for presentation. I t  was found that many of the starting 

configurations tried gave rise to clearly nonoptimal local minima, thus 

supporting the earlier findings of Arabie (1973) on other data sets. 

RESULTS 

The results to be considered fall naturally into two parts. First, surveys 

of distances within large sets of role tables, including variants of given 

cases, are used to assess the robustness of our approach and to locate 

different case studies in relation to one another. Second, role structures 

for particular cases are examined in detail and compared via their joint 

reductions. As a preliminary, we lay out a consistent notation for identify- 

ing role table generators for the numerous cases, over time and with 

variant codings. 

Nomenclature 

All of the case studies in Part  I involve multiple networks; some (Samp-
son, Newcomb) involve data over time; each can be described by a 

number of blockmodels, some involving different numbers of blocks. I n  

addition, while Part I does not formalize it,  there is also a concept of 

cutofl density for coding zeroblocks: in many cases (as exemplified by 

the Similar Policy relation in the Firth-Sterling data) a given block may 

contain only one or two ties, so that measurement error in the data 

suggests coding as a zeroblock rather than as a bond. All of these factors 

contribute to a proliferation of blockmodels, each possessing an associated 

semigroup. A system of notation is developed in table 1. 

We draw a strict distinction between the determination of a block-

model partition on the one hand and the coding of bonds on the other. 

All block~nodel partitions used in this paper are shown i n  panel IV of 

table I ;  how they  are determined is considered t o  be a task for the meth- 
ods of Part I and will not be further discussed here (see also Breiger, 

Boorman, and Arabie 1975; Schwartz 1977). Accordingly, the notation 

merely reminds the reader of the number of blocks and is directed toward 

the coding of bonds (see panel I1 of table 1 for an example). 

For given density matrices one may define a one-parameter (piecewise 

constant) family of semigroups S ( a ) ,  a > 0, where a is the density cutoff. 

If a =0 a strict zeroblock criterion is being employed. As indicated by 

the basic blockmodel phenomenology of Part  I, we are interested only 

in a values that are small compared to the average density. (As a in-

creases further, more and more blocks are coded as zeroblocks until 
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I. The general format is: 
(case study initials) (time period)-(number of blocks)-X(i) Y ( j )  > a: where cutoff 

density a: is being imposed on both generators X and Y. taking to^ i and to^ i choices, 
respectively, weighted linearly (see example). The first'letter ?n the name ;f that  type 
of tie is X or Y. The specific partition of persons into blocks for each case study is 
reported in IV below. 

Conventions : 
1. If a strict zeroblock criterion is being employed, a =O and the final inequality 

is suppressed. Thus SM(4)-5-1(2)N(2) >0 becomes shortened to SM(4)-5-1(2)N(2). 
2. When the data are observer reported (e.g., in the Bank Wiring group), there is 

no ordering of choices and ties are not  weighted in computing the density. Then i and 
j are not required: thus BW-3-LA identifies Like and Antagonism in the Bank Wiring 
group, using a three-block model. 

3. If the data are not longitudinal, time period is suppressed. 
4. Each density is computed relative to the number of possible entries in a block, 

excluding the diagonal if the block is a diasonal block. Thus the density in an Y X r' 
diagonal block is 

2 w ( i , j ) / ~ ( ~- 1) 

entries where w(i,j) is the weight of the choice in the (i,j)th entry within the block. 
The density of an r X c off-diagonal block is 

8 w(i,j)/r . c. 

11. Example: SM(4)-5-E(3)D(3) > 1 
This identifies the matrix semigrouy; formed from the Sampson data, time 4, five- 

block model (see IV below), using cutoff density a: = .1 on the weighted top three 
choices for the Esteem and Disesteem relations (weight 3 for top choice, etc.). The 
wcighted densities are ( to three figures) : 

0.167 0.833 0.111 0 
0.667 1.17 0 0 
0.222 0.417 1.67 0.083 !] (Esteem) 

1.5 0.917 0 
0.063 0.5 0.125 1.17 

[ i  
0 0 0 

0.083 0.75 0.375 0.688 
0.25 
1.12 0.333 0.25 1.060 0 

0.083 1.31 0.25 0 0.083 

Cutoff a = .1 leads to: 

1 1 1 0 0  0 0 0 0 1  
1 1 0 0 0  0 0 1 1 1  

E = [ l l l o o ]0 0 1 1 0  D = [ O 1 l l l ]0 1 0 0 1  

1 0 1 1 1  0 1 1 0 0  

The semigroup is of size 10. 

111.  Case study names 
BW: Bank Wiring Room 
SM: Sampson monastery ("Praise" in fig. 4 of Part I has been changed to  "Kudos" 

to avoid "P" as the initial letter). 
NF1: Newcomb iraternity, year 1 
NF2: Newcomb fraternity, year 2 
FS: Firth-Sterling Corporation, management 
GS: Griffith scientists (here C stands for mutual contact ties, and A for asym- 

metric unawareness. See Part I) .  
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TABLE 1 (Continued) 

IV.  Standard blockmodel b art it ions  
(W1 W3 W4 ~1 '11  W2 W5 I3)(W7 W8 W9 S4 W6 S2)  
Numbering: Follows Homans (1950) ; see also Part I.  
(W3 W4 S1 W8 W9) (W1 I1  W7 S4) (W2 W5 S2 W6 13)  
(W4 s 1  W3) (W1 11) ( ~ 2   W5 13) (W8 W9) (W7 S4) (W6 S2) 
(10 5 9 6 4 11 8) (12 1 2 14 15 7 16) (13 3 17 18) 
Numbering: Follows Sampson (1969) ; see also Part I .  
(10 5 9) (6 4 11 8) (12 1 2) (14 15 7 16) (13 3 17 18) 
(1  3 4 6 12) (2 11 13) (5 9 10 14 15) (7 8 16 17) 
~ u m b e r i n ~ : ' ~ o l l o w ~~ o r d l i e(1958) and ~ e w c o m b  (1961). 
( 1 3 9 1 7 1 8 6 4 ) ( 7 1 1 1 2 2 ) ( 1 4 3 1 0 1 6 5 1 5 )  
Numbering: Follows Nordlie (1958) and Newcomb (1961) ; see also Part I. 
(11 9 13) (2 4 6 7 8 1 15) (5  10 12 14 3 16) 
iVumbering: Follows White (1961) ; see also Part I .  

GS: (9 26 23 4 1) (12 7 6 2 24 19) (14 28 11 10 18 2 2  15) (16 20 17 5 8 13 2 1  
2 7  25 3 )  

NuGbkdng: Follows Part I ;  see also Breiger 1976. 

eventually, when ar exceeds the maximum density, all generators become 

trivial Z patterns.) For example, the average density is .375 in the three- 

block model for the final week (week 15) of the Newcomb year 2 data, 

with top three choices weighted. The density matrices for the generators 
arez4 

Here there is a clear dichotomy between low density (<0.1) and high 

density (>0.3 5)  blocks, indicating a preferred cutoff which separates 

these two ranges. More typical, however, is the Sampson ED case illus- 

trated in table 1. Here the density sequence begins (0, ,063, .083, . I l l ,  

.125, .167, .222, .250, . . .) and there is no clearly preferred cutoff. In 

such cases, we have accordingly explored a variety of alternative cutoffs, 

with standard a values being .I ,  .15, and .2. 

A Global Geometry for Types of Role Structures 

Results for two sets of role structures lead to an interpretation of the 

relations among the main case studies. 

Table 2 identifies the first set of role structures, using the nomenclature 

of table 1. This first sample is intended as a potpourri from all our main 

24 Compare with the bottom panel of fig. 7 in Part I ,  where unweighted densities of 
choices are used taking only the top two and bottom three choices for each man. 
Generally, a cutoff of a =0.1 with weighted top three choices yields the same or 
nearly the same generators as for the strict zeroblock cutoff on the top two choices 
which was emphasized in Part I. 
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TABLE 2 

IDENTIFICATIONS O F  ROLETABLES 12 ANDIN FIGURES 13 

cases. All these role structures are based on two generators, which with 

two exceptions have the quality of a positive versus negative affect pair, 

evidenced both by face definitions and by their inclusion orders. The 

test-case exceptions are #14, SM(4)-5-E(2)1(2) ,  with Esteem and Influ- 

ence as the types of ties, and #19, GS-4-CA, based on Griffith's scientists 

(see table 1,111). 

Figure 12 now shows the pairwise distances. Even without scaling, i t  is 

already apparent that Sampson and the two Newcomb years are quite 

close to one another, while the Bank Wiring Room cases and the Firth- 

Sterling case are outliers. Note also that the values of 6 are quite unevenly 

spread over the [O, 2 J range: there are 35 entries where 6 = 2, and very 

few with 6 < 0.1. 

Using the figure 12 matrix as input, one obtains the two-dimensional 

nonmetric scaling shown in figure 13. The stress value S = 12.8% is well 
within the acceptable range for two dimensions and 19 points (Arabie and 

Boorman 1973). More important, i t  is clear that the scaling is coherently 

discriminating the main data cases, which are shown delineated by clusters 

superimposed on the scaling solution. The clusters shown may be further 

supported by an independent hierarchical clustering of the figure 12 lower 

halfmatrix. Using the H I C L U ~  algorithms (diameter methods and con-

nectedness method) described by Johnson (1967), one obtains clusters 

which discriminate Newcomb year 2, Firth-Sterling, the Bank Wiring 

Room, and (#4, #6) of Newcomb year 1. This is in perfect agreement 

with the clustering by data cases, with the main exception that #5 ( a  
Newcomb year 2 case) is located with the Sampson cluster. 

Note that the Sampson LA5 case (# I0  in fig. 13) is an outlier to the 

main Sampson cluster, as is to be expected when one compares the LA 
blockmodel images with other Sampson images. I t  is' possible that this 

outlying position may be a reflection of the unwillingness of Sampson's 

monks to reveal their preferences on social relationships as blatant as 

Liking Most and Liking Least. Note that the E15 case (#I4  in fig. 13) 
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2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

X 

. 0 2  X  

.05  . 0 3  X  

1 . 4 . 9 8 . 7 5  X  

1.5 1 . 2  . 69  . 3 9  X  

1.2  .68  .76  . 3 0  .48  X  

2 .0  2 . 0  2 .0  2 .0  . 76  2 .0  X  

2.0  2 .0  2 . 0  2 .0  .76  2 .0  . 67  X  

2 .0  2 .0  2.0 2.0 . 9 3  2 .0  . 17  . 1 7  X  

1 . 6  1 . 3  . 6 8  . 3 3  .48  . 6 2  2 .0  2 . 0  2.0 X  

1.6 1 .3  . 9 3  . 6 1  . 2 5  . 6 5  .35  . 2 7  . 2 0  .49  X  

1 .7  1 .4  .78  . 4 2  .29  .68  . 3 8  1 . 0  . 5 5  .54  . 1 0  X  

1.5  1 .2  . 9 4  .78  .48  .48  . 2 4  . 2 4  . 1 4  .75  .09  . 2 9  X  

1.6 1 . 3  1.1 . 88  . 4 2  .58  . 8 3  . 8 3  1 . 0  .88  .66  . 8 5  .59  X  

1.6 1 . 3  .88  . 3 3  . 2 0  . 6 2  .98  . 2 9  .46  .44  .06  .ll .18  . 7 7  X  

1.6 1. 3 .83  . 2 8  . 2 1  .58  . 2 8  . 8 3  . 4 4  .39  .27  . 2 8  . 2 8  .56  .33  X  

1 . 4  1 . 4  1 . 5  1 . 2  . 2 9  . 9 3  . 2 0  . 9 3  . 3 7  1 .4  . 18  . 2 0  . 29  . 6 6  . 3 7  . 2 9  x  
2 . 0  2 .0  2.0 2 . 0  2.0 2 . 0  2 . 0  2 . 0  2 .0  2 .0  2.0 2 . 0  2.0 1 . 3  2.0 2 .0  2 .0  X  

1 .5  1 .2  . 9 4  .78  . 9 5  . 4 8  2 . 0  . 7 6  . 7 6  . 7 5  . 3 3  . 8 3  . 1 9  1.1 . 3 0  1.1 1 .3  . 9 6  X  

FIG.12.-Lower halfmatrix of distances between role tables identified in table 2 
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L((Firth-Sterling 
management) 

(Bank Wiring 
Room) 

(Griffith) 

.---lb,  

y e a r  I )  

' (Sampson monastery) 

(Newcomb fraternity,  y e a r  2) 

FIG.13.-Multidimensional scaling of 19 role tables from different data sets, identi- 
fied in table 2. MDSCAL-5algorithm applied to lower halfmatrix of dissimilarities (fig. 

12) based on JNTHOM algorithm. Two dimensions, Euclidean metric, stress (formula 
1) = 12.8% (best of 20 random initial configurations; for theoretical background, see 
Arabie [1973]). 

is the other Sampson outlier, as is consistent with the fact that E and I 

are both naturally interpreted as coding positive sentiment. Note that EI 

is situated on a ray leading from the center of the plot and directed 

toward the Firth-Sterling case. The three-dimensional solution (not shown) 

places EI somewhat farther from the main cluster, and correspondingly 

closer to Firth-Sterling. 

Finally, note that the Griffith Most Contact and Asymmetric Unaware- 

ness semigroup is also placed in the same quadrant as EI5 and Firth- 

Sterling. This is internal grounds for arguing that this Griffith case is not 

picking up any true negative sentiment relation. 

Figure 14 shows a second population of 20 role structures identified 

in table 3, now consisting entirely of positive versus negative generator 

pairs. The scaling shown in figure 14 is obtained by applying the MDSCAL-5 

algorithm in the same manner as figure 13. This second population is 

constituted to focus more closely on alternate codings of the Sampson 

monastery and the two Newcomb years. In  particular, the ED5 images 
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TABLE 3 

Computed by adding the weighted block densities of the four positive and four negative images, 
and using a cutoff density corresponding to .1 on individual generator pairs. 

are now introduced with five distinct cutoffs ( a  =0, . I ,  .2, .5, 1 ) ;  see the 

example in table 1 for the density matrices, from which the generator 

images for these cutoffs may be coded. Remarkably, the ED5 semigroups 

remain tightly clustered in the center of figure 14 until or = 1, when the 

corresponding point (#6) moves out to the northeast. By the present 
measure of distance, i t  therefore appears that the structure of the semi- 
groups is quite insensitive to varying cutoffs; the insensitivity is certainly 

not apparent from simply considering the images. 

Because output of the MDSCAL algorithm has no preferred orientation, 

the scaling solution in figure 14 has been rotated to approximately the 

same orientation as figure 13 (using the CONGRU algorithm of D. C. 

Olivier). The agreement between the two figures is close, with each of 

the four principal case studies occupying similar relative positions in each 

solution. The clusters shown in figure 14 also can be largely replicated by a 

HICLUS analysis applied to the lower halfmatrix input (not shown). Once 

again, the chief difficulty consists in discriminating some of the Newcomb 

year 1 cases from the Sampson cases, as is also apparent from the scaling. 

Note also that cases #I1  and #17 give identical blockmodels, though 

based on different case studies. This is of course reflected in the scaling, 

where #I1 and #17 correspond to the same point in the solution. 

Outcasts and leading cvowds.-Return to the figure 13 scaling. There 

is a clear linear arrangement of the four main case studies: Bank Wiring 

Room ::Newcomb year 1 ::Sampson ::Newcomb year 2, and this order- 

ing is replicated consistently in figure 14 as well. I t  is in fact almost 

possible to separate each of these four principal cases in the linear Min- 

kowski sense, that is, by means of a separating hyperplane ( a  line in two 

dimensions) ; this is not possible only because of certain extreme cases, 

such as #6 in figure 14 (ED5 with the aberrant cutoff value a = 1). 

I t  is particularly interesting that the Sampson cluster clearly separates 
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(20)

2  
(BankWiring Room) 

(Newcomb fra terni ty ,  year 1) 

(Neweornb f ra terni ty ,  year 2) 

FIG.14.-Closer view of selected Sampson and Newcomb cases, identified in table 3. 
Cases 11 and 17 generate the same role table. Case 6 was generated using cutoff = 1, 
far higher than the values used elsewhere, and one would accordingly expect aberrant 
results. Multidimensional scaling in two dimensions, Euclidean metric, stress (formula 
1) = 13.77'0; rotated to approximately the same orientation as fig. 13. 

the two Newcomb years. Since Part I does not describe the Newcomb 

data for his first experimental fraternity (year I ) ,  i t  is worth briefly intro- 

ducing a blockmodel. As in year 2, the system reaches approximate 

equilibrium after the first few weeks (see also figs. 16 and 17  below). 

A basic blockmodel description can therefore be based on any of the later 

weeks with little change in result; we chose week 13. With the four blocks 

produced by CONCOR, the densities are (weighted top three choices) : 

This structure can be interpreted as two cliques ( I  +II versus III + IV) ,  

each divided into a core group of leaders ( I1  or I I I )  and a hangers-on 
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group ( I  or IV).  Moreover, as in the Bank Wiring case, it is possible to 

present internal evidence for concluding that one of the cliques ( I  + 11) 

is in fact the dominant one. Observe, for instance, that the hangers-on of 

the subordinate clique (IT]) direct sharp antagonism toward the hangers- 

on of the top dogs of the dominant clique ( I )  ; whereas the hangers-on of 

the dominant clique (I)direct relatively far less attention to the members 

of the subordinate clique (111, IV)  (cf. Breiger [ 1976) discussing "visibil- 

ity"; Stinchcombe [I9681 discussing the structure of "attention"). 

This overall blockmodel structure is generally quite similar to the Bank 

Wiring blockmodel on the same number of blocks, although possibly be- 

cause the data are sociometric and not observer reported the pattern is 

not quite so clear cut (e.g., in the Bank Wiring case there is no Antago- 

nism either within or between core cliques; in the present Newcomb 

example, there is some antagonism directed from the core we have called 

dominant to the subordinate core, although the density .27 remains fairly 

low). On the other hand, the Newcomb year 1 pattern differs in various 

noticeable respects from the basic three-block model for the late weeks 

of year 2 .  Thus the year 1 hangers-on scapegoat themselves far less than 

does the bottom block in the year 2 model, as evidenced separately on 
both Like and Antagonism images. 

Looking directly a t  the blockmodels, it makes sense for the Sampson 

role structures to be intermediate between the Newcomb cases: the basic 

Sampson pattern, identifiable in all generator pairs, involves two separate 

main cliques (the Young Turks and the Loyal Opposition), each possessing 

the familiar internal organization of leaders and hangers-on; but there is 

also a peripheral group, the Outcasts, whose lack of received positive 

sentiment from the top blocks is analogous to that of the scapegoats in 

Newcomb year 2 ,  but whose position in other respects is closer to that of 

the hangers-on in Newcomb year 1. 

At the same time, certain regularities in the figure 13 and 14 scalings 

remain anomalous when evaluated solely a t  the blockmodel level. Why, 

for example, does the scaling place Sampson so clearly between the New- 

comb cases when a strong argument can also be made that the Sampson 

outcasts are not analogous to any Newcomb position? (Thus with respect 

to positive sentiment directed outside the block, the average density for 

the Sampson outcasts is far lower than for the Newcomb year 2 scape-

goats, and also for the Newcomb year 1 hangers-on.) Again, why does 

the scaling locate all three Bank Wiring cases in figure 13 in essentially 

the same relation to Newcomb year 1, even though BA-3-LA conveys a 

quite different aspect of the group's structure than that described by the 

cliques (namely, a three-tiered stratification system obtained by aggre- 

gating across cliques) ? 

These anomalies bear on one main point: there is coherence in the 
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purely algebraic structure on which figures 13 and 14 are based, and this 

coherence is reflected only to a limited extent in similarities a t  the block- 

model level. Even the most elementary comparisons a t  the blockmodel 

level run into difficulties when alternative cases are most naturally de- 

scribed by different numbers of blocks (e.g., four for Newcomb year 1 

but three for Newcomb year 2 ) .  One may hope that it may become pos- 

sible to speak with confidence of "the" role structure found in a particular 

case study, even though thus far we have established no formal criteria 

for obtaining such a unique description. To  carry the analysis one step 

further, it is time to look inside role tables on a purely algebraic level 

and to seek a nucleus of common role structure through selected homo- 

morphic images. 

Role Interlock 

Our results will be based on role tables constructed from pairs of gen-

erators. For pairs interpretable as describing positive-negative affect, 

figures 13 and 14 have suggested that three of the case studies-the Firth-

Sterling management, the Bank Wiring Room, and Griffith's scientists- 

are quite unlike the others; this divergence is reinforced by the inclusion 

orders (thus see fig. 11).  These three populations are much more con-

strained than the others by formal organization and outside pressures 

(see Part I ;  and see Breiger [I9761 for a further report on the Griffith 

scientists case). I n  such a population, we suspect that any role interlock 

which includes negative-affect generators will be idiosyncratic, shaped by 

particular constraints not accounted for in the formalism. Among the 

other three populations, however, it is possible to identify role interlocks 

which have common features. 

Where neither generator is negative, we will identify role interlock 

features common to all the populations with such data (only Newcomb's 

fraternities are excluded, since here there is only a single generator con- 

noting positive affect). Apparently, i t  is chiefly role interlock involving 

negative affect which is sensitive to bureaucratic and other outside pres- 

sures. 

Positive-negative pairs of generators.-Sampson's case is central in fig- 

ures 13 and 14, and we build from it. We begin with the strict zeroblock 

cutoff version on three blocks which was emphasized in Part I. The earlier 

analysis of figure 10, as well as the clustering in figures 13 and 14, suggests 

seeing whether his four different pairs of generators exhibit similar role 

interblock. 

The Influence pair and the Esteem pair, IN3  and ED3, have the same 

role table, which is shown in figure 66. Note again that these two pairs 

of generators (also shown in fig. 6b) are distinct as blockmodels (de-
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pending on whether i t  is the Opposition or the Turks who are placed on 

top of the hierarchy) ; this difference was important in our concrete 

account of the monastery in Part  I, yet we now find it compatible with 

identical role interlock. For the Kudos pair KB3 (#5 and #6 in fig. 2) 

the role table proves to be just the target table TI, discussed in detail a t  

the end of the section on theory. 

The joint reduction of IN3-ED3-KB3, the coarser form of interlock 

common to them, is itself precisely TI ;  thus T1 is a homomorphism of 

the IN3-ED3 table, as well as being the KB3 table. This finding of under- 

lying T1 structure is now confirmed and extended by three series of tests. 

First, the joint reduction of the role table for each pair of generators is 

computed for each of the seven other target tables. Figure 15 reports 

whether or not these others are also homomorphisms, and in addition 

gives the distances through the joint r e d u c t i ~ n . ~ ~  Only the LA case gives 

problems, and this must happen since the original role structure on L and 

A is itself degenerate. 

Second, the same procedure is carried out for the refined models with 

the three blocks split into five. The results, also given in figure 15, again 

show that TI is the form of role interlock common to these generator 

pairs. Again, only LA is the outlier. Running reductions of the five-block 
models in this way is not redundant with the three-block reductions just 

reported, since a refinement of a blockmodel need not yield a semigroup 

which maps homomorphically onto the three-block blockmodel's role 

structure. 

Third, we test reliability by seeing whether T1 remains the common 

form of role interlock for an alternate coding of the generators. Apply a 

zeroblock cutoff of 0.1 to the weighted top three choices. The resulting 

generators for KB3, shown in figure 1, again identically yield T1 as their 

role table. For IN3  and ED3 the generators, and thus the role table, are 

the same as with the strict zeroblock cutoff, hence must also reduce to T1 

a fortiori. (As for the refined models on five blocks, figure 7 has already 

shown that the role table for the Influence pair reduces to T I ;  the same 

is true for KB5 though not for ED5.) Reliability was tested further, using 

still higher values of 0.15 and 0.2 for the cutoff density, with much the 

same results for these three generator pairs; and, for the first time, the 

Like-Antagonism pair also has a role table reducing to TI. 

Because of relative position in the scalings of figures 13 and 14, 

Newcomb's two fraternities should contrast in opposite ways with the 

monastery. The T1 role interlock common to all of Sampson's pairs of 

generators can be compared with that for the one generator pair we have 

25 Where Ti is not a homomorphic reduction of the original semigroup, the joint 

reduction ii each case is one of the trivial 2 X 2 tables shown in the discussion of 
target tables a t  the end of the section on theory. 



1 2 3  1 3 3  1 2 3  1 2 3  1 3 3  1 1 1  1 3 3  1 3 3  
3 3 3  2 3 3  2 3 3  3 2 3  2 2 2  3 3 3  1 3 3  3 2 3  

Role Table -Size -3 3 3  3 3 3  3 3 3  3 2 3  3 3 3  3 3 3  1 3 3  3 3 3  

SM(4)-5-L(2)A(2) l o  N ( 2 . 0 )  N(2 .0)  N(2 .0 )  N(2 .0 )  N(2 .0 )  N ( l . l )  N ( l . l )  N ( 2 . 0 )  

FIG.15.-Alternative homomorphisms of role tables from the Sampson data. Distance 6 to the target tables are shown parenthetically. Y =yes (is a 
homomorphic reduction), N =no (is not), I S 0  = isomorphic. 
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identified in Newcomb's data, Like and Antagonism, using a cutoff 

density of 0.2. In addition, longitudinal stability of the results for each 

Newcomb fraternity can be shown. (This is not really possible for the 

monastery: Newcomb collected data week by week, whereas Sampson 

has only recall data for earlier periods; see Part I.) The results are shown 

in figures 16 (year 2) and 17 (year 1) in a format parallel to that of 

figure 15. 

From an early week, the role structure for the second fraternity either 

is or reduces to T,, but not to T1 or the other six. The distinctive equation 

in TI, LA = A ,  is also present in T,, but the role interlock is different 

because in addition the second generator is transitive, A2 =A. This latter 

equation reflects the scapegoating of a bottom block found here but not 

in the monastery (e.g., contrast the Antagonism matrix in the text of the 

Nomenclature section with the Disesteem matrix in table 1). 

From an early week, the role structure for the first fraternity reduces 

to T1 and to T2, but never to T3. A T4 reduction is not obtained until 

very late in the sequence, and i t  is not possible to know whether its 

presence is robust. Recall that T3 is the table for Davis's weaker form of 

balance theory, in which the commutativity of A with L is retained. Thus, 
the two key equations of T, cannot be obtained together, but can be 
obtained separately in reductions of the role table to T1 and T1. Unlike 

the second fraternity, the first has role interlock akin to balance theory, 

but a form of balance even weaker than Davis's. This conclusion is con- 

sistent with the earlier interpretation in the section on outcasts and lead- 

ing crowds. The above conclusions for each fraternity are essentially 

unchanged if a zeroblock cutoff density of 0.1 is used instead of 0.2. The 

main effect of thus lowering a is that none of TI-T8 becomes a homo-

morphic image until the late weeks-role interlock is not characterized as 

rapidly. 

Other pairs of generators.-The first lines in figure 18 already suggest 

the main conclusion to be drawn: for a range of populations, including 

those with formal organizations, role interlock between a generator for 

Similar Policy (or some similar type of tie) and a generator for Liking 

reduces to the predominance of one's direct ties, whose quality subse- 

quently carries over to indirect ties as well. This is the First Letter inter- 

lock discussed earlier under theory, and there exemplified by target tables 

T, and T6 (see figure 18). 

In addition to Friendship and Similar Policy for the Firth-Sterling 

management, we also report results for the L H  pair of generators in the 

Bank Wiring Room and for the LK pair of generators in the monastery 

( H  signifies "Helping" in the Bank Wiring data and is the only major tie 

in these data which is not symmetric; see Part I) .  Figure 19 shows the 

joint reductions of pairs of these role tables. To show reliability, three 







Role Table 

SM(4)-5-E(3)1(3) > .2 9 N Y Y N N N N Y 

FIG.18.-Alternative homomorphisms for role tables with neither generator negative; Y =yes, N =no 
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different codings for the LK pair are used. I t  is clear that the First Letter 

table is the predominant feature of role interlock in the joint reductions. 
Return to figure 18. The first line shows that the FS pair for Firth- 

Sterling reduces only to a First Letter interlock, to T,. In  the second 

line, order of generators is reversed: the FS pair is reversed to become the 

SF pair, which has a reduction to T5 as well as to T,, both First Letter 

interlocks. The role tables for S F  and for FS are therefore not the same 

(see the discussion of Definition 10 in the methods section) and need not 

have the same homomorphisms. (With positive-negative pairs of gen-

erators, generator reversal customarily leads to entirely different homo- 

morphisms: indeed, the distance 6 between such a pair and its reverse 

through their joint reduction often assumes the maximum value of 2.0.) 

First Letter interlock need not occur for a pair of generators even 

though neither represents negative affect. The remaining lines of figure 18 

analyze an example. The Esteem versus Influence pair is interesting in its 

own right: recall the earlier discussion of ED versus I N  role tables above. 

We see that regardless of whether a = . l  or .2 the EI role table reduces 

to the T, form of transitive generators with no interlock between them.26 

And the reversed pair IE yields a similar pattern of reductions. But all 

these cases reduce also to T2, which is the natural dual to TI. 

Further work.-As more case studies become available, i t  should be 

possible to correlate the main features of role interlock with further 

properties of concrete populations. We have made initial analyses of two 

further sets of data of high quality.27 Given such correlations, i t  will be 

worthwhile to try to verify more detailed descriptions of role interlock 

for specific cases. And with more cases i t  should be possible to find com- 

parable sets of three and more generators: the existing analytic techniques 

and computer programs already described are directly applicable, but 
further development of target tables will be necessary. 

CONCLUSION 

What makes a society human? Speaking as a sociologist, one is tempted to 

seek the answer in the existence of roles. The problem is not so simple: 

whatever the distinctive features of the invertebrate societies (Haskins 

1939; Grass6 1959; Wilson 1971), i t  is clear that a t  least the higher 

primates have well-developed complexes of stable social relationships 

which seem to behave much like human roles, a t  least to primatologists 

(Kummer 1967; Blaffer Hrdy 1976). A somewhat more sophisticated 

hypothesis is that the characteristic features of human society lie in the 

26The full role table for the coarser three-block version is T8. 

27 Kindly supplied by A. P. M. Coxon and by F. Lorrain. 
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peculiarly intricate complexes of interlocking roles which only men can 

sustain. The present work tries to take seriously what Durkheim saw but 

most of his followers did not: that the organic solidarity of a social 

system rests not on the cognition of men but rather on the interlock and 

interaction of objectively definable social relationships. 

There is a moral cast to the study of roles (Emmet 1966).  We see 

support even in the present limited study for a stance we think important: 

Humans can and do build complex and subtle social structure without the 

need for a directing hand or an acknowledged plan (Geertz 1965).  Offi-

cial structures can impede solutions to structural problems (Burns and 

Stalker 1955) ,  not least by the drain of energy involved in reconciling 

reality with facade. One thinks of law, and also of formal organizations 

(Boorman 19756).  

We see a t  present no intelligent way to develop role interlock for open 

networks extending through large populations, even though this topic is 

much closer to the heart of sociology than is small-group structure 

(Milgram 1967;  White 1970; Granovetter 1976).  From an analytic 

standpoint, the present machinery is suggestive of social castes and 

classes and their interrelations on a macroscopic level of large-scale social 

structure (Mayer 1960; Boyd 1969a). Various classical hypotheses lend 
themselves to possible blockmodel and algebraic reformulations: can the 

classical Aristotelian theory of revolution (as the result of separation be- 

tween political and economic elites) be made operational through tracing 

the emergence of certain kinds of zeroblocks? The next analytic task is 

to provide ways to probe how role structures of the kind we have identified 

actually come into being, through the continuing accommodations and 

manipulations of all individuals acting simultaneously (Leach 1954).  Some 

first steps have recently been taken in this direction (Lorrain 1971 ; White 

1973;  Spence 1974;  Boorman 1975a). 
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