
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other

copyright owners. A copy can be downloaded for personal non-commercial

research or study, without prior permission or charge. This thesis cannot be

reproduced or quoted extensively from without first obtaining permission in writing

from the copyright holder/s. The content must not be changed in any way or sold

commercially in any format or medium without the formal permission of the

copyright holders.

 When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name

of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Social techniques for effective

interactions in open cooperative systems

by

Máıra Ribeiro Rodrigues

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering and Applied Science

Department of Electronics and Computer Science

November 2007

http://www.soton.ac.uk
mailto:mrm03r@ecs.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Máıra Ribeiro Rodrigues

Distributed systems are becoming increasingly popular, both in academic and commer-

cial communities, because of the functionality they offer for sharing resources among

participants of these communities. As individual systems with different purposes and

functionalities are developed, and as data of many different kinds are generated, the

value to be gained from sharing services with others rather than just personal use, in-

creases dramatically. This, however, is only achievable if participants of open systems

cooperate with each other, to ensure the longevity of the system and the richness of

available services, and to make decisions about the services they use to ensure that they

are of sufficient levels of quality. Moreover, the properties of distributed systems such as

openness, dynamism, heterogeneity and resource-bounded providers bring a number of

challenges to designing computational entities that cooperate effectively and efficiently.

In particular, computational entities must deal with the diversity of available services,

the possible resource limitations for service provision, and with finding providers willing

to cooperate even in the absence of economic gains. This requires a means not only to

provide non-monetary incentives for service providers, but also to account for the level of

quality of cooperations, in terms of the quality of provided and received services. In sup-

port of this, entities must be capable of selecting among alternative interaction partners,

since each will offer distinct properties, which may change due to the dynamism of the

environment. With this in mind, our goal is to develop mechanisms to allow effective co-

operation between agents operating in systems that are open, dynamic, heterogeneous,

and cooperative. Such mechanisms are needed in the context of cooperative applica-

tions with services that are free of charge, such as those in bioinformatics. To achieve

this, we propose a framework for non-monetary cooperative interactions, which provides

non-monetary incentives for service provision and a means to analyse cooperations; an

evaluation method, for evaluating dynamic services; a provider selection mechanism, for

decision-making over service requests; and a requester selection mechanism, for decision-

making over service provision.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:mrm03r@ecs.soton.ac.uk

Contents

Nomenclature xi

Acknowledgements xiv

1 Introduction 1

1.1 From Centralised to Distributed Systems 1

1.2 Distributed Systems in Bioinformatics . 3

1.3 Agent-based Systems . 6

1.4 Research Goals . 7

1.5 Research Contributions . 9

1.6 Thesis Structure . 11

2 Background Review 12

2.1 Introduction . 12

2.2 Agents . 13

2.3 Coordination . 15

2.3.1 Multi-agent Planning . 15

2.3.2 Joint Commitments . 16

2.3.3 Norms . 16

2.3.4 Organisational structures . 17

2.4 Cooperation . 17

2.4.1 Evolutionary Approaches to Cooperation 18

2.4.2 Social Incentives and Reciprocity 19

2.5 Forming Cooperations . 20

2.5.1 Evaluation-based Selection . 21

2.5.2 Similarity-based Selection . 22

2.5.3 Trust-based Selection . 22

2.5.4 Dependence-based Selection . 23

2.6 Negotiation . 24

2.6.1 Contract Net Protocol . 25

2.6.2 Auctions . 25

2.6.3 Agreements and Negotiation for Service-oriented Systems 26

2.7 Limitations of Current Approaches . 27

3 Problem Scenario 30

3.1 Introduction . 30

3.2 Bioinformatics and Proteomics . 31

3.3 Bioinformatics Tools . 33

ii

CONTENTS iii

3.3.1 Prediction Tools . 33

3.3.2 Analysis Tools . 34

3.3.3 Biological Databases . 35

3.4 Distributed Applications in Bioinformatics 36

3.4.1 Multi-agent Systems Applications 36

3.4.1.1 GeneWeaver . 36

3.4.1.2 BioMAS . 37

3.4.2 Grid Applications: myGrid . 38

3.4.3 Cooperative Applications . 39

3.5 Protein Identification through Cooperative Bioinformatics Applications . 40

3.5.1 Protein Identification Experiments 41

3.5.2 Distributed Services . 42

3.6 Requirements for Cooperative Bioinformatics Applications 44

3.6.1 The Cooperation Problem . 45

3.6.2 The Provider Selection Problem 46

3.6.3 The Requester Selection Problem 47

3.7 Conclusion . 47

4 Agent Architecture 49

4.1 Introduction . 49

4.2 Architecture Overview . 49

4.3 Framework for Non-monetary Cooperations 51

4.4 Provider Selection Mechanism . 51

4.5 Requester Selection Mechanism . 52

4.6 Evaluation Method . 52

4.7 The Interaction Process . 53

4.8 Conclusion . 53

5 Evaluation Method 55

5.1 Introduction . 55

5.2 Service Evaluation . 56

5.2.1 Key Evaluation Properties . 56

5.2.2 Alternative Approaches . 58

5.3 General Evaluation Method . 58

5.3.1 Evaluation Attributes . 59

5.3.2 Result measures . 60

5.3.3 Evaluation Functions . 61

5.3.3.1 Defining Evaluations with Different Strictness 63

5.3.3.2 Evaluation from Provider and Requester Perspectives . . 64

5.3.3.3 Using Evaluation Results for Future Selection 65

5.4 Evaluation process . 66

5.5 Evaluating Bioinformatics Services . 67

5.5.1 Identifying Evaluation Attributes and Result Measures 67

5.5.2 Sensitivity . 68

5.5.3 Accuracy . 69

5.5.4 Performance . 71

5.5.5 Cost . 71

CONTENTS iv

5.5.6 Evaluation Results . 72

5.6 Comparison with Similar Methods . 75

5.7 Conclusion . 75

6 A Computational Framework for Non-Monetary Cooperation 77

6.1 Introduction . 77

6.2 Piaget’s Theory of Exchange Values . 79

6.2.1 First stage: Provision . 81

6.2.2 Second Stage: Reciprocation . 82

6.2.3 Equilibrium of Exchange Values 82

6.2.4 Limitations of Piaget’s Model . 83

6.3 Computational Framework . 84

6.3.1 Exchange Values for Non-Monetary Interactions 84

6.3.2 The Origin of Exchange Values . 85

6.3.3 Subjective Influences . 85

6.3.4 Modeling Requirements . 86

6.3.5 Alternative Representations . 87

6.4 A Computational Exchange Values Model 89

6.4.1 The Core Model . 89

6.4.2 Objective Values . 91

6.4.3 Subjective Values . 92

6.4.3.1 Communication . 93

6.4.3.2 Influences . 93

6.4.3.3 Determining Influenced Debt and Credit 94

6.4.4 Reciprocation Values . 96

6.4.5 Devaluation . 99

6.5 Balance of Exchange Values . 100

6.6 Interaction Steps . 102

6.7 A Worked Example . 104

6.8 Conclusion . 106

7 Exchange Values for Provider Selection 108

7.1 Introduction . 108

7.2 The Selection Process . 109

7.3 Criteria for Selection . 110

7.3.1 Service Evaluation . 112

7.3.2 Individual Exchange Values . 112

7.3.3 Balance of Exchange Values . 113

7.3.4 Dependence . 116

7.4 Strategies . 117

7.4.1 Evaluation-based Selection . 117

7.4.2 Exchange Values-based Selection 118

7.4.2.1 Simple Reciprocation . 119

7.4.2.2 Analysing Cooperative Situations 119

7.4.3 Dependence-based Selection . 120

7.4.4 Combined Strategy . 121

7.5 Conclusion . 123

CONTENTS v

8 Requester Selection Mechanism 124

8.1 Introduction . 124

8.2 Selecting Among Service Requests . 125

8.3 Formal Model . 126

8.3.1 General Decision-making . 127

8.3.2 Dependence-based Strategy . 129

8.3.3 Exchange Values-based Strategies 129

8.3.3.1 Balance of Exchange values from the Provider’s Perspective130

8.3.3.2 Simple Reciprocation . 132

8.3.3.3 Analysing Cooperative Situations 133

8.3.4 Combined Strategies . 135

8.3.4.1 Preference for Paying Debts 136

8.3.4.2 Preference for Gaining Credits 137

8.4 Conclusions . 137

9 Experiments 139

9.1 Introduction . 139

9.2 Experimental Strategies . 140

9.3 The Experimental Set-Up . 142

9.3.1 Providers and Requesters . 142

9.3.2 Simulation Configuration . 144

9.4 Performance Measures . 145

9.4.1 Determining the Tolerance Threshold 146

9.5 Busy Providers and Reciprocity . 147

9.5.1 Experiment 1: Increasing Numbers of Agents (and Requests) . . . 147

9.5.2 Experiment 2: Decreasing Resource Capacity 150

9.6 Low-skilled Providers and Received Service Quality 155

9.6.1 Experiment 3: Provider Selection Strategies Against Baseline . . . 157

9.6.2 Experiment 4: Pairwise Analysis of Provider Selection Strategies . 160

9.7 Conclusions . 164

10 Conclusions 166

10.1 Thesis Summary . 166

10.2 Research Contributions . 169

10.2.1 A Computational Framework for Non-monetary Cooperative In-
teraction . 169

10.2.2 An Evaluation Method for Dynamic Services 170

10.2.3 Provider Selection . 171

10.2.4 Request Selection . 171

10.2.5 Metrics for Protein Identification Services 172

10.3 Limitations . 172

10.4 Further Work . 174

10.5 Concluding Remarks . 176

A Additional Results 177

A.1 Experiment 1 . 177

A.2 Experiment 2 . 181

CONTENTS vi

A.3 Experiment 3 . 184

B Significance Results 188

B.1 Experiment 1 . 188

B.2 Experiment 2 . 192

B.3 Experiment 3 . 194

B.4 Experiment 4 . 199

List of Figures

3.1 Basic protein identification experiment workflow. 41

3.2 Closed (highlighted) and distributed scenario for execution of computer
experiments. 43

4.1 Agent architecture for service provision and request. 50

4.2 The interaction process sequence of events. Events flow from top to bottom. 53

5.1 Service Evaluation Scheme. 59

5.2 Increasing and decreasing evaluation functions with b = 0.5. 62

5.3 Impact of constant b on increasing and decreasing evaluation functions,
with values b = 0.2, b = 0.4, b = 0.6, and b = 0.8. 63

6.1 Exchange values in the provision and reciprocation stages of the interac-
tions between individuals α and β. 81

6.2 Interactions between α, β, and λ. 105

9.1 Cooperative Scenario. 142

9.2 Combining provider and requester selection strategies. 143

9.3 Impact of the tolerance value on performance measures. 147

9.4 Total interactions of provider selection strategies using r-SR. 148

9.5 Total interactions of provider selection strategies using r-DB. 150

9.6 Summary of results for all reciprocation-based provider selection strate-
gies in terms of total interactions, for each requester selection strategy. . . 151

9.7 Influence of requester selection strategies on the total interactions. 152

9.8 Total interactions for provider selection strategies using the r-SR requester
selection strategy when varying provider capacity. 153

9.9 Total interactions for provider selection strategies using the r-DB re-
quester selection strategy when varying provider capacity. 154

9.10 Comparing requester selection strategies when varying provider capacity. . 155

9.11 Average satisfaction for all provider selection strategies against the base-
line with r-SR requester selection strategy. 158

9.12 Comparing provider selection strategies against the random strategy re-
garding the agents’ average satisfaction. 159

9.13 Comparing requester selection strategies in terms of average satisfaction
when varying low-skilled providers. 160

9.14 Pairwise comparison of p-ACS with p-EB using all requester selection
strategies in terms of the agents’ average satisfaction. 161

9.15 Pairwise comparison of p-CC with p-EB using all requester selection
strategies in terms of the agents’ average satisfaction. 162

vii

LIST OF FIGURES viii

9.16 Influence of requester selection strategies on each provider selection strat-
egy regarding average satisfaction. 163

A.1 Comparing provider selection strategies when using the r-ACS requester
selection strategy. 178

A.2 Comparing provider selection strategies when using the r-CCP requester
selection strategy. 179

A.3 Comparing provider selection strategies when using the r-CCG requester
selection strategy. 180

A.4 Total interactions for provider selection strategies using the r-ACS re-
quester selection strategy when varying the providers capacity. 181

A.5 Total interactions for provider selection strategies using the r-CCP re-
quester selection strategy when varying the providers capacity. 182

A.6 Total interactions for provider selection strategies using the r-CCG re-
quester selection strategy when varying the providers capacity. 183

A.7 Average satisfaction for all provider selection strategies against the base-
line with r-DB requester selection strategy. 184

A.8 Average satisfaction for all provider selection strategies against the base-
line with r-ACS requester selection strategy. 185

A.9 Average satisfaction for all provider selection strategies against the base-
line with r-CCP requester selection strategy. 186

A.10 Average satisfaction for all provider selection strategies against the base-
line with r-CCG requester selection strategy. 187

List of Tables

5.1 Initial configurations for ms/ms search services. 73

5.2 Evaluating ms/ms search services according to the sensitivity attribute. . 73

5.3 Evaluating ms/ms search services according to the performance attribute. 74

5.4 Evaluating ms/ms search services according to the cost attribute. 74

5.5 Evaluation of ms/ms search services. 75

6.1 Example of exchange values history for agent α. 91

6.2 Gains and Losses of Values in Both Stages of the Interaction. 101

6.3 Examples of Balance of Exchange Values. 101

6.4 History of exchange values for agent α. 105

7.1 Requester’s Balance of Exchange Values in the Reciprocation Stage. . . . 114

7.2 Scoring Candidate Providers According to Ordering Criteria for Psuc. . . 122

7.3 Scoring Candidate Providers According to Ordering Criteria for Pcop. . . . 122

8.1 Provider’s Balance of Exchange Values in the Provision Stage. 130

9.1 List of Provider Selection Strategies. 141

9.2 List of Requester Selection Strategies. 141

9.3 Selection Criteria for Provider and Requester Selection Strategies. 142

9.4 Default simulation configuration. 144

9.5 Combinations of provider selection strategies for each requester selection
strategy, in comparison to p-EB, in Experiment 1. 148

9.6 Combinations of provider selection strategies for each requester selection
strategy, in comparison to p-EB, in Experiment 2. 150

9.7 Combinations of provider selection strategies for each requester selection
strategy, in comparison to p-RD in terms of average satisfaction, in Ex-
periment 3. 156

B.1 Significance levels for Experiment 1. Strategies are compared against p-EB.188

B.2 Significance levels for Experiment 1. Comparing reciprocation-based
provider selection strategies. 189

B.3 Significance levels for Experiment 1. Comparing reciprocation-based
provider selection strategies. 190

B.4 Significance levels for Experiment 1. Comparing requester selection
strategies for p-SR. 190

B.5 Significance levels for Experiment 1. Comparing requester selection
strategies for p-ACS. 190

B.6 Significance levels for Experiment 1. Comparing requester selection
strategies for p-EB. 191

ix

LIST OF TABLES x

B.7 Significance levels for Experiment 1. Comparing requester selection
strategies for p-DB. 191

B.8 Significance levels for Experiment 1. Comparing requester selection
strategies for p-CC. 191

B.9 Significance levels for Experiment 2. Strategies are compared against p-EB.192

B.10 Significance levels for Experiment 2. Comparing requester selection
strategies for p-SR. 192

B.11 Significance levels for Experiment 2. Comparing requester selection
strategies for p-ACS. 192

B.12 Significance levels for Experiment 2. Comparing requester selection
strategies for p-EB. 193

B.13 Significance levels for Experiment 2. Comparing requester selection
strategies for p-DB. 193

B.14 Significance levels for Experiment 2. Comparing requester selection
strategies for p-CC. 193

B.15 Significance levels for Experiment 3. Strategies are compared against
p-RD in terms of average satisfaction. 194

B.16 Significance levels for Experiment 3. Comparing provider selection strate-
gies for r-SR in terms of average satisfaction. 194

B.17 Significance levels for Experiment 3. Comparing provider selection strate-
gies for r-ACS in terms of average satisfaction. 195

B.18 Significance levels for Experiment 3. Comparing provider selection strate-
gies for p-DB in terms of average satisfaction. 195

B.19 Significance levels for Experiment 3. Comparing provider selection strate-
gies for r-CCP in terms of average satisfaction. 196

B.20 Significance levels for Experiment 3. Comparing provider selection strate-
gies for r-CCG in terms of average satisfaction. 196

B.21 Significance levels for Experiment 3. Comparing requester selection
strategies for p-SR in terms of average satisfaction. 197

B.22 Significance levels for Experiment 3. Comparing requester selection
strategies for p-ACS in terms of average satisfaction. 197

B.23 Significance levels for Experiment 3. Comparing requester selection
strategies for p-EB in terms of average satisfaction. 197

B.24 Significance levels for Experiment 3. Comparing requester selection
strategies for p-DB in terms of average satisfaction. 197

B.25 Significance levels for Experiment 3. Comparing requester selection
strategies for p-CC in terms of average satisfaction. 198

B.26 Significance levels for Experiment 4. Strategy p-ACS is compared against
p-EB in terms of average satisfaction. 199

B.27 Significance levels for Experiment 4. Strategy p-CC is compared against
p-EB in terms of average satisfaction. 199

B.28 Significance levels for Experiment 4. Comparing requester selection
strategies for p-CC in terms of average satisfaction. 199

B.29 Significance levels for Experiment 4. Comparing requester selection
strategies for p-ACS in terms of average satisfaction. 199

B.30 Significance levels for Experiment 4. Comparing requester selection
strategies for p-EB in terms of average satisfaction. 200

List of Algorithms

1 Evaluation process for a received service srv. 66

2 Algorithm for the influence function influence(prt , srv). 94

3 Algorithm for instantiating credit(β, s ′αβ) according to the CC approach. . 98

4 Algorithm for instantiating debt(α, reciprocation value) according to the

CC approach. 98

5 Determining exchange values in the provision stage when the agent is a

provider (α). 102

6 Determining exchange values in the provision stage when the agent is a

requester (β). 102

7 Determining exchange values in the reciprocation stage when the agent is

a requester. 103

8 Determining exchange values in the reciprocation stage when the agent is

a provider. 103

9 Devaluation of β by α. 104

10 General decision-making algorithm to select a provider for srvi. 110

11 Algorithm for the refusal condition Devalued(α). 118

12 Algorithm for provider selection through Simple Reciprocation. 119

13 Algorithm for provider selection through Analysing Cooperative Situations.120

14 Algorithm for provider selection with combined criteria. 121

15 General requester selection. 128

16 Algorithm for the refusal condition Low Valorisation(srv, β). 133

17 Algorithm for the refusal condition Only Provider(β). 133

18 Algorithm for the refusal condition Poor Compensation(β). 134

xi

Nomenclature

α,β,γ,θ generic agents.

srv a generic service.

prv a generic provider.

req a generic requester.

prt an interaction partner.

c the result measure variable.

b the evaluation strictness.

r, r′ renouncement values.

s, s′ satisfaction values.

t, t′ debt values.

v, v′ credit values.

g a value representing a gain.

l a value representing a loss.

ι a subjective influence.

tol the tolerance threshold.

δ the subjective influence intensity.

rc a refusal condition.

it a previous interaction.

stb the stage balance of exchange values.

stbn the proportion of negative stage balances in previous interactions.

oabn the proportion of negative overall balances in previous interactions.

oab the overall balance of exchange values.

vacc the credit accumulated over previous interactions.

tacc the debt accumulated over previous interactions.

wsrv,ai
the weight of attribute ai in the overall evaluation of srv.

avs the average satisfaction in previous interactions.

totalt the total debt of a provider with a requester.

totalv the total credit of a requester with a provider.

ιtotal the total influence applied over an objective value.

Aevalsrv,ai
(cai

) the evaluation function for attribute ai of srv with result measure cai
.

Seval(srv) the overall evaluation for srv.

Peval(α, srv) the overall evaluation for a provider α of srv.

xii

NOMENCLATURE xiii

S[prt] the evaluation of a provider prt.

Aprv
srv , Areq

srv the set of attributes for srv when evaluated by prv or req.

PSEsrv,α the set of evaluations Seval(srv) of a provider α.

EV the set of exchange values in the provision stage.

EV ′ the set of exchange values in the reciprocation stage.

I the set of influences.

P the set of candidate providers.

Po the sequence of candidate providers ordered by some criteria.

Pcop the sequence of providers more likely to cooperate.

Psuc the sequence of providers more likely to yield successful interactions.

Q the set of requesters.

Qo,Qm the sequence of requesters ordered by some criteria.

Qa the set of requests that the provider needs to perform.

Don the set of agents that the provider depends on for any needed service.

Dbd the set of agents that depend on the requester for a needed service.

RC the set of refusal conditions.

IT the set of previous interactions.

Acknowledgements

I first would like to thank Prof. Michael Luck, my supervisor, for all his guidance, pa-

tience, and dedication throughout my PhD. His constant support and careful corrections

were indispensable during the formative and final stages of this research. I am grateful

to CAPES, an agency of the Brazilian Ministry of Education, for sponsoring my PhD

studies, and to Dr. Rafael H. Bordini and Dr. Antonio Carlos da Rocha Costa for giving

me the first incentives to pursue a PhD abroad.

Many researchers have assisted in this work, and my special acknowledgements go to Dr.

Antonio Carlos da Rocha Costa (UCPel, Brazil) for his valuable comments regarding

Piaget’s theory of exchange values; and Prof. David O’Connor, from the Centre for Pro-

teomic Research at the University of Southampton, and Dr. Judit Nagy, from Imperial

College London, for their help in providing proteomics expert knowledge and data. I am

also indebted to my research colleagues Gopal Ramchurn, Luke Teacy, Felipe Meneguzzi,

and Raj Dash, for their help and discussions during the course of my PhD.

Completing a PhD (specially abroad) is a challenging and demanding life experience,

which could not have been successful without the emotional support of family and

friends. I gratefully acknowledge my friends Alinne Veiga, Denise Cysneiros, Elen Lima

and Solange Correa, for all their support and encouragement, particularly in the last

year of my PhD.

Especially, I am most grateful to my family, who have followed attentively my journey

from the other side of the Atlantic. I thank my brother and sister, whom I am very

proud of, for all their love and attention. Most importantly, I don’t have words to thank

my parents, for their immeasurable love and support, that made the ocean between us

feel like a drop of water, and that kept my head up, and my heart fulfilled. Thank you

for taking me by the hand, and dancing with me in the middle of the fog.

xiv

To my parents, the stars that light my way.

(Para meus pais, as estrelas que iluminam meu caminho.)

xv

Chapter 1

Introduction

1.1 From Centralised to Distributed Systems

The shift from monolithic standalone systems to systems comprising multiple computers

has brought about new possibilities for applications in which the key issues are distri-

bution, interaction, and cooperation. In this view, the power of the machine is realised

not through individual computational power, but through the combination of different

capabilities, services and resources in a broader distributed system. Such distributed

systems (Coulouris et al , 2001) in which resources and participants are located in ge-

ographically different locations but interconnect, so that they can interact with each

other, underlie the power of next generation computing.

While initially distributed systems were used for particular kinds of specialist applica-

tion, recent years have seen a huge growth in the different kinds of use to which they

are now put. Indeed, because they are so pervasive, distributed systems are often no

longer distinguished from centralised systems. However, because of the functionality

they offer, they are becoming increasingly popular, both in commercial and academic

communities, for sharing resources among members of these communities (Chin et al ,

2002; Little, 2003; Wroe et al , 2004; De Roure and Hendler, 2004).

More specifically, while many individuals or organisations previously generated data, or

developed tools, for their own use, it is now possible for such tools and data to be made

accessible to others as services in a distributed system (Foster, 2005). As individual

systems with different purposes and functionalities are developed, and as data of many

different kinds (ranging from scientific publications, newspapers, experimental results,

and so on) are generated, the value to be gained from sharing with others rather than

just personal use, increases dramatically. In this context, individuals from different

organisations, in different geographical locations, can use distributed systems to discover

new computational resources that complement or extend their own, in an effort to achieve

goals that they could not otherwise achieve.

1

Chapter 1 Introduction 2

Many efforts have been made to develop the necessary infrastructures to support such a

vision of distributed systems as a cooperative interconnection of people, computational

resources, and organisations. Such infrastructures are generally concerned with the in-

teroperability and access of services provided by different components of the distributed

system. In this sense, services are modular applications with a common interface, so that

they can be used in geographically distributed locations without knowledge of their im-

plementation (Foster et al , 2001; Curbera et al , 2003). This service-oriented approach

is ideal for open environments, since it abstracts away specific details of individually

created data and tools, and allows the dynamic formation of new services from the com-

position of existing services. Indeed, open systems are characterised by continual change

in the number and nature of the participating entities, and thus are distinguished from

the more traditional closed systems, which have a fixed set of participants that usually

operate under the same authority (for example, participants in a distributed system of

a private organisation must follow the set of rules and protocols of that organisation)

(Coulouris et al , 2001).

As participants of open distributed systems can join and leave the system at any time,

such systems gain a dynamic character. At the same time, the variety of (either software

or hardware) components and participants that form such systems make them highly

heterogeneous. This is because different hardware configurations and software function-

alities cause available services to have distinct properties, and individual viewpoints of

participants cause them to have distinct preferences, goals and motivations.

The complexity of the computational entities that operate in open distributed systems

depends on their functionality and on the characteristics of the system. As distributed

systems become more complex, with large numbers of individual connected entities, of

different types, in different configurations and adhering to different standards, and with

new entities joining and leaving, the entities involved need to be endowed with abilities

that go beyond merely sending, receiving and performing service requests. In particular,

it has been claimed that computational entities need to be flexible and autonomous

(Foster et al , 2004; Huhns and Singh, 2005): flexibility is required to cope with changes

in the environment; and autonomy is required in order to take decisions about which of

many possible courses of action is best, and to consider individual aims and objectives.

Given these characteristics, the computational entities that make up such distributed

systems can be considered to be agents interacting in a multi-agent system. Agents are

independent entities, distributed across a system, and capable of communicating, making

decisions and cooperating (Wooldridge, 2002; Luck et al , 2005). They are flexible and

autonomous, and typically interact with others in an effort to solve problems that they

would not be able to solve alone. Although in general agents can provide the required

underpinning technology for the computational entities that operate in distributed sys-

tems, there are some characteristics of domain applications and of open systems that

demand particular mechanisms not always considered in the generic agent application.

Chapter 1 Introduction 3

Perhaps one of the most notable application domains of open and dynamic distributed

systems is that of bioinformatics (Campbell and Heyer, 2002), which is particularly

interesting because of its largely cooperative nature (Stein, 2002). Bioinformatics appli-

cations are characterised by a vast, heterogeneous, and constantly changing amount of

(mostly free of charge) interrelated biological data and services and, as we will explain

through this chapter, these characteristics have a significant impact on the possibilities

for interaction and cooperation. In light of this, we view bioinformatics as an ideal

domain in which to explore cooperative distributed systems, and will use it as the key

motivating example, and domain of application, in this thesis.

1.2 Distributed Systems in Bioinformatics

The domain of bioinformatics is characterised by the application of computer technology

to the management and analysis of biological data, and includes tasks like gathering,

storing, analysing and merging information related to genes and proteins of living or-

ganisms (Feitelson and Treinin, 2002; Kim, 2002; Cohen, 2004). Research projects in

this domain are those responsible for the sequencing of the genomes1 of many organisms,

including the human genome (The Wellcome Trust, 2001).

Biological data resulting from genome sequencing projects are very interrelated. Even

though each organism has its own set of genes and proteins, the evolutionary process

of species has resulted in some organisms having similar genomes (such as humans and

chimpanzees, for example, which have 98% identical DNA). In addition, a gene can

code for different proteins with similar functions but existing in different species (The

Wellcome Trust, 2001), so that genes found in one organism can help in the study of

genes from different organisms.

The domain of bioinformatics can be characterised as follows.

• There is a great variety of tools and data that has been generated by both large

and small scale organisations, but many of these have similar functionality. For

example, the European Bioinformatics Institute (EBI)2 hosts more than 70 bioin-

formatics tools (of which 17 are alternatives for analysing DNA sequences) and 60

databases, while the Brazilian LNCC laboratory3 hosts 6 databases and 1 tool for

analysing DNA sequences of bacteria.

• Bioinformatics tools and data developed or generated by different individuals or

organisations are typically heterogeneous, mostly regarding the quality of the data

or results, even though they may have the same functionality.

1The genome is the total DNA content of a cell.
2http://www.ebi.ac.uk
3http://www.labinfo.lncc.br/main.php

Chapter 1 Introduction 4

• Bioinformatics is a very dynamic domain. Although the genomes of many organ-

isms have already been identified, most of their function remains unknown, and

bioinformatics continues to see an increase in the data being generated and ser-

vices being developed for more specific areas like proteomics4 and drug discovery.

Indeed, as new information is generated, and data that was previously unknown

gains an identified biological function, existing databases and tools are updated.

• Most of the tasks in bioinformatics involve processing large amounts of data (for

example, humans have more than 30,000 genes, and the entire human genome re-

quires more than 3 gigabytes of computer storage (The Wellcome Trust, 2001)).

These tasks thus typically require significant amounts of processing time and

power.

• Research in bioinformatics, as in other disciplines, is in many cases a coopera-

tive activity. There are many providers of bioinformatics services with altruistic

goals of contributing to the dissemination of knowledge (such as public biological

databases NCBI5, EMBOSS6, etc), and also some with economic goals of earning

money by charging for services (such as commercial search engine tools ProteinL-

ynx and Phenyx). However, current proposals for computer systems that support

the creation of global bioinformatics communities generally adopt cooperative ap-

proaches (Stein et al , 2001; Stein, 2002; Overbeek et al , 2004; Ellisman et al , 2004;

Gao et al , 2005). In particular, these global communities are composed not only of

large research centres (like those providing the services mentioned above) but also

of small research groups and individual researchers who are willing to exchange

services on a cooperative basis with the aim of improving individual and global

results and discoveries.

Some characteristics, such as dynamism and heterogeneity, are common to open dis-

tributed systems in general. However, the large variety of interrelated data and tools

found in the bioinformatics domain and their high computational demand, together with

the cooperative character of service request and provision, are particularly exemplified

in this domain, due to the dramatic explosion of interest and research, and the critical

significance of its results. This raises several interesting challenges. While the domain

has evolved over several years, and generally operates on a cooperative basis with many

individual scientists and organisations participating, it is still emerging. Indeed, as the

technology matures, and as the rewards to be gained from the research increase, there

is a recognised need to move away from an ad hoc approach to one in which cooperation

is supported and encouraged, especially in light of the lack of formal payment systems

for services provided and received. We consider several key issues below.

4Proteomics is the study of the collection of all proteins in a cell, tissue, or organisms in a particular
time (Campbell and Heyer, 2002).

5http://www.ncbi.nlm.nih.gov/Entrez/index.html
6http://emboss.sourceforge.net

Chapter 1 Introduction 5

1. The need to incentivise service provision among participants is a more general

challenge for distributed services (Foster, 2005). Altruism cannot be relied upon

to guarantee service provision, since some service providers (or their organisations)

may have conflicting individual goals and thus may not be willing to cooperate with

others. Moreover, since services are not always paid for, as with the majority of

services in bioinformatics, but since service providers are (or must be considered as)

self-interested entities, some non-monetary incentive for cooperation is important.

Since providing a service always incurs some cost and requesting a service has no

(significant) cost, it is easier for participants joining an open system to request

services than to provide services, and an incentive is necessary to maintain a rich

source of services and resources.

2. Once cooperation is motivated and there are more participants in the open system

providing services (as individuals or organisations), service users may find a variety

of available services. This service variety is beneficial for participants in open

systems, since it is more likely that they will find the required services for achieving

their goals or to improve the results of their problem-solving tasks. However,

service variety also gives rise to the problem that, when a participant is faced with

several alternatives for a required service, it needs a means to select among them.

3. The existence of heterogeneous data and tools suggests a concern with finding those

with particular properties or levels of quality when selecting among alternatives

(for example, finding the service with highest accuracy, with greater availability,

or with faster results).

4. When a system is dynamic, not only may the existing set of services for a particular

task change, but the properties of those services may also change. In addition, in

the former case, the entrance of new service users may cause more demands on

a particular service, making the system more competitive, while new providers

may cause the opposite effect. This suggests that, to cope with such changes, any

decision that participants make over their interactions with other participants of

the open system must be performed dynamically.

5. A common issue for distributed systems with many participants, as observed by

Huhns and Singh (2005), is that it is likely that useful services will become over-

loaded, especially if computational service requesters can generate many more

requests than a human participant. This is particularly relevant for distributed

bioinformatics applications, since most tasks in bioinformatics involve the process-

ing of large amounts of data, and thus require significant computational time and

power. Consequently, service providers may need to limit the number of services

they provide when resources are scarce, in order to avoid being overloaded by tasks

to perform.

Developing computational entities that operate efficiently in open systems in which the

Chapter 1 Introduction 6

above issues arise is challenging, since it involves taking into account many different

aspects of interactions. For example, computational entities must be capable of dif-

ferentiating possible interaction partners dynamically, and of choosing among possible

interactions (also dynamically) by taking into account the properties of others and their

own limitations and preferences. Finally, all decisions relating to interactions must be

taken in a cooperative context, since they may influence existing and potential cooper-

ations. As argued above, such characteristics suggest a need for autonomous, flexible

and cooperative behaviour, and these entities can therefore be seen as agents.

1.3 Agent-based Systems

The agent-oriented paradigm has been advocated as a natural way to design and im-

plement dynamic and heterogeneous distributed systems (Foster et al , 2004; Luck et al ,

2005; Huhns et al , 2005). This is because agents can be viewed as independent mod-

ules that are distributed over a system, and can interact with each other in order to

achieve individual or global goals. More importantly, agents are autonomous (Luck and

d’Inverno, 2001). They are capable of making decisions and solving problems, both

individually and in cooperation with others, in order to perform tasks, overcoming indi-

vidual limitations and achieving more complex goals than might otherwise be achieved.

Such autonomous and cooperative behaviour provides flexibility to cope with changes

first in the system in which agents operate, and second in the properties of the agents

with which they interact.

Moreover, agents are capable of coordinating their tasks, and negotiating with others

to reach agreements over different goals. This is important in open systems in which

participants may need to form partnerships or coalitions despite possibly conflicting

interests and objectives. For example, agents may form a partnership in which each

agent provides a service that the partner is not able to perform, so that each can achieve

its individual goals. Agents can also form coalitions in which each agent provides a

service which is required to achieve a common goal, so that the result is more efficient

than if they were operating alone.

To design cooperative distributed systems, such as those needed in the bioinformatics

domain, and not assuming that all participants have benevolent behaviour, it is nec-

essary to incentivise participants towards cooperation. Such incentives can be of an

economic nature, such as any monetary gain, or of a social nature, such as reciprocal

and cooperative relationships. Since agents are seen as both rational and social entities,

they are capable of economic and social behaviour, the former involving decision-making

strategies to maximise the expected utility of the agent (Parsons and Wooldridge, 2002),

and the latter involving the incorporation of social concepts, like norms and commit-

ments (Castelfranchi, 1998), as part of their reasoning process, thus facilitating the

Chapter 1 Introduction 7

identification and maintenance of cooperation and reciprocity.

Agent-based systems can also be used to simulate the behaviour of distributed systems

when these are designed as comprising multiple interacting autonomous agents with

their own aims and preferences (Dawid et al , 2001; Balmer et al , 2004; Gilbert and

Troitzsch, 2005). This allows the study of possible emergent system-level behaviour and

the identification of characteristics of individual behaviour that can lead to desirable

emergent properties.

In summary, we argue that designing and implementing systems of the kind described

above as collections of autonomous agents that have flexible behaviour is an appropriate

way to cope with dynamism and heterogeneity, while cooperative behaviour is needed

for maintaining the service variety that makes such open distributed systems so valuable

for many domains.

1.4 Research Goals

As described above, agent-based systems are a natural way of designing and implement-

ing distributed systems that are dynamic and heterogeneous, and in which the individual

components are autonomous, cooperative and flexible. However, the specific issues re-

lated to the target domain of bioinformatics, described in Section 1.2, make it difficult

to design agents that cooperate efficiently, since agents must deal with the diversity of

available services, the possible resource limitations for service provision, and with finding

providers willing to cooperate even in the absence of economic gains.

In particular, such agents must be self-interested, reflecting the real world, as opposed

to benevolent, even though they might manifest benevolent behaviour. We assume that

agents are motivated to cooperate with others such that the load of service requests

is shared among different service providers with a balance between service request and

provision in the system. This ensures the longevity of the system through fairness, where

agents (or service providers) continue to participate because they gain and lose in broadly

equal measure, and don’t simply incur costs without benefit. In this context, incentives

for service provision are also important because the more services and information are

available, the greater potential benefit available to participants from accessing them.

Moreover, since such systems are open and dynamic, interactions must be flexible with

participants stopping or starting different interactions at any time. This copes with

participants joining and leaving the system and allows them to terminate interactions if

they are not satisfactory, or not desired (for example, if the quality of a service provider

decreases or if performing a service for another participant will exhaust local resources).

In support of this, participants must therefore be capable of selecting among alternative

interaction partners, since each will offer distinct properties, which may also change due

Chapter 1 Introduction 8

to the dynamism of the environment.

The key aim of this thesis, therefore, is to develop mechanisms to allow effective co-

operation between agents operating in systems that are open, dynamic, heterogeneous,

and cooperative. Such mechanisms are needed in the context of cooperative applications

with services that are free of charge, such as those in bioinformatics, which provides addi-

tional challenges in developing agents with self-interested cooperative behaviour. More

specifically, we can break this broad aim down into the following particular research

goals.

1. Find agents who will cooperate. Agents need to find, from among alternative

partners, those that are more likely to provide services either now or in the near

future. Given the restrictions on cooperative behaviour imposed by free services,

self-interested behaviour, and resource limitations, finding a cooperation partner

could take a long time. To avoid this requires particular actions from service

providers and requesters, as follows.

(a) Incentivise self-interested providers when services are free of

charge. Requesters must make use of non-monetary incentives to motivate

providers to cooperate, even in the absence of any economic gain. This is im-

portant to ensure the longevity of the system and the richness of services and

resources that brings greater potential benefit for participants of the system.

(b) Choose requesters that bring future benefits in terms of poten-

tial cooperation. Providers must engage in interactions that improve their

chances of finding cooperation partners in the future but, at the same time,

they must limit service provision when resources are scarce. Such a strategic

limitation of service provision contributes to effective cooperation since deny-

ing a request in a cooperative environment may affect future interactions, and

some instances of cooperation may bring more benefits than others.

2. Select cooperation partners with the best properties based on individ-

ual agent perspectives. It is likely that agents operating in open systems will

find services being provided with different levels of quality, and that agents have

different perspectives over the quality of services received.

3. Instantiate proposed cooperation mechanisms for systems in the bioin-

formatics domain. Due to the large variety and demand of interrelated services

in bioinformatics, and its cooperative character, using services and resources, and

maintaining their richness in open bioinformatics environments depends on effec-

tive cooperation among their participants. However, such domain-specific proper-

ties present a challenge to developing agents that operate efficiently. Therefore,

tailoring our proposed mechanisms to bioinformatics provides a case study for

agents in open cooperative systems more generally.

Chapter 1 Introduction 9

Although there are existing mechanisms in the literature to achieve parts of these goals

individually, as will be discussed further in this thesis, there are limitations in dealing

with the specific characteristics of open systems that we focus on here, and which can

be found in systems in the bioinformatics domain. We claim that by addressing these

goals, we contribute to the development of self-interested agents that combine flexible

and autonomous behaviour with cooperative behaviour, in order to use and share free

services efficiently in open cooperative applications.

1.5 Research Contributions

The research goals defined in the previous section point to two different types of so-

lutions. First, we need to develop decision-making mechanisms that allow agents to

decide whether to cooperate with others and with whom to cooperate in the constantly

changing open environment. Second, we need to provide the elements on which this

decision-making is based, including the incentives for cooperation, the properties of co-

operations and of other agents in the open system, and the cooperative relationships

among agents.

In this context, the key contribution of this thesis is a set of interrelated mechanisms nec-

essary for supporting and performing decision-making over interactions between agents

in open cooperative systems. Such mechanisms are dynamic, and thus cope with changes

in the environment that might affect existing cooperations, such as changes in the prop-

erties of services, in the set of participants in the system and the services they provide

and request. Moreover, all mechanisms support the view that agents are self-interested,

as opposed to benevolent, preventing participants from having to rely on benevolence

to receive services from others, and contributing to longevity through a fair system of

incentives for service provision. In a general sense, we argue that the latter also con-

tributes to the development of open systems that are rich in the number and variety of

available services, and in which participants take efficient decisions over the interactions

in which they engage.

In carrying out this work, several distinct and specific contributions have been made. We

briefly outline these below, but provide a more substantial discussion of our contributions

at the end of the thesis.

1. We develop a framework for non-monetary interactions among self-interested

agents, based on Piaget’s theory of exchange values (Piaget, 1973), in which the

motivation to cooperate comes from acquiring, accumulating, and spending (non-

monetary) credits and debts that result directly from interactions. Such a frame-

work includes a computational model of Piaget’s exchange values, which defines

how exchange values are accumulated and spent by interacting agents, provides the

Chapter 1 Introduction 10

basic incentive for non-monetary cooperations, and provides a means for agents to

compare the quality of the services provided and received in a cooperation. This

work is presented in Chapter 6.

2. We describe an evaluation method to analyse the outcome of dynamic services,

in order to provide a guide for agents in future decision-making over alternative

interaction partners. We consider the application of the evaluation method to the

bioinformatics domain, in particular to evaluate services used in protein identifica-

tion experiments. Such a mechanism is valuable for agents operating in open sys-

tems in which services are provided with different levels of quality, so that accurate

information about those services can contribute to more efficient decision-making

over interactions. This work, which is presented in Chapter 5, has been published

as follows:

M. R. Rodrigues and M. Luck. Evaluating dynamic services in bioinformatics. In

M. Klusch, M. Rovatsos, and T. Payne, editors, Cooperative Information Agents X,

volume 4149 of Lecture Notes in Artificial Intelligence, pages 183–197. Springer-

Verlag, 2006.

3. We describe a partner selection mechanism for dynamic cooperative applications

with free services, using a social interaction model to allow agents to find available

partners quicker despite the resource limitations of service providers, and changes

in the services that participants provide and need. Such a partner selection mech-

anism is suitable for agents competing for available providers in a cooperative

environment (such as those in which providers must limit service provision due

to resource constraints). In particular, it copes with changes in the environment

that affect existing cooperations by using a dynamic model of interactions and

decision-making (as opposed to other mechanisms that use static models of inter-

actions (Sichman et al , 1994; David et al , 2001)). This work, presented in Chapters

7 and 8, has been published as:

M. R. Rodrigues and M. Luck. Analysing partner selection through exchange val-

ues. In J. Sichman and L. Antunes, editors, Multi-Agent-Based Simulation VI,

volume 3891 of Lecture Notes in Artificial Intelligence, pages 24–40. Springer-

Verlag, 2006.

4. We describe a model for cooperative interactions among self-interested agents and

partner selection strategies that use this model to choose among possible cooper-

ations. The model for cooperative interactions uses non-monetary incentives for

service provision, and provides a means for agents to analyse the cooperations in

which they engage in terms of the quality of the services provided and received in

reciprocation. By using non-monetary incentives for service provision, the model

supports cooperative behaviour among self-interested agents in the context of co-

operative applications with free services. By providing dynamic information about

cooperations, this model supports flexible decision-making in open cooperative en-

Chapter 1 Introduction 11

vironments. This work, presented in Chapters 6, 7 and 8, has been published as:

M. R. Rodrigues and M. Luck. Cooperative interactions: An exchange values

model. In Proceedings of the Coordination, Organization, Institutions and Norms

in Agent Systems Workshop at the Seventeenth European Conference on Artificial

Intelligence, pages 63–70, 2006.

1.6 Thesis Structure

We start this thesis by presenting an overview of agent technology and the mechanisms

it uses to address the problems inherent to distributed cooperative systems. In partic-

ular, we describe existing approaches that deal with some of the research goals stated

in the previous section and their limitations in Chapter 2. In Chapter 3, we introduce

the application domain of bioinformatics and give examples of existing bioinformatics

systems for managing computer-based experiments. Here, we also describe a specific

bioinformatics application which we take as our problem scenario, and identify the tar-

get problems we aim to address and our proposed solutions in more detail. A method

for assessing different properties of services through dynamic evaluation, and its applica-

tion to bioinformatics services are shown in Chapter 5. A computational framework to

incentivise non-monetary cooperative interactions based on a social theory is presented

in Chapter 6. Next, a mechanism for selection of alternative service providers is pre-

sented in Chapter 7, together with strategies for selection according to different criteria.

Similarly, a mechanism for an agent to selecting among incoming requests is introduced

in Chapter 8, together with different selection strategies. Both selection mechanisms

use the proposed evaluation method and computational framework for non-monetary

cooperative interactions through strategies, since each provide a different criteria for

selecting interaction partners which are captured by distinct strategies. Finally, the

different strategies that implement each selection mechanism are compared through an

experimental testbed, in Chapter 9, in order to identify specific advantages and disad-

vantages of each strategy to the specific purposes of each selection mechanism. Since

those strategies use information on the evaluation method and on the computational

framework for non-monetary cooperative interactions, their properties are also tested.

Conclusions and the summary of research contributions are presented in Chapter 10.

Chapter 2

Background Review

2.1 Introduction

Computational entities operating in open distributed systems typically have bounded

resources and capacities, and depend on others to solve problems in order to achieve

their goals. Even when they are capable of achieving their goals alone (because they can

perform all the tasks involved), there may be other participants that can perform the

same tasks but with better quality or in less time. To overcome individual limitations or

dependencies that prevent the achievement of their goals, or to optimise their behaviour,

these computational entities must work together and cooperate.

The problem of cooperation among (autonomous) computational entities that oper-

ate in distributed systems has long been studied in multi-agent systems research, e.g.,

(Wooldridge and Jennings, 1999; Sen and Dutta, 2002; Tate, 2006). In a multi-agent

system, agents are capable of communicating and interacting with each other in a flexi-

ble and autonomous manner, in order to meet their design objectives (Luck et al , 2005).

These characteristics make the agent paradigm suitable for the design of cooperative

computational entities in open distributed systems (Foster et al , 2004; Huhns et al ,

2005). Moreover, agents can be viewed as independent modules that are distributed

across a system, a well-known principle for avoiding the complexity of managing large

systems.

However, since agents in open systems may have different, and sometimes conflicting,

interests and goals, cooperation is difficult to achieve. In particular, due to individual

interests and resource limitations, agents may not always be willing to cooperate with

others. Indeed, agents with different skills and preferences suggests that some cooper-

ations will be more desirable than others, in the sense that some agents may perform

services of better quality and faster, or be more reliable than others. Perhaps more

important is that open systems allow agents to join and leave at any time, requiring

12

Chapter 2 Background Review 13

cooperation to be flexible in the sense that agents might need to terminate existing

cooperations and start new ones.

Effective cooperation among autonomous agents in open systems requires cooperative

behaviour to be motivated, and cooperations to be formed among groups of agents

in order to take advantage of individual diversity. In this context, in this chapter we

review research on cooperative behaviour and the formation of cooperations, and analyse

existing approaches in the multi-agent systems literature.

We start by introducing the notion of agents in Section 2.2. Then, we discuss exist-

ing approaches to coordinating agent behaviour, in Section 2.3, and to motivating and

maintaining cooperative behaviour for achieving local and global goals, in Section 2.4.

We then focus on how agents can form efficient cooperations, both as a group and as a

pair of agents. To achieve this, agents first need a means to find cooperation partners,

and then to solve possible conflicts in forming a cooperation. Therefore, in Section 2.5

we review alternative approaches to finding cooperation partners so that agents take

advantage of relevant skills, or overcome dependencies. Here we focus in more detail

on existing approaches to forming efficient cooperations among a pair of agents. Then,

given that agents in open systems may have different interests, preferences and goals, in

Section 2.6 we focus on how agents can reach agreements through negotiation to form

a cooperation. Finally, in Section 2.7 we discuss the limitations of current approaches

to effective cooperative behaviour in open distributed systems. Note that this chapter

does not aim to provide an extensive review of the topics mentioned above, but to indi-

cate relevant approaches to our problem, so that there is a better understanding of the

problem and a guide to the kinds of solutions that we should seek.

2.2 Agents

In computer science, and more specifically in artificial intelligence (AI), an agent is seen

as a computer system, situated in some environment, and capable of flexible autonomous

action in order to meet its design objectives (Russell and Norvig, 1995; Luck et al , 2005).

This view emphasises four attributes as essential requirements for agenthood: autonomy

(the ability to act without intervention and have control over behaviour towards goal

achievement), reactivity (the ability to react in a timely fashion to perceived conditions

of the environment), social ability (the ability to interact with other agents to facilitate

problem-solving) and pro-activeness (the ability to take the initiative to act and make

decisions).

In addition to the basic properties listed above, further complementary attributes iden-

tified for agents include intelligence, believable personality, mobility, adaptability, and

rationality (Luck and d‘Inverno, 2001). These attributes have more or less importance

according to the applications for which agents are used. For example, an interface agent

Chapter 2 Background Review 14

should manifest believable personality (Bates, 1994) to attract the user’s interest and

attention, and information agents might offer mobility (Glitho et al , 2002), to be able

to search for information in remote sources, more than believable personality.

Although there is some divergence of opinion about the agent concept and its essential

attributes, there seems to be a general consensus that autonomy is the central point

(Wooldridge, 1999). An autonomous agent should be able to act without any interven-

tion (of humans or other agents), and to have full control over its internal state and its

behaviour in order to achieve its goals. A more elaborate concept of autonomy can be

found in (Luck and d’Inverno, 2001), in which it is strongly related to goal generation,

goal adoption and motivation. Specially, Luck and d’Inverno (2001) define autonomous

agents to be those agents that generate their own goals from motivations (as opposed

to goals being generated by the user or by other agents).

Agents are normally situated in environments with other agents with which they interact

to solve problems and to achieve goals. In open and dynamic environments, however,

when agents have limited abilities, resources, and knowledge about the global system

state, they must cooperate with each other and coordinate their actions in order to meet

their individual goals and to form a coherent whole (in which the parts work in harmony)

(Wooldridge, 2002). These are called multi-agent systems. When agents have individual

interests or do not share common goals, they have to negotiate with each other to reach

mutually beneficial agreements so that cooperation and coordination are possible. One

can say that all of this is possible by means of interaction, through which agents can

exchange tasks, information about the environment, and other agents’ abilities and goals.

Interactions between agents in a multi-agent system are not pre-defined, arising as a

result of the agents’ autonomous decisions, and they allow simpler individual behaviours

to be combined, through coordination, cooperation and negotiation, into more complex

global system behaviour. Achieving coordination, cooperation and reaching agreements

through negotiation are central problems for multi-agent systems research.

Within this space, a more specific problem is to find the most appropriate agents to inter-

act with in order to solve some problem. These interaction partners can be agents with

complementary abilities or information necessary to perform a particular task. Partner

selection is the research area within multi-agent systems concerned with mechanisms

and models for choosing which agent or agents to engage in interaction with (Sichman

et al , 1994; Munroe et al , 2004).

The abilities to interact and to work as a group to achieve goals are characteristics

found in both animal and human societies, and because multi-agent systems can also

have these properties, they can be viewed as artificial societies. This makes possible not

only the application of multi-agent systems in social simulation (Conte et al , 1997), but

also the use of social concepts to improve multi-agent systems coordination and cooper-

ation. Examples here include the use of social norms for regulating agents’ interactions

Chapter 2 Background Review 15

(Wooldridge, 2002), and of social dependence (David et al , 2001) for selecting partners,

for example.

The next sections consider coordination and cooperation in more detail, and describe

existing approaches for these problems in the multi-agent systems literature.

2.3 Coordination

Agents operating in a society of agents need to coordinate their actions in order to solve

their problems and to promote harmonic behaviour. Jennings (1996) defines coordina-

tion as the process by which an agent reasons about its local actions and the (anticipated)

actions of others so that the community can act in a coherent manner, and argues that

without coordination, the benefits of decentralised problem solving disappear.

Key approaches to coordinating agents’ activities include: multi-agent planning (Durfee,

1999), commitments (Jennings, 1996), norms (Lopez y Lopez et al , 2005), and organi-

sational structures (Dignum et al , 2002). These all share the idea of constraining agent

behaviour in some way so that coordination is possible. For example, an agent’s ac-

tions might be constrained by taking into account other agents’ plans, commitments

with other agents, and the rules established by an organisation, or by constraining the

possible interactions in which an agent can participate. These approaches are described

in more detail below.

2.3.1 Multi-agent Planning

With multi-agent planning, agents coordinate their activities by analysing other agents’

plans. Planning is one of the most complex issues in multi-agent systems, since agents

are distributed in the system, and an agent’s plan must consider several constraints,

including those over goals (such as missing resources, blocked sub-goals, etc), capabili-

ties (such as limited skills to perform tasks), the environment (such as limited access to

global information), as well as those constraints that others place on an agent’s choices

(since one agent can choose to use a resource that is also needed by another). Multi-agent

planning can be achieved by having a central control agent to address plan interdepen-

dencies before action, as in (Georgeff, 1983). Although such an approach offers a fairly

simple solution for distributed planning, it is susceptible to the failure of the central

control agent, which is also a bottleneck for system performance. As an alternative, and

based on the idea that agents do not need to have local access to all necessary infor-

mation for constructing their plans, Durfee (1999) developed the partial global planning

approach, in which agents interact with each other to communicate plans and goals in

order to form expectations about the others’ future behaviour and to adjust their own

local planning.

Chapter 2 Background Review 16

2.3.2 Joint Commitments

As argued by Jennings (1996), commitments and conventions are the fundamental mech-

anisms for coordinating agent behaviour. If an agent commits itself to perform an action,

this obligation constrains its decision about future actions, and enables other agents to

make assumptions about the actions of this agent in the community. Commitments

are associated with conventions, which describe the circumstances under which an agent

should reconsider its commitments, and indicate the appropriate actions an agent should

undertake to abandon a commitment.

In particular, when agents decide to cooperate in some activity, they must have a joint

commitment towards a common goal and share social conventions, which specify how

agents should behave with respect to other agents participating in the cooperative ac-

tivity when their commitments change.

In short, commitments and conventions provide the necessary requirements for coor-

dinated activity in dynamic environments, since commitments provide the support for

predictable interactions, and conventions provide flexibility of behaviour (in that when

conditions change, commitments should be revised and changed if appropriate).

2.3.3 Norms

Norms are established, expected patterns of behaviour. Human societies have numerous

types of norms, which define expected behaviour in many situations. For example, in

places such as banks and bus stops, people are expected to form queues by having new

arrivals join the rear of the queue and wait for their turn; in restaurants, people are

expected to follow etiquette norms during their meals. These are social norms, which

are not enforced in any way, but establish a pattern of acceptable behaviour that helps

individuals to self-regulate. If someone is driving a car, he or she is expected to follow

the norms of the road and to have a driving licence, a legal norm defined by the state and

enforced by severe penalties. In the same way that norms coordinate human behaviour,

they can be used to coordinate agent behaviour, by establishing expected behaviour and

by constraining individual freedom.

The implementation of norms can be achieved by using pre-designed rules that are hard-

wired into agents. For dynamic and open systems, however, this approach is not suitable

if changes in the environment can require the creation of new rules or the modification

or deletion of existing rules. In addition, an agent that joins a new community in an

open system should be able to adopt the norms of that community. Indeed, Conte et al

(1998) argue that, to cope with dynamism and openness, agents must be able to recog-

nise a norm as a normative structure, and to decide whether to adopt a norm, a process

that is known as norm acceptance. In addition to deciding upon norm acceptance and

Chapter 2 Background Review 17

adoption, Dignum (1999) argues that agents in dynamic environments should also have

the autonomy to decide for themselves whether to violate a norm (for example, when

an agent faces a dishonest partner and wants to break the conventions to protect its

interests). Flexible normative structures can thus help agents to cope with dynamic

and open environments for effective coordination through norms. Lopez y Lopez et al

(2005) describe a normative framework for open societies to cope with heterogeneity and

diversity of interests among their members. This is achieved with a model of norms, a

model of normative multi-agent systems and a model of normative autonomous agents.

2.3.4 Organisational structures

Organisational structures can be used in multi-agent systems, as in human societies,

to regulate behaviour and to specify interaction patterns for promoting coordination

(Dignum and Dignum, 2001). By constraining the possible interactions between agents,

an organisation can enforce global order and goals. In dynamic and open systems,

modeling organisations requires the organisation structure and rules to be independent

from the agents’ internal structure, so that they are able to join new organisations and

internalise their structure and rules.

Dignum et al (2002) present a framework for designing organisations in which possible

interactions are independent of the internal design of the agent, and organisational

characteristics are integrated with agent goals such that their autonomy is preserved.

The framework assumes that a set of roles and norms is designed for an organisation,

representing its goals and structure, and that roles are fulfilled by agents which behave

according to their roles, and commit to the goals they are expected to achieve. In this

framework, agents commit to roles by means of contracts.

2.4 Cooperation

Cooperation is the process through which agents choose to work together to achieve a

common goal (Wooldridge and Jennings, 1999). In an ideal world, in which all agents are

benevolent and willing to help others, cooperation is straightforward. In most real and

open systems in which agents have individual interests, this assumption is rarely valid,

however, and mechanisms or models to motivate cooperative behaviour are required.

Some theories behind cooperation are inspired by economics, where the major contribu-

tion comes from game theory (Wellman, 1995; Parsons and Jennings, 1996). Although

this provides a good mathematical and practical framework, it is mostly directed to-

wards applications in which agents get some economical gain from a cooperation. It also

limits the agents’ motivations to utility measures and does not consider other aspects of

Chapter 2 Background Review 18

cooperative behaviour in society (for example, taking into account reciprocation, values,

and social norms) (Castelfranchi and Conte, 1998).

Alternatives to economical approaches to cooperation include those inspired by evo-

lutionary processes (Riolo et al , 2001), and those in which cooperation is based on

reciprocity. In the latter approach, there are different ways to achieve reciprocity among

autonomous agents. For example, social incentives can be provided for agents to coop-

erate with others (Glass and Grosz, 2000), such as to increase the priority of cooperative

agents when they need to compete with others to execute some task. Also, agents can

use expectations of future interactions as an incentive to reciprocate (Sen et al , 2003;

Banerjee et al , 2005). Reciprocity can also be enforced by norms and organisational

structures (Dignum and Dignum, 2003). These different approaches to cooperation are

described next.

2.4.1 Evolutionary Approaches to Cooperation

Evolutionary approaches use cooperation to evolve from interactions among self-

interested agents. The basic idea is that agents interact with each other using dif-

ferent strategies to choose whether to cooperate. Each combination of the choices of the

agents results in an interaction payoff for the agents. Evolution occurs by replicating

successful strategies (that is, those resulting in higher payoffs) in the agent population.

Agents therefore have an incentive to cooperate if cooperative strategies are success-

ful. The challenge is then to develop cooperative strategies capable of outperforming

non-cooperative strategies.

In (Hales and Arteconi, 2006), a dynamic algorithm is presented, which executes in

individual entities in a distributed system. It uses social tag, a mark attached to an

entity that is visible to others (Hales and Edmonds, 2005), and simple evolutionary

techniques to achieve cooperative behaviour among entities, without explicit reciprocity.

Each entity has a tag and a strategy (which here can be cooperate or defect), and entities

with identical tags are seen as forming a group. The algorithm consists of choosing a

pair of entities within the system with similar tags, and comparing the performance of

the original entity with the chosen one. If the chosen entity has a higher performance,

the original entity copies its strategy. The algorithm also makes random changes to

an entity’s strategy with low probability (in order to mimic the process of evolutionary

mutation). The fundamental idea is that cooperative groups are formed, and these

outperform non-cooperative groups, and thus pass their cooperative strategy on to other

entities in the system. This algorithm was applied to nodes in a simulated peer-to-peer

system and was shown to maintain high levels of cooperation among nodes. A similar

approach that studies the establishment of cooperation without reciprocity, through

tags, is presented in (Riolo et al , 2001).

Chapter 2 Background Review 19

A distinct approach appears in (Feldman et al , 2004), in which cooperative strategies

are based on reciprocity. Here agents use their history of other agents’ actions to decide

whether to cooperate. This decision is based on a generosity measure for the partner

agent, which represents the benefit that the partner agent has provided in relation to

the benefit it has consumed. Agents interact in pairs and use their strategies to decide

whether to cooperate. Then, agents replace their strategies with the most successful one

and apply a mutation to that strategy with a low probability. This approach achieves

high levels of cooperation when applied to computational entities in an open system.

2.4.2 Social Incentives and Reciprocity

Alternatives to evolutionary approaches, in which cooperative behaviour is achieved

through repeated interactions, include consideration of social incentives, norms, and

expected reciprocity in the agents’ decision-making over interactions.

Glass and Grosz (2000) present a decision-making model in which monetary factors and

social non-monetary utility are weighted to reconcile the agent’s social intention with

individual interests when participating in collaborative work group. Here, agents have

a set of tasks to complete as part of the group activity, and a set of external tasks as

part of their individual activities, which conflict with group activities. The proposed

socially aware decision-making mechanism is applied to determining whether to defect

from group activities and complete personal tasks. It uses a brownie point model to

support the consideration of social factors in decision-making, calculated based not only

on the utility of the task it is considering defecting from, but also on the utility of the

outside offer it is considering accepting, and on the agent’s history of collaboration (the

more the agent has collaborated in the past, the less it will punish itself for defecting).

Norms and organisational structures can be used to enforce reciprocation. Dignum

(1999), for example, proposes the use of contracts and norms to determine the obliga-

tions and punishments for agents regarding a cooperation. In this sense, norms such as

“cooperate with others, if possible” or “reciprocate to others” can result in cooperative

behaviour. Of course, to adopt such norms, autonomous agents must be able to rea-

son about the norms and decide whether to adopt or violate those norms (Conte et al ,

1998). Similarly, Dignum and Dignum (2003) present a multi-agent organisational model

in which reciprocity is enforced by concrete and explicit commitments, which establish

what each agent is supposed to contribute to, and expects from, a cooperation.

The analysis of reciprocal interactions as an incentive to cooperate with other agents is

proposed by Sen et al (2003) and Banerjee et al (2005) in the form of expected utility-

based decision-making. According to this approach, agents agree to cooperate if the cost

of helping the requester agent is smaller than the expected benefit of receiving help from

the requester and other agents in the future. By considering expected future help in the

Chapter 2 Background Review 20

providers’ utility function, agents are motivated to cooperate with each other since the

probability of receiving resources increases with the number of times they help others.

Once cooperative behaviour is motivated, agents can form cooperations to achieve indi-

vidual or common goals. The issues related to the formation of cooperations and existing

approaches to form successful cooperations are described next.

2.5 Forming Cooperations

Agents with a range of abilities and resources usually co-exist in open distributed sys-

tems. Therefore, agents have the option to join, or to form, alternative cooperations

or virtual organisations (VOs) (Norman et al , 2004). Some cooperations will be more

successful than others, in the sense that they will result in higher or more stable bene-

fits for their members. In multi-agent systems, partnership formation mechanisms and

models are concerned with optimising the formation of cooperations.

We are concerned here with cooperations among two agents, in which one performs

some service on the other’s behalf. In this space, different approaches towards selecting

a cooperation partner have been proposed, both in multi-agent systems and in service-

oriented literature. While the former refers to partner selection, the latter refers to

service selection approaches. From now on we will use the terms, partners and services,

interchangeably, meaning that a service can also be viewed as an agent or can be provided

by an agent.

Some approaches to partner selection use static selection (like (Stevens et al , 2003) and

(Gao et al , 2005)), in which partners are pre-selected for each needed task, while others

use dynamic selection, in which partners are selected at execution time according to

information about the state and properties of both partners involved in the cooperation

(that is, the service receiver and the service provider).

In dynamic and open systems, the selection of partners must be dynamic in order to

cope with changes in the environment and the services that they provide, and the incor-

poration of new services. A straightforward approach to dynamic selection is to define

a set of quality attributes desired for the service provider (e.g., cost and execution time

for the service), and to compare it with the set of attributes provided (estimated) by

the service providers to find which of them has the best desired attributes (Goble et al ,

2003). Although this approach is fairly simple, it has at least two limitations: first,

one cannot guarantee that the information given by service providers is correct, and

second, even if the information is correct in one specific situation, it can be erroneous in

other situations (e.g., when a provider has less computer power available due to other

processes being executed at the same time, or when messages take longer to reach target

machines due to intensive network traffic). Instead, personal experiences with service

Chapter 2 Background Review 21

providers, such as prior service performance and quality, can help to get more accurate

information over service attributes when selecting in dynamic and open systems.

In addition to information on service properties, partner selection mechanisms for coop-

erative systems in which services are free of charge, also consider the cooperative rela-

tionships between requester and providers. This is because providers are not obliged

to accept requests, and thus requesters rely on their cooperative relationships with

providers to find those that are more likely to accept their requests. Since coopera-

tion is not inherent to an agent or any other computational entity, but is commonly

found in human social theory, partner selection mechanisms for cooperative systems

often use social-related concepts to underpin their models.

In this context, we review in the next sections examples of partner selection mecha-

nisms designed for dynamic systems, which use prior information about service prop-

erties (evaluation-based and similarity based selection) and service reliability (trust-

based selection), and selection mechanisms for cooperative systems, which use social-

related concepts to identify cooperative relationships between providers and requesters

(dependence-based selection).

2.5.1 Evaluation-based Selection

If we assume that services (or providers) present a certain regularity of behaviour, such

that a service that performed well in the past tends to perform well in the future,

then service selection can be based on the evaluation of services received in previous

interactions.

In (Casati et al , 2004) a service selection platform is proposed which is based on prob-

abilistic and context-sensitive information over services. It uses a service evaluation

mechanism together with context information to generate a classification ranking for

service providers. Service evaluation is based on user-defined quality goals and on the

results of monitoring information: after the user identifies quality goals and metrics, the

system deploys a monitoring tool to log conversations between users and providers. This

conversation data is then labelled with quality measures as a function of the metrics de-

fined by the user (either by defining a function to generate the measures, or by getting

explicit quality measures as feedback from users). Once quality measures are available,

service execution data (conversations) can be mined to build a set of models that identify

(rank) those service providers that historically, in analogous situations, have provided

high quality measures. Selection models are decision trees that, for each context, classify

service providers according to the quality measure, and within this, providers are ranked

according to the probability of achieving that measure in the specific context. The ser-

vice provider that fits the quality measure and has the greatest probability of achieving

that measure is selected. Although this approach uses more reliable information about

Chapter 2 Background Review 22

services, since service results are monitored and evaluated in comparison to user goals,

it assumes a fixed set of service providers, but it is not clear how this set is updated.

A similar approach, which considers prior information about services but also infor-

mation provided by third-party clients, is presented by Day and Deters (2004). Their

approach is to augment the client side, so that it can reason about different service

providers and choose the best for its needs. The client selects the best service based

on its prior experience with services available in the system, as well as the experiences

reported by other clients. The system works as follows: the results of interactions be-

tween clients and web services (i.e., values for selected properties of the services) are

represented in what are called semantic models, which are reported by the clients to a

quality of service (QoS) forum; these semantic models are then retrieved and analysed

by a reasoning mechanism on the augmented client. However, the system is not scalable

due to the size of the client’s semantic models archive, which is costly for reporting to

the QoS forum.

2.5.2 Similarity-based Selection

A different problem in service selection is addressed by Caverlee et al (2004), who de-

scribe a group of techniques used to discover, evaluate and rank web services (the targets)

according to their similarity with respect to a known service (the source). Their system,

BASIL, and its components, comprise a technique to generate service summaries (which

indicate the frequency of specific terms in each document returned by the web service),

and metrics for measuring the relevance of a web service (target) in comparison to a

known service (source).

To evaluate a target service, the system compares the presence or absence of a set of

terms in the source service documents with the target service documents. The idea is

that the closer the frequency of terms in a target service is to the frequency of terms

in the source service, the more related these two services are. Using this similarity

measure, target services can then be ranked to find those more relevant to the source

service. This method can be used to complement more common evaluation schemes,

such as those evaluating an individual service by comparing its expected and delivered

quality of service, for example.

2.5.3 Trust-based Selection

In open and dynamic systems with self-interested agents, even if a client and a provider

establish an agreement for the service being provided, it is not guaranteed that the

provider will actually perform the service, or that the service will be delivered with the

agreed quality. To avoid such unsuccessful service provision, agents can select between

Chapter 2 Background Review 23

service providers by using trust-based models, which define trust metrics indicating the

reliability of providers. Trust-based selection is based on the principle that, if an agent

trusts another agent to perform a service, it believes that the latter has the ability and

willingness to do it, and thus a trusted provider is preferred over a distrusted one when

selecting providers. Related to the concept of trust is that of reputation, which is the

opinion of others about an individual (so that an agent trusts another agent if the latter

has a good reputation).

Sabater and Sierra (2001) and Birk (2001) propose trust models that use prior experience

with interaction partners to derive trust and reputation metrics. Birk describes an

evolutionary-based approach for learning to trust agents based on their trustworthiness

as interaction partners, such that after repeated interactions, agents learn whether to

trust other agents (by generating a trust metric), and use this information to decide

in which social interactions to engage. In the REGRET system proposed by Sabater

and Sierra (2001), trust and reputation metrics are derived not only from the past

experiences of the requesting agent with interaction partners, but also from those of

others. Although the REGRET system provides a sophisticated model of trust (in that

it considers an agent’s own prior experiences and the prior experiences of others), it

assumes that the information that an agent receives from another which belongs to the

same group or VO is always true.

To cope with the case of agents giving false information about their experiences with

others, Teacy et al (2005) propose a trust model for partner selection based on prob-

ability theory in which agents can cope with inaccurate reputation sources by filtering

out opinions provided by such sources. In their approach, the final trust metric avoids

bias by agents that provide false reputation information.

2.5.4 Dependence-based Selection

In a cooperative system in which agents need to request services from others, one way

to achieve cooperation is to observe the dependencies between requesters and providers.

The concept of social dependence in multi-agent systems was first proposed by Castel-

franchi (Castelfranchi, 1990; Castelfranchi et al , 1992), for whom dependence represents

the situation in which an individual needs a resource (such as an object, a task to be

performed, or a piece of information) that it does not possess or have access to, but

which can be provided by another, giving the latter influence over the former. The basic

definition of social dependence is that an agent x depends on an agent y regarding an

action a needed for achieving a goal g, if x is not capable of performing a but y is. In

this case, agent y’s action a is viewed by agent x as a resource for achieving g. When

agents x and y depend on each other, there is a bilateral dependence between them, and

when agent x depends on agent y but y does not depend on x, there is a unilateral

dependence between them.

Chapter 2 Background Review 24

Associated with this is the notion of power of influence of one agent over another (Castel-

franchi, 1990). Dependence relations can be associated with the power of influence in the

sense that when agent x depends on agent y for achieving a goal, it becomes susceptible

to the influence of the latter agent. In this view, agents structure their interactions to

take advantage of situations in which they can exert influence to ensure the compliance

of agents with their requests. Consequently, reasoning about these relationships allows

agents to achieve better interactions, since an agent is able to control its interactions

according to its own interests, by obtaining power through dependence relations.

Partner selection and coalition formation mechanisms that take into account the depen-

dence of services between agents are proposed by Sichman et al (1994) and David et al

(2001). The principle here is that cooperation takes place between two or more agents

if they can provide services to each other (they depend on each other for one or more

services that they need). Thus, agents with a bilateral dependence are more likely to

interact with each other.

When the actual formation of a cooperation requires that agents reach agreements over

conflicting interests or over their responsibilities in the cooperative relationship, the

selection of partners also involves a negotiation process. We discuss in the next section

the selection of partners through negotiation.

2.6 Negotiation

As agents have individual, sometimes conflicting goals and vary in their abilities to

perform tasks, the efficiency of a cooperation requires that agents negotiate with each

other in order to reach agreements and achieve their goals in the best possible way. A

similar view is presented by Jennings et al (1998), in which negotiation is defined as a

method for coordination and conflict resolution: coordination in the sense that agents

frequently need to resolve goal disparities in planning (such as simultaneous access to the

same resource), and conflict resolution in the sense that agents need to solve problems

that arise from inter-dependencies.

Beer et al (1999) identify three broad topics for research on negotiation: negotiation

protocols, negotiation objects, and reasoning models for negotiation. Negotiation pro-

tocols state a set of rules to be applied to the negotiation process between agents, while

negotiation objects are the issues related to the agreement to be made, which can con-

cern price, timing, availability, or even access permission. Finally, reasoning models

are concerned with the decision-making necessary for agents to reach agreements, and

their complexity depends on the protocol used and the range of aspects related to the

negotiation object. In the next sections, we describe common negotiation protocols for

multi-agent systems and the decisions required to negotiate in each protocol.

Chapter 2 Background Review 25

2.6.1 Contract Net Protocol

A classic example of a negotiation protocol is the Contract Net Protocol (Smith, 1981),

in which an agent can dynamically find a task provider to which it awards a contract.

Agents can assume two roles in the protocol: manager or contractor, with no restrictions

on the number or type of role. A manager agent looks for a task provider to which to

award a contract, and a contractor agent offers a task it is capable of performing.

The protocol is initiated by the manager agent, which announces a needed task and its

desired specifications by broadcasting a message to other agents in the system. The

contractor agents that are capable of performing the task send bids to the manager

agent with their specifications for the task. After receiving a number of bids, or after a

timeout, the manager analyses the received bids, and awards a task contract to the best

bidder.

Because of its simplicity, the Contract Net Protocol is widely used for negotiation in

multi-agent systems. However, it has some performance limitations, as follows:

• because it assumes the manager does not inform bidders when it rejects a bid,

contractors lose time waiting for a reply;

• because managers do not evaluate the performed task, they may continue awarding

contracts to low quality contractors; and

• since the manager must send messages to all agents in the system and all of them

must reply, a multi-agent system with hundreds of agents generates heavy traffic.

The protocol also has limitations for self-interested agents, since it assumes that potential

contractors always send bids unless they are not eligible for a task, but agents may prefer

not to perform tasks for others.

2.6.2 Auctions

An auction is a negotiation process between an auctioneer, which wants to sell or allocate

an item, and a group of agents called bidders, which want to acquire the item. An

example of an auction system is the internet auction site eBay.

Both auctioneers and bidders define strategies to optimise their goals, which aim, respec-

tively, to get the highest possible price for an item, and to pay the lowest possible price

for an item. Auction protocols have a number of settings, which specify how the price

to be paid by the winner bidder is determined, what kind of knowledge the bidders have

about the bid, and how the highest bid is determined (Wooldridge, 2002). For example,

depending on how the price is determined, the agent placing the highest bid pays the

Chapter 2 Background Review 26

amount of its bid (first-price auction), or it pays the amount of the second highest bid

(second-price auction). Also, regarding the knowledge of the bid, agents might be able

to see each others’ bids (open cry auction), or not (sealed bid auction). Finally, depend-

ing on the auction protocol, the highest bid is determined after one round of bidding

(one shot auction), or the highest bid is determined after successive bidding (ascending

or descending) until bids stop.

The different combinations of the settings above form different types of auctions, of

which the most common are the following:

• English auctions, which are first-price, open cry, ascending auctions;

• Dutch auctions, which are first-price, open cry, descending auctions; and

• Vickrey auctions, which are second-price, sealed bid, one-shot auctions.

To negotiate using an auction protocol, agents use strategies that depend on the protocol

settings and type of auction used.

2.6.3 Agreements and Negotiation for Service-oriented Systems

Negotiation is currently being applied to the service-oriented domain to provide a more

formal relationship between service providers and consumers, so that consumers have

guarantees related to the quality of the services they use. In this context, a theoretical

view of negotiation and its issues is presented by Elfatatry and Layzell (2004), who

describe negotiation in service-oriented systems as a type of interaction aimed at estab-

lishing the users’ needs dynamically. They argue that negotiation should be designed

as a three-phase process: pre-negotiation, negotiation, and service delivery. The pre-

negotiation phase involves the tasks of: service selection, which is based on the analysis

of different services and their attributes; provider selection; and prediction of service us-

age, which is the anticipation of the use of further services to avoid loss in performance

due to negotiation procedures. The negotiation phase involves the exchange of messages

and contract templates between the parties with the aim of reaching an agreement, with

the interaction being governed by the rules of a negotiation protocol. If the parties agree

upon a contract, the service delivery phase starts, and involves the implementation of

what the parties agreed in the contract.

In the particular case of web services, the web services community has proposed a specifi-

cation, WS-Agreement (Andrieux et al , 2004), to provide a unified language and protocol

for advertising the capabilities of providers, creating agreements, and monitoring agree-

ment compliance at runtime. An agreement can provide, for example, guarantees on

the bounds of service execution time and availability, or on the availability of minimum

resources like memory and CPU.

Chapter 2 Background Review 27

According to the WS-Agreement specification, an agreement includes information on

agreement parties, reference to previous agreements, reference to the agreement context,

service definition terms, and guarantee terms. It also includes definition of agreement

templates and protocols for creating agreements. Protocols for negotiating agreements

are not part of the WS-Agreement specification, but the specification must be used as

a basis for designing negotiation protocols.

A concrete effort to implement a negotiation model for operating with web services is

presented in (Hung et al , 2004), which discusses a negotiation model for web service

providers and clients, and proposes a declarative XML language, WS-Negotiation, for

automating the negotiation process between service providers and clients. The proposed

negotiation model has three components:

• a negotiation message, describing the format of the messages exchanged between

participants;

• a negotiation protocol, describing the steps and rules the participants should follow;

and

• a negotiation decision-making process, which is implemented as an internal decision

process of each negotiation party and uses a cost-benefit model.

According to the model, the two parties first negotiate over service requirements (like

price, response time and availability), and when the negotiation is finished, a service-

level agreement (SLA) document is created, containing the guarantees and obligations

of the negotiation parties.

2.7 Limitations of Current Approaches

While this review makes clear that there are readily available techniques for achieving

cooperative behaviour among agents in a multi-agent system and for selecting interaction

partners, in this thesis we focus on a different problem that has not generally been

addressed. In particular, we are concerned with agents operating in open cooperative

systems. We assume that such agents are self-interested, in the sense that they might

not always be willing to cooperate with others due to individual interests or resource

limitations and, additionally, that services are not always priced and may be provided

free of charge.

Effective cooperation in this context requires cooperative behaviour to be motivated, so

that agents have the incentive to cooperate even in the absence of any economic gain, and

agents requesting services do not have to rely on altruism to guarantee service provision.

Moreover, since agents in open systems are highly heterogeneous, with different skills

Chapter 2 Background Review 28

and preferences, it is not desirable for all possible cooperations to take place. Therefore,

agents need some means for choosing between alternative cooperations.

Although there are various approaches to achieving cooperative behaviour among self-

interested agents without economic compensation, they have some limitations. Evolu-

tionary approaches do not consider the real motivations of agents to cooperate with

others, nor the properties of alternative partners (since in most approaches partners are

selected at random (Feldman et al , 2004) or are selected among agents from the same

group (Riolo et al , 2001)). Therefore, they do not provide any grounds for an agent to

make autonomous decisions over interactions.

Most existing approaches using social incentives and reciprocity provide explicit incen-

tives for agents to cooperative with others, but they do not account for the differences

in the properties of alternative partners. In particular, in the brownie point approach

(Glass and Grosz, 2000), although there is an incentive for group cooperation, there is no

concrete benefit for the agent in gaining a brownie point when it depends on others to ex-

ecute its own tasks. This is because brownie points represent an agent’s self-valorisation

(the agent rewards itself for cooperating in a team) and not the valorisation an agent

receives from others in response to the provided service, which could then be used to

receive a service in reciprocation in the future.

In utility-based decision-making, which considers expectations of future interactions (Sen

et al , 2003), agents that depend on each other have the incentive to cooperate to improve

expectations of future interactions. However, this approach does not consider the success

of the cooperative relations in terms of the counterbalance between provided and received

services, which is important if the environment has agents with different preferences

and perspectives, or even agents that reciprocate but by providing low quality services.

Finally, regarding normative and organisation-based approaches (Dignum, 1999; Dignum

and Dignum, 2003), we argue that instead of being used to motivate cooperations, they

are more appropriate to enforce reciprocation by ensuring that agents do reciprocate

through norms, contracts, and so on.

Regarding the problem of forming cooperations, current mechanisms consider either

information on the properties of provided services (such as service evaluation and sim-

ilarity) (Casati et al , 2004; Caverlee et al , 2004) or reciprocal relationships between

providers and requesters (Sichman et al , 1994; David et al , 2001). However, in an open

cooperative system, both types of information are relevant when choosing a cooperation

partner, and there is no attempt to balance this information in a single partner selection

mechanism.

A key challenge in open systems with free services, therefore, is to enable cooperative

behaviour of self-interested providers and requesters to result from their autonomous

decision-making. This requires a means not only to provide non-monetary incentives

for service providers, but also to account for the level of quality of cooperations, in terms

Chapter 2 Background Review 29

of the quality of provided and received services. There is also a need for selection mech-

anisms that balance aspects of reciprocation, service quality, and resource limitations,

each of which is relevant to cooperation in the kinds of systems we consider. In the rest

of this thesis, we develop mechanisms and models to meet this challenge.

Chapter 3

Problem Scenario

3.1 Introduction

Computational systems in which participants share personal tools and data, are becom-

ing very popular, both in commercial and academic communities. Computer programs

with different purposes and functionalities are constantly being produced, as well as data

of different kinds (including scientific publications, newspapers, experimental results in

physics, biology, computer science, and so on). Instead of being just for personal use,

these tools and data can be made accessible to others as services in a distributed sys-

tem, so that a participant in such a system can make requests from a remote service and

receive results after the service has completed. With such systems, participants can gain

access to services they would not otherwise be able to access if they were in an isolated

and closed system, and can request services at the time they are needed, without being

connected to just one service all the time. Such characteristics are specially desirable

for application domains that are constantly changing, since newly discovered data and

newly developed tools can be made available to others.

One such domain is bioinformatics, which has seen an explosion in the number of devel-

oped services since the start of genome sequencing projects all over the world. Indeed, it

continues to see an increase in the number of services being developed for more specific

areas like proteomics and drug discovery. In addition, in many bioinformatics laborato-

ries, unique data sets are being created that are not published in public databases, but

could usefully be shared with the global community. Conversely, the number of services

available in closed bioinformatics systems is limited when compared with the variety

of services that are available in the global open community. In particular, access to a

wider range of services, including private tools and databases, can facilitate the search

for, and use of, more suitable services, of better quality, in order to improve the results

of bioinformatics experiments more generally.

Although there are benefits for participants to have the opportunity to interact with a

30

Chapter 3 Problem Scenario 31

large number of providers and requesters, it is not desirable for all possible interactions

to take place. First, because services with different characteristics are available, not all of

them will have the same quality or will take the same time to return results. With some

services being better than others, it is important that participants are able to choose

those with better properties, like higher quality or smaller response time. Thus, when a

participant requesting a service can find several alternatives with similar functionalities,

some mechanism is needed to select the service most suitable for its needs, for example in

terms of performance, quality, and speed. In addition, when participants in a distributed

application are self-interested, service providers need some compensation to be given in

return for their effort and investment in performing a service, and requesters need to be

sensitive to this need in order to be able to find a service provider willing to accept its

request in a timely fashion.

Since participants providing services may receive many requests from others, and per-

forming such requests may be computationally costly (as in the case of bioinformatics

services which usually involve processing large amounts of data), from a provider’s per-

spective it is necessary to limit service provision to avoid being overwhelmed with services

to provide for others. In addition, providers must have the autonomy to decide whether

to accept requests at all. Thus, when a participant providing a service receives more

requests than its available computational power or wants to select which interactions to

engage in, some mechanism is necessary to choose between incoming requests.

In this chapter we investigate open cooperative systems in the context of bioinformatics,

which we use as a problem scenario, since it offers characteristics of dynamism, service

variety, and resource constraints, giving rise to the problems in requesting and providing

services described above.

The chapter is organised as follows. We first introduce the bioinformatics domain and

discuss the particular area of proteomics in Section 3.2. Next, we present an overview

of existing computational tools used in bioinformatics research in Section 3.3, and the

key distributed applications that have been proposed to integrate bioinformatics tools

in Section 3.4. Our bioinformatics application scenario is presented in Section 3.5. We

then identify the requirements for the effective operation of the application scenario in

Section 3.6, and discuss the key problems to be addressed in the target domain. Finally,

we conclude in Section 3.7.

3.2 Bioinformatics and Proteomics

Bioinformatics is a new field of research characterised by the application of computer

technology to the management and analysis of biological data (i.e., to gather, store,

analyse and merge genome related information).

Chapter 3 Problem Scenario 32

The development of this new research area was motivated by the beginning of several

sequencing projects for genomes of various organisms such as small bacteria, viruses,

insects, plans, mammals and, most importantly, the Human Genome Project (The Well-

come Trust, 2001). The amount of data generated by genome sequencing projects grew

so fast that manual analysis became almost impossible, demanding the assistance of

computational tools.

The fundamental goal of bioinformatics is to uncover the wealth of biological information

hidden in the mass of sequence data produced by genome sequencing projects. With

this knowledge, scientists can obtain a clearer insight into the fundamental biology of

organisms to elucidate complex biological processes that are not yet completely un-

derstood, such as the transcription and translation processes, gene expression, protein

folding, and the way genes, proteins, and the cell interact with each other. Providing

such knowledge of gene and protein-related processes, bioinformatics ultimately aims to

produce better and more customised medicines to prevent or cure diseases. Other areas

that can also benefit from genomic information and, consequently, from bioinformatics

research, include research on environmental issues (like the identification of bacteria for

naturally clean waste) and on agriculture (such as the production of high yield and low

maintenance crops).

Although the sequencing of entire genomes from various organisms has been a great step

forward towards achieving the goal of discovering the richness of biological information

hidden in genome sequences, the raw data that has been generated cannot be used

without attaching to it relevant biological meaning (i.e., whether a stretch of DNA

contains an amino acid coding sequence, or a regulatory sequence and, if an amino acid

is coded, its biological function, and so on). As Kim (2002) states, the next step in

bioinformatics research is to “synthesize information into knowledge”.

The challenge facing genome scientists now is to make sense of the wealth of data that has

been produced by genome sequencing projects. The huge amount of raw biological data

has increased the complexity of annotation processes (in attaching relevant biological

meaning to new data) and, as a consequence, has led to a change in the way scientists

annotate genome sequences: from manual experimentation and human-based analysis

to computer-based analysis.

Although there are still many challenges related to genomics, several of the technological

barriers to obtaining genomic information seem to be solved, since entire genomes can

be sequenced in a very short time with high-throughput sequencing techniques. Because

of this, many believe we are now in the post genomic era (Tyers and Mann, 2003), in

which the next challenge is to understand the proteome: the collection of all proteins

of a given organism (Campbell and Heyer, 2002). Different from DNA, proteins have

a dynamic nature: while each cell has the same genome, each cell type in an organ-

ism has a different proteome, and every given cell changes its proteome over time (for

Chapter 3 Problem Scenario 33

example, due to ageing, infections, and even diet and medication). The study of the

proteome on a high-throughput scale is called proteomics, which also includes the study

of protein interactions, protein modifications, and protein structure. Since proteins are

gene products, the study of the proteome is only possible due to the achievements of

genomics.

In what follows, we first describe software tools used in bioinformatics, and then appli-

cations for integrating and sharing those tools.

3.3 Bioinformatics Tools

To clarify the function of software tools used in bioinformatics and the original need

that motivated their development, we can separate them into two categories: prediction

tools and analysis tools.

Prediction tools are used to find new biological information with the application of

particular prediction models, based on specific biological knowledge. This is the case,

for example, with gene prediction tools, which provide information on gene location

based on genetic patterns for coding regions in DNA sequences.

On the other hand, analysis tools use existing information stored in biological databases

to infer knowledge about novel molecular sequences. This is the case with search en-

gine tools, which search sequences of unknown structure and function against biological

databases to find similarities with sequences whose structure and function are already

known.

Prediction and analysis tools are largely used in the process of genome annotation,

which consists of attaching relevant biological knowledge to unknown DNA sequences,

by combining genomic information from different databases. In proteomics, analysis

tools are used as part of the process of protein identification. In the next sections we

describe prediction and analysis tools in more detail, and discuss the characteristics of

the biological databases used by these tools.

3.3.1 Prediction Tools

Once scientists have determined the genome sequence of an organism, they need to find

where genes1 are located, as well as the sequences within genes that code for proteins (the

open reading frames, ORF). In most organisms this process is not trivial, because the

DNA sequences are composed of both coding sequences (exons) and noncoding sequences

(introns). The introns are spliced out before the sequence is mapped into amino acids,

1A single gene can range in length from as few as 100 DNA bases to as many as several million.

Chapter 3 Problem Scenario 34

so the exons are the segments of DNA that actually end up coding for a protein2. To

find the regions of the gene that code for proteins, scientists look for a variety of signals

in the genetic code that indicate where the coding regions begin (indicated by a start

codon) and end (indicated by a stop codon), and where splices should occur. Many

software tools have been developed to help in gene prediction including, for example,

GeneMark3 (Borodovsky and McIninch, 1993), Glimmer4 (Salzberg et al , 1998), and

GenScan5 (Burge and Karlin, 1997).

3.3.2 Analysis Tools

When scientists isolate a new molecular sequence through laboratory experiments, they

want to know all relevant biological information about that sequence. The first thing

to do is to determine if a similar sequence has been already discovered and annotated

(Phizicky et al , 2003). This is achieved by analysis tools.

Analysis tools operate as search engines by comparing some target sequence against

one or more biological databases to find similarities in homology, structure or function.

They operate under the premise that if two DNA sequences have a similar combination

of nucleotides, they probably have similar function and structure, even if they come

from different organisms or different cells (and the same premise is applied to protein

sequences but here for similar combinations of peptide sequences). Probably the most

used computational tool to perform this task is BLAST (Basic Local Alignment Search

Tool)6 (Altschul et al , 1990), which searches databases like GenBank and Swiss-Prot for

all sequences similar to the target sequence. In the case of search engines for protein

identification, known as ms/ms search engines, the input data is a set of peptide se-

quences (the ms/ms spectrum)7, and the result is a list of candidate proteins matching

the peptides, each associated with a score and the number of peptides that matched the

protein (the higher the number of matching peptides, the higher the confidence that the

protein is present in the unknown protein mixture).

Different search engine services have different properties relating to, for example, the

databases that are being searched, the search algorithm used, the scoring system that

calculates a measure of how well the sequence matches the database, and the returned

information, which can be in many different formats. These different properties can lead

to differences in the quality of results since, for example, a specific scoring system can

2According to The Wellcome Trust (2001), less than 2% of the human genome contains actually
protein coding regions.

3Available at the EBI website http://www.ebi.ac.uk/genemark/
4Available at the NCBI website http://www.ncbi.nlm.nih.gov/genomes/MICROBES/glimmer 3.cgi
5Available at http://genes.mit.edu/GENSCAN.html
6Available at the NCBI website http://130.14.29.110/BLAST/
7
ms/ms spectrum is a specific type of input received by search engines, from mass spectrometry

machines.

Chapter 3 Problem Scenario 35

return a more precise evaluation of the candidate proteins, and one search algorithm

can be faster than another.

Search engines also have several configuration parameters, which are fairly similar for

those engines with similar functionality and type of input data, and define the search

space for the query sequence. In particular, for ms/ms search engines, these search

spaces include: taxonomy (organism classification), peptide tolerance (the error window

for experimental peptide mass values), and number of missed cleavages (peptides are

fragmented with an enzyme which breaks peptide bonds in specific sites, and this mea-

sure indicates the number of allowed missed breaks during digestion). The significance

of configurations is that search results can be influenced by different configuration pa-

rameters. For example, if the peptide tolerance is set to a high value, this can result in

a higher number of false matches, since the comparison window for the peptide mass is

bigger. Conversely, if the peptide tolerance is set to a low value, it can result in the loss

of true matches. In practice, bioinformatics experts adjust these parameters according

to their individual preferences, or to the quality of the data produced by the mass spec-

trometer, so that if peptide masses are accurate and not approximations, parameters

are set to narrow the search space, while if they are approximations, parameters are set

to increase the search space.

Alternative ms/ms search engines are publicly available, and differ from each other

generally in the implementation of the matching algorithm. Examples of such search

engines are Mascot (Perkins et al , 1999), Tandem (Craig and Beavis, 2003), and OMSSA

(Geer et al , 2004), some of which run on remote servers, while others run as local services.

Although these are alternative ms/ms search engines with the same functionality, they

can yield heterogeneous results for the same input data. As a consequence, some services

may be more suitable for data with a certain quality or for a particular configuration

setting than others. This means that, even if one search engine performs better when

using a particular configuration setting, it may vary its performance when used with a

different configuration setting.

3.3.3 Biological Databases

Bioinformatics databases store information related to the genes and proteins of organ-

isms, and are tailored to particular types of information or organisms. For example,

they can store DNA sequences, protein sequences or entire genomes, or they can store

biological information that is related to particular organisms such as humans, mice,

fruit flies, viruses and so on. Most data that is stored in bioinformatics databases is

annotated, with relevant biological information attached to it, for example indicating to

which organism the sequence belongs, or which gene or protein that sequence is related

to, and so on.

Chapter 3 Problem Scenario 36

When existing bioinformatics databases do not contain any matching proteins to an

unknown protein sequence, a new database (known as a six-frame database) can be

created by translating DNA sequences from the organism associated with the protein

mixture directly into protein sequences. Although the protein sequences in a six-frame

database are not known, a match indicates that the protein exists, but has not yet been

annotated, or at least not in publicly available databases.

3.4 Distributed Applications in Bioinformatics

In this section, we describe the key approaches to integrating bioinformatics tools from

distributed locations. Multi-agent systems have been used as a technology to integrate

heterogeneous data and tools, while grid systems have been used to integrate tools and

data for execution as distributed workflows. In addition, cooperative systems have been

proposed to allow bioinformatics researchers to share their tools and data. We consider

each in turn below.

3.4.1 Multi-agent Systems Applications

Agent-based systems are one of the technologies that can be used to help in solving

problems related to biological data generated by genome projects. Distributed, hetero-

geneous, and dynamic environments, as with the biological domain, are commonly the

target domains of agent-based applications. Thus, some key problems of bioinformat-

ics research, like integrating information that is distributed in remote, heterogeneous

biological databases over the Internet, and keeping track of existing and updated bioin-

formatics software and data, make the agent approach very suitable if we view each

distributed bioinformatics site, tool or data provider and user as agents. However, the

idea of applying agents to tackling key issues of bioinformatics research is still very new

and, as a consequence, there are many problems to be investigated.

Nevertheless, some work has already been done in the development of multi-agent system

tools for use in prediction of secondary structure proteins (Armano et al , 2005), disease

gene discovery (Williams et al , 2001), and automatic data integration (Karasavvas et al ,

2002). In particular, the pioneering applications of agents in bioinformatics are described

by Bryson et al (2000) and Decker et al (2002), with a focus on data integration and

genome annotation. These are described in the next sections.

3.4.1.1 GeneWeaver

GeneWeaver (Bryson et al , 2000) is a multi-agent system designed to tackle problems

relating to the integration of genome analysis and structure prediction tools. It is ar-

Chapter 3 Problem Scenario 37

gued that the distributed, heterogeneous, dynamic character of biological information,

together with the existence of several types of analysis and prediction programs to be

applied to this information, points to the suitability of an agent approach. Here, the

multi-agent system comprises a community of agents with distinct functionalities that

work together to automate the annotation of genomic data. Agent functionalities are

determined according to the tasks that need to be accomplished during the annotation

process.

There are five types of agents in the GeneWeaver community: broker agents, primary

database agents, non-redundant database agents, calculation agents, and genome agents.

The broker agent is responsible for storing information (such as their location, supported

communication methods, and abilities) about all the agents in the community. Primary

database agents are in charge of managing primary sequence databases like Swiss-Prot,

PDB, and PIR. Similar to primary database agents, genome agents and non-redundant

database agents are also responsible for managing genome information, the main dif-

ference being that genome agents are responsible for controlling information about the

genome for a particular organism. Finally, calculation agents encapsulate existing soft-

ware applications used to analyse biological data, so that each program becomes an

independent agent in the GeneWeaver community.

Agents communicate with each other within the GeneWeaver community using a spe-

cific language based on KQML, the BioAgent Language (BAL). BAL messages contain

language and ontology fields to help agents understand the content of the message. The

meta-data, data, and query expressions in the content field are represented by the BioA-

gent Content Language (BACL). Also, two ontology sets are defined: the BioAgent Meta

Ontology (BAMO), which defines different types of meta-data and their meanings, and

the BioAgent Data Ontology (BADO), which defines the data types employed.

GeneWeaver does not introduce new methods or techniques for performing any task

related to genomic data annotation, but organises and manages existing ones so that

they can operate in a more flexible, and more effective way.

3.4.1.2 BioMAS

Decker et al (2002) present a multi-agent system for automated genomic annotation.

Their biomas system is an extension of previous work (Decker et al , 2001) on automated

annotation and database storage of sequencing data for the herpesvirues, which was

expanded to a more generic system that can be used for studying more organisms. The

new system also includes extensions for functional annotation, Expressed Sequence Tags

(EST)8 processing and metabolic pathway reasoning.

8Expressed Sequence Tag is a small sequence from an expressed gene, and acts as a physical marker
for cloning and full length sequencing of the DNA of expressed genes (Lopez, 2003).

Chapter 3 Problem Scenario 38

The system is composed of four overlapping multi-agent subsystems: basic sequence

annotation, query processing, functional annotation, and EST processing. The function

of the basic sequence annotation and query processing subsystems are, respectively, to

integrate remote gene sequence annotations from various sources, and to allow complex

queries on local databases via a web interface. The functional annotation subsystem is in

charge of assisting the user to make functional annotations of each gene in a sequenced

genome, by using Gene Ontology (GO)9 (The Gene Ontology Consortium, 2000) for

annotating gene function. The EST processing subsystem was designed to support the

use of expressed sequence tags as input data in the annotation process, in addition to

complete sequences of nucleotides or proteins.

There are three types of agents in the system: information extraction agents, task

agents, and interface agents. The first group of agents is responsible for wrapping public

databases like Genbank, Swiss-Prot, PSort and ProDomain. Agents in the second group

are divided into: domain-specific agents, which include annotation agents, responsible

for guiding the annotation process, and sequence source processing agents, responsible

for checking the consistency of sequence format; and domain-independent task agents,

which include proxy and matchmaker agents, responsible for facilitating the communi-

cation within the system. Interface agents are responsible for helping the user to add

new sequences to the local knowledge base, and to query complete annotated knowledge

bases.

3.4.2 Grid Applications: myGrid

Moreau et al (2002) describe some possible uses of agent technologies in an e-Science

Grid project with a focus on bioinformatics, myGrid (Goble et al , 2003). This project

aims to provide a distributed environment that supports the construction of in silico ex-

periments, which are represented by workflows, and can be stored, shared and managed

according to user preferences. Other complementary features include the notification

to the user of relevant information related to their experiments, and the provision of

assistance for less skilled users to manage their experiments.

myGrid has a service-oriented architecture, and provides support for users to create,

discover and execute workflows. Services and workflows have semantic descriptions,

indicating their functionality, the types of input they require, and the types of output

they produce (Lord et al , 2003). User discovery of workflows and services is achieved

via semantic services (McIlraith et al , 2001), which use matching algorithms to search

through semantic descriptions for services or workflows compatible with the user query

(i.e., preferences, goals, etc). As a result of the discovery process, the user is presented

with a list of available services from which they can choose.

9http://www.geneontology.org/

Chapter 3 Problem Scenario 39

The use of agents in this bioinformatics grid aims at addressing a common problem in

bioinformatics research, the constant change in resources available to the bioscientist

(i.e., their continuous appearance, disappearance, or change without prior notification).

Agents are seen as an appropriate technology to tackle this problem since they provide an

abstraction for the design of scalable systems, as well as the means to implement aspects

like personalisation, communication, and negotiation within the grid environment.

Two types of agents have been defined to act in the grid: a user agent and a broker

agent. The user agent is responsible for representing the user within the myGrid system,

which includes providing the user’s personal preferences for other parts of the system,

and mediating the communication between grid services and the user. Negotiation within

myGrid takes place on the basis of preferred quality of service for service providers and

service users, in the context of notification support. The agent responsible for managing

these negotiations is the quality of service broker, which negotiates on behalf of each

service user that wants to receive notifications of a specified quality, and then returns a

final proposal.

According to Foster et al (2004) in relation to the mutual benefits of combining grid and

agent-based systems, distributed bioinformatics applications may also be improved by

joining grid and agent-based technologies. This would enable in silico experiments to

be conducted and controlled in a more flexible way in both individual and collaborative

work.

3.4.3 Cooperative Applications

Bioinformatics researchers are discovering the advantages of cooperative research, in

which different types of information and tools are exchanged in order to improve indi-

vidual or global results. Here, unique data sets are created in individual laboratories,

and not published on public database sites. However, they could be shared with a world-

wide community if provided with the right tools to support cooperation. The systems

described in the previous sections are mostly concerned with integrating heterogeneous

data and tools, or combining remote data and tools for execution in distributed work-

flows, but they do not address cooperation explicitly (since the tools and data that are

integrated or combined typically belong to the same individual or group).

In an effort to provide such a cooperation support tool, Overbeek et al (2004) present

a peer-to-peer environment for genome annotation, SEED, which allows researchers to

combine publicly available genomic data with individual, non-public data exchanged

with other researchers to form an integrated and distributed curated database of genomic

data. Each SEED instance has a copy of this integrated database and is a self-contained

genome annotation system that allows multiple users to access, update, and extend the

annotation database. To support cooperative work, the SEED system uses a peer-to-

Chapter 3 Problem Scenario 40

peer synchronisation facility that permits information sharing between SEED instances.

Cooperation members are known (i.e., access is not anonymous), and have the option of

choosing whether to participate in an annotation team. Although the system provides

support for data exchange, it does not address the problem of selecting between different

SEED users and instead it assumes that the user must select candidate SEEDs from a

registry to send data requests. Also, it is not clear how annotation groups are formed,

whether by finding users with related interests, or by other criteria.

A different approach to supporting cooperative research that uses a web services solution

is presented by Gao et al (2005), who develop a microarray10 data-mining system that

uses web services in drug discovery. The system is implemented by wrapping data

processing modules and databases into web services, integrating them, and providing a

portal through which the user can select and aggregate services. A limitation of this

approach is the lack of support for the automatic use of services, which is assumed to

be carried out by the user, and for the analysis of the quality of the provided services.

Given this overview of bioinformatics tools and key approaches to integrating and sharing

bioinformatics tools and data, in the next sections we describe the application scenario,

which we take as a case study through the thesis.

3.5 Protein Identification through Cooperative Bioinfor-

matics Applications

Most experiments in biological sciences are in vivo, which are performed on living or-

ganisms, like tissues and cells. Nowadays, however, parts of these experiments are also

performed on computers, as in silico experiments. Such experiments may be composed

of a single service or of a group of related services that follow a computation sequence

to reach a final result. In the latter case, the computation sequence is usually mod-

elled as a workflow, which determines the inputs and outputs that are passed from one

service to another. In silico experiments are often static and closed, in the sense that

the services that compose them are fixed and maintained only in a local system. Such

computer-based experiments are used in many sub-areas of bioinformatics including

proteomics, metabolomics and genetics (Campbell and Heyer, 2002). Probably the best

known computer-based bioinformatics experiments are those for genome sequencing and

decodification, like the Human Genome Project initiative, which started in 1990.

In what follows, we focus on proteomics applications, in which the primary goal is

to identify proteins from unknown mixtures. Once this is achieved, bioinformaticians

can compare proteins from different mixtures and discover, for example, if there is a

difference in the set of proteins of a normal person from those of a diseased person (in

10DNA microarray is a technique used to simultaneously measure the level of transcription of many
genes (Campbell and Heyer, 2002).

Chapter 3 Problem Scenario 41

order to understand the disease), or if a specific medication changes the set of proteins

in a person under treatment (to understand how the treatment evolves)(Hanash, 2003).

In the next sections we describe a typical protein identification experiment, discuss its

limitations, and then present a distributed scenario to address those limitations and

improve experimental results.

3.5.1 Protein Identification Experiments

A primary goal of proteomics is to identify and quantify every protein in a cell at a given

time. The most common approach to protein identification is via mass spectrometry

(ms) followed by sequence database searches (Campbell and Heyer, 2002). Here, the

mass spectrometer quantifies protein sequences according to a mass to charge ratio, and

breaks them into smaller fragments called peptides, which are also quantified with a mass

to charge ratio. Peptide fragments from each protein sequence are compared against a

database of known protein sequences, with the best matches used to identify the original

protein.

Protein

mixture

Mass

Spectrometer

Mass/chargeMass/charge

%%

ionsions

Raw data

Data
Processor

Mass/chargeMass/charge

%%

ionsions

Processed data
Search

Engine

Candidate

Proteins

Figure 3.1: Basic protein identification experiment workflow.

In a typical protein identification experiment, an unknown protein mixture is received

as input, and is processed and analysed to generate possible identifications for that

protein. For example, as illustrated in Figure 3.1, a protein mixture is passed to a

mass spectrometer, in which the peptides that form the protein in the mixture are

subjected to fragmentation (in order to reduce the complexity of the samples), so that

the mass of the fragments, given as a mass per charge ratio, can be used as a peptide

fingerprint (since each of the amino-acids that forms a peptide has a specific mass)

Chapter 3 Problem Scenario 42

through which the peptides and the original protein they compose can be identified

(Chamrad et al , 2003; Edwards and Lippert, 2002). The mass spectrometer analyses

the fragments of one peptide at a time to produce a measure for the peptide mass-charge

ratio (or mass spectrum). The end result of the mass spectrometry analysis is a set of

hundreds to thousands of mass spectra, each representing the fingerprint of a peptide

from the original mixture.

After mass identification, the mass spectra of each peptide is interpreted to identify the

corresponding amino-acid sequence, a process known as data processing. Amino-acid

sequences returned from data processing of each peptide are compared against known

amino-acid sequences through a database search engine (such as those discussed in Sec-

tion 3.3.2) to find the peptide candidates and their associated proteins, together with an

evaluation of how well the peptides match the database. Reliable protein identification

requires the amino-acid sequence of many peptides from the original mixture, so the

higher the number of identified peptides that are associated with the same protein, the

higher the chance that this protein was present in the original mixture. If only few

peptides are identified for a protein, further data analysis may be needed.

Although the process of protein sequencing and quantification via mass spectrometry

is automatic, interpretation of ms data results from protein database search engines is

still undertaken manually by experts in many bioinformatics laboratories. Since there

is much data to be interpreted, bioinformaticians usually simplify the search process

and do not use new tools, or experiment with alternative tools that could give more

confidence to the data with better quality of results. Even though the interpretation of

ms data is a bottleneck in the protein identification process, little work has been done

to address this problem (Chamrad et al , 2003).

Based on the limitations of current protein identification experiments, we describe a

distributed bioinformatics scenario and discuss the advantages of having a cooperative

bioinformatics system in the next section.

3.5.2 Distributed Services

In the basic protein identification experiment workflow (depicted in Figure 3.1), services

are pre-defined for each task, and there is no support for service variety. Although there

are several alternative services (as described in Section 3.3.2) that might perform the

task of database search and could increase the confidence and quality of the resulting

data, these services are not used in the basic experiment configuration.

Traditional systems to manage computer experiments use static workflows, in which

services are pre-selected for each needed task (as in (Stevens et al , 2003; Gao et al , 2005)),

and are suitable for domains with a limited number of services. However, bioinformatics

applications can be expanded such that alternative services can be requested from remote

Chapter 3 Problem Scenario 43

Sequence

comparison tool

Database Search

Engine 3DB 3

Database Search

Engine 4

DB 4

Mass

Spectrometer

Database Search

Engine 2

Output Generation

Database Search

Engine 1

DB 2
DB 1

Database Search

Engine 3Organisation 3

Organisation 2 Organisation 1

User

User

User

Workflow

manager

Data Processing

Data Processing

Figure 3.2: Closed (highlighted) and distributed scenario for execution of computer
experiments.

sources in a distributed system. In particular, having access to a wider range of services,

including such private tools and databases, can facilitate the search for, and use of,

more suitable services, or services of better quality, in order to improve the results of

bioinformatics experiments more generally.

Indeed, aware of the great variety of tools and databases being developed by private in-

dividuals and organisations, both commercial and academic bioinformatics communities

are focusing their interest on open distributed systems, like that illustrated in Figure

3.2, in which participants request services from, and provide services to, each other, so

that they can access services such as different search engines and annotated databases

resulting from private experiments, that they would not be able to access if they were in

an isolated and closed system. The figure shows the situation of a distributed system in

which users belonging to a specific organisation can access services such as databases,

data processing and sequence comparison tools that are available in a different organ-

isation. Thus, to make use of the global availability and variety of services, we must

allow bioinformaticians to interact with other entities (including individual researchers,

laboratories, and companies) in a distributed fashion, to provide access to many differ-

ent types of information and tool, and consequently to improve individual and global

results. To do this, however, we must first analyse the way services are shared in the

bioinformatics domain. That is, we must determine if there is an economic motivation

for service provision or if services are available free of charge, since this has implications

for the way in which interactions among participants may take place.

Currently, there are many bioinformatics services that are available free of charge, such

as the main public databases for searching genome and proteome related data, like

Chapter 3 Problem Scenario 44

GeneBank11, EMBL12, and NCBI13. There are also paid services developed by private

companies (such as commercial search engine tools ProteinLynx and Phenyx). However,

current proposals that envision the creation of a global bioinformatics community gener-

ally adopt cooperative approaches (Stein et al , 2001; Stein, 2002; Overbeek et al , 2004;

Ellisman et al , 2004; Gao et al , 2005), in which the participants of the cooperative global

community share data and tools without economic motivation (because services have no

cost), but with the aim of improving individual and global results and discoveries. This

suggests that research in this domain has a cooperative character.

3.6 Requirements for Cooperative Bioinformatics Appli-

cations

As described in the protein identification scenario, one of the key characteristics of

bioinformatics is service variety, not only because there are different services with similar

functionality, but also because services may give different performance as a consequence

of their properties. For example, since each configuration of a search engine can lead to

results of different quality, each possible configuration of a search engine can be viewed

as a separate service in the selection process. This significantly increases the alternatives

for instantiating a service, as in the case of search engines.

Service variety is even wider if we consider services in an open environment (as shown

in Figure 3.2). In this case, the number of possible interactions between participants

increases not only because (in the role of requesters) they find more service providers to

send requests, but also because (in the role of providers) they can receive requests from

other participants. In an ideal situation in which computational resources are plenty,

individuals could interact with each other without any restriction on the number of

services they could provide, the number of authorised accesses to individual databases,

or the number of messages sent to service providers. However, as in the majority of

real systems, not only are there limited computational resources, and participants must

restrict the number of requests they accept, but participants also have their own interests

(they are autonomous) and, in the absence of any economic return from service provision,

they may choose not to provide services to others.

In addition, from a requester’s perspective, service variety means that service quality

may also vary from one provider to another (due to different characteristics or skills, for

example), which suggests that the selection of a service provider should not be a random

choice if the requester needs good quality services.

In this context, to allow participants of computer-based open applications to interact in

11http://www.ncbi.nlm.nih.gov/Genbank/
12http://www.ebi.ac.uk/embl/
13http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Protein

Chapter 3 Problem Scenario 45

a cooperative manner with the aim of sharing their data and tools, and to choose the

interactions they want to participate in, the following are required.

1. A mechanism for automatically selecting between alternative services when several

with similar functionality but different quality of results are available.

2. A means to incentivise service provision to support cooperation when services are

free of charge.

3. A mechanism for analysing incoming requests so that providers can choose for

whom to provide services, and also limit service provision when resources are

scarce.

These requirements are related to three general issues: first, there is a need for non-

monetary incentives to motivate cooperation; second, when participants in open coop-

erative systems request a service and must select alternative interaction partners, they

need a way to find the providers they consider to be more desirable (in terms of qual-

ity, performance, etc); and third, when participants provide a service and must decide

whether to accept an incoming request, they need to determine the incentive for provid-

ing a service and consider their resource availability. These issues are discussed in the

next sections.

3.6.1 The Cooperation Problem

Current applications to support distributed bioinformatics, as described in Section 3.4

generally address the problems of integrating heterogeneous data and tools (Bryson et al ,

2000; Decker et al , 2002) or combining different data and tools in a single distributed

bioinformatics experiment (Goble et al , 2003; Lord et al , 2003), and do not focus on

how cooperation is achieved between participants. Moreover, systems that do support

cooperation between participants so that they can exchange data and tools (such as

(Overbeek et al , 2004; Gao et al , 2005)), assume that providers always cooperate, and

when there is any restriction on service provision it is limited to requesters from a

particular group or team (which may not apply to an open system in which participants

are not always connected to such groups or teams).

In contrast, we consider open bioinformatics applications in which participants are au-

tonomous and thus must choose whether to cooperate, based on, for example, their

available resources and the incentives for service provision. The problem in this context

is that, since participants are not considered benevolent and there is no monetary com-

pensation for providing services, motivating service providers to cooperate with others is

difficult. Since providing a service always incurs some cost, it is likely that a system will

Chapter 3 Problem Scenario 46

have more agents requesting free services than providing them. This disparity may com-

promise the purpose of open cooperative bioinformatics systems, to allow participants

to have access to a greater variety of services.

Therefore, there is a need for non-monetary incentives for service providers, so that they

are motivated to cooperate and service requesters do not have to rely on altruism to

guarantee service provision. Moreover, with increased service variety, it is likely that

some cooperations will be more beneficial for an agent than others. For example, an

agent may receive a service of better quality when cooperating with agent A than with

agent B, or an agent may provide a service of better quality than the service it receives

from its interaction partner. The cooperation problem thus requires agents not only

having non-monetary incentives to cooperate, but also a means to analyse cooperations.

3.6.2 The Provider Selection Problem

When participants in a distributed system need to request a service and find many

alternative services with similar functionalities, they need a way to determine which

provider is the best interaction partner according to some preference, depending on

their experience or current goals.14 For example, one participant might prefer to use a

service from a specific provider or with specific properties depending on the goal (like

choosing a service with a lower execution time for experiment testing, or a more accurate

service for an experiment with high quality data input, etc). This suggests the need for

a provider selection mechanism. In addition, the task of selecting providers becomes

more relevant when the services that are available in the distributed application are

heterogeneous in terms of quality of results, as in the case of bioinformatics services.

Selection is also influenced by the cooperative character of global bioinformatics commu-

nities, since participants requesting services need to consider the provider’s motivation

for accepting a request. Otherwise, requests may take too long to be accepted, which

can delay the performance of experiments.

Thus, a selection mechanism for bioinformatics services must consider the following:

• service quality and confidence of results, since service requesters need to be aware

of interaction outcomes in order to decide whether interactions should be started

or continued;

• the use of subjective criteria in decision-making, since preferences and goals influ-

ence the relevance of different service attributes; and

14We distinguish provider selection from the task of discovery of the available providers for a particular
service. We assume that selection takes place after discovery, over the set of possible candidate services
returned. In this way, the discovery mechanism filters the available services according to their function-
alities to generate a set of candidates, and the selection mechanism compares candidates according to
preferences.

Chapter 3 Problem Scenario 47

• cooperative relationships with providers and how these influence their decision to

accept a request to perform a service.

If these requirements are met, the provider selection mechanism can be used in real

cooperative applications, in which participants have their own interests, care about

service quality, and deal with limitations in service provision when it is not paid for.

3.6.3 The Requester Selection Problem

Biological data used in bioinformatics research is very interrelated, in the sense that one

type of data, say nucleotide sequences (genes), may provide hints about another type

of data, like amino acid sequences (proteins). For distributed bioinformatics applica-

tions, this means that many participants may be interested in similar services and, as a

consequence, that providers of those services may receive several requests from others.

In addition, we assume that participants of such distributed systems are autonomous and

are not obliged always to cooperate with others, so they must decide whether to accept

requests. Since we focus on cooperative applications with free services, this decision

is not influenced by monetary compensation, but may involve other elements found in

cooperative relationships, like reciprocity and informal commitments, and the quality

of interactions like, for example, whether an agent requesting a service is also a good

service provider. This suggests the need for a requester selection mechanism.

In summary, a mechanism to select requesters must consider the following:

• the future benefits brought by non-monetary incentives in terms of finding available

cooperation partners in the future;

• the strategic restriction of service provision to minimise the impact of request

denial on the chances of future interactions; and

• the quality of interactions, so that the quality of services to be received in the

future is not lower than the quality of services provided.

Meeting these requirements results in an effective requester selection mechanism for

cooperative applications with free services and resource limitations, with which self-

interested providers can be modelled and cooperation can be considered as part of the

provider’s decision making.

3.7 Conclusion

In this chapter we have identified the requirements for designing open cooperative appli-

cations, in particular in the bioinformatics domain, especially the requirements related

Chapter 3 Problem Scenario 48

to the tasks of requesting and providing free services when providers are self-interested

and resource-bounded.

In particular, current applications to support distributed bioinformatics do not address

the problem of cooperation among participants of the distributed system, and gener-

ally assume that providers always cooperate. However, the purpose of open cooperative

bioinformatics systems, to allow participants to have access to a greater variety of ser-

vices, requires non-monetary incentives for service providers, so that they are motivated

to cooperate and service requesters do not have to rely on altruism to guarantee ser-

vice provision. Moreover, with increasing service variety, there is a need to evaluate the

properties of different services to guide future choice of alternative interaction partners.

In addition to service variety, interactions among participants are influenced by the coop-

erative character of global bioinformatics communities. Since we assume that providers

are self-interested and resource-bounded, and thus are not obliged to accept all requests,

participants of open cooperative systems need to select among alternative interaction

partners, both when they are providing and receiving services. In the light of the require-

ments mentioned above, in the next chapters we propose a set of solutions for designing

agents operating in open cooperative applications.

Chapter 4

Agent Architecture

4.1 Introduction

The description of the problem scenario and the identified issues to deal with cooperation

and service request and provision in open cooperative systems, presented in the previous

chapter, suggest that entities providing and requesting services need to have at least two

internal mechanisms to support interactions: a requester selection mechanism, which is

responsible for decision-making over service provision; and a provider selection mecha-

nism, which is responsible for decision-making over service requests. In addition, both

decision-making processes must take into account cooperative interactions and service

quality. To provide a unified solution for effective partner selection and cooperation,

we propose in this chapter an architecture for entities participating as providers and

requesters in cooperative distributed applications.

The chapter starts with an overview of the proposed architecture in Section 4.2. The

individual components of the architecture are described in following sections, with the

framework for non-monetary cooperations presented in Section 4.3, the provider selection

mechanism presented in Section 4.4, the requester selection mechanism presented in

Section 4.5, and the evaluation method presented in Section 4.6. The interaction process

among entities providing and requesting services is described in Section 4.7, and we

conclude in Section 4.8.

4.2 Architecture Overview

For effective partner selection and cooperation in open cooperative applications, we

propose an architecture, shown in Figure 4.1, composed of the following modules and

process.

49

Chapter 4 Agent Architecture 50

Requester Selection

Mechanism

Provider Selection

Mechanism

Agent Architecture

Strategy Strategy

Framework for

non-monetary

cooperations

Evaluation

Method

Provide

service

Request

service

Accept/Reject Candidate partner

Request msgs Request msgs

Service

evaluation

Service

evaluation

Evaluate

performed service

Evaluate

received service

Figure 4.1: Agent architecture for service provision and request.

• A framework for non-monetary cooperative interactions, which incentivises self-

interested agents to provide services, and provides a means for agents to analyse

the cooperative interactions in which they engage.

• A provider selection mechanism, which is responsible for selecting between candi-

date providers when a service is needed.

• A requester selection mechanism, which is responsible for restricting service pro-

vision when resources are scarce, and for analysing incoming requests to decide

whether to accept a request.

• An evaluation method, which is responsible for generating evaluations for services,

so that evaluations of previous results can be used for future selection. Both

provider and requester selection mechanisms can use previous service evaluations

during the selection process to ensure interactions with good results are continued,

and those with poor results are avoided.

• An interaction process, which determines how provider and requester interact by

using the modules outlined above.

The modules composing the architecture and the interaction process are described in

more detail in the next sections.

Chapter 4 Agent Architecture 51

4.3 Framework for Non-monetary Cooperations

We propose a framework for non-monetary interactions in which the incentive to co-

operate comes from reciprocal relationships. Since reciprocity and cooperation are not

inherent to an agent or any other computational entity, we need computational tech-

niques to achieve such relationships between participants in the distributed community.

Given that reciprocity and cooperation are commonly found in human social theory, we

aim to use social techniques to incentivise service provision and to allow computational

entities to reason about cooperation when choosing interaction partners.

Thus, social techniques are used here to encourage the establishment and maintenance of

reciprocal interactions between self-interested agents in the open community as part of

their behaviour. Agents need a means to choose to maintain or terminate a cooperation;

and to make such decisions, agents need to be aware of their reciprocal relationships

with others.

Once information on reciprocal relationships with other agents in the system is available,

its influences on both the provider and requester selection mechanisms are as follows:

• it influences service provision, since providers are motivated to perform services

for others by means of their expectations of getting services in return in the future;

• it influences the choice of requests to be accepted, since providers must constrain

service provision due to resource limitations, but must also consider the fact that

denying a request can negatively influence the possibilities of future interactions

with the requester in a cooperative environment; and

• it influences the choice of alternative providers, since requesters must consider

their reciprocal relationships or informal commitments with candidate providers

when selecting among them so that they can find those more likely to cooperate;

otherwise, requests may take too long to be accepted.

4.4 Provider Selection Mechanism

For effective provider selection in real cooperative applications, like that described in

Section 3.5, we propose a provider selection mechanism that supports the task of finding

suitable providers, with the characteristics below.

• The selection process is repeated every time a service is needed and considers the

performance of services received in previous interactions, which we term dynamic

selection with analysis of service evaluations, to cope with providers joining or

Chapter 4 Agent Architecture 52

leaving the system over time, and with changes in service performance that may

occur from one execution to another.

• Existing or potential reciprocal relationships with candidate providers are taken

into account to find those more likely to accept requests, which we call analysis of

cooperative relationships, so as to avoid requests that may take a long time to be

accepted.

Cooperative relationships are analysed with the help of social techniques, and the anal-

ysis of service performance comes from previous evaluations of the service, which are

generated by an agent’s evaluation method.

4.5 Requester Selection Mechanism

For the task of choosing which incoming request should be attended to, we propose a

requester selection mechanism with the characteristics below.

• Analysis of cooperative relationships, which considers possible informal commit-

ments with reciprocation when deciding whether to accept a request.

• Analysis of service performance, which considers the evaluation of previous service

results, aiming at avoiding interactions that are not beneficial for the provider in

terms of the effort and investment made.

As for the provider selection mechanism, cooperative relationships are analysed with the

help of social techniques, and information on service performance is generated through

an agent’s evaluation method.

4.6 Evaluation Method

The aim of the evaluation method is to generate an evaluation for the service result that

can be used as a quality parameter for the service. This quality parameter can be defined

in terms of both the satisfaction of the requester and the effort of the provider. Once such

an evaluation is available, participants can use it during selection, through their provider

selection and requester selection mechanisms, to avoid continuing interactions with poor

outcomes (for example, if a participant is receiving from another participant a service of

inferior quality than the one it is providing to that same participant). Agents may use

different evaluation methods, as long as they follow the characteristics and functionalities

required to achieve the purpose of the evaluation method mentioned above, and to cope

with the properties of dynamic services and of open systems, which will be discussed

later in the thesis.

Chapter 4 Agent Architecture 53

���������	
��

������
	

�
����
�
�
������

�
����
�

����������

��
����	�

�
����

����������	�

���������	
��

������
	

�
����
�

����������

��
����	�

�
����
�

����������	

��
���������������

����������
��
	�	

������
�

��
�
�����

�
��
	�
��

�
�
�����

��
���������������

�

�
��	
����
�����

��������
������
�	

����������	�
����

�������� ���������

Figure 4.2: The interaction process sequence of events. Events flow from top to
bottom.

4.7 The Interaction Process

Providers and requesters interact with each other through an interaction protocol, which

specifies the steps to follow during the selection process and the types of messages they

exchange. The interaction process starts when a service request is sent from a requester

to a provider, as described in the top of Figure 4.2. When an agent identifies a needed

service and has a set of candidate providers that can perform that service, it uses the

provider selection mechanism to find the one to which it will send the request. Similarly,

when an agent receives a number of requests from other agents to perform some service

on their behalf, it uses the requester selection mechanism to choose which requests to

accept, taking into account available resources for service provision.

If a request is accepted, the provider performs the service, and the requester waits for

the service result from the provider. After service execution is finished, both provider

and requester evaluate the service. The interaction process is complete when both

evaluations are computed and stored.

4.8 Conclusion

In this chapter we have presented an overview of the proposed architecture for support-

ing cooperative interactions and the decision-making process of self-interested entities

regarding service provision and request in cooperative environments with free services.

This architecture is composed of four modules: a framework for non-monetary cooper-

Chapter 4 Agent Architecture 54

ations, a provider selection mechanism, a requester selection mechanism, and an evalu-

ation method.

The cooperation framework consists of using reciprocity as the key incentive for cooper-

ation in open systems with unpaid services. We propose the use of social techniques to

represent reciprocal relationships as part of agent behaviour (instead of being externally

imposed by the system). Norms and commitments are not considered here, since they

are higher level structures, defining mechanisms to ensure that agents collaborate and

reciprocate, but not addressing the basic motivations that direct agents to interact.

The evaluation method aims at providing evaluations for services, so that those with

good evaluations can be chosen in future interactions and those with poor evaluations can

be avoided. Finally, the provider and requester selection mechanisms support decision-

making over interaction partners. To achieve this, these mechanisms use information on

service evaluation and reciprocal relationships provided by other components in the agent

architecture. The proposed architecture thus combines all the required functionalities

for effective cooperation in open cooperative systems.

The next chapters describe in full our proposed solutions, which are represented by each

individual component of the architecture.

Chapter 5

Evaluation Method

5.1 Introduction

As described in the previous chapter, in open cooperative systems in which there is

a large number and variety of available services, and where service providers can join

and leave, it is likely that a participant requesting services will find many alternative

providers for similar services. Similarly, there is a good chance that a service provider

in such systems will receive many requests from different participants. This requires a

means for participants in open systems to choose among interactions partners. Moreover,

when available services are not only diverse in terms of functionalities and results, but

are also continuously updated, improved or modified, as described in Chapter 3, the

problem of choosing alternatives is made even more difficult.

Clearly, the most important thing here is for service users to be aware of the quality

of the results they receive, so that they can make better choices of service in future

interactions. Then, based on the principle that a provider that has performed well

in the past is likely to perform well again in a similar situation, if services manifest

a certain regularity of behaviour, an efficient way to select interaction partners is by

identifying partners with good outcomes in previous interactions. In order to determine

the best outcome in this way, however, service users must perform an evaluation of

services after they are executed and the results are received. This evaluation should

reflect the satisfaction of the user with the service outcome, in relation to any number

of criteria, such as the quality of the interface, the provider’s availability to perform the

service when requested to do so, the time taken to execute, the quality of the content

returned, and so on. Evaluation thus allows a requester to identify, from the set of

possible providers, that particular provider with the best characteristics, like highest

quality of results and lowest time to complete the request.

Similarly, service providers can use service evaluation to select which requests to accept.

However, unlike the requester’s perspective, this evaluation must reflect the effort of the

55

Chapter 5 Evaluation Method 56

provider with service execution, in relation to such things as processing time, memory

usage, etc. In this case, for example, the evaluation allows the provider to identify,

among all candidate requests, those which, if fulfilled, require less time to perform.

In this way, evaluation provides a criterion for future decision-making over alternative

interaction partners. Therefore, in this chapter we propose an evaluation method to

analyse service outcomes. Such an evaluation is needed to determine how satisfied a

service user is with a service it has requested and received, and the effort invested by a

service provider, both of which can be used for future decision-making over alternative

interaction partners.

Although the general functionality being offered (or requested) in a distributed system

can be viewed either as an agent or a service, we distinguish both concepts here such

that a service is a functionality itself and an agent is a service user or provider (or both),

so that one agent may provide or request several different services.

The chapter starts in Section 5.2 by analysing the key evaluation properties for dynamic

services and discussing alternative approaches to evaluation. We then propose, in Section

5.3, a general evaluation method for dynamic services, and the evaluation process to be

followed by service providers and requesters is summarised in Section 5.4. In Section

5.5, we use the proposed evaluation method to evaluate bioinformatics services used

for protein identification and discuss the evaluation results. A comparison with similar

evaluation methods is presented in Section 5.6, and we conclude in Section 5.7.

5.2 Service Evaluation

5.2.1 Key Evaluation Properties

When evaluating a service, independent of the context or domain in which the evaluation

takes place, the first thing to consider is that more than one characteristic may be

important to analyse during evaluation, since evaluators may be interested in several

different aspects of the service. For example, when evaluating food in a restaurant,

customers may take into account, among other things, the quality of the ingredients,

the way the food was presented, and the price. In the same way, when evaluating

computer services like search engines, users might consider, for example, the time taken

to complete the query, the relevance of the content returned to the user in relation to

the query, and the way the results were presented. The number of characteristics to be

evaluated in a service varies according to the evaluator and the type of the service, in

that the more complex the service, the more aspects that might be relevant to observe.

Additional requirements for the evaluation method depend on the characteristics of the

services, and on the purpose of the evaluation. In open systems, we can find static

Chapter 5 Evaluation Method 57

services but also many dynamic services, in the sense that they are constantly being

updated or modified. In addition, despite manifesting similar behaviour when operat-

ing under similar conditions, many services can vary their performance under different

conditions. Examples of such services include those in the bioinformatics domain, which

are constantly being updated in response to the accumulation of information resulting

from genomic and proteomics research. Here, not only is new information continually

being uncovered, but service performance varies depending on the configurations used

or on the quality of the input data (the amount of noise in the spectra). In summary,

the fundamental requirement arising from the characteristics of services in open systems

is that the evaluation method must use a dynamic evaluation process.

The aim of the evaluation method, to provide a criterion for comparison between al-

ternative interaction partners either when providing or requesting a service, suggests

a concern with providing both a general method that can be used by agents acting as

providers or requesters to select between potential interaction partners (or services), and

a comparable evaluation for partners (or services) over time. Given these observations,

we summarise below the key properties of an evaluation method.

1. Continuity : the evaluation process must occur each time agents (or services) inter-

act rather than only once, since the performance of services may change from one

interaction to another if different input configurations are used, if services have

been updated, or if new data has been published.

2. Generality : the evaluation method must be general enough to be used by agents

in different roles (provider or requester). To cope with an heterogeneous system,

having one general method that can be applied in all situations is more advan-

tageous than having several specific methods, since with a general method it is

not necessary to define one evaluation method for each agent in a different role

and for different types of service. A consequence of this generality is the need to

support evaluation according to multiple attributes, since agents in different roles

will be interested in evaluating different attributes of the service. For example,

when evaluating the effort invested in performing a service, an agent may evaluate

memory usage and time taken, while when evaluating a received service the same

agent may instead consider the precision and reliability of the service result.

3. Consistency : the evaluation method must deliver evaluation measures that are

coherent when analysed at different points in time, to allow the correct comparison

between evaluations. This is important when interactions between agents are

repeated over time under different conditions, and when new services appear.

In the next sections, we describe alternative approaches to service evaluation in relation

to these key properties. We then present our general evaluation method for dynamic

services.

Chapter 5 Evaluation Method 58

5.2.2 Alternative Approaches

Traditional evaluation approaches determine the evaluation of a service using scoring or

utility functions, which return a quantitative evaluation for the service (Edwards and

Newman, 1982; Russell and Norvig, 1995; Yoon and Hwang, 1995). Such utility functions

can be calculated based just on observed values, or on the comparison of observed and

expected values. In the first case, which we refer to as the absolute evaluation approach,

utility is derived from values that are observed directly from service outcomes, and the

evaluation of a service depends only on its actual performance and is not influenced

by expected performance (Edwards and Newman, 1982; Yoon and Hwang, 1995). In

the second case, which we refer to as the relative evaluation approach, the utility of

a service or attribute is derived from the comparison of values from the outcome of

the service at hand with those of a similar service, or with expected values (Caverlee

et al , 2004). The difference between these two approaches is that absolute evaluation

yields independent measures, while relative evaluation renders comparative measures

which require either information about a similar service, or the identification of ideal or

expected performance.

An evaluation method based on either approach can meet the generality and continuity

issues described earlier. However, their implications for the consistency requirement

need further analysis. In relative evaluation methods, measures are dependent on an-

other service’s performance or on an expected value, so if the service used as a compara-

tive basis, or the expected values, change from one evaluation to the other, a comparison

of evaluations can lose consistency. In absolute evaluation methods, however, the eval-

uation process is independent of other services or expected performance, so evaluation

measures are not biased. Therefore, to guarantee consistent comparisons between eval-

uations generated at different points in time, without having to calibrate for changes in

expectations, we must use absolute measures rather than relative ones.

In addition, it may not always be possible to identify ideal or expected service results.

For example, bioinformatics services are usually applied to discovering new data, which

suggests that users often do not know what to expect from the service result. In this way,

the need to identify expected measures of performance for services in order to determine

relative evaluation measures makes the relative evaluation approach more problematic.

5.3 General Evaluation Method

Given the properties (or non-functional requirements) for service evaluation identified

previously, and the discussion of alternative evaluation approaches, we identify the fol-

lowing specific requirements for a general evaluation method for dynamic services, as

presented below.

Chapter 5 Evaluation Method 59

�������

�����	
��� �����	
���

��
��

����
���

��
��

����
���

���

����������	
�	���

�����	
���

����
�����

�����	
���

����
�����

��
��

����
���

��
��

����
���

���

����
�����

�
�������

����
�����

�
�������

Figure 5.1: Service Evaluation Scheme.

• Services must be evaluated every time agents provide or receive a service instead

of just once, so that the resulting evaluation can capture any changes that may

occur in service execution and results.

• Evaluation must be performed over multiple attributes of a service so that agents

in different roles, or providing and requesting services with different functionalities,

can specify their own set of evaluation attributes, but follow the same evaluation

scheme. The only constraint here is on the choice of evaluation attributes, in the

sense that services with similar functionality must be evaluated by the same agent

using the same set of evaluation attributes, to guarantee a consistent comparison

between them.

• All attributes must be evaluated according to an independent evaluation function,

which receives as input values that are directly observed from the service outcome,

instead of expected or ideal values, following the absolute evaluation approach.

To address these requirements and cope with continuity, generality, and consistency

when evaluating dynamic services, we propose a general evaluation method that follows

the evaluation scheme described in Figure 5.1. We view services in terms of attributes,

which are associated with absolute values observed from service results, which we call

result measures (as described on the left side of Figure 5.1). From this, as described

on the right side of Figure 5.1, the principle is that service evaluation is determined in

terms of attribute evaluations, and attributes are evaluated in terms of result measures

through the application of evaluation functions. The components and processes that are

part of the general evaluation method are presented next.

5.3.1 Evaluation Attributes

The choice of evaluation attributes for a service depends on the service’s functionality

and on the aspects of the service or service results that the user (or provider) considers

Chapter 5 Evaluation Method 60

important to evaluate. For example, suppose an agent in a cooperative system requests

a search engine service and wants to evaluate its results. Traditional web search engine

evaluation usually takes into account attributes related to the quality of the search

result, such as precision and recall (Dhyani et al , 2002), which measure the ability of

the search engine in terms of the relevance of documents retrieved, and the performance

of information retrieval (which are important from a user’s perspective).

Services can also be evaluated according to their usage, as is the case when applied

to the evaluation of web services (Lee et al , 2003), which includes evaluation in terms

of the reliability of the service (indicating if results are delivered as expected), and its

availability (indicating if the service is ready whenever it needs to be used). Although

we have mentioned only these attributes for illustrative purposes, an extensive list of

possible attributes for information retrieval engines and web services in general can be

found in (Dhyani et al , 2002) and (Lee et al , 2003).

All of these attributes relate to evaluation from a user perspective, but different eval-

uation attributes must be identified for a provider to evaluate its own performance or

execution of a service. Indeed, from a provider’s perspective, an important characteristic

to be evaluated, for example, is the service processing cost, since this is related to the

effort of the provider in performing the service. In our proposed evaluation method,

attributes are evaluated in terms of result measures, which are described below.

5.3.2 Result measures

Evaluation attributes are measured in terms of computable elements to which they are

associated, and which can be directly observed from the service results. For example,

the accuracy of a search engine may be measured in terms of the number of matched hits

that are related to the input query, while its performance may be measured in terms

of the time taken to complete the search. We call these computable elements result

measures.

Using a more specific view, we define result measures as pieces of information, derived

from service results, and which can be used to determine the service utility. These re-

sult measures are service-dependent, since they relate to the function and purpose of

a service. We distinguish between two types of measure, static measures and dynamic

measures, where static measures are those whose values do not change, or rarely change,

from one execution to the other, while dynamic measures are those whose values tend

to change when the inputs or external conditions vary from one execution to the other.

The distinction between these two types of measure is important when considering the

frequency of the evaluation process and the characteristics of the services being evalu-

ated.

For example, external conditions such as the size of the input the service received, the

Chapter 5 Evaluation Method 61

number of concurrent jobs the provider is processing simultaneously, the network traffic,

and so on, may influence the evaluation of service attributes like performance. Thus,

service performance must typically be defined in terms of a dynamic result measure, like

the time taken to complete a request, or the service processing time, instead of a static

measure like processing power, so as to capture result variations.

Some attributes, like accuracy, may be defined in terms of both static and dynamic

measures. When evaluating the accuracy of a database search engine, a static measure

might be, for example, whether new entries submitted to the database are verified by

human experts through a process known as curation, so that a curated database is

considered more accurate than a non-curated one. This measure does not change over

time because it is part of the database policy and, thus, can just be evaluated once

instead of every time the service is used. A dynamic measure for the search engine’s

accuracy would be the number of matched items returned by the search algorithm that

are not relevant to the input query (the fewer the number of irrelevant matches, the more

accurate the search engine). Different from the static measure, the dynamic measure can

vary from one execution to another when different input data or parameter configurations

are used (and differences can be captured by repeated evaluation).

5.3.3 Evaluation Functions

The result measures of a particular attribute, as described above, are used by evaluation

functions to generate an evaluation for that attribute. More specifically, each evaluation

attribute of a generic service srv has its own evaluation function, which is expressed in

the form of a utility function, taking into account the result measures associated with

that attribute (as shown on the right side of Figure 5.1).

To represent the set of evaluation attributes that an agent involved in an interaction as a

provider (prv) or a requester (req) wants to evaluate in service srv, we use the set Aprv
srv =

{a1, .., an} (or Areq
srv if the agent is a requester), where n is the number of attributes related

the srv. The choice of evaluation attributes for an agent in different roles is related to the

objective of the evaluation. For an agent receiving a service, the evaluation is intended

to measure its satisfaction with the service results, while for an agent providing a service,

the evaluation is intended to measure its effort in performing the service. Taking as an

example the list of evaluation attributes for service srv including accuracy, performance,

reliability, and cost, a requesting agent would evaluate srv in terms of the attributes

related to its satisfaction, so that Areq
srv = {accuracy,performance,reliability}. On the

other hand, a provider would evaluate srv in terms of the attributes related to its effort

in carrying out execution, so that Aprv
srv = {cost}.

Thus, all ai ∈ (Areq
srv ∪ Aprv

srv) must have an evaluation function Aevalsrv,ai
. When more

than one attribute is evaluated (as in the example above when srv is evaluated from the

Chapter 5 Evaluation Method 62

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Result measure

E
va

lu
at

io
n

(a) Increasing Evaluation Function

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Result measure

E
va

lu
at

io
n

(b) Decreasing Evaluation Function

Figure 5.2: Increasing and decreasing evaluation functions with b = 0.5.

requester’s perspective), all evaluations must be on the same scale to allow their com-

bination in a single, consistent evaluation for the service, since all attribute evaluations

must have the same impact on service evaluation.

To guarantee that evaluations for attributes ai, with i = {1, .., n}, are on the same scale,

we define a basic, normalized evaluation function for service attributes. Moreover, we

consider service evaluation in a context in which not only are service providers diverse in

terms of the quality of the service they provide, but service evaluators are also different

in terms of their evaluation standards (so that distinct requesters might view the same

service result as having different quality). Therefore, we need to find a means to allow

the evaluation function to be tuned according to the evaluators’ standards. To do so,

we use a strictness variable (b), which allows evaluations to be more or less strict for

the same service result. Thus, the basic evaluation function for an attribute is defined

as follows:

• Aevalsrv,ai
(cai

) = bcai , for decreasing utility attributes, or

• Aevalsrv,ai
(cai

) = b
1

cai , for increasing utility attributes

where b ∈ (0, 1) defines how strict the range of acceptable values is (and alters the

shape of the curves in Figure 5.2) and cai
represents the result measure associated with

attribute ai. For decreasing utility attributes, the evaluation will be higher for smaller

values of their results measures (cai
), as shown in Figure 5.2(b). For example, if the

performance attribute of an information retrieval service is measured in terms of the

service response time, so that a service with response time of 0.5 minutes has a higher

evaluation than another service with response time of 2 minutes, this attribute must

have an evaluation function with decreasing utility. For increasing utility attributes, the

evaluation is higher for higher values of their result measures, as shown in Figure 5.2(a).

For example, considering the same information retrieval service, if its accuracy attribute

is measured in terms of the number of relevant pieces of information returned by the

Chapter 5 Evaluation Method 63

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Result measures

E
va

lu
at

io
n

b=0.2
b=0.4
b=0.6
b=0.8

(a) Increasing evaluation

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Result measures

E
va

lu
at

io
n

b=0.2
b=0.4
b=0.6
b=0.8

(b) Decreasing evaluation

Figure 5.3: Impact of constant b on increasing and decreasing evaluation functions,
with values b = 0.2, b = 0.4, b = 0.6, and b = 0.8.

service, so that a service that returned 10 relevant pieces of information has a higher

evaluation than another service that returned 5 relevant pieces of information, this

attribute must have an evaluation function with increasing utility.

To better understand the evaluation functions and how to define evaluation functions

with different strictness, we analyse below the impact of the constant b on the evaluation

result. We also discuss the difference on service evaluation from provider and requester

perspectives, and show how to combine the evaluation of service attributes into an overall

evaluation for the service, which can then be used for selection of alternative services.

5.3.3.1 Defining Evaluations with Different Strictness

The evaluation function has two parameters: b, the base of the exponential function,

which defines the slope of the evaluation curve; and c, the exponent, which is the result

measure of the attribute being evaluated. Constant b can be viewed as the strictness of

the evaluation, since it defines the range of acceptable values for result measures of the

attribute. The impact of b on service evaluations is therefore as follows.

• For attributes with increasing evaluation, higher values of b represent a strict

evaluation while low values of b represent a less strict evaluation (as illustrated

in Figure 5.3(a)). For example, assume that the cost attribute of a service is

evaluated in terms of the processing time consumed by the provider, so that service

cost increases with processing time. In a strict evaluation, the cost of service is

high for a provider even for relatively small values of processing time, while if the

evaluation is less strict, the cost of the service is low for relatively small values of

processing time.

• For attributes with decreasing evaluation, higher values of b represent a less strict

evaluation, while low values of b represent a more strict evaluation (as illustrated

Chapter 5 Evaluation Method 64

in Figure 5.3(b)). For example, assume that the accuracy attribute of a search

engine is evaluated in terms of the number of matches returned to the user that are

unrelated to the input query, so that service accuracy decreases with the number

of unrelated matches. In a strict evaluation, the accuracy of the search engine is

low even for relatively small numbers of unrelated matches, while for less strict

evaluations service accuracy is high for small numbers of unrelated matches.

To illustrate the impact of different strictness on evaluation, Figure 5.3(b) represents

four evaluation functions for the performance attribute of a search engine service. All

functions use service response time (in minutes) as the result measure to evaluate per-

formance, so that service evaluations decrease as the service response time increases.

The only difference between these evaluation functions is that they have different values

for constant b (which are b = 0.2, b = 0.4, b = 0.6, and b = 0.8). Now, for comparison

purposes, assume that high service performance has an evaluation greater than 0.5, and

a low service performance has an evaluation smaller than 0.5.

If the evaluation is strict (such as when b = 0.2 in Figure 5.3(b)), services are viewed

as having high performance only when their response times are very small (around 0.5

minutes). If the evaluation is not strict (such as when b = 0.8 in Figure 5.3(b)), services

are considered to have high performance even when their response times is almost six

times longer (that is, around 3 minutes).

In summary, the impact of constant b on service evaluation in relation to a particular

attribute depends on the type of evaluation of that attribute, so that higher and lower

values of b have opposite effects for attributes with increasing or decreasing evaluation.

As we will see in Chapter 6, when agents cooperate by providing services to and receiving

services from each other, the equilibrium of such cooperations, in terms of the quality

of the services provided and received, can be affected by differences in the strictness of

the evaluation of interacting agents.

5.3.3.2 Evaluation from Provider and Requester Perspectives

Service evaluation has a different perspective for providers and requesters, since the goal

of evaluation is distinct: providers use evaluation to measure their effort in performing

the service, while requesters use evaluation to measure their satisfaction with service

results.

Taking an example in the bioinformatics domain, consider an agent α that provides a

search service on a human genome database (srv1), and needs to request a search service

on a mouse genome database (srv2) from others, since it is not capable of performing it.

As a provider, α evaluates srv1 in terms of its cost, which is associated with effort, such

that Aprv
srv1

= {cost}. As a requester, α evaluates srv2 in terms of srv2’s accuracy, which

Chapter 5 Evaluation Method 65

is associated with satisfaction with service results, such that Areq
srv2

= {accuracy}. Now,

assume that the result measure for srv2’s accuracy attribute is the number of unrelated

matches (um) returned by the service, and for srv1’s cost attribute the result measure

is srv1’s response time (rt).

In terms of effort, the evaluation of srv1’s cost is higher for higher values of response

time (more response time, more effort), which is represented by the following evaluation

function:

Aevalsrv1,cost(rt) = b
1

rt

In contrast, in terms of satisfaction, the evaluation of srv2’s accuracy is higher for smaller

numbers of unrelated matches (fewer unrelated matches, higher service accuracy), which

is represented by the following evaluation function:

Aevalsrv2,accuracy(um) = bum

Therefore, even though we use the same evaluation scheme to define evaluation functions

for both provider and requester, their evaluation functions represent an evaluation from

different perspectives.

5.3.3.3 Using Evaluation Results for Future Selection

When agents need to select alternative services (to request or provide), they can use

evaluations of services received or provided in previous interactions to find those with

better characteristics (such as those with best performance and accuracy, or requiring

smaller cost).

Although all attributes are evaluated over the same scale, so that they have the same

impact on service evaluation, prior attribute evaluations can be combined during selec-

tion to form the overall service evaluation. For such combination, attributes may be

seen as having more or less importance for the service overall evaluation, according to

the evaluator’s preference. This is achieved by assigning weights to each attribute evalu-

ation in the overall service evaluation. Thus, given the evaluations for service attributes

in all previous interactions, the overall evaluation for a service srv (Seval(srv)) can be

calculated as:

Seval(srv) =
m

∑

i=1

(wsrv,ai
×

1

l

l
∑

j=1

Aevalsrv,ai
(caij)) (5.1)

where m is the total number of evaluation attributes of service srv (for example, per-

formance, accuracy, etc), l is the total number of prior interactions in which the service

Chapter 5 Evaluation Method 66

Algorithm 1 Evaluation process for a received service srv.

1: input: srv
2: for all ai ∈ Areq

srv do

3: cai
= fai

(resultsrv)

4: Aevalsrv,ai
(cai

) = choice(bcai , b
1

cai)
5: end for

6: output: {Aevalsrv,a1
(ca1

), ..., Aevalsrv,an(can)}

was evaluated, Aevalsrv,ai
(caij) is the evaluation for attribute ai of service srv in a pre-

vious interaction j, and wsrv,ai
is the weight given to ai representing its relevance to the

overall evaluation of service srv. Each agent may have its own set of weights for service

attributes, and the only restriction is that
∑

i=1..n wsrv,ai
= 1.

Note that overall evaluations are determined during this selection from among alter-

native services, and not at each point in the evaluation of previous services. This is

because the overall evaluation uses the weights that represent each agent’s preferences

over service attributes and, if preferences change over time, the comparison of two overall

evaluations calculated over different sets of weights will be biased. Instead, results from

the individual prior evaluations are concerned only with attributes, which are indepen-

dent of agent preferences, and which can be combined subsequently in a single overall

evaluation when an agent needs to select from among different services.

5.4 Evaluation process

To allow agents to evaluate services, it is necessary to identify, for each needed or pro-

vided service, a set of attributes that the evaluator considers relevant to evaluate. Then,

for each identified evaluation attribute, the result measures that best define that at-

tribute need to be determined and applied to the evaluation function for that attribute.

For dynamic result measures, repeated evaluations must be performed instead of single

evaluations (generated when the service is first used), since repeated evaluations can

capture service behaviour under different conditions, such as different input configura-

tions.

Once attributes, result measures and functions are defined, every time an agent receives

or provides a service, it initiates an evaluation process for that service, which is carried

out by the evaluation method. The input for the evaluation method is the service result

itself, or information about the service execution process, and the output is a set of

evaluations for service attributes.

The evaluation process for an agent α that receives a service srv with attributes in

the set Areq
srv follows the steps in Algorithm 1. It identifies, for each attribute ai of the

service, the result measure cai
, which is determined from the service result (we use a

Chapter 5 Evaluation Method 67

generic function fai
(x) to represent the process of determining cai

), and the evaluation

of ai through the function Aevalsrv,ai
(cai

) (which can have increasing or decreasing

utility, depending on the attribute, as represented by the function choice(bcai , b
1

cai)).

The evaluation process when α provides a service srv1 follows the same steps as above,

but using the set Aprv
srv1

instead of set Areq
srv.

5.5 Evaluating Bioinformatics Services

As described earlier in Chapter 3, the bioinformatics domain has a variety of dynamic

services with similar functionalities but that can yield distinct results for the same input

data. Given the dynamic and heterogenous character of bioinformatics services, they

are used as a case study for the evaluation method described in this chapter. Thus,

in this section we apply the proposed evaluation method to the bioinformatics domain.

In particular, we evaluate services, ms/ms search engines, that are used in proteomics

research (Tyers and Mann, 2003) to identify unknown proteins. These services manifest

characteristics of dynamism and heterogeneity, and are thus generally representative of

services in the bioinformatics domain. We also show empirical results that support the

need for repeated evaluation in the case of dynamic services.

5.5.1 Identifying Evaluation Attributes and Result Measures

To evaluate bioinformatics services, we must identify the evaluation attributes to be

considered and develop evaluation measures for each of these attributes. To identify the

evaluation attributes for ms/ms search services, we need to consider the purpose of these

services as requesters and the execution cost of these services as providers.

From a requester’s perspective, biological search engine services must be capable of

identifying all information that is related to the biological data being analysed, so that

they can provide information about its function and structure. It is important that

matches returned by the services are associated with the correct degree of confidence, so

that those matches with a high degree of confidence can be as trusted as the input data.

Such data-related aspects are also found in traditional web search engine evaluation

metrics (Dhyani et al , 2002), with the difference that in traditional web search the

meaning of the query data is usually known by the individual submitting the query (so

that identifying relevant matches is straightforward), which does not always happen for

ms/ms search users. In addition, services in bioinformatics usually handle great amounts

of data, and thus service results can take hours or even days to complete. In this

case, performance-related aspects must also be evaluated. Although evaluation criteria

regarding performance are generally applied in the evaluation of web services (Lee et al ,

Chapter 5 Evaluation Method 68

2003), they are not considered in many benchmarks for bioinformatics services (Chamrad

et al , 2004; Kapp et al , 2005), which are essentially concerned with data-driven aspects.

From a provider’s perspective, protein identification services need a large amount of com-

putation resources since they usually deal with large amounts of data, so it is important

to evaluate the computational cost involved in performing those services.

Based on this analysis, we have identified relevant evaluation attributes for protein

identification (ms/ms search) services that consider both data-related and performance-

related aspects, as described below.

• Sensitivity refers to the ability to identify all significant information that is related

to the input data, independent of its quality.

• Accuracy indicates whether result errors were generated from service execution.

An algorithm for comparing the similarity of a protein sequences with a sequence

database, for example, must be sufficiently accurate to return only those matches

that are related to the input and to avoid random matches.

• Performance indicates the time needed to complete a task.

• Cost indicates the effort needed to complete a task.

Each evaluation attribute must be measured according to concrete values that can be

observed from parsed service results or from the execution process. In addition, since

search engines match each individual entry in an input file (spectra) with the database,

the size of the input file (number of entries) may have an influence over some evaluation

attributes such as performance and sensitivity (that is, the larger the input file, the

larger the expected response time for the service, and the higher the expected number

of matching proteins and peptide ratio). Therefore, the evaluation of some attributes

of the ms/ms search engine may consider the size of the input data in addition to the

respective result measures. Note that although the attributes above could be used to

evaluate services outside the scope of bioinformatics, identifying the result measures for

these attributes depends on the service functionality and purpose, thus varying across

services and domains. The result measures that we have identified to evaluate each

attribute and the evaluation functions that we developed for each of them are described

next, in relation to the bioinformatics domain.

5.5.2 Sensitivity

The sensitivity of a ms/ms search engine is related to its ability to identify all matches

related to the input spectra. All ms/ms search engines have a significance value, rep-

resenting the chances of that match being random, associated to each protein match

Chapter 5 Evaluation Method 69

returned with the search result. If the significance value is above a certain threshold,

the protein match is considered a true positive. Therefore, we developed two result

measures for the sensitivity of a ms/ms search engine: the number of proteins identified

above the significance threshold, and the number of peptides matching those proteins

(the peptide ratio). The higher the number of significant protein matches and the num-

ber of peptides per identified protein, the greater the sensitivity of the search engine.

Both result measures can be directly identified by parsing the search result. We deter-

mine the number of proteins by counting all protein matches returned in the result that

are sufficiently significant, and the number of peptides per protein by the simple average

of peptide concentrations per matching protein, as indicated below:

peptide ratio =
1

n
×

n
∑

i=1

pp(i)

where n is the total number of proteins, and pp(i) is the number of peptides matching

protein i. We then combine the number of proteins and peptide ratio into a single result

measure for sensitivity (sm), which also includes the size of the input file used for search

(in Kbytes). We determine the sensitivity result measure as follows:

sm =
protein number × peptide ratio

input size

Given the result measure for the attribute, we can instantiate its evaluation function. To

evaluate sensitivity, it must be noted that a desirable service is one with a result with a

higher number of significant protein matches and a higher concentration of peptides per

protein, indicating that there was a large coverage of the protein sequence. Therefore,

to reflect this result, the evaluation function for sensitivity must have a utility that

increases with the ratio (sm) between returned matches and input size. We determine

the evaluation function for the sensitivity attribute in the following form:

Aevalsrv,sensitivity(sm) = b
1

sm

where b can be any value in the range of (0, 1). Here, the sensitivity evaluation increases

as the number of identified proteins and associated peptides increase.

5.5.3 Accuracy

For general Internet search engines like Google or Altavista, one of the approaches to

measuring accuracy is to observe the number of occurrences of the query in the matching

web site (Dhyani et al , 2002). However, the fundamental difference between ms/ms

search engines and general web search engines is that users of the latter submit keywords

Chapter 5 Evaluation Method 70

or expressions with the goal of finding related information, while ms/ms search engine

users usually submit data with an unknown identity with the goal of finding similar data

that could provide information about the identity or origin of the submitted data.

The submission of unidentified data to the search engines makes it difficult for the

evaluator to determine the accuracy of the matched results. Unless users submit data

that is already known, they cannot determine whether the match is a false positive

(which is a match with a high degree of confidence, but not actually related to the input

data) without conducting a further investigation or relying on a detailed human expert

analysis. However, some approaches have been proposed by Chamrad et al (2004) and

Kapp et al (2005) to provide some kind of result validation, as described below.

• Search with multiple input files: the technique is to send multiple input files from

the same protein and analyse each result individually to identify those matches that

are common to all input files and those that are not. The idea is that searching with

multiple input files from the same original protein sample reduces the chance of

false positives being repeated in all individual results, and thus these false positives

may be spotted in the results.

• Corroborate results of different services: the technique is to repeat the request sent

to one service with a different service and compare the matches given by both. The

premise is that services give top hits similar enough to validate each others’ results

and, thus, the comparison of different results can identify both true positives and

false-positives that are among the top hits.

• Compare matched protein masses with expected mass: before starting a ms/ms

search, requesters may have an expected value for the mass of the protein that is

present in the input file. Thus, the result can be validated by comparing the mass

of top match proteins with the expected mass. True matches must have similar

mass to the expected protein.

Apart from the fact that the corroboration approach depends on another service, any

of these approaches could be adopted to determine service accuracy, since all provide

concrete, observable result measures to be used by the proposed evaluation method. For

example, if we take the number of false positives as a result measure for service accuracy,

all three validation approaches provide different ways of getting the information, and

the choice of which to use is left to specialist users.

Thus, we take the evaluation of the accuracy attribute to be a function defined in terms

of number of false positives identified in the results. A desirable service will return a

result with as small a number of false positives as possible. The evaluation function that

reflects this has a decreasing utility in relation to the number of false positives, and is

given as:

Chapter 5 Evaluation Method 71

Aevalsrv,accuracy(fp) = bfp

where fp is the number of false positives, and b can be any value in the range of (0, 1).

Here, service accuracy has a higher evaluation for smaller numbers of false positives.

5.5.4 Performance

For the performance of a ms/ms search engine we identify the result measure response

time, which represents the amount of time a requester has to wait for the service result.

Although for local services, response time will be similar to processing time, it may sig-

nificantly differ from processing time when evaluating remote services, because response

time considers the influence of network traffic. From the point of view of a requester, it

is more relevant to consider the performance of the ms/ms service in terms of response

time.

As with the other result measures, the response time can be determined during the

execution process. Like the sensitivity result measure, the size of the input file has an

influence on the service’s response time, so it is again considered when determining the

performance result measure (pm), as follows:

pm =
response time

input size

where the response time is given in seconds, and the input size is given in Kbytes.

When evaluating performance, a desirable result has small values for response time, and

thus the evaluation function for performance must have a decreasing utility in relation

to pm. The evaluation of service performance is given by the function:

Aevalsrv,performance(pm) = bpm

where b can be any value in the range of (0, 1). According to the function, service

performance is higher for smaller values of pm and, consequently, for shorter response

times.

5.5.5 Cost

For the cost of providing a ms/ms search service, we identify the result measure process-

ing time. Just like the sensitivity and performance attributes, the size of the input file

has an influence on the required amount of processing time, so it is also considered in

Chapter 5 Evaluation Method 72

the cost result measure (cm) as follows:

cm =
processing time

input size

where the processing time is given in seconds, and the input size is given in Kbytes.

Evaluating the service cost aims at determining the effort of the provider in executing

the service. Therefore, the cost of the service must be higher for higher processing times,

which is represented by the following evaluation function:

Aevalsrv,cost(cm) = b
1

cm

where b can be any value in the range of (0, 1). According to the function, service

cost increases with the value of cm and, consequently, the value of processing time.

Note that although the service performance and cost are measured with similar result

measures, response time and processing time, the evaluation functions for both attributes

have the opposite behaviour, since evaluation is seen from different perspectives by

the requester and the provider. This means that small processing and response times

represent, respectively, high performance for the service requester but small effort for

the service provider.

After having determined the evaluation functions for all evaluation attributes of ms/ms

search engine services, we can apply these functions to evaluate real bioinformatics

services. The results are presented below.

5.5.6 Evaluation Results

In the previous sections we have developed evaluation attributes, measures and func-

tions for evaluating bioinformatics ms/ms search services, on the basis of our proposed

evaluation method. Here, we apply these evaluation functions to evaluate real ms/ms

search services.

For this empirical study (also presented in (Rodrigues and Luck, 2006c)), we use real

protein search engines that are publicly available, two of which have a local version and

two of which are remotely accessed. These search engines are Mascot Remote (Perkins

et al , 1999), Tandem Local and Remote (Craig and Beavis, 2003), and OMSSA Local

(Geer et al , 2004).

To investigate if the evaluation method can be used to compare different services under

similar conditions, the requests were submitted to all services using the same input

spectra (580.8Kb) and the same input configuration. Also, to compare evaluations of

the same service under different conditions, we used two different input configurations,

Chapter 5 Evaluation Method 73

Parameter C1 C2

Database NCBInr NCBInr
Enzyme Trypsin Trypsin
Taxonomy Mammals All entries
Fixed Modifications Carbamidomethyl (C) None
Potential Modifications None None
Peptide Tolerance 2.0Da 2.0Da
Fragment Tolerance 0.8Da 0.8Da
Missed Cleavages 1 1

Table 5.1: Initial configurations for ms/ms search services.

Service protein number peptide ratio Sensitivity

C1 C2 C1 C2 C1 C2

Mascot Remote 13 40 10 9 0.045 0.327
Tandem Local 8 36 11 51 0.010 0.803

Tandem Remote 2 3 9 6 1.9E-10 1.9E-10
OMSSA Local 31 31 4 4 0.039 0.039

Table 5.2: Evaluating ms/ms search services according to the sensitivity attribute.

as shown in Table 5.1. Configurations C1 and C2 have different settings for parameters

Taxonomy and Fixed Modifications, while the other parameters are kept the same. We

repeated the evaluation process for each input configuration using the same spectra to

observe the changes in evaluation results. The evaluation functions for all attributes

used a strictness of b = 0.5.

Results for the evaluation of the four different ms/ms search services according to the

sensitivity attribute are shown in Table 5.2, and the services with best evaluation for

this attribute using each configuration are highlighted in bold. Here we observe that,

for configuration C1, Mascot Remote has a better sensitivity, but for configuration C2,

Tandem Local is better. Also, we observe that all services had sensitivity for configura-

tion C2 higher than or equal to the sensitivity for C1 (as expected since configuration

C2 is more general, allowing more proteins to match the input, while configuration C1

is more specific, restricting the search space of the ms/ms search engine).

Evaluation results for the performance attribute are shown in Table 5.3. Here, we observe

that Tandem Local has better performance when using configuration C1, but Tandem

Remote is better when configuration C2 is used. All services except for OMSSA Local

had better performance when using configuration C1 than when using configuration C2

(as expected since the space to search is larger for configuration C2, which is more

general, while the search space is narrowed by configuration C1, which is more specific).

From a requester’s perspective, we observe from the above results that, if the evaluation

process had not been repeated after the first interaction with Tandem Local, a requester

interested in finding the best service in terms of sensitivity would have the wrong in-

formation that Mascot Remote would perform better when using configuration C2 as

Chapter 5 Evaluation Method 74

Service response time (sec) Performance

C1 C2 C1 C2

Mascot Remote 172 200 0.814 0.787
Tandem Local 11 41 0.986 0.952
Tandem Remote 26 37 0.969 0.956

OMSSA Local 2581 2489 0.045 0.051

Table 5.3: Evaluating ms/ms search services according to the performance attribute.

Service processing time (sec) Cost

C1 C2 C1 C2

Mascot Remote - - - -
Tandem Local 11 41 1.4E-16 5.4E-5

Tandem Remote - - - -
OMSSA Local 2581 2489 0.855 0.8507

Table 5.4: Evaluating ms/ms search services according to the cost attribute.

well. Similarly, if the evaluation process had not been repeated after an interaction with

Tandem Remote, a requester interested in finding the best service in terms of perfor-

mance would have the incorrect information that Tandem Local would present better

performance also for configuration C2.

From a provider’s perspective, service evaluation in terms of cost shows that, from the

two local services, Tandem has the smaller cost, since its processing time is much less

than OMSSA’s processing time, as shown in Table 5.4. Also, for service Tandem Local,

the search process is less costly for configuration C1 than for configuration C2, and the

opposite happens for service OMSSA Local.

In the future, to select from these alternative services, the requester can also determine

the overall evaluation for each service by applying Equation 5.1. Evaluations for ms/ms

search services using a particular configuration are shown in Table 5.5, in which evalua-

tions in the first column use the same weight for the sensitivity (wsens) and performance

(wperf) attributes, and evaluations in the second column use different weights for these

attributes (with wsens = 0.7 and wperf = 0.3). In this case, the service Tandem Local

has the highest service evaluation for both configurations using both sets of weights for

service attributes.

The results show that dynamic services, like those presented in this empirical study, de-

spite having similar functionally, can yield heterogeneous results under different configu-

rations. Thus, there is a need to dynamically evaluate services to improve the efficiency

of future selection of alternative services.

Chapter 5 Evaluation Method 75

Service Seval (wsens = wperf) Seval (wsens 6= wperf)

C1 C2 C1 C2

Mascot Remote 0.429 0.557 0.275 0.465
Tandem Local 0.498 0.879 0.302 0.847

Tandem Remote 0.484 0.478 0.290 0.286
OMSSA Local 0.042 0.045 0.040 0.042

Table 5.5: Evaluation of ms/ms search services.

5.6 Comparison with Similar Methods

Similar methods to evaluate dynamic services include (Casati et al , 2004), (Day and

Deters, 2004), and (Sun et al , 2006). In (Casati et al , 2004) and (Day and Deters, 2004),

service results are stored after services are used and service evaluation is performed

dynamically when the user wants to select a provider. This dynamic evaluation is

generated by classifiers that take the information on prior service results and classify

the service in one of a pre-defined set of quality categories (such as poor, acceptable,

good, or excellent), which represent the (qualitative) service evaluation. The difference

between both methods is in the implementation of the classifier (with Casati et al (2004)

using decision trees and Day and Deters (2004) using a Naive Bayes reasoner).

Although both approaches are suitable for dynamic domains, since evaluations are com-

puted dynamically to capture variations in service results, the use of pre-defined quality

categories assumes that service users know what quality levels to expect from service

results, so that a qualitative evaluation can be generated for each service based on past

results. However, this is not possible for all services, as for the protein identification

services presented in this chapter, since users of such services often use input data with

unknown identity, and service results are influenced by different input configurations

and the quality of the input data.

In (Sun et al , 2006), service evaluation is given by an aggregation of performance-related

measures. Although this method generates absolute evaluations for services that can be

consistently compared in future service selection, it defines evaluation measures that are

restricted for evaluating service performance, so that its application to evaluate different

service attributes is not straightforward.

5.7 Conclusion

This chapter has presented a general evaluation method for dynamic services to be

used by agents in open systems. We discussed the issues for efficient evaluation of

dynamic services, which include the adoption of a repeated evaluation process, the use

of absolute evaluations, and the generation of comparable evaluations, and described

the components of the evaluation method.

Chapter 5 Evaluation Method 76

The evaluation method described here identifies dynamic properties of diverse services

without requiring any information on expected service results, and generates consistent

evaluations which can be compared at different points in time. In particular, our method

provides a means for agents to dynamically evaluate services and to use these dynamic

evaluations of service properties to select among alternative services in the future. More-

over, it offers the flexibility required for the diverse evaluators that can be found in open

systems, in the sense that it allows for personalised definition of evaluation functions (so

that agents can be designed to be more or less strict in their evaluations), and it allows

the evaluation of services from the perspective of both service providers and service

requesters.

We applied the evaluation method to evaluate services for protein identification, and

showed the importance of a dynamic evaluation process for such services through em-

pirical results. Results showed that there is a need to dynamically evaluate services to

provide more accurate information about their results, so that agents requesting services

in dynamic environments can improve the selection of alternative services in the future.

Regarding the domain of proteomics, although benchmarks for ms/ms services have

been presented in the literature (Chamrad et al , 2004; Kapp et al , 2005), there are

many limitations in automating real protein identification experiments, including the

lack of consideration for performance-related metrics of these services, the evaluation

process based on analysis of annotated biological data, and a static evaluation process in

which services are evaluated only once. We have addressed these limitations by defining

novel evaluation functions and metrics, for evaluating ms/ms services dynamically, and

which are directed at unknown biological data and consider data and performance-driven

aspects of services. Therefore, we argue that our evaluation method applied to ms/ms

services contributes towards the efficient automation of in-silico protein identification

experiments, so that such experiments can improve in quality once the properties of

alternative services are known (and the best ones can be identified and selected).

Although the case study for our evaluation method targets services in the proteomics

domain, it can also be applied to services in other domains that share the same char-

acteristics of dynamism (where different evaluation criteria may be required, but using

the same method).

Chapter 6

A Computational Framework for

Non-Monetary Cooperation

6.1 Introduction

Agents operating in open cooperative systems with free services must be able to make

decisions over the interactions in which they engage. More specifically, agents must de-

cide among alternative interaction partners both when requesting and providing services

from and to others. We have already argued in our problem scenario in Chapter 3 that

the foundations of such decisions are, first, the evaluations that agents give to services,

and second, the non-monetary incentives to start or maintain a cooperation. Since we

have addressed service evaluation in the previous chapter, we can now focus on the in-

centives for cooperation in such systems by developing a framework for non-monetary

cooperative interactions.

According to Burt (2000), it can be useful in certain contexts to view a society as a

market in which individuals exchange goods, services and ideas to achieve their goals.

While markets typically involve monetary exchanges, many do not necessarily involve

economic capital. For example, in computer-supported scientific communities like bioin-

formatics, different types of information and tools can be exchanged in a non-monetary

and cooperative way in order to improve individual or global results (Stein, 2002). In

particular, in the case when service provision is free of charge, it becomes important to

enforce the link between providers and requesters, so that agents can count on stable

interactions if they need the help of others to achieve their goals.

To strengthen the relation between requesters and providers in non-monetary exchanges

it is therefore important to explicitly motivate cooperation, otherwise there is no in-

centive for autonomous agents to provide services to each other. In a system with

self-interested entities, a service provider has an incentive to cooperate if it receives

77

Chapter 6 A Computational Framework for Non-Monetary Cooperation 78

some benefit in return from the requester, either immediately or in the near future.

In the case of immediate reciprocation, it is easier to model and to check whether the

cooperative interaction is genuine (mutual), since it involves concrete actions that can

be clearly observed by both entities. However, immediate reciprocation is not always

possible since the provider may not need any service at the time the interaction takes

place, or the requester may only be available to provide a service in return in the near

future.

Cooperative situations in which reciprocation is not immediate thus raise interesting

issues for modeling cooperative agents. First, there is no guarantee that the requesting

agent will reciprocate in the future. Second, the provider must receive some benefit

in return from the requester, so that the provider is motivated to cooperate even in

the lack of a concrete, immediate return. Third, if we consider that in a multi-agent

system agents might have different perspectives of the same service due, for example, to

individual preferences and the relevance of each service to their individual goals, it may

be that an agent receives less than expected from a cooperation; that is, a provider can

evaluate a service it receives in return in the future as being of lower quality than the

service it provided in the past.

Models for non-monetary exchanges in human societies have been proposed in social

theories like those of Homans (1962, 1974) and Piaget (1973). Both theories consider

interactions between people as exchanges of goods, either material (like objects or ser-

vices) or nonmaterial (like ideas, advice, or gestures). As such, interactions involve an

exchange of values between participants, like informal credits and debts, gratitude, and

satisfaction, among others. However, while Homans presents a more explanatory and

investigative theory of social exchange (with practical experiments and observations),

Piaget considers concrete definitions and algebras to support his theory of exchange

values. The existence of a richer logical background in Piaget’s theory thus makes it

less susceptible to subjective interpretations, since the specific values present in every

exchange, their nature, and their inter-relation are explicitly identified, and are thus

more suitable for developing a computational model of non-monetary exchanges.

Piaget’s view of social exchanges is that individuals build up informal credits and debts

as a result of their interactions, and these values are seen as informal commitments

between individuals in the sense that they are not supported by any legal norm or

institution. Such informal commitments motivate both interactions between individuals

and the maintenance of these interactions over time. Importantly, the credits and debts

in Piaget’s model are not concerned with economic values, but with what individuals

owe to each other as a result of their interactions.

In this context, we propose a model for non-monetary interactions between autonomous

agents in which the explicit motivation for cooperation follows Piaget’s exchange values

approach. The aim is that agents structure their interactions based on the informal

Chapter 6 A Computational Framework for Non-Monetary Cooperation 79

commitments that exchange values imply: they use reciprocity to ensure compliance

with requests, and use the credits and debts that are gained after each interaction

to analyse incoming requests and evaluate possibilities of future interactions. Here,

commitments are not formal structures of mental representations of an obligation (as

discussed in (Jennings, 1996)), but are used to represent an informal commitment of one

individual to return a favour to another, to reciprocate in response to a service received

in the past.

The key contribution here is a computational model based on exchange values (Pi-

aget, 1973) to deal with the issues of modeling cooperative agents that act in (open)

non-monetary applications. Exchange values represent the agents’ individual subjective

evaluation of provided and received services, and are associated with their interactions,

indicating the effort, cost, or satisfaction of each agent.

This chapter describes our proposed framework for non-monetary cooperative interac-

tions, and is structured as follows. An overview of the theory of exchange values and

a discussion of its limitations to developing a computational model are presented in

Section 6.2. Then, the benefits of using exchange values to model non-monetary co-

operative interactions and our computational framework for using exchange values are

described in Section 6.3. Within this framework, the computational model for exchange

values is presented in Section 6.4, including the core model and the description of how

individual exchange values are derived. We then show how agents determine the balance

of their exchange values in Section 6.5, and summarise the steps of an interaction be-

tween two agents in which exchange values are used in Section 6.6. A practical example

of how to apply the proposed computational model of exchange values to interactions

between agents in a cooperative bioinformatics application is presented in Section 6.7.

The chapter finishes with conclusions in Section 6.8.

6.2 Piaget’s Theory of Exchange Values

Social exchange is the particular interaction in which an individual performs an action

on behalf of another and receives an action in reciprocation either immediately or in the

near future. The theory of exchange values was proposed by Piaget (1973) as an analysis

of human social exchanges and the reasons for their persistence or discontinuity. More

specifically, Piaget argues that in all social interactions in which one individual acts on

behalf of another there is an exchange of values between them. These values result from

each individual’s assessment of the provided or received action over a common scale of

values.

According to Piaget, every action and reaction of two interacting individuals towards

each other has an influence on their values: it can increase or decrease their values. In

this way, when an individual (the provider) acts for the benefit of another (the receiver),

Chapter 6 A Computational Framework for Non-Monetary Cooperation 80

causing the latter to increase its values, the receiver can react in one of the following

ways.

1. The receiver can pay back the provider by giving an object or providing another

service in return. This is the case, for example, if a researcher who intends to

submit a paper to a conference receives comments on his paper from a colleague

who is also working on a conference paper, and returns comments on his colleague’s

paper to reciprocate the favour.

2. The receiver just valorises the provider by expressing gratitude or approval, instead

of giving something immediately in return. This is the case, for example, when a

researcher, who receives comments from a colleague on a paper that he intends to

submit to a conference, expresses gratitude and valorises his colleague’s action to

show intentions of future reciprocation.

3. The receiver neither returns a service to, nor valorises, the provider.

All the above reactions of the receiver also have an effect on the provider’s values. In

the first situation, the receiver performs a material action1 for the provider (comments

on a paper), which constitutes an actual value for the latter (the comments are valuable

to improve the quality of the paper). In the second situation, the receiver performs an

abstract action for the provider (an utterance or gesture of approval, gratitude, etc),

which constitutes a virtual value for the latter, in the sense that his valorisation gives

him reputation, respect and authority, which are values he can use to gain some benefit

in future interactions (for example, the next time he is writing a paper, he can ask

the receiver for comments). The third reaction, however, is disadvantageous for the

provider since the receiver does not reciprocate the action in any way, and the receiver

is ultimately devalorised by the provider as ungrateful or unjust.

The values that are exchanged between individuals are clear when concrete objects are

involved in the exchange, as in the first situation above. However, when the exchange

involves virtual values, as in the second situation, a more detailed analysis is needed.

Here, the performed action is referred to as an actual renouncement for the provider,

since it requires the expenditure of time and effort, and it is an actual satisfaction or

gain for the receiver. The valorisation of the provider by the receiver, as a reaction to

the received action, is for the provider a reward, a virtual credit that he can draw upon

in the future, and for the receiver the valorisation constitutes a promise, a virtual debt,

in the sense that the receiver feels obliged to return the favour to the provider in the

future.

According to Piaget, exchanges between individuals occur in two stages: in the first

stage, which we call the provision stage, interacting individuals acquire virtual values

1We will use action in a general sense also to represent providing an object or a service.

Chapter 6 A Computational Framework for Non-Monetary Cooperation 81

α β

�������

valorisation

�α���α �β���β �

(a) Provision Stage

������� �β���β

�����	�

�α���α

α β

(b) Reciprocation Stage

Figure 6.1: Exchange values in the provision and reciprocation stages of the interac-
tions between individuals α and β.

which represent the valorisation of the provider by the receiver; in the second stage,

which we call the reciprocation stage, these virtual values are realised as actions, rep-

resenting a reciprocation. The provision and reciprocation stages are described in the

next sections.

6.2.1 First stage: Provision

When two individuals α and β interact, and α performs a service on behalf of β then,

according to (Piaget, 1973), exchange values are associated with the interaction as fol-

lows.

1. α performs a service and associates with its action a renouncement value rα indi-

cating the time or resources invested in that action.

2. β receives a service from α and associates with it a satisfaction value sβ.

3. β valorises α, and this constitutes a debt value tβ with α in response to the satis-

faction it gained.

4. The valorisation of α by β is taken by α as a credit value vα, which can be drawn

upon in the future.

The exchange values in the provision stage are shown in Figure 6.1(a), in which the

valorisation is represented with a dashed arrow to indicate a virtual action, in contrast

to the service, which is a material action. By the end of the interaction, both agents

acquire virtual values — a debt for β and a credit for α.

In the future, α can make use of this credit, vα, and ask β to perform a service on its

behalf. Nothing forces β to accept the request, so if β feels gratitude towards α or wants

to keep interacting with it, β accepts its debt and returns the favour to α. Otherwise, if

β does not admit its debt, α devalorises β as ungrateful. If β agrees to return the favour

to α, they enter the reciprocation stage of the interaction, which is described next.

Chapter 6 A Computational Framework for Non-Monetary Cooperation 82

6.2.2 Second Stage: Reciprocation

When α makes use of its credit and interacts with β, and the latter performs a service

on the former’s behalf then, according to (Piaget, 1973), exchange values are associated

with the interaction as follows.

1. α requests a service from β with the belief that it has a virtual credit vα from

previous interactions.

2. β admits a virtual debt tβ from previous interactions, and performs a service for

α accordingly.

3. β associates with its action a renouncement rβ indicating the time or resources

invested in that action.

4. α receives the service and associates with it a satisfaction sα.

By the end of the interaction, virtual values of credit and debt are realised in values of

renouncement and satisfaction. The reciprocation stage is illustrated in Figure 6.1(b).

When the two stages of the interaction take place, the interaction is said to be complete,

since there was reciprocation between the individuals.

6.2.3 Equilibrium of Exchange Values

In every interaction in which a service is provided or received, something is lost and

something is gained: a provider α loses investments (rα) of time and resources for

providing a service but gains a credit as a result of its valorisation (vα), and a receiver

β gains satisfaction (sβ) with the benefits of the received service but loses in acquiring

a debt (tβ) with the provider in return. The relation between these actual and virtual

values represents the counterbalance of gains and losses in each stage of the interaction,

so deferred exchanges (or reciprocations) are possible.

Since exchange values result from individual evaluations of services, differences in such

individual evaluations determine the balance of gains and losses in an interaction. If the

gains and losses of participants according to their individual evaluations are equivalent,

the interaction between them is said to be in equilibrium (provided that the participants’

evaluations are estimated over the same scale of values).

In the provision stage, the equilibrium of exchange values is represented in the form of

the equation below2:

(rα = sβ) ∧ (sβ = tβ) ∧ (tβ = vα) ⇒ (vα = rα) (6.1)

2This is an interpretation of the variation of exchange values described by Piaget (1973)

Chapter 6 A Computational Framework for Non-Monetary Cooperation 83

This means that, if the evaluations that α and β give to the service they provide or

receive are equivalent, the debt (tβ) acquired by β is the same as its satisfaction (sβ),

and the credit (vα) gained by α is equal to the effort (rα) it spent.

Similarly, the equilibrium of exchange values in the reciprocation stage is represented as

follows:

(vα = tβ) ∧ (tβ = rβ) ∧ (rβ = sα) ⇒ (sα = vα) (6.2)

Here, if the evaluations that α and β give to the reciprocated service are equivalent, then

β pays its debt (tβ) by performing a service with equivalent effort (rβ), and α spends

its credit (vα) by receiving a service with equivalent satisfaction (sα).

However, individual interests and different perspectives over the levels of quality of the

services that are provided and received may cause the disequilibrium of exchange values

in both the distinct stages of an interaction and in the complete interaction, so that

equilibrium situations may not always be achieved.

6.2.4 Limitations of Piaget’s Model

Although Piaget’s model provides an algebra of exchanges, which makes it mathemat-

ically richer than other sociological theories of social exchange like Homan’s theory

(Homans, 1962, 1974), it lacks a more precise definition of the exchange process than

is necessary for a computational representation of the model. In particular, it does not

specify the origin of virtual values, how the provider is aware of his valorisation, nor

how virtual values are accumulated and spent in the provision-reciprocation cycle.

More specifically, the model does not provide the precise relation between the four ex-

change values involved in an exchange between two individuals. For example, it is not

clear if a debt acquired by the requester is based on its own evaluation of a received ser-

vice (its satisfaction value), or on the provider’s evaluation (the provider’s renouncement

value). Similarly, it is not clear if the valorisation, which originates the provider’s credit,

is based on the requester’s objective evaluation (the requester’s satisfaction value), or

on the requester’s subjective assessment of its debt.

In addition, if we assume that the individuals’ exchange values are interrelated (that

is, if the virtual values of one individual have their origin in the values of another

individual), we have to deal with a second limitation of the theory, which is related to

awareness. More specifically, it is not clear in Piaget’s model whether individuals are

aware of each other’s values or if they consider what they believe the other individual’s

exchange values are. In human social exchanges what happens is probably a mixture

of both: an individual who receives a service from another expresses its satisfaction

or valorisation to the provider (through gestures, words, or actions), and the latter

interprets this expression on his own terms (that is, he keeps to himself what he believes

Chapter 6 A Computational Framework for Non-Monetary Cooperation 84

the other individual’s expressed values are). However, such a model of social exchange

based on expression and interpretation is very difficult to apply to interactions between

computational entities. Therefore, either agents must be aware of each other’s exchange

values through explicit communication of these values, or they must model what they

believe the interaction partner’s exchange values are, based on their own information.

Finally, at the reciprocation stage, the way credits are spent and debts are paid, so that

they decrease in value, is not clear. For example, the model does not explicitly state

whether credits and debts can accumulate nor, in case they do accumulate, how the

amount of credit is to be spent or debt to be paid.

In what follows, we discuss how exchange values can be applied to interactions between

computational entities, and describe our computational framework for using exchange

values in open cooperative systems.

6.3 Computational Framework

6.3.1 Exchange Values for Non-Monetary Interactions

Ignoring the limitations above, in relation to open cooperative systems in which compu-

tational services are free of charge, such as those in the bioinformatics domain, exchange

values can be used to motivate cooperation among autonomous agents. In this way,

instead of relying on benevolence or monetary compensation, cooperation is achieved

based on service reciprocation, which is motivated by credits and debts that agents gain

and spend over interactions.

Moreover, since exchange values are based on individual evaluations of provided and

received services, they enable agents to identify (through service evaluation) differences

among interaction partners, such as the level of quality of services provided, and the

strictness in evaluating services received. More specifically, analysing cooperations in

terms of the equilibrium of exchange values allows requesters and providers to identify

whether a cooperation is beneficial (when gains compensate for losses) or harmful (when

they do not). Such analyses provide a means for agents to choose interaction partners,

and to improve the results of their interactions.

To apply Piaget’s exchange values model to interactions between autonomous agents

in cooperative applications with free services, we propose a computational framework

for non-monetary interactions based on exchange values. Such a framework needs a

computational model for exchange values that not only determines the way these values

are represented computationally, but also addresses the limitations of Piaget’s model

discussed in Section 6.2.4. To develop such a model, we first discuss our perspective on

Chapter 6 A Computational Framework for Non-Monetary Cooperation 85

the origin of exchange values, present the modeling requirements, and then discuss the

alternative representations for exchange values in a computational system.

6.3.2 The Origin of Exchange Values

As mentioned previously, there are two types of exchange values: actual values of re-

nouncement and satisfaction, and virtual values of credit and debt. These actual values

result from objective evaluations of the service or object involved in the exchange, and

are thus represented as objective values. By contrast, virtual values result from subjective

judgements of the objective evaluation, and are represented as subjective values.

Clearly, objective values are present in any kind of exchange (economic, non-economic,

immediate or deferred), since an agent providing a service always incurs some cost or

effort (which is an actual renouncement), and an agent receiving a service always has

a benefit or gain (an actual satisfaction)3. Although these values have some degree of

subjectivity, since two agents might have different perspectives over which aspects of a

service are more relevant (like cost or the nature of a “good” result), both satisfaction

and renouncement values can be determined in a straightforward way through objective

evaluation processes, such as those considered in Chapter 5 (or simply through utility

functions). This makes clear the origin of objective values: each agent determines its

satisfaction or renouncement value based on its own objective evaluation process or

utility function.

In contrast, subjective values are present only in non-monetary interactions, the focus

of our work. To determine the origin of these values, we use the premise that subjective

values (the debt and credit) result from the valorisation the receiver agent gives to the

provider. Moreover, we consider this valorisation to be based on both the receiver’s

satisfaction with the service and its subjective judgement over the service or provider

(so that the debt acquired by the receiver may not coincide with its satisfaction). We

discuss possible subjective influences on credits and debts next.

6.3.3 Subjective Influences

In open systems in which agents with different characteristics and behaviours interact,

an agent’s subjective evaluation of its debt or credit is likely to be influenced by its

differences with other agents and its individual behaviour. Examples of such influences

are:

• fairness, since an agent may admit a debt that is different from its satisfaction to

take advantage of the interaction;

3There is always a benefit or gain, except when the action that was supposed to benefit the receiver
actually brings it a loss.

Chapter 6 A Computational Framework for Non-Monetary Cooperation 86

• performance skills, since differences in the skills of two interacting agents may influ-

ence their debt (as shown in a practical experiment about human social exchanges

described in (Homans, 1962));

• social hierarchy between agents in the society, since the position of two interact-

ing agents in this hierarchy may influence the valorisation of the provider by the

receiver;

• dependence, in the sense that agents may depend on each other to perform services,

and this dependence between interacting agents may influence their subjective

evaluation;

• service demand, since knowledge of the availability of a service or the demand on

its provider in the environment (or a community) may influence the acknowledged

debt of the requesting agent, if it considers a demanded service as more valuable

than another that is plentiful in the environment;

• expected service quality, since an agent may expect a certain quality from the

service it requested, and the comparison of the actual quality with the expected

quality may change the subjective value of the service from the requester’s per-

spective; and

• credit saturation, which refers to the accumulation of a large amount of credit,

since one agent may perceive the continual repeated gain of credits from another

agent as less valuable (or useful) as they accumulate and see no means of spending

them (as described in (Homans, 1974) in relation to human social interactions).

When subjective influences modify an agent’s objective evaluations, they may cause the

disequilibrium of exchange values (since the requester’s debt may not match with its

satisfaction, and the provider’s credit may not match with its renouncement). Indeed,

agents may use these influences to take advantage of the interaction (for example, by

decreasing their debt), or to improve their chances of future interactions (for example,

by increasing the valorisation given to a highly skilled provider).

6.3.4 Modeling Requirements

Apart from providing an explicit motivation for cooperation, the benefit of the exchange

values model lies in the way it enables agents to reason about gains and losses from ser-

vice provision and their balance, which is particularly important when agents cooperate

with others providing services with different levels of quality. To realise this benefit, a

computational model of exchange values needs to address the following.

• Compensation: two exchange values may be different in quantity but equivalent

from a qualitative point of view. In economic (monetary) exchanges, services are

Chapter 6 A Computational Framework for Non-Monetary Cooperation 87

provided and received based on a fixed, exact quantitative value. For example,

in an economic exchange, the provider of a service s1, which costs £50.55, must

receive this exact amount from the service requester in return for providing the

service. However, we adopt the view that, in non-monetary exchanges, individuals

are not concerned with the exact value of provided and received services as long

as they broadly compensate for each other. This is because it is difficult to achieve

precise compensation in such non-monetary exchanges, since each individual may

have a different perspective over the value of a particular service. Instead, each

individual approximates the value of the service they provide and receive in non-

monetary exchanges so that services that are reciprocated between individuals are

not required to have identical quantitative values.

• Variation: exchange values increase and decrease their amount from one interac-

tion to another, since in every interaction these values are acquired and spent by

agents (that is, a credit gained in one interaction can be spent in the next inter-

action, and a debt acquired previously can be paid back in a future interaction).

• Scale: exchange values need to be represented along some scale, so that interacting

agents can compare their exchange values.

• Comparability : exchange values must be comparable, so that an analysis of their

relative balance is possible, and agents are able to determine whether their gains

are smaller than, greater than, or equal to their losses in each interaction with

other agents. Thus, once agents are able to determine their balance of exchange

values, they may use this information to identify whether they gain or lose with

an interaction.

The need for an approximate equivalence of gains and losses that allows compensation

of provided and received services in non-monetary exchanges between agents suggests a

qualitative approach to the representation of exchange values. However, the necessity to

modify exchange values from one interaction to another, and to compare them, points

to a quantitative approach to the representation of these values. We consider these

alternative approaches below.

6.3.5 Alternative Representations

Following the view that, in non-monetary interactions, individuals are not concerned

with precise compensation of service provision, the notion of equivalence in such inter-

actions is more qualitative than quantitative. Qualitative values that have a certain

degree of vagueness can be represented with a fuzzy approach, more precisely with fuzzy

sets (Dubois and Prade., 1980). Unlike traditional set theory in which values belong to

a set with a true or false relation (for example, value a belongs to set A or does not

Chapter 6 A Computational Framework for Non-Monetary Cooperation 88

belong to set A), in fuzzy sets each value belongs to a set with a degree of certainty (for

example, value a can partially belong to set A).

Fuzzy sets usually represent linguistic concepts such as “very high”, “high”, “medium”,

and “low”, or “A”, “B”, “C”, and “D” to which quantitative values (members) belong

with a [0, 1] degree of certainty (varying from 0 for non-member values to 1 for values

with complete membership). For example, with the fuzzy approach, an agent may

receive a credit with value “very high” with a certainty of 0.8, and in the future spend

this credit by receiving another service as reciprocation which it evaluates as having a

“very high” satisfaction but with a 0.6 certainty. In this way, even though the values of

credit and satisfaction are not exactly the same, both have the same qualitative value

for the agent (“very high”), and thus compensate for each other.

The fuzzy approach copes with the issue of approximate compensation, since different

services can have the same fuzzy value, but with different degrees of membership. Re-

garding the issues of comparison of exchange values, since fuzzy sets are not ordered, it

is necessary to define an ordering relation for all possible fuzzy sets that represent ex-

change values, such as “very high” > “high” > “medium” > “low”. However, operations

to modify exchange values are expensive, since they require the definition of an algebra

relating all fuzzy sets so that exchange values can increase and decrease in value.

An alternative approach to representing exchange values qualitatively is through numer-

ical intervals. Here, each interval comprises a range of integer or real values delimited

by a lower and upper bound. To determine an exchange value using the numerical in-

terval approach, the quantitative evaluation of a service must be mapped to one of the

defined intervals. Since intervals comprise a range of quantitative values, it is possible

to have equivalent exchange values represented by intervals for similar, but not equal,

evaluations. Thus, as for fuzzy sets, the numerical intervals approach also copes with

the issue of approximate compensation of services. Regarding the comparison and vari-

ation issues, operations for comparing, increasing and decreasing exchange values are

less computationally costly using numerical intervals than using fuzzy sets. Neverthe-

less, comparing and varying intervals is more expensive computationally than using a

quantitative representation.

Indeed, although in many real life situations in which non-monetary exchanges take place

it is difficult to quantify the precise value of a service (such as the value or contribution

of each comment to a paper review), the evaluation of computational services is gener-

ally a quantitative operation. For example, computational services in the bioinformatics

domain give quantified results (e.g., number of proteins, number of peptides, proportion

of sequence coverage, etc), so determining a quantitative evaluation for those services

is straightforward. Therefore, an alternative to qualitative approaches is to represent

exchange values quantitatively through integer or real numbers. Quantitative scales are

ordered, and thus comparison operations are already defined, in contrast to qualitative

Chapter 6 A Computational Framework for Non-Monetary Cooperation 89

approaches. In addition, increasing and decreasing quantitative values is computation-

ally simple and does not require additional algebra definitions. However, the broad

compensation of services that is characteristic of non-monetary exchanges is difficult to

achieve with a quantitative equivalence of exchange values.

Considering that computational services can generally be evaluated through quantitative

operations, and due to the advantages of the quantitative approach mentioned above, in

our model we adopt a quantitative representation for exchange values. To address the

problem of broad compensation of services, we redefine the quantitative equivalence for

exchange values by defining a tolerance threshold when comparing two exchange values,

so that if the difference between these values is below the threshold, they are considered

equal. This satisfies our need, but also enables us to adjust such a threshold to suit the

particular domain according to user demands.

More specifically, with this representation of exchange values, we must define a scale

along with they are compared, so that interacting agents can compare their evaluations

of the service they provide or receive on the same basis. Since exchange values are

based on service evaluation, we can adopt the same scale that is used in the evaluation

method proposed in Chapter 5, which is a [0, 1] scale. Although such a quantitative

scale does not have an explicit notion of service quality or provision effort, we assume

that evaluations are made sensibly over the 0 to 1 range (that is, good quality results

tend to 1 and poor quality results tend to 0, while highly demanding service executions

tend to 1 and trivial service executions tend to 0). This also gives a coherent basis for

comparison of exchange values from two interacting agents.

6.4 A Computational Exchange Values Model

Having specified the origin of exchange values and the requirements for a computational

model of these values, here we describe a core model to represent exchange values com-

putationally. We then show how exchange values are determined by two interacting

agents, and accumulated and spent over repeated interactions. We determine exchange

values separately according to their origin, so that we have: objective values, which are

based on objective evaluations; subjective values, which are based on subjective evalu-

ations; and reciprocation values, which are based on the credits and debts acquired by

agents in previous interactions.

6.4.1 The Core Model

In each interaction between two agents in which a service is being provided or received,

four exchange values are involved: the renouncement (r), the satisfaction (s), the debt

Chapter 6 A Computational Framework for Non-Monetary Cooperation 90

(t), and the credit (v). These exchange values are not necessarily the same in the provi-

sion and reciprocation stages of the interaction since each stage is a distinct interaction

in which different services may be provided, and thus the satisfaction and renouncement

values determined by agents in each stage may be different. Exchange values acquired in

the provision and reciprocation stages must therefore be represented as distinct values.

To distinguish exchange values in each stage we use the notation r , s, t and v for values

acquired in the provision stage, and the notation r ′, s ′, t ′ and v ′ for values acquired in

the reciprocation stage.

In particular, in each interaction in which an agent participates either as a provider or a

requester, there is a distinct set of exchange values, which is different for each stage of the

interaction. Thus, for interactions between two agents α and β in the provision stage, the

set of exchange values of α can be represented as a tuple, EVαβ = (rαβ , sαβ , tαβ , vαβ),

and the set of exchange values of β as EVβα = (rβα, sβα, tβα, vβα). For interactions

in the reciprocation stage, the set of exchange values of α is represented as EV ′

αβ =

(r′αβ , s′αβ , t′αβ , v′αβ), and the set of exchange values of β as EV ′

βα = (r′βα, s′βα, t′βα, v′βα).

Only two values in the agent’s set of exchange values are determined in each interaction.

For example, in the provision stage of the interaction in which α provides a service to β,

α’s exchange values are renouncement (rαβ) and credit (vαβ), and β’s exchange values

are satisfaction (sβα) and debt (tβα). In the reciprocation stage of the interaction in

which β provides a service to α in return, α’s exchange values are satisfaction (s′αβ) and

credit (v′αβ), and β’s exchange values are renouncement (r′βα) and debt (t′βα).

In addition, because agents need to consider reciprocation and the quality of their in-

teractions in terms of gains and losses of values to judge whether to interact with other

agents, they must be aware of their credits, debts and the balance of their exchange val-

ues in previous interactions. Thus, agents maintain a history of exchange values, which

contains detailed information about previous interactions with other agents in which

exchange values were acquired or spent.

Each interaction in which an agent participates has an entry in its history of exchange

values. Each entry contains information about a specific interaction, including the time

at which it took place (time), the service that was performed or received by the agent

(srv), the identification of the partner agent (prt), the set of exchange values associ-

ated with that interaction (EV or EV ′), the balance of the exchange values in each

stage of the interaction (stb), and the overall balance of the exchange values in the

complete interaction (oab), which considers exchange values acquired in the provision

and reciprocation stages.

For example, consider an agent α that is providing a service srv1 to another agent β.

α does not have any existing debt with β from previous interactions, so the interac-

tion is in the provision stage. In this interaction α has a renouncement of rαβ = 0.6

and gains a credit of vαβ = 0.8, which results in the current set of exchange values

Chapter 6 A Computational Framework for Non-Monetary Cooperation 91

Table 6.1: Example of exchange values history for agent α.

time prt srv EV EV’ stb oab

r s t v r’ s’ t’ v’

10 β srv1 0.6 − − 0.8 − − − − p -
41 β srv2 − − − − − 0.6 − 0.8 n e
60 γ srv1 0.6 − − 0.7 − − − − p -
...

EVαβ = (0.6,−,−, 0.8). The balance of these exchange values is positive (p), since α’s

credit is greater than its renouncement, and the results of this interaction are stored in

α’s history of exchange values, as shown in the first line of Table 6.1.

Now, suppose that α interacts with β again but, this time, α receives a service srv2 from

β in return for the credit it previously acquired, so the interaction is in the reciprocation

stage. In this interaction α has a satisfaction of s′αβ = 0.6 and spends a credit of

v′αβ = 0.8, which results in the set of exchange values EV ′

αβ = (−, 0.6,−, 0.8). Unlike

the first interaction, the balance for the reciprocation stage is negative (n), since the

credit that α spent is larger than its satisfaction with the service. With the reciprocation

stage finished, the interaction between α and β is complete, and α can also determine

the overall balance of its exchange values, which in this case is in equilibrium (e), since

the gains and losses in both stages are equivalent. The results of this interaction are

stored in α’s history of exchange values, as shown in the second line of Table 6.1.

Now that we have the basic model, we need to consider how these values are derived so

that they can be used appropriately. This is described below.

6.4.2 Objective Values

In the provision stage of an interaction, an agent (say β) receives a service (say srv1)

from another agent (say α) and exchange values are instantiated, as discussed above. Re-

nouncement and satisfaction values in this stage are objective values and are determined

directly from each agent’s evaluation of its effort or utility. In the case of bioinformatics

services, we already have a means for such evaluation, as described in detail in Chapter

5, and can simply substitute those values here, so nothing new is needed.

Thus, the renouncement of α and the satisfaction of β are denoted as follows:

rαβ = evalRenouncementα(srv1)

sβα = evalSatisfactionβ(srv1)

where evalRenouncementα(srv1) is a function that calculates α’s evaluation of the pro-

vided service in terms of effort, and evalSatisfactionβ(srv1) calculates β’s evaluation of

Chapter 6 A Computational Framework for Non-Monetary Cooperation 92

the received service in terms of benefit. We have shown in Section 5.3.3.2 that, even

though agents use the same evaluation method, services are evaluated differently from

the perspective of providers and requesters. For example, α’s renouncement can be cal-

culated in relation to srv1’s cost, and β’s satisfaction can be determined in relation to

srv1’s performance.

The objective values in the reciprocation stage of the interaction are determined in the

same way as the provision stage. Thus, if, in the reciprocation stage of the interaction

between α and β, β provides a service srv2 to α in return, the renouncement of β and

the satisfaction of α are denoted as follows:

r′βα = evalRenouncementβ(srv2)

s′αβ = evalSatistactionα(srv2)

where evalRenouncementβ(srv2) is β’s evaluation of the provided service in terms of

effort, and evalSatisfactionα(srv2) is α’s evaluation of the received service in terms of

benefit. Note that the objective values that agents must determine in the reciprocation

stage of the interaction are not the same as those for the provision stage.

More problematic, however, are the remaining exchange values, which are subjective

values, considered in detail next.

6.4.3 Subjective Values

Subjective values of credit and debt result from the valorisation that the agent receiving

a service gives to the provider, as defined previously in Section 6.3.2, so that the origin

of subjective values is clear. However, this raises one limitation of Piaget’s model, which

is how the provider is aware of the receiver’s valorisation. As discussed in Section 6.2.4,

this issue must be addressed either by explicit communication of the valorisation from

the receiver to the provider, or by enabling the provider to model what it believes the

receiver’s valorisation is based on its own information.

Moreover, subjective values are affected by influences that may distort (by increasing

or decreasing) the original value on which they are based, as described in Section 6.3.3.

To consider such subjective influences on determining debts and credits, we need to

represent influences computationally.

In this context, before determining the subjective values of debt and credit, we ad-

dress the communication of the debt value from the requester to the provider and the

computational representation of influences, as described below.

Chapter 6 A Computational Framework for Non-Monetary Cooperation 93

6.4.3.1 Communication

To allow agents to reason about their interactions in terms of the compensation of

provided and received services, it is important that they are aware of the valorisation

that others give to their services, so that providers can identify possible disequilibrium

situations caused by under-valorisation or over-valorisation of their services. Through

explicit communication, the provider can gain accurate knowledge of the valorisation it

is receiving, and even if the receiver lies about its valorisation, a resulting disequilibrium

situation can then be identified by the provider.

To communicate its valorisation, the receiver needs only to reply to the message con-

taining the service result with an acknowledgement message including its debt value in

the content. Thus, if this acknowledgement message is already part of the interaction

protocol between agents, this communication does not increase the number of messages

exchanged between them. If the acknowledgement to the service result message is not

part of the protocol, the number of messages in the total interaction increases only by

1, which does not impose a message overload on the system.

Therefore, based on the above analysis, we assume that the service receiver first deter-

mines its debt value, and then communicates this debt to the provider as a valorisation.

6.4.3.2 Influences

Influences over subjective values may increase or decrease the values on which they are

based. We define influences as tuples ι = (condition, δ), where condition specifies the

situation in which the influence is valid (if the influence is always valid, the condition

is true), and δ ∈ [−1, 1] is the influence intensity, with δ < 0 representing a negative

influence that decreases the subjective value and δ > 0 representing a positive influence

that increases the subjective value. Note that the intensity of each influence must be

defined according to the desired impact of that influence on the subjective evaluation,

such that influences with high impact have intensity close to −1 or 1, those with low

impact have intensity close to 0, and those with null impact have intensity equal to

0. The set of all possible influences on an agent’s subjective evaluation is denoted as

I = {ι1, .., ιn}.

We have already discussed in Section 6.3.3 examples of subjective influences that

may be present in the kind of cooperative applications we are modeling. Here,

a number of conditions can be identified for these influences to be valid, such

as HighlySkilled(prt), HigherPosition(prt), UnilateralDependence(prt), Abundant(srv),

ReachedExpectation(srv), and Saturated(prt), where prt is the interaction partner and

srv is the service being provided or received. Although we consider just this group of

influences, others may apply to different applications or domains, and thus additional

Chapter 6 A Computational Framework for Non-Monetary Cooperation 94

Algorithm 2 Algorithm for the influence function influence(prt , srv).

1: input: prt,srv
2: totalι = 0
3: for all (ιj = (conditionj(prt, srv), δj)) ∈ I do

4: if conditionj(prt, srv) = true then

5: totalι = totalι + δj

6: end if

7: end for

8: output: totalι

conditions can be identified (but for ease of presentation, we discuss only the influences

above, instead of presenting an extensive list).

For example, if agent β exhibits unfair behaviour that always has a negative effect

on its subjective evaluation (that is, it always decreases its debt), such an influence

is represented by ι1 = (true, x), where 0 > x > −1. Similarly, if β’s unilateral de-

pendence with the interacting partner (identified as agent α) has a positive influence

on its subjective evaluation (that is, it may increase the debt), this influence is rep-

resented by ι2 = (UnilateralDependence(α), x), where 1 > x > 0, and the condition

UnilateralDependence(α) is true if β depends on α but α does not depend on β. Thus,

if there is a mutual dependence between the two agents, influence ι2 does not affect β’s

subjective judgement (it is not valid).

The set of influences that an agent considers in its subjective evaluation depends on

the agent’s design objectives (for example, agents can be designed to have fair or unfair

behaviour), and on what is important to capture from the environment (for example, in

a system with no social hierarchy, agents do not need to consider the influence of social

position).

6.4.3.3 Determining Influenced Debt and Credit

Until now, we have seen that an agent receiving a service first determines its debt value

and then communicates this debt to the agent providing the service, which takes it

as a credit. The process of determining debt and credit can be affected by subjective

influences on those values.

To determine the debt that is acquired when a requester receives a service, we must

consider the satisfaction of the requester with this service, and the subjective influences

that may apply over this satisfaction. Given the representation and use of influences

described previously, β determines its debt value as follows:

tβα = k(sβα + influence(α, srv))

Chapter 6 A Computational Framework for Non-Monetary Cooperation 95

where the function influence(α, srv) specifies the influence that β applies to its objective

evaluation sβα when interacting with partner agent α and receiving service srv, and the

function k(x) constrains the resulting value to a [0, 1] scale.

The function influence(α, srv) is described in Algorithm 2 and calculates the total in-

fluence totalι over a value (which for the requester is sβα). To combine influences, we

assume that positive and negative influences can cancel each other out, and that two

or more positive (or negative) influences have greater impact on the original value than

one influence alone. Thus, the total influence over the original value is determined in

Algorithm 2 by adding the intensities (δj) of all individual influences ιj in the set I that

have conditionj(prt, srv) = true.

Suppose that agent β has an influence set I = {ι1, ι2}, where ι1 = (Abundant(srv),−0.4)

and ι2 = (UnilateralDependence(prt), 0.2). This means that when β is requesting a

service (srv) it undervalues the provider if this service is abundant in the system, and

β overvalues the provider if it depends on that provider (prt) but the provider does

not depend on β. If both conditions are true, the total influence calculated according

to Algorithm 2 is totalι = −0.2 (as a result of −0.4 + 0.2). If β’s satisfaction value is

sβα = 0.6, this results in a debt of tβα = 0.4 (from k(0.6 − 0.2)). Here, the influence of

service demand decreases β’s debt in relation to its satisfaction. If only the condition

UnilateralDependence(prt) is true, the total influence on sβα is totalι = 0.2, which

results in a debt of tβα = 0.8 (from k(0.6 + 0.2)). Here, in contrast, the influence on

the agent’s subjective evaluation increases its debt in relation to its satisfaction. In this

case, if β’s satisfaction is sβα = 0.9, the function k(0.9 + 0.2) limits the value to 1,

resulting in a debt of tβα = 1.

After the requester has determined its debt, it communicates this debt to the provider

agent to express its valorisation of the provider’s service. The provider then accepts

this valorisation as a credit for the future. However, as for the debt value, subjective

influences may alter the original valorisation, increasing or decreasing the provider’s

credit. Given the same representation and use of influences described previously, a

provider α determines its credit value as follows:

vαβ = k(valorisation(β) + influence(β, srv))

where the function valorisation(β) just reads the valorisation (tβα) communicated by

the requester (β) through the service completion acknowledgement message, and the

function influence(α, srv), described in Algorithm 2, calculates the total influence over

the valorisation that α received from β. One possible influence over the provider’s credit

is saturation, as described in Section 6.3.3.

If there is no influence on the accepted credit, there is a direct correspondence between

β’s debt and α’s credit, vαβ = tβα. This direct correspondence is based on the assump-

Chapter 6 A Computational Framework for Non-Monetary Cooperation 96

tion that agents do not lie about their debts when communicating them, but if they do

lie (such that vαβ < tβα), causing a provider’s balance of exchange values to be negative

(that is, the renouncement is greater than the credit), such behaviour may reduce the

chances of future interactions with that provider. Moreover, the direct correspondence

between the provider’s credit and the requester’s debt allows the provider to identify

any under-valorisation or over-valorisation given by the requester.

6.4.4 Reciprocation Values

In the reciprocation stage of the interaction, the subjective values of credit and debt

acquired in the provision stage can be realised as objective values. Here, a credit is

spent by requesting a service that has some satisfaction value, and a debt is paid by

providing a service that has a renouncement value.

Suppose that two agents α and β have interacted previously and, as a result of these

interactions, α acquired a credit with β and β acquired a debt with α. Now, in the

reciprocation stage of the interaction, α can spend its credit (v′αβ) by asking β for a

service in return. Agent β may or may not admit the corresponding debt (t′βα) but, if

it does, it provides the requested service on α’s behalf. The service provided by β has a

renouncement for β (r′βα) and a satisfaction for α (s′αβ).

Unlike the provision stage of the interaction in which subjective values must be deter-

mined, when agents are in the reciprocation stage of the interaction, their subjective

values already exist (and were acquired in the provision stage). Thus, the determination

of credits and debts as reciprocation values involves only retrieving these values from

where they are stored. In the case of single interactions, this task is simple but, when

subjective values of credit and debt accumulate over time, we must determine how much

of an accumulated credit an individual should spend when requesting a service, and how

much of an accumulated debt an individual should pay when reciprocating.

The way accumulated credits are spent and accumulated debts are paid is not clear

in Piaget’s model, and there can be different approaches to determining reciprocation

values. However, it is desirable that solutions for determining reciprocation values allow

the following.

• Agents should be able to compare the services they provide with the services they

receive in reciprocation, so that they can identify interaction partners that provide

services with similar quality to their own services.

• Agents should be able to make use of high valorisations received in the provision

stage, yielding a high credit.

Chapter 6 A Computational Framework for Non-Monetary Cooperation 97

• Service reciprocation should cope with environments in which agents exchange

services with different levels of effort or computational demand (so that a service

with higher effort can be reciprocated with more than one service with lower effort).

As mentioned before, reciprocation values correspond to existing values of credit or debt,

acquired in previous interactions, in the provision stage. This correspondence between

service provision and reciprocation can be direct, such that one service provision cor-

responds to one reciprocation, or multiple, such that one or more service provisions

correspond to one or more reciprocations. Based on this, there are two possible ap-

proaches to retrieving credits and debts, as follows.

1. Direct correspondence (DC): each credit or debt resulting from an interaction is

seen as a unit that can be used for one reciprocation. The problem is then to

choose which credit (unit) to spend, or which debt to pay in each reciprocation

when they accumulate over time.

2. Creditor’s choice (CC): each credit resulting from an interaction can be spent in

parts by receiving more than one service in return (in different interactions), or

accumulated credits resulting from many interactions can be spent by receiving

one service in return. The problem is then to choose the amount of credit to

spend or the amount of debt to pay.

The advantage of the DC approach is that the comparison between services that agents

provide with services that they receive in reciprocation is straightforward (since there is

a one to one correspondence between them). However, making use of high valorisations

is difficult, since agents would need to receive one service that has the worth of such

high credit in reciprocation. In addition, it restricts applications in which services have

different computation demands, since all interactions in which a highly demanding ser-

vice is reciprocated with one trivial service will result in a negative balance of exchange

values for the agent providing the highly demanding service.

In the CC approach, one provision may yield one or more reciprocations, and the re-

quester (or creditor) chooses the amount of credit to spend with each reciprocation. To

do so, the requester might analyse the quality of the reciprocated service by comparing

its satisfaction with the reciprocated service against the average satisfaction associated

with the same service in previous interactions. The idea is that a requester, say α, can

choose how much of the credit received from a partner agent, say β, to spend each time,

depending on the service received. Thus, if there is a remaining credit and α is interested

in receiving another service from the same agent (that is, if the satisfaction with the

reciprocated service is greater than or equal to the average satisfaction), it spends only

the credit that is equivalent to the satisfaction value, so that v′αβ = s′αβ . However, if

the provider β reciprocates a low quality service causing α’s satisfaction to be less than

Chapter 6 A Computational Framework for Non-Monetary Cooperation 98

Algorithm 3 Algorithm for instantiating credit(β, s ′αβ) according to the CC approach.

1: input: β, s′αβ

2: vacc
αβ =

∑n
1 v′αβn

3: if |vacc
αβ − s′αβ | > tolerance then

4: average satisfaction = CalculateAverage(srv)
5: if s′αβ ≥ average satisfaction then

6: choice = s′αβ

7: else

8: choice = vacc
αβ

9: end if

10: else

11: choice = vacc
αβ

12: end if

13: output: choice

Algorithm 4 Algorithm for instantiating debt(α, reciprocation value) according to the
CC approach.

1: input: α, reciprocation value
2: tacc

βα =
∑n

1 t′βαn

3: t′βα = minimum(tacc
βα , reciprocation value)

4: output: t′βα

average, α may not be interested in requesting another service from the same agent,

and may spend all accumulated credit, which we now define as vacc
αβ , so that v′αβ = vacc

αβ .

This solution requires that α communicates v′αβ to β, in a manner similar to the process

of determining subjective values by the requester communicating its valorisation to the

provider (and this is possible because the credit to be spent is determined after the

service was received and α has calculated its satisfaction value).

Although with the CC approach both the reciprocation credit and the reciprocation debt

are determined based on the creditor’s choice, the maximum amount of credit that the

requester can spend is all the credit that it has received from β in previous interactions.

This guarantees that β will not pay more debt than it owed.

The advantages of the CC approach to determining reciprocation values is that it al-

lows an agent to identify if a reciprocated service compensates for any service that was

provided in previous interactions, since the agent decides how much of an accumulated

credit to spend based on the quality of the reciprocated service. It also allows agents to

make use of high valorisations and copes with an environment in which agents provide

services with different computational demands, since one provided service can yield more

than one reciprocated service.

Since the CC approach addresses all issues in determining reciprocation values, we adopt

this approach instead of the DC approach. Therefore, the reciprocation values are

determined as follows:

Chapter 6 A Computational Framework for Non-Monetary Cooperation 99

v′αβ = credit(β, s′αβ)

t′βα = debt(α, reciprocationV alue(α))

where the function credit(β, s′αβ) is shown in Algorithm 3, the function

reciprocationV alue(α) just reads the credit to be spent in this reciprocation (com-

municated by α through the service completion acknowledge message), and the function

debt(α, reciprocationV alue(α)) is instantiated as in Algorithm 4 (ensuring that the re-

ciprocation value communicated by α is not greater than the debt that β has accumulated

with α in previous interactions).

In Algorithm 3, vacc
αβ is the credit that α has accumulated with β, and the difference

between this accumulated credit and α’s current satisfaction being higher than the tol-

erance value (expressed in line 2) indicates that there is a remaining credit, which can

be spent in parts. The function CalculateAverage(srv) uses α’s history of exchange

values to calculate α’s average satisfaction with the reciprocated service in previous

interactions. In Algorithm 4, tacc
βα is the debt that β has accumulated with α.

The disadvantage of this approach is that malicious agents may always spend low

amounts of credit, even if the reciprocated service was good, just to exploit the part-

ner agent. However, every time a low credit is spent, it causes a negative balance of

exchange values for the agent in debt when its renouncement to provide the service is

greater than the debt it is paying (r′βα > t′βα). Therefore, the agent in debt can identify

this situation and deny the request, avoiding the action of such malicious agents.

6.4.5 Devaluation

Now, suppose an agent in debt, say β, may not admit its debt when asked for a recip-

rocation by another agent, say α. If this happens, the interaction is considered to have

a negative outcome for α, since a credit could not be realised into any objective value.

We call this situation a devaluation of β by α.

To represent this devaluation, the following is added to α’s history of exchange values:

(time, β, srv, (0, 0, 0, 0), (0, 0, 0, 0), “n”, “n”), where the sets of exchange values for both

stages of the interaction are null, and both the stage and overall balances of exchange

values are negative (n) (a description of all elements of the tuple can be found in Section

6.4.1). Although there are no exchange values involved, since the exchange did not take

place (and thus, exchange values do not increase or decrease), the balances are set as

negative to indicate that there was no reciprocation. Note that since the credit is not

Chapter 6 A Computational Framework for Non-Monetary Cooperation 100

spent, the requester agent can still try to request in the future (although it may prefer

other providers more likely to reciprocate).

An agent can identify the interaction partners that it devalued by searching its history

of exchange values for those whose interactions have no exchange values but a negative

stage and overall balances. These agents are not seen as good cooperation partners,

so devaluation may be used to restrict the selection of interaction partners both when

providing or requesting a service.

6.5 Balance of Exchange Values

Since agents gain and lose values in each interaction, it is reasonable to say that successful

interactions are those in which the agent’s gain is at least equal to its loss and that

unsuccessful interactions are those in which the agent’s gain is smaller than its loss (and

the same is valid for the complete interaction cycle, when considering overall gains and

losses). More specifically, a successful interaction for an agent is one in which the balance

of its exchange values is positive or in equilibrium, while an unsuccessful interaction is

one in which the balance of its exchange values is negative.

To compare exchange values so that their relative balance can be determined, the equiv-

alence operation on exchange values must be determined so that small differences in

evaluation are ignored. To do so, a tolerance threshold (tol ∈ [0, 1]) is set, and evalua-

tion differences below this threshold are ignored so that two values are considered equal.

An agent’s balance of exchange values is given by the function balance(g, l), where g is

any value representing a gain and l is any value representing a loss. This function is

defined as follows:

balance(g, l) =

equilibrium, |g − l| ≤ tol;

positive, g > l;

negative, g < l.

Note that, in this function, the conditions are exclusive and considered in order, so that

the tolerance value is not needed in the second and third conditions because if the first

condition is false, then the difference between gain and loss (|g − l|) is greater than the

tolerance.

The balance of exchange values can be determined in relation to three different stages

of the interaction: the provision stage, the reciprocation stage, and the complete in-

teraction. A summary of the exchange values that represent gains and losses in each

stage of the interaction between two agents, α and β, in which α provides a service

in the provision stage, and β returns another service in the reciprocation stage of the

Chapter 6 A Computational Framework for Non-Monetary Cooperation 101

Table 6.2: Gains and Losses of Values in Both Stages of the Interaction.

Interaction Agent Gain Loss

provision stage β sβα tβα

α vαβ rαβ

reciprocation stage β t′βα r′βα

α s′αβ v′αβ

Table 6.3: Examples of Balance of Exchange Values.

Agent EV EV’ stb oab

r s t v r’ s’ t’ v’

β − 0.4 0.4 − − − − − e -
α 0.6 − − 0.4 − − − − n -
β − − − − 0.5 − 0.4 − e e
α − − − − − 0.6 − 0.4 p e

interaction, is shown in Table 6.2. The balance of the complete interaction compares

gains and losses in both stages of the interaction.

For example, according to Table 6.2, in the provision stage, β determines its balance of

exchange values with balance(sβα, tβα), and α determines its balance of exchange values

with balance(vαβ , rαβ). An example is shown in lines 1 and 2 of Table 6.3, in which

the stage balance (stb) is in equilibrium (e) for β and negative (n) for α, assuming a

tolerance threshold of tol = 0.1.

In the reciprocation stage, α, which is now the requester, determines its balance of

exchange values with balance(s′αβ , v′αβ), and β, which is now the provider, determines

the balance of its exchange values with balance(t′βα, r′βα). An example is shown in lines

3 and 4 of Table 6.3, in which the stage balance (stb) is in equilibrium (e) for β and

positive (p) for α, assuming a tolerance threshold of tol = 0.1.

When the interaction is complete, agents can determine the overall balance of their

exchange values. It is important to calculate the overall balance of exchange values in

addition to the balance in each stage because gains in one stage may compensate for

losses in another stage, resulting in an equilibrium cooperation between the two agents

even though there may have been disequilibrium in each separate stage.

To determine the overall balance of the complete interaction, agents compare the total

gain and the total loss in both stages. Thus, α determines its overall balance with

balance((vαβ+s′αβ), (rαβ+v′αβ)), and β determines its overall balance with balance((sβα+

t′βα), (tβα + r′βα)). Following the examples in Table 6.3, the overall balance of exchange

values (oab) is in equilibrium for β (in line 3) and also for α (in line 4). Note that in

the provision stage of the interaction, α’s balance of exchange values is negative, and

in the reciprocation stage of the interaction α’s balance is positive, which results in an

overall balance that is in equilibrium. Thus, from α’s perspective, even though there was

disequilibrium in different stages of the interaction, the final balance is in equilibrium,

Chapter 6 A Computational Framework for Non-Monetary Cooperation 102

Algorithm 5 Determining exchange values in the provision stage when the agent is a
provider (α).

1: input: β, srv1

2: result = Perform(srv1)
3: rαβ = evalRenouncementα(result)
4: Send(β,NOTIFY , result)
5: Wait(β,ACK , valorisation)
6: vαβ = k(valorisation(β) + influence(β, srv1))
7: EVαβ = (rαβ ,−,−, vαβ)
8: b1 = balance(vαβ , rαβ)
9: UpdateHistory(1, timestamp, srv1, β, EVαβ , b1,−)

10: output: EVαβ

Algorithm 6 Determining exchange values in the provision stage when the agent is a
requester (β).

1: input: α, srv1

2: Wait(α,NOTIFY , result)
3: sβα = evalSatisfactionβ(result)
4: tβα = k(sβα + influence(α, srv1))
5: Send(α,ACK , tβα)
6: EVβα = (−, sβα, tβα,−)
7: b2 = balance(sβα, tβα)
8: UpdateHistory(1, timestamp, srv1, α, EVβα, b2,−)
9: output: EVβα

which indicates a successful cooperation with agent β.

The key idea here is that the balance of exchange values indicates the outcome of an

interaction in terms of what the agent gained and lost and, therefore, it may be used

to distinguish beneficial cooperations and provide a means for agents to select future

interaction partners.

6.6 Interaction Steps

According to the exchange values model, interactions between two generic agents α and

β occur in two stages: the provision stage, and the reciprocation stage. Although in

both stages the protocol for requesting and providing services is the same, the steps

followed by the agents through the interaction are different, since the exchange values

for each stage are determined in different ways.

When agents α and β are in the provision stage of the interaction, which starts with

β requesting a service srv1 from α, and α accepting the request, α follows the steps in

Algorithm 5, and β follows the steps in Algorithm 6.

According to Algorithm 5, α performs srv1, determines its renouncement value, sends

Chapter 6 A Computational Framework for Non-Monetary Cooperation 103

Algorithm 7 Determining exchange values in the reciprocation stage when the agent
is a requester.

1: input: β, srv2

2: Wait(β,NOTIFY , result)
3: s′αβ = evalSatisfactionα(result)
4: v′αβ = credit(β, s′αβ)
5: Send(β,ACK , v ′

αβ)
6: EV ′

αβ = (−, s′αβ ,−, v′αβ)
7: b3 = balance(s′αβ , v′αβ)
8: b4 = balance((vαβ + s′αβ), (rαβ + v′αβ))
9: UpdateHistory(2, timestamp, srv2, β, EV ′

αβ , b3, b4)
10: output: EV ′

αβ

Algorithm 8 Determining exchange values in the reciprocation stage when the agent
is a provider.

1: input: α, srv2

2: result = Perform(srv2)
3: Send(α,NOTIFY , result)
4: r′βα = evalRenouncementβ(result)
5: Wait(α,ACK , reciprocationValue)
6: t′βα = debt(α, reciprocationV alue)
7: EV ′

βα = (r′βα,−, t′βα,−)
8: b5 = balance(t′βα, r′βα)
9: b6 = balance((sβα + t′βα), (tβα + r′βα))

10: UpdateHistory(2, timestamp, srv2, α, EV ′

βα, b5, b6)
11: output: EV ′

βα

a notification message (NOTIFY) to β containing the service result, and waits for β’s

acknowledgement message (ACK), which contains β’s valorisation of srv1. Meanwhile,

β waits for the notification containing the service result, as shown in the first line of

Algorithm 6. When the notification arrives, β determines its satisfaction value based on

the service result, determines its debt value, and sends an acknowledgement message to

α containing the debt value. After that, β determines its current set of exchange values,

the balance of its exchange values (b2), and updates its history of exchange values with

the interaction results (line 7). The function UpdateHistory() takes the stage of the

interaction, a time-stamp at which the interaction took place, the service involved in the

interaction, the partner agent, the current set of exchange values for the corresponding

stage, and the balance of exchange values, and adds a new entry in the agent’s history of

exchange values. At this point, β finishes the provision stage of the interaction with α.

When α receives the acknowledgement message containing β’s valorisation, it determines

its credit value as shown in line 5 of Algorithm 5. After that, α determines its current

set of exchange values, the balance of its exchange values (b1), and updates its history

of exchange values. At this point, α also finishes the provision stage of the interaction

with β.

Chapter 6 A Computational Framework for Non-Monetary Cooperation 104

Algorithm 9 Devaluation of β by α.

1: EV ′

αβ = (0, 0, 0, 0)
2: UpdateHistory(2, timestamp, srv2, β, EV ′

αβ , “n”, “n”)

In the future, if α wants to spend its credit by requesting a service srv2 from β in return,

and if β accepts the request, they start the reciprocation stage of the interaction. The

provider β follows the steps in Algorithm 8, and the requester α follows the steps in

Algorithm 7, which are similar to those for the provision stage. When the reciprocation

stage of the interaction is finished, there was reciprocity between the two agents.

If in the reciprocation stage, β does not accept α’s request, a devaluation occurs from

α to β, and α follows the steps in Algorithm 9.

6.7 A Worked Example

We take as a practical example a cooperative bioinformatics system in which agents

provide and request protein identification services (with configurations C1 or C2), such

as those described in Section 5.5. Agents in the system evaluate these bioinformat-

ics services using the evaluation method proposed in Chapter 5 (so that the agents’

satisfaction and renouncement values are based on the results for service evaluation

presented in Section 5.5). To represent agents having different perspectives over ser-

vice evaluation, we assume that, when using the evaluation method, agents can either

see all service properties as having the same importance (equal evaluation weights), or

they can see some properties as having more importance than others (distinct eval-

uation weights). We assume that the subjective evaluation is influenced by the ex-

pected service quality only, which we will refer to as expectation influence, defined as

ι1 = (¬ReachedExpectation(srv), 0.2), so that the requester’s debt value is increased

by 0.2 if the satisfaction with the received service srv is smaller than the expected sat-

isfaction with services with the same configuration from previous interactions. (Note

that the condition ReachedExpectation(srv) indicates that the service has reached the

expected service quality).

Now, consider an interaction in the provision stage in which agent α provides the service

Tandem Local with configuration C2, TL(C2), to agent λ (the first interaction in Figure

6.2). After the service is provided, α and λ evaluate the service to calculate their

objective values. Since the results for this evaluation already exist in Section 5.5, we use

the results in Tables 5.5 and 5.4, so that λ’s satisfaction value is the same as the final

service evaluation, sλα = 0.879 (using equal evaluation weights), and α’s renouncement

value is the same as the service cost evaluation, rαλ = 5.4E-5. To determine its debt

value, λ takes its satisfaction and checks the expectation influence over this value. Since

TL(C2) reaches expectation, the influence does not apply and λ’s debt is equal to its

Chapter 6 A Computational Framework for Non-Monetary Cooperation 105

α βλ
TL(C2)�αλ���αλ �λα���λα

TL(C2)

1)

2) �αβ���αβ �βα���βα

OL(C1)
3) ��αλ����αλ ��λα����λα

TL(C1)��αβ����αβ ��βα����βα4)

Figure 6.2: Interactions between α, β, and λ.

Table 6.4: History of exchange values for agent α.
time prt srv EV EV’ stb oab

r s t v r’ s’ t’ v’

29 γ M(C1) 0.429 0.429 − − − − − e -
51 θ TR(C2) − 0.478 − 0.478 − − − − e −
55 λ TL(C2) 5.4E-5 − − 0.879 − − − − p −
60 β TL(C2) 5.4E-5 − − 0.847 − − − − p −
70 λ OL(C1) − − − − − 0.04 − 0.879 n −

satisfaction, tλα = 0.879. Agent λ then communicates its debt to α, which takes it as

its credit for future interactions, vαλ = 0.879 (note that the credit value is not altered

by α since the expectation influence does not apply here).

At the end of this interaction, the sets of exchange values for the different agents are

EVαλ = {5.4E-5,−,−, 0.879} for α and EVλα = {−, 0.879, 0.879,−} for λ. The balance

of exchange values for each interacting agent is determined using a tolerance value of

0.15, so that the balance is in equilibrium for λ (since sλα = tλα) and positive for α

(since rαλ < vαλ). As the final step, agents update their history of exchange values, and

the entry in α’s history of exchange values corresponding to this interaction is shown in

the third line of Table 6.4.

Consider now a second interaction in which agent α provides the same service TL(C2) but

to agent β (the second interaction in Figure 6.2). The exchange values for both agents

are determined as in the previous example and, this time, the set of exchange values

for α is EVαβ = {5.4E-5,−,−, 0.847}, and the set of exchange values for β is EVβα =

{−, 0.847, 0.847,−}, since, as opposed to λ, β uses distinct evaluation weights (as shown

in the last column of Table 5.5). The balance of exchange values is in equilibrium for

β and positive for α. The entry for this interaction in α’s history of exchange values is

shown in the fourth line of Table 6.4.

Later on, α asks λ for the service Omssa Local with configuration C1, OL(C1), in return

for its credit (the third interaction in Figure 6.2). After the service is performed, both

agents calculate their objective values, which are r′λα = 0.855 and s′αλ = 0.04, and for this

Chapter 6 A Computational Framework for Non-Monetary Cooperation 106

α uses distinct evaluation weights (according to Tables 5.5 and 5.4). Agent α determines

the credit to be spent as in Algorithm 3. Since the service provided by λ has a much

lower satisfaction value than the average satisfaction taken from α’s history of exchange

values (which is 0.429), α spends all its accumulated credit, v′αλ = 0.879 (showing that

it is not interested in asking λ for another service). Agent α then communicates this

value to λ, which determines its debt to be paid as in Algorithm 3, according to which

λ’s debt to be paid with the reciprocation is t′λα = 0.879 (since the credit communicated

by α is not greater than λ’s accumulated debt with this agent). At the end of the

reciprocation stage, the sets of exchange values are EV ′

αλ = {−, 0.04,−, 0.879} for α and

EV ′

λα = {0.855,−, 0.879,−} for λ, and the balance of exchange values is negative for

α (since v′αλ > s′αλ) and in equilibrium for λ (since r′λα = t′λα, when using a tolerance

value of 0.15).

A negative balance of exchange values indicates that the cooperation was not successful

for α (due to α receiving a poor quality service in reciprocation), and thus α tries a

different provider for the next interaction. It then asks β to provide service TL(C1) in

reciprocation, since it has a credit with β (the fourth interaction in Figure 6.2). After the

service is reciprocated, the agents’ objective values are r′βα = 1.4E-16 and s′αβ = 0.302

(according to Tables 5.5 and 5.4). The credit to be spent by α in this reciprocation

is the same as its satisfaction, v′αβ = 0.302, since the service provided by β has a

satisfaction that is higher than the average taken from α’s history of exchange values

(which is 0.234)4, and thus α is interested in keeping its remaining credit to request

another reciprocation from β in a future interaction. At the end of the reciprocation

stage, the sets of exchange values for both agents are EV ′

αβ = {−, 0.302,−, 0.302} for

α and EV ′

βα = {1.4E-16,−, 0.302,−} for β, and the balance of exchange values is in

equilibrium for α (since v′αβ = s′αβ) and positive for β (since r′βα < t′βα, when using a

tolerance value of 0.15).

In the future, based on the analysis of its exchange values in previous interactions, it

is likely that α will maintain its cooperation with β, since its balances of exchange

values when interacting with β are in equilibrium or positive, and that α will cease its

cooperation with λ, since α identifies a negative balance of exchange values caused by

receiving a poor quality service from λ as a reciprocation.

6.8 Conclusion

When analysing non-monetary exchanges in human societies it is easy to observe that,

even though interacting individuals do not always correctly interpret each other’s val-

orisations, and misunderstandings often arise, such exchanges do work and individuals

4Note that the tolerance value is not used in this comparison since we are not comparing two exchange
values.

Chapter 6 A Computational Framework for Non-Monetary Cooperation 107

exchange services without the precision of monetary compensation. Theories of social

exchanges are aimed at modeling human social interactions so that we can understand

the process of non-monetary exchanges and why some interactions continue over time

while others cease. Using such social theories to model cooperative interactions in agent-

based systems aims at providing the basis for motivated and effective cooperations among

autonomous agents that operate in open systems with free services.

In this context, the key contribution of this chapter is a novel computational framework

for motivating and modelling non-monetary cooperative interactions, based on the the-

ory of exchange values. To develop such a framework, we have addressed the limitations

of Piaget’s theory for a computational representation of exchange values, proposed a

valorisation system to determine subjective credits and debts, and developed a compu-

tational representation for subjective influences on those credits and debts.

We argue that the exchange values approach is suitable for addressing the issue of

motivating interactions in cooperative, non-monetary applications, especially in cases of

deferred reciprocation, in the sense that exchange values provide a system of credits and

debts that motivates interactions by giving expectations of future gains (for example, a

credit that is gained by performing a service can be charged in the future).

However, for non-monetary interactions between self-interested agents, reciprocation

by itself may not be enough to maintain a cooperation, since there must be a certain

tradeoff between efforts and benefits. Indeed, our exchange values model allows agents to

analyse the outcome of interactions in terms of whether services they receive compensate

for services they provide.

Finally, the information related to exchange values, which is provided by the computa-

tional framework, can be used by agents to reason about their past interactions with

others so that they can better select their future interactions.

Chapter 7

Exchange Values for Provider

Selection

7.1 Introduction

The previous chapters have addressed the foundations for decision-making over inter-

actions in open cooperative systems with free services, but we have not yet considered

how these elements can be used to support the selection of service providers in such

systems from among multiple possible providers. In particular, with dynamic services

in open systems, requesters must use updated information about available providers

and the quality of their services, since these may change from one selection process

to another. In addition, when service provision is free of charge, and interactions be-

tween autonomous agents are based on non-monetary cooperations, finding an available

provider might take a long time, since agents may not accept all service requests if they

are not willing to cooperate, or may need to limit the number of simultaneous requests

they can accept due to computational resource constraints. In this context, since ser-

vices are free, requesters need to use alternatives to monetary compensation, such as

the future benefits of cooperative relationships, to influence providers to accept their

requests. Thus, in addition to considering the differences in the services being provided,

agents requesting services need to take into account existing or potential relationships

with candidate providers to find those more likely to cooperate. This gives rise to the

following requirements for provider selection.

• Dynamic selection with analysis of service evaluations: to cope with providers

joining or leaving the system over time, and with changes in service performance

that occur from one execution to another, the selection process must be repeated

every time a service is needed and must take into account the performance of

services received in previous interactions.

108

Chapter 7 Exchange Values for Provider Selection 109

• Use of cooperative relationships: to avoid requests taking too long to be accepted,

existing or potential relationships with candidate providers must be taken into

account to find those more likely to accept requests. Otherwise, the efficiency of

an agent in achieving its goal may be compromised if there are time constraints, or

if the goal involves performing several interdependent tasks where delays in finding

available providers for individual tasks may result in a significant overall delay.

To effectively select providers in dynamic applications with non-monetary cooperations,

in this chapter we propose a provider selection mechanism to meet the requirements

above in support of the task of finding suitable providers. The chapter starts with a

description of the selection process that is carried out by service requesters, in Section

7.2. The criteria used for selecting providers, including service evaluation, and exchange

values, are presented in Section 7.3, and the selection strategies which use these criteria

to analyse and order alternative providers as part of the selection process are introduced

in Section 7.4. The chapter finishes with conclusions in Section 7.5.

7.2 The Selection Process

The process of selecting providers is dynamic, taking place every time a service is needed

and using updated information about providers; it is achieved by analysing all possible

providers for a needed service and ordering them by preference at execution time1.

When an agent needs to request a service for which there are multiple providers, it

should choose those offering the best service (in terms of quality, performance, or other

attributes the requester considers relevant), and with which it has existing or potential

cooperative relationships (and may thus be considered as more likely to cooperate), so

that the request does not take a long time to be accepted.

In this context, the selection process consists of choosing the best provider, from a set

of possible providers. This is achieved through a general decision-making algorithm to

select a provider for any needed service, as described in Algorithm 10. Here, and in the

remainder of this chapter, we use the following notation to describe the selection process:

we take β to be the requesting agent, srvi to be the requested service, P = {α1, .., αn}

to be a set of possible providers for srvi, and Po to be a sequence of the elements of P

ordered by some predetermined criteria. Moreover, we assume that the communication

between requester and providers follows a simple request-reply protocol.

The general decision-making algorithm for provider selection, detailed in Algorithm

10, receives as input the set of possible providers P , and applies a selection strategy

to determine the sequence Po from the elements of P , according to some criteria (and

1In the case of large systems, the set of possible providers can be reduced by optimisation, for example
by filtering it according to some criteria before selection.

Chapter 7 Exchange Values for Provider Selection 110

Algorithm 10 General decision-making algorithm to select a provider for srvi.

1: input: P, srvi

2: acceptance = false
3: Po = ProvSelectStrategy(P)
4: j = 0
5: while (¬ acceptance) and (αj+1 ∈ Po) do

6: j = j + 1
7: Send(REQUEST,αj ,srvi)
8: Wait(REPLY,αj)
9: acceptance = Accepts(αj , srvi)

10: end while

11: if acceptance then

12: output: acceptance, αj

13: else

14: output: acceptance
15: end if

represented by the function ProvSelectStrategy(P) in Algorithm 10). After determining

the preferred providers, a request is sent to the first agent in Po. If it accepts the request

then no further action is necessary (the function Accepts(αj , srvi) checks whether the

reply was positive); if not, the request is sent to the next provider in the list, and then

to the following ones if the previous provider did not accept the request.

While the general decision-making algorithm describes the selection process as a whole,

the selection strategy that determines sequence Po is specifically responsible for finding

the best providers according to some specified criteria. Thus, before proposing selection

strategies to instantiate the function ProvSelectStrategy(P), we describe below the

selection criteria that are used by those strategies in order to meet the selection objective.

7.3 Criteria for Selection

A provider can be selected from multiple possible providers using several different crite-

ria. For applications in which providers have different skill levels, and thus services have

different qualities, an effective way to select is based on service evaluation (as described

in Chapter 5). However, when interactions between autonomous agents are based on

non-monetary cooperations, agents must also find providers that are more likely to ac-

cept requests, since providers are not obliged to cooperate with others or may need to

limit their provision due to resource restrictions.

In particular, with free services, the motivation for service provision must be achieved

through alternatives to monetary approaches, such as reciprocity. Thus, to find those

providers more likely to accept requests, agents must consider their reciprocal relation-

ships with others, because an agent is more likely to reciprocate if it receives services

from others. This can also determine if the agent is likely to be influenced by others. In

Chapter 7 Exchange Values for Provider Selection 111

this context, reciprocal relationships can be analysed in terms of exchange values, since

credits and debts represent the reciprocation cycle between providers and requesters.

Thus, if β has provided a service to γ in a previous interaction but not to α, so that β

has a credit with γ and not with α, it is more likely that γ will accept β’s request, since

γ is in debt with β.

Service dependence can also be used to analyse reciprocation. This is based on the

premise that the relation between the services an agent needs with those others can

provide determines if it is likely to be influenced by others (a similar notion is found in

Castelfranchi (1990)). That is, if a requester β finds two alternative providers for its

needed service, say α and γ, and β knows that α needs a service that β can provide but

γ does not need any service from β, it is more likely that α will accept β’s requests since

there is a chance that α will need β’s services in the future. Therefore, to effectively find

providers that are, at the same time, more likely to perform a good quality service and

more likely to accept a request, we propose a provider selection mechanism that takes

into account the criteria described below.

• Service evaluation considers the evaluation of services received in previous interac-

tions with each candidate provider, in order to select those providers that perform

better.

• Individual exchange values that the requester associates with each candidate

provider enable the identification of first, those more likely to accept requests,

based on the reciprocation implications of credits and debts, and second, those

more likely to provide good services, based on the satisfaction value.

• The balance of exchange values, of the requester in previous interactions with

each candidate provider, enables the identification of those more likely to be good

cooperation partners, in terms of the compensation of the services that are provided

and reciprocated.

• The dependence of each candidate provider with the requester allows the identifi-

cation of those partners more likely to accept requests, since dependent providers

might need the requester’s services in the future.

To analyse and order alternative providers according to these criteria, in order to deter-

mine which provider is more suitable for the interaction, agents use selection strategies.

Either individual selection criteria or a combination of different criteria can be used to

compose selection strategies for agents requesting a service. The selection criteria listed

above are described in more detail in the next sections.

Chapter 7 Exchange Values for Provider Selection 112

7.3.1 Service Evaluation

Selection based on service evaluation uses a single evaluation per provider, combin-

ing all previous evaluations of the service being requested. These previous evaluations

are generated by the evaluation method proposed in Chapter 5, and the single evalua-

tion for the provider (or service) is generated during selection, as described in Section

5.3.3.3. This single evaluation of each candidate provider αi of service srv, represented

as Peval(αi, srv), is then used to rank them in order of best evaluation.

Note that there are many possible ways to determine the single evaluation Peval(αi, srv)

for each provider agent from all service evaluations in previous interactions Seval(srv),

such as selecting the best overall evaluation for the service, or calculating the average

evaluation for the service. Each alternative can be viewed as a different evaluation-based

selection strategy for the agent.

7.3.2 Individual Exchange Values

Selection based on exchange values takes into account the individual exchange values of

a requester agent with each candidate provider as a result of previous interactions. We

have proposed in Chapter 6 a computational model for exchange values, according to

which an agent maintains four exchange values for each stage of the interaction. From

a requester’s perspective, it is relevant to consider two of these values when selecting

providers: the satisfaction value, which may be used to select candidate providers per-

forming a better service; and the credit value, since a credit with another agent suggests

a disposition of the latter to reciprocate the favour in the future (that is, the latter has

a debt)2. Although the satisfaction value corresponds to the service evaluation, which

is used in the previous strategy, we refer to each of these in different ways to distinguish

the evaluation-based and the exchange values-based strategies, since the latter considers

subjective evaluations in addition to objective evaluations (to give credit values) while

the former considers objective evaluations only (as pure service evaluations).

In short, from the requester’s perspective, agents in debt are more likely to cooperate

when requested to do so, and agents with which the requester has high satisfaction values

in previous interactions are more likely to yield successful interactions. Information on

the balance of exchange values can also be used to choose the provider more likely to

provide a good service, as described in the next section.

2Norms and commitments, which determine obligations and penalties for participants of an interac-
tion, can be used to ensure that a debt will be paid in the future (Conte and Falcone, 1997; Dignum,
1999; Dignum and Dignum, 2003). However, this is not discussed in the present work, since here we
assume that agents decide whether to pay their debts according to their interest in maintaining a coop-
eration (and therefore, the penalty for not reciprocating is a possible reduction in the chances of future
interactions).

Chapter 7 Exchange Values for Provider Selection 113

7.3.3 Balance of Exchange Values

In the previous chapter, in Section 6.5, we described how agents can determine the

balance of their exchange values as part of our framework for non-monetary interactions,

and use the balance as a means of choosing whether to continue or avoid such interactions

in the future. In this section, we describe situations in which exchange values are in

equilibrium and disequilibrium for an agent β requesting a service from an agent α,

and investigate the causes of such results. We analyse equilibrium and disequilibrium

situations in the provision stage, and then in the reciprocation stage of the interaction.

The equilibrium situation is represented by Equations 6.1 and 6.2, for the provision and

reciprocation stages respectively, in which the exchange values representing gains and

losses for provider and requester are equal; if we modify these equations, the exchange

values of the interacting agents are in disequilibrium. When β requests a service in the

provision stage of the interaction, its balance of exchange values is determined by its

satisfaction and debt values, sβα and tβα, respectively (with satisfaction representing a

gain, and debt representing a loss). Given a heterogeneous population of individuals, and

possible subjective influences that may affect the requestor’s debt, (discussed in Section

6.3.3), the situations in which exchange values are in equilibrium or disequilibrium, and

their possible causes are presented below.

1. The balance of exchange values is in equilibrium for agent β when its satisfaction

is equal to its debt, that is, sβα = tβα in Equation 6.1. This is because there is no

subjective influence on the debt accepted by β due, for example, to β exhibiting

fair behaviour towards α, β and α being in the same social position, β and α

having similar skills, or β and α depending on each other mutually. The situation

is beneficial for β.

2. The balance of exchange values is negative for β when its satisfaction is less than

its debt, sβα < tβα in Equation 6.1. Possible causes of this disequilibrium are

related to influences on β’s subjective evaluation of services, as follows.

(a) β is in a lower social position than α, so β over-valorises α by accepting a

debt that is higher than its satisfaction.

(b) β is less skilled than α and accepts a higher debt to maintain the cooperation

with α, since β is aware of not being able to reciprocate at the same level.

(c) β is not able to provide any service that α needs (a unilateral dependence) so

valorises α more highly, resulting in a debt that is greater than its satisfaction,

since a higher credit from β may motivate α to keep interacting.

(d) α is a very high demand provider (receiving many requests), and β valorises

α more highly, so it accepts a debt that is greater than its real satisfaction.

Chapter 7 Exchange Values for Provider Selection 114

Table 7.1: Requester’s Balance of Exchange Values in the Reciprocation Stage.

Balance β’s Values Causes

equilibrium s′βα = v′βα v′βα = t′αβ , t′αβ = r′αβ , r′αβ = s′βα

negative s′βα < v′βα (a) v′βα = t′αβ , t′αβ > r′αβ , r′αβ = s′βα

(b) v′βα = t′αβ , t′αβ = r′αβ , r′αβ > s′βα

(c) v′βα > t′αβ , t′αβ = r′αβ , r′αβ = s′βα

positive s′βα > v′βα (d) vβα = tαβ , t′αβ = r′αβ , r′αβ < s′βα

(e) v′βα = t′αβ , t′αβ < r′αβ , r′αβ = s′βα

(e) the service provided by α did not reach β’s expected quality level (either

because α has low skills or β has high quality standards), so β believes it

must spend more effort on reciprocating than its satisfaction with the received

service.

The impact of this situation on β’s choice of alternative interaction partners is that,

even though it may be necessary in some cases for β to over-valorise α’s service if it

is a highly-skilled or demanded provider, it is sensible for β to seek an equilibrium

in its social interactions by interacting with agents providing services on the same

level or those in lower demand, thus avoiding a negative balance of exchange values.

The same consequence may be observed for interacting agents with different social

positions or social dependence, so that when β requests a service, it may prefer

interacting with providers with which it has a mutual dependence or in the same

social position, instead of α with which it has a unilateral dependence or which is

in a higher social position.

3. The balance of exchange values is positive for β when its satisfaction is greater

than its acquired debt, sβα > tβα in Equation 6.1. Possible causes are related to

subjective influences on β’s accepted debt, as given below.

(a) β exhibits unfair behaviour towards α, and thus accepts a debt that is less

than its satisfaction.

(b) β is in a higher social position than α. For example, in a computer-supported

scientific community in which β is an expert and α is a novice, the debt

accepted by β is smaller than its satisfaction since it believes that α has done

only its obligation in providing the service (which in this case could be a new

algorithm for processing data).

(c) α offers a service that is common or easily found in the environment, so β

admits a debt that is smaller than its satisfaction.

Although this situation is beneficial for β, since its balance of exchange values is

positive due to subjective influences that decrease its debt, it causes a negative

balance of exchange values for α, so α may not accept β’s request in future.

Chapter 7 Exchange Values for Provider Selection 115

Similarly, when β requests a service in reciprocation for one provided earlier (the recip-

rocation stage of the interaction), its balance of exchange values is determined by its

satisfaction and credit values, s′βα and v′βα, respectively. Unlike the provision stage, here

the balance of the requester’s exchange values does not depend on subjective influences

on its own evaluation, but on the evaluations and skills of the partner agent and its

willingness to reciprocate. In this case, the equilibrium and disequilibrium situations

and their possible causes are presented below and summarised in Table 7.1.

1. The balance of exchange values is in equilibrium for β when its satisfaction with the

reciprocated service is equal to the credit it is spending; that is, s′βα = v′βα when all

other values in Equation 6.2 are the same. Possible causes are that α reciprocates

expending similar effort to the worth of its debt (t′αβ = r′αβ), and α and β have

similar skills, so that the services they receive from each other compensate for the

services they provide to each other. This equilibrium situation is beneficial for β.

2. The balance of exchange values is negative for β when its satisfaction is less than

the credit it is spending; s′βα < v′βα in Equation 6.2. Possible causes are as follows.

(a) α wants to exploit β by asking more in the provision stage than it is willing

to reciprocate, so α reciprocates by expending less effort than its debt (that

is, t′αβ > r′αβ in Equation 6.2).

(b) α provides a poor quality service, or β is very demanding in its evaluation of

the received service (β’s satisfaction is low), so that α’s effort is greater than

β’s satisfaction (that is, r′αβ > s′βα in Equation 6.2).

(c) α acknowledges a smaller debt in reciprocation than the debt it acquired in

provision, so that the credit β spends is greater than the debt α pays back

(that is, v′βα > t′αβ in Equation 6.2).

The impact of negative balances of exchange values in β’s future interactions is

that β avoids choosing α as its interaction partner, since α does not accept its

full debt or reciprocates with a service of lower quality than the one β provided

previously, so α is not seen as a good cooperation partner.

3. The balance of exchange values is positive for β when β’s satisfaction is greater

than the credit it is spending; s′βα > v′βα in Equation 6.2. Causes are given below.

(d) α provides a better service than β did in the provision stage, so that β’s

satisfaction is greater than α’s effort (r′αβ < s′βα in Equation 6.2).

(e) α pays its debt by expending more effort than its debt merits (that is, t′αβ <

r′αβ in Equation 6.2).

Here, the impact of positive balances of exchange values on β’s future interactions

is that β tends to choose α as its interaction partner, since α has accepted its debt

and reciprocated to at least the same quality as the service β provided previously.

Chapter 7 Exchange Values for Provider Selection 116

In summary, from the requester’s perspective, candidate providers with which previous

interactions resulted in equilibrium or positive balances of exchange values are expected

to yield successful interactions in future. When selecting partners based on the balance

of exchange values, the requester considers overall balances of complete interactions

with each candidate provider, since gains in one stage may compensate for losses in an-

other stage, resulting in equilibrium (and successful cooperation) even though there may

have been a disequilibrium in both stages. Balances in the provision and reciprocation

stages (stage balances) may then be considered if the requester has not completed any

interaction with a candidate provider by the time of selection.

7.3.4 Dependence

An agent β depends on another agent α when β needs a service that it is not able to

perform, but α is. If α also depends on β for any needed service, β may use this mutual

dependence to influence α when it wants to request a service. Thus, information about

dependence is used by requesters with the assumption that a candidate provider is likely

to collaborate only if the requester is capable of performing a service that the former

needs. Agents may not always have well-defined goals and plans, so here we use the

notion of dependence in its basic form, which is dependence on another agent’s action

(not goal), since it provides a more general approach, while other notions of dependence

that require the analysis of the agents’s goals and plans, such as dependence relations

and dependence situations (Sichman et al , 1994), are not considered.

The dependence between two agents β and α in relation to a service can be of two

types: bilateral or mutual dependence (BD), which occurs when β needs a service that

α can provide and α also needs a service that β can provide; and unilateral dependence

(UD), which occurs when β needs a service that α can provide but α does not need any

service that β can provide. Candidate providers with which the requester has a bilateral

dependence are therefore considered as more likely to cooperate than those with which

the requester has a unilateral dependence. This is because a unilateral dependence

indicates that the requester may not be able to reciprocate in the future (unless the

provider’s needed services or the requester’s offered services change, or the requester did

not have complete information about all services the provider needs when the unilateral

dependence was identified).

To determine the agents with which the requester has a bilateral dependence, it needs to

find out which services other agents need and if it can provide any of them. In (Sichman

et al , 1994) agents use information about bilateral dependence in a globally accessible

description, the external description, of all dependence relations between the agents in

the society. However, such a global, centralised description is not suitable for open and

dynamic systems. The alternative is for the requester agent to maintain local infor-

mation about other agents that have previously requested services from it, since this

Chapter 7 Exchange Values for Provider Selection 117

suggests that they depend on the requester agent in relation to those services. Main-

taining information locally is simpler than maintaining a global source of dependence

information, since it requires only that agents maintain a record of other agents that

have previously made a service request. Although this local description may need regular

updates, this is less costly than a global update. For example, agents can update their

dependence information according to the frequency with which requests are received.

7.4 Strategies

The selection criteria described above can now be used in different selection strategies to

determine which provider is more suitable for an interaction, by analysing and ordering

possible providers. Although there are many different ways of using each selection

criterion, potentially resulting in a large number of possible strategies, the aim here

is to compare the different criteria, instead of analysing an extensive list using the

same criterion. Thus, we propose several strategies for selecting providers, based on the

criteria described in Section 7.3, as follows:

1. evaluation-based selection, which considers the evaluation of services in previous

interactions with each possible provider;

2. exchange values-based selection, which considers the individual exchange values

acquired in previous interactions with each possible provider, and their balances;

3. dependence-based selection, which considers the dependence between each possible

provider and the requester; and

4. combined selection, which considers a combination of service evaluation, exchange

values and dependence.

These strategies instantiate the function ProvSelectStrategy(P) in the general decision-

making algorithm, Algorithm 10, and are described in more detail below.

7.4.1 Evaluation-based Selection

To select providers according to the evaluation of their services (Peval(αi, srv)), the set

of possible providers is ordered with higher values of Peval(αi, srv) first. To calculate

Peval(αi, srv) for each possible provider based on previous evaluations, we consider

a simple evaluation approach, although others can be used. We take the best overall

evaluation for the service being requested. To determine the best overall evaluation for

a service srv of each candidate provider αi in P , the requester agent (β) must find, for

each αi, the maximum evaluation of srv (Sevalmax(srv)) from all previous interactions.

Chapter 7 Exchange Values for Provider Selection 118

Algorithm 11 Algorithm for the refusal condition Devalued(α).

1: input: α
2: condition = false
3: for all itj ∈ IT do

4: (rβα, sβα, tβα, vβα) = GetValues(itj , α, “all”, 1)
5: (r′βα, s′βα, t′βα, v′βα) = GetValues(itj , α, “all”, 2)
6: condition = (rβα = 0∧ sβα = 0∧ tβα = 0∧ vβα = 0∧ r′βα = 0∧ s′βα = 0∧ t′βα =

0 ∧ v′βα = 0)
7: end for

8: output: condition

Thus, the single evaluation for a candidate provider αi regarding a service srv is given

by:

Peval(αi, srv) = Sevalmax(srv) | ∀ Sevalmax(srv), Sevaln(srv) ∈ PSE srv,αi
·

Sevaln(srv) ≤ Sevalmax(srv)

where PSE srv,αi
is the set of all previous evaluations of service srv provided by αi,

determined by β as in Equation 5.1. With this information, the sequence of candidate

providers Po is ordered as follows:

Po = {〈α1, ..., αn〉 : P | (Peval(αi, srv) > Peval(αi+1, srv)) ⇒ αi > αi+1}

Thus, Po is ordered with providers with higher evaluations first.

7.4.2 Exchange Values-based Selection

We propose two selection strategies based on exchange values. The first strategy, which

we call simple reciprocation, takes into account the credits of the requester, so as to

consider reciprocation and find providers that are more likely to cooperate. The second

strategy, which we call analysing cooperative situations, in addition to the credits of the

requester, takes into account the balance of exchange values in the requester’s previous

interactions, so as to be more restrictive in relation to the quality of interactions and

avoid those that may result in unsuccessful outcomes.

Here, if a requester with credit has its request refused, it devalues the provider since the

latter did not fulfill its commitment. Such providers are not considered good cooperation

partners so, for future selection, the exchange values-based strategies identify, in set P ,

those candidate providers that were devalued in previous interactions (represented by

the function Devalued(αi), for αi ∈ P), and place them last in sequence Po (represented

by function Last(Po, αi)).

Devaluations are identified as described in Section 6.4.5, and the function Devalued(αi)

is defined as in Algorithm 11. Here, IT is the set of all previous interactions of agent β,

Chapter 7 Exchange Values for Provider Selection 119

Algorithm 12 Algorithm for provider selection through Simple Reciprocation.

1: input: P
2: Po = {〈α1, ..., αn〉 : P | (totalvβαi

> totalvβαi+1
) ⇒ αi > αi+1}

3: for αi ∈ Po do

4: if Devalued(αi) then

5: Po = Last(Po, αi)
6: end if

7: end for

8: output: Po

and the function GetV alues(itj , αi, “all”, {1, 2})3 retrieves, from β’s history of exchange

values, all exchange values acquired by β in previous interaction itj with αi, and which

are associated with stages 1 and 2 of the interaction.

7.4.2.1 Simple Reciprocation

For a generic requester β, the provider selection strategy based on simple reciprocation

aims at finding more likely cooperations by analysing β’s credit value. This is specified in

Algorithm 12, in which a set of possible providers (P) is provided as input, returning an

ordered sequence of the elements of P (Po) to be used in the selection process specified

in Algorithm 10.

The selection starts by ordering P with those providers with which β has higher credits

first (since providers with debts are more likely to cooperate), resulting in the ordered

sequence Po. Since agents may accumulate credits with others over time, we consider here

the total credit of the requester with each candidate provider, represented by totalvβαi
.

Then, the candidate providers that did not pay debts in previous interactions are placed

last in sequence Po. Finally, Po is ordered so that earlier candidate providers in the

sequence are considered to be more likely to accept β’s request based on the analysis of

reciprocal relationships.

7.4.2.2 Analysing Cooperative Situations

For a generic requester β, the provider selection strategy based on analysing cooper-

ative situations aims at finding more likely cooperations but also interactions with a

potentially better outcome in terms of the balance of exchange values. This is done by

analysing, in addition to β’s credit value, β’s balance of exchange values in previous

interactions with each candidate provider, as shown in Algorithm 13.

3This function retrieves either all exchange values or specific exchange values (e.g., credit or satisfac-
tion) resulting from a particular interaction, with a particular partner, and regarding a particular stage
(where 1 indicates the provision stage, and 2 the reciprocation stage).

Chapter 7 Exchange Values for Provider Selection 120

Algorithm 13 Algorithm for provider selection through Analysing Cooperative Situa-
tions.
1: input: P
2: Po = {〈α1, ..., αn〉 : P | (totalvβαi

> totalvβαi+1
) ⇒ αi > αi+1}

3: Sort(Po, oabn, stbn)
4: for αi ∈ Po do

5: if Devalued(αi) then

6: Po = Last(Po, αi)
7: end if

8: end for

9: output: Po

According to this strategy, requesters first order P with providers with which β has

higher credits earlier, resulting in sequence Po. Then, requesters analyse two consecutive

providers in Po, and if requesters have credit with both providers, or if requesters have no

credit with both providers (note that here the comparison of credit values is qualitative

instead of quantitative), they identify interactions with a potentially better outcome

in terms of the balance of exchange values. To achieve this, β compares its balance

of exchange values in previous interactions with the providers, first the overall balance

of exchange values and, if they are the same, the stage balances. The provider with

fewer negative balances of exchange values is preferred. To perform the comparison, β

determines the proportion of negative overall balances associated with two consecutive

providers in Po, αi and αi+i, which we call oabn (and we call stbn the proportion of

negative stage balances), until Po is completely ordered. This is represented in Algorithm

13 by the function Sort(Po, oabn, stbn). Finally, the candidate providers that did not

pay debts in previous interactions are placed last in sequence Po, as in the previous

strategy.

Ultimately, Po is ordered such that candidate providers more likely to reciprocate and

with fewer unsuccessful interactions are earlier, and candidate providers less likely to

reciprocate and with more unsuccessful interactions are later.

7.4.3 Dependence-based Selection

The dependence-based strategy is based on the assumption that a generic provider α is

more likely to collaborate with a requester β if β is capable of performing a service that

α needs. We use the notation Dbd to represent the set containing all agents with which

β has a bilateral dependence; that is, those agents that have previously made a service

request. Thus, when β needs to request a service from others, it should give preference

to those with which it identifies a dependence, represented by the set Dbd . Thus, the

sequence of candidate providers Po is ordered as follows:

Po = {〈α1, ..., αn〉 : P | (αi ∈ Dbd ∧ αi+1 /∈ Dbd) ⇒ αi > αi+1}

Chapter 7 Exchange Values for Provider Selection 121

Algorithm 14 Algorithm for provider selection with combined criteria.

1: input: P
2: Psuc = {〈α1, ..., αn〉 : P | ((Peval(αi) > Peval(αi+1)) ∨ (Peval(αi) =

Peval(αi+1) ∧ oabn
αi

< oabn
αi+1

)) ⇒ αi > αi+1}
3: Pcop = {〈α1, ..., αn〉 : P | ((totalvβαi

> 0∧ totalvβαi+1
= 0)∨ (totalvβαi

, totalvβαi+1
=

0 ∧ αi ∈ Dbd ∧ αi+1 /∈ Dbd)) ⇒ αi > αi+1}
4: for αi ∈ P do

5: S[αi] = Score(Pcop ,Psuc)
6: end for

7: Po = {〈α1, ..., αn〉 : P | (S[αi] > S[αi+1]) ⇒ αi > αi+1}
8: output: Po

where Po is ordered with dependent providers first.

7.4.4 Combined Strategy

Up to this point, we have presented strategies that use service evaluation, dependence,

or exchange values individually to select providers. However, these criteria are comple-

mentary, and thus can be combined in a mixed strategy. By complementary we mean

that, to find candidate providers more likely to accept requests, information about the

requester’s credit value and dependence in relation to each provider can be combined, so

that when the requester does not have any credit with the candidate providers it can use

information about dependence. Similarly, to find interactions with a potentially better

outcome in terms of the quality of the received service and balance of gains and losses,

information about service evaluation and balance of exchange values can be combined.

This information is complementary, since service evaluation is an objective measure for

service quality, and the balance of exchange values is relative to both objective and

subjective values.

To combine these different criteria in order to determine which providers are at the

same time more likely to cooperate and more likely to yield a successful interaction, the

combined strategy is defined such that providers are ranked according to each separately,

and then both results are aggregated in a single ranking of preferred providers4. This

process is detailed in Algorithm 14, in which providers more likely to cooperate are

ordered in sequence Pcop, providers more likely to yield a successful interaction are

ordered in sequence Psuc, and the final preferred providers are ordered in sequence Po.

The sequence Psuc is ordered with providers with higher service evaluations first (that

is, Peval(αi) > Peval(αi+1)). If evaluations from two consecutive candidate providers

4This technique is similar to the Borda count voting protocol, which is used to choose an agent from
a group of candidates for performing some task, based on the preferences of a distinct group of agents
(the voters). To determine the winner candidate based on the majority of votes, the protocol consists
of assigning points to candidates in each voter’s preference list according to their position in the list,
and summing these points across voters to find the candidate with the highest points total (Sandholm,
1999).

Chapter 7 Exchange Values for Provider Selection 122

Table 7.2: Scoring Candidate Providers According to Ordering Criteria for Psuc.

αi Peval(αi) oabn
αi

Score

α1 0.8 4
α2 0.6 3
α3 0 0 2
α4 0 50 1

Table 7.3: Scoring Candidate Providers According to Ordering Criteria for Pcop.

αi totalvβαi
>0 αi ∈ Dbd Score

α1 true true 4
α2 true false 3
α4 false true 2
α3 false false 1

in Psuc are the same, preference is given to the one with fewer negative overall balances

of exchange values in previous interactions (oabn
αi

< oabn
αi+1

). Service evaluation and

the proportion of negative overall balances are considered here as quantitative criteria,

and a service evaluation Peval(αi) for each candidate provider αi is calculated as in

Section 7.4.1. The sequence Pcop is ordered with providers with which the requester

has credit first (with totalvβαi
> 0). If the credits from two consecutive candidate

providers in Pcop are zero, preference is given to the one with which the requester has

a mutual dependence (that is, αi ∈ Dbd). Credits and dependence are considered here

as qualitative criteria, in the sense that quantities are not taken into account, but only

whether a credit is greater than or equal to zero, and a dependence is true or false. This

improves the combination of the two sequences, since we assume that having a credit

with a provider (regardless of the quantity) is already an indication that this provider

is more likely to reciprocate, so when the two rankings (Psuc and Pcop) are combined

and the requester has credit with two different providers, the one which is earlier in Psuc

(and thus more likely to provide a good service) is preferred.

After sequences Pcop and Psuc are ordered, a score is assigned to each candidate provider

according to each set’s ordering criteria. The highest score is the number of candidate

providers in P (|P |). Candidate providers in Psuc receive scores according to their

position in the sequence (since the ordering criteria for this set are quantitative), with

scores decrease by 1 as agents get further from the first position in the ordered sequence,

as shown in Table 7.2. Candidate providers in Pcop receive scores depending on whether

they satisfy each ordering criteria, such that the highest score |P | is assigned to all

agents that satisfy both totalvβαi
> 0 and αi ∈ Dbd, the score |P | − 1 is assigned to all

agents that satisfy only totalvβαi
> 0, the score |P | − 2 is assigned to all agents that

satisfy only αi ∈ Dbd, and the score |P | − 3 is assigned to all agents that do not satisfy

both criteria. Note that the score for agents that satisfy only totalvβαi
> 0 is higher

than the score for agents that satisfy only αi ∈ Dbd, since the former criterion is applied

first when ordering Pcop (it has more importance in the ordering process). An example

Chapter 7 Exchange Values for Provider Selection 123

of scores for the elements of Pcop when |P | = 4 is shown in Table 7.3.

The final sequence Po of preferred providers is ordered according to the total score of

each candidate provider αi in both Pcop and Psuc (represented in Algorithm 14 as S[αi]).

For example, consider four providers P = {α1, .., α4} that are ordered in Pcop and Psuc

as in Tables 7.3 and 7.2. The score for α1 is 8 (4 + 4), for α2 is 6 (3 + 3), for α3 is

3 (2 + 1), and for α4 is 3 (1 + 2), which results in the sequence of preferred providers

Po = 〈α1, α2, {α3, α4}〉. If two providers receive the same score, the requester may

choose the one that has higher score either on sequence Pcop, if the requester is more

concerned with the time taken to find an available provider, or on sequence Psuc, if it

is more concerned with the success of the interaction. In the end, the ordered sequence

Po represents providers that are, at the same time, more likely to provide good services

and to accept requests.

7.5 Conclusion

In this chapter, we have presented a provider selection mechanism for service requesters

operating in dynamic cooperative applications. The mechanism addresses two problems:

first of selecting a service provider that performs a good quality service from among alter-

natives providing similar services; and second of finding providers more likely to accept

requests so that requests do not take a long time to be accepted. This is achieved by

considering, as selection criteria, information on both previous evaluations of services

and reciprocal relationships with other agents, through service dependence, service eval-

uation, and exchange values.

From these selection criteria, exchange values provide the only criterion that allows

the analysis of both service quality (through the satisfaction value and the balances of

exchange values) and reciprocal relationships (through the credit value).

Five provider selection strategies that combine different criteria have been proposed.

Some focus on one aspect of the providers, while others try to balance selection accord-

ing to both aspects: service quality and reciprocal relationships. Based on the strategies’

design properties, we expect that the latter strategies, represented here by the exchange

values-based analysing cooperative situations and combined strategies, can improve the

performance of agents in the task of finding providers for the services that they need,

when they operate in open cooperative systems in which providers are resource con-

strained, and services are free and have different levels of quality.

Chapter 8

Requester Selection Mechanism

8.1 Introduction

While service requesters need to select providers that are more likely to reciprocate and

provide good quality services, as discussed in the previous chapter, service providers

must also select partners, but from a different perspective. In particular, autonomous

agents wanting to engage in interactions that bring benefits in terms of expected future

interactions must be able to decide whether to accept other agents requests. This is

important for the kind of cooperative applications we focus on here, in which interactions

are based on reciprocity rather than benevolent behaviour or monetary compensation.

Requester selection is also desirable to allow providers to sensibly manage their resources

so as not to be overwhelmed with services to perform for other agents. The need to

sensibly managing resources is more evident when providers have a significant number

of requests to attend to, and when the services provided consume a large amount of

processing power and time, as described by Foster (2005). This is the case of applications

in the bioinformatics domain, in which the increasing number of requests that automated

experiments can generate, and the large amount of computation that service requests

may need (since they usually deal with large amounts of data), place a heavy load on

service providers, which can limit the number of requests that can be processed.

Since agents have bounded resources and are not obliged to accept requests, therefore,

determining when and why agents should provide services to others is complex. In

non-monetary cooperative applications, when agents cannot rely on the benevolence of

others to get services they need, they must provide services to others in order to be

able to receive services. Thus, agents might be motivated to provide services to others

for two reasons: to reciprocate for a service received and to maintain a cooperation

with a partner agent on the one hand, or to improve the chances of receiving a service

in return in the future on the other. In consequence, providers must consider their

124

Chapter 8 Requester Selection Mechanism 125

cooperative relationships with others, and their available resource capacity, in order to

decide whether to accept requests.

In this context, we propose a requester selection mechanism for resource-bounded agents

providing services in cooperative non-monetary applications, to enable them to efficiently

select requesters, as follows.

• Providers consider the incentives for service provision when selecting requesters,

so that these incentives can be used as future benefits, such as receiving services

in future interactions;

• Providers analyse incoming requests so that they can decide whether to cooperate

based on existing relationships and the results of previous interactions with other

agents, and limit service provision when resources are scarce.

Here, the incentive for service provision comes from the expectations of future inter-

actions, while the decision of whether to accept requests is achieved through requester

selection strategies and selection criteria to analyse existing and potential cooperative

relationships, in the context of resource limitations. Establishing and maintaining co-

operative relationships provides stable links for an agent to draw upon when it needs a

service, except when the cooperation is not beneficial. For example, if an agent provides

a good quality service, maintaining a cooperation with a partner providing a poor ser-

vice is not beneficial since its effort in providing a good service is not compensated by

receiving a poor one.

The chapter starts with a description of the selection criteria used by the requester selec-

tion mechanism in Section 8.2. A formal model for the provider’s decision-making and

selection strategies are presented in Section 8.3. The chapter finishes with conclusions

in Section 8.4.

8.2 Selecting Among Service Requests

As discussed above, agents operating in open cooperative systems with bounded re-

sources require some means of selecting among received requests in order to satisfy

those most likely to contribute to lasting and valuable cooperative relationships.

A simple way to analyse incoming requests is to determine if the requester can provide

any service needed by the provider, so that not only does the provider help the requester

by performing a service the latter is not able to execute, but the requester can also be

a provider in the future. Here, the incentive to provide a service is a dependence with

the requester, which provides some expectation of future reciprocation. This notion of

Chapter 8 Requester Selection Mechanism 126

dependence of service is the same as that introduced in Chapter 7 for provider selection,

but is now considered from the provider’s perspective.

Although selecting requesters based on dependence helps to form cooperations in which

agents can provide services to each other, it has the disadvantage that if needed and pro-

vided services change over time due to the dynamic characteristics of the environment or

the agents themselves, established cooperations may be affected (as shown in (Rodrigues

and Luck, 2006a)). However, even if a dependence between provider and requester is

identified, the provider also needs to consider whether the cooperation is worthwhile.

For example, it must assess whether the effort in reciprocating a service compensates for

the satisfaction with the service received in a previous interaction. Service dependence

alone does not allow such an analysis.

An alternative way of analysing incoming requests as potential cooperations is based on

the provider’s exchange values, following the model for non-monetary interactions pro-

posed in Chapter 6. Here, the incentive to provide a service is to maintain a cooperation

with the requester by paying a debt, or to improve the chances of future interactions by

gaining a credit with the requester (which can be spent in the future in return for an-

other service). When exchange values are considered for requester selection, the changes

in an agent’s needed and provided services do not affect existing cooperations between

agents since the links between requesters and providers are their corresponding credits

and debts, as shown in (Rodrigues and Luck, 2006b).

Agents can derive information about cooperations and their quality by analysing their

exchange values. For example, a provider can consider its satisfaction value and balance

of exchange values from previous interactions with an agent, since these indicate the

likelihood of providing a good service. It can also consider its debt value, since this

indicates a commitment (assuming cooperative behaviour) to reciprocate. Using these

values, a provider can filter requests by accepting only those from agents with which

it has higher satisfaction or fewer negative balances of exchange values, or those with

which it has a debt.

In summary, we consider two criteria for requester selection that allow providers to

find reciprocal relationships with requesters: dependence and exchange values. These

criteria are used both individually and combined to select requesters and to limit service

provision when resources are scarce, by means of selection strategies.

8.3 Formal Model

To allow agents to select requesters, we must specify both the decision-making process

through which selection occurs, and the means for selection, through selection strate-

gies. Below, we describe a general decision-making process for selecting requesters, and

Chapter 8 Requester Selection Mechanism 127

alternative selection strategies, each considering different selection criteria.

8.3.1 General Decision-making

We take α to be an agent that has received a request from another agent β or from a

group of agents β1, .., βi ∈ Q. Qo is a sequence of the elements of Q ordered based on a

particular criterion, current allocation is the number of requests being attended to at

the same time by α, maximum allocation is the maximum number of requests that α

can accommodate at the same time, allocation thresold is the value over which α starts

restricting the acceptance of requests, and available capacity is the number of further

requests that α can accommodate.

To consider both resource constraints and reciprocity during requester selection, the

decision process comprises two parts. First, an agent must decide if a request should

be considered for acceptance or discarded. This is achieved by analysing what we call

refusal conditions, which represent situations that, if true, indicate that a requester is

a poor cooperation partner and thus its request should be discarded. Requests that do

not satisfy any refusal conditions are those the provider considers for acceptance.

Second, from these requests, the provider must select which to accept based on one or

more selection criteria and on its available resources. When there is only an individual

request, the selection criteria are used as binary conditions (either true or false) to decide

whether to accept the request, while when there is a group of requests, the selection

criteria are used to order them so that, in case of scarce resources, those requests that

are preferred over others are accepted first.

The general decision-making process for selecting requesters is shown in Algorithm 15.

Here, when the provider α reaches its maximum capacity, it always refuses the request. If

there are available resources but the requester satisfies any refusal condition rcj ∈ RC,

where rcj ∈ {true, false} and RC is the set of all refusal conditions, the request is

denied. Now, if there is only one requester to analyse (that is, |Q| = 1), selection depends

on the provider’s current allocation of resources: if it is below a certain threshold (which

indicates that resources are scarce), the request is always accepted; if it is above this

threshold and the provider needs to restrict the acceptance of requests, further selection

criteria, which we refer to as individual selection criteria, are applied to consider a

requester.

If there is a group of requesters to be analysed, say agents β1, .., βi ∈ Q, they are

subjected to an ordering procedure, represented by function GroupSelection(Q) in Al-

gorithm 15, which results in the ordered set Qo, and takes into account group selection

criteria. Then, requests are accepted in order of preference until the provider uses all

available capacity, and if there are any remaining requests, they are refused. Accepted

Chapter 8 Requester Selection Mechanism 128

Algorithm 15 General requester selection.

1: input: Q
2: if maximum allocation then

3: Refuse request
4: else

5: for all βi ∈ Q do

6: if ∃ rcj ∈ RC ∧ rcj = true then

7: Refuse request
8: Q = Q\{βi}
9: end if

10: end for

11: if |Q| = 1 then

12: if current allocation < allocation threshold then

13: Accept request
14: else if β satisfies individual selection criteria then

15: Accept request
16: else

17: Refuse request
18: end if

19: else if |Q| > 1 then

20: Qo = GroupSelection(Q)
21: for all βi ∈ Qo do

22: if available capacity > 0 then

23: Accept request
24: available capacity = available capacity − 1
25: Qa = Qa ∪ {βi}
26: else

27: Refuse request
28: end if

29: end for

30: end if

31: end if

32: output: Qa

requests are stored in the set Qa, representing the requests that the agent needs to

perform.

The choice of refusal conditions, individual selection criteria and group selection criteria

(through the instantiation of function GroupSelection(Q)) depends on the agent’s selec-

tion strategy. Alternative selection strategies that use the selection criteria described in

Section 8.2 are presented next. We first describe selection strategies that use a single

selection criterion — dependence or exchange values — and then strategies that use a

combination of those criteria.

Chapter 8 Requester Selection Mechanism 129

8.3.2 Dependence-based Strategy

Using the dependence-based strategy, requesters on which the provider depends are

preferred. To reason about dependence, the provider needs information about which

agents can provide the services it may need in the future. It does this by maintaining a

set, Don, which contains the agents that the provider depends on for any needed service.

To determine this set, agents must add to the set Don all possible providers for services

they have requested (even if they have not received services from those providers), since

they depend on those providers. For example, if in a previous interaction in which agent

α requested service s1, the possible providers were β1, β2, and β3, then α depends on

these agents to perform service s1, resulting in Don = {β1, β2, β3}.

For the dependence-based strategy, Algorithm 15 is instantiated as follows.

• There is no refusal criterion, so RC = ∅, since no further information (such as the

quality of received services or whether there was compensation of provided and

received services) can be derived.

• With an individual request, the provider always cooperates if it has available re-

sources but, when resources are scarce, it limits service provision to those re-

questers on which it depends. Thus, the individual selection criterion is β ∈ Don.

• When analysing a group of requests, the ordered sequence Qo is determined as:

Qo = {〈β1, ..., βn〉 : Q| (βi ∈ Don ∧ βi+1 /∈ Don) ⇒ βi > βi+1}

where sequence Qo is ordered with agents in Don first.

8.3.3 Exchange Values-based Strategies

We propose two requester selection strategies based on exchange values. The first strat-

egy, simple reciprocation, takes into account the debts of the provider with each re-

quester, to find reciprocal relationships. According to this strategy, requesters with

which the provider has higher debts are preferred.

In addition to the debts of the provider, the second strategy, analysing cooperative

situations, takes into account the balance of exchange values in previous interactions

with the requester, to find partners that are likely to yield successful interactions. To

develop such a strategy we first analyse the situations in which the provider’s balance

of exchange values is in equilibrium, negative or positive, and possible causes of these

situations, in the next section.

Chapter 8 Requester Selection Mechanism 130

Table 8.1: Provider’s Balance of Exchange Values in the Provision Stage.

Balance α’s Values Causes

equilibrium rαβ = vαβ rαβ = sβα, sβα = tβα, tβα = vαβ

negative rαβ > vαβ (a) rαβ > sβα, sβα = tβα, tβα = vαβ

(b) rαβ = sβα, sβα > tβα, tβα = vαβ

(c) rαβ = sβα, sβα = tβα, tβα > vαβ

positive rαβ < vαβ (d) rαβ < sβα, sβα = tβα, tβα = vαβ

(e) rαβ = sβα, sβα < tβα, tβα = vαβ

(f) rαβ = sβα, sβα = tβα, tβα < vαβ

8.3.3.1 Balance of Exchange values from the Provider’s Perspective

In the previous chapter, we analysed the situations in which the balance of exchange

values is in equilibrium, positive, or negative for an agent requesting a service. Here,

we present a similar analysis, but from the perspective of the agent providing the ser-

vice. The purpose of this analysis is to examine the possible causes of equilibrium and

disequilibrium of the provider’s exchange values, so that it is clear why the balance of

exchange values can be used to find good cooperation partners, and to filter incoming

requests.

We start by considering equilibrium and disequilibrium situations in the provision stage,

then in the reciprocation stage of the interaction. When an agent α is providing a service

to another agent β in the provision stage of the interaction, α’s balance of exchange

values is determined by its renouncement and credit values, rαβ and vαβ , respectively.

Here, α’s balance of exchange values generally depends on its skills in performing the

service and on the valorisation received from the partner agent, β. However, α’s balance

may be affected by subjective influences on both β’s valorisation of α’s service, and the

credit taken by α (as described in Section 6.3.3).

When the exchange values representing gains and losses for provider and requester are

equal, the interaction is said to be in equilibrium. This situation is represented by

Equations 6.1 and 6.2, for the provision and reciprocation stages respectively. If the

relations in those equations are modified, the exchange values of the interacting agents

are in disequilibrium. In this context, the situations in which α’s exchange values are

in equilibrium and disequilibrium and their possible causes are presented below, and

summarised in Table 8.1.

• The balance of exchange values is in equilibrium for α when its renouncement is

equal to the credit it gains, that is, rαβ = vαβ when all other values in Equation

6.1 are the same. This is because: α and β have the same perspective over service

evaluation (that is, rαβ = sβα); there is no subjective influence on the debt ac-

cepted by β (that is, sβα = tβα); and there is no subjective influence on the credit

taken by α (that is, tβα = vαβ).

Chapter 8 Requester Selection Mechanism 131

• The balance of exchange values is negative for α when its renouncement is greater

than the credit it gains; that is, rαβ > vαβ . Possible modifications to Equation 6.1

that cause this are as follows.

(a) α provides a poor quality service or β is very demanding in its evaluation of

the received service (so β’s satisfaction is low), and α’s effort is greater than

β’s satisfaction, rαβ > sβα.

(b) α is under-valorised by β, which accepts a smaller debt than its satisfaction

(sβα > tβα) due, for example, to β exhibiting unfair behaviour towards α,

β being in a higher social hierarchy than α, or α offering a service that is

common or easily found in the environment.

(c) α’s credit is saturated, so that vβα < tβα, since α has been valorised by β

many times, causing large amounts of credit with β to accumulate. α has

not had the chance to use these credits, so that every new valorisation that

α receives from β in this context is seen as having less value for α.

• The balance of exchange values is positive for α when its renouncement is less than

the credit it gains; that is, rαβ < vαβ . Possible reasons for this are as follows.

(d) α is over-skilled and can perform the service with little effort, or β is not very

demanding in its evaluation of the received service, so that α’s effort is less

than β’s satisfaction, rαβ < sβα.

(e) α is over-valorised by β, which accepts a debt greater than its satisfaction

(sβα < tβα) to motivate α to keep interacting. This might happen because

β is in a lower social position than α, β is less skilled than α, β is not

able to provide any service that α needs with its current set of capabilities (a

unilateral dependence), or α is in very high demand (receiving many requests).

(f) α takes a credit that is greater than β’s debt, tβα < vβα. Although we do not

identify any possible cause for this situation, it is mentioned here since it is

a possible modification in Equation 6.1.

When α reciprocates, its balance of exchange values is determined by its renouncement

and debt values, r′αβ and t′αβ , respectively, and generally depends on the skills required

to reciprocate. In this case, the situations and their possible causes are as described

below.

• The balance of exchange values is in equilibrium for α when its renouncement is

equal to the debt it is paying; that is, r′αβ = t′αβ in Equation 6.2. This is because

α reciprocates, expending similar effort to the worth of its debt.

• The balance of exchange values is negative for α when its renouncement is greater

than the debt it is paying; r′αβ > t′αβ in Equation 6.2. A possible cause is that α

Chapter 8 Requester Selection Mechanism 132

reciprocates with a service of better quality than the one β provided previously,

so α pays its debt by expending more effort than its debt merits.

• The balance of exchange values is positive for α when its renouncement is less than

the debt it is paying; r′αβ < t′αβ in Equation 6.2. A possible cause here is that

α wants to exploit β by asking more in the provision stage than it is willing to

return in the reciprocation stage, and thus α reciprocates by expending less effort

than its debt.

In summary, based on the outcome of interactions in terms of the balance of exchange

values, a provider can decide whether it should continue with the interaction (in cases

of benefit and equilibrium), drop the interaction (in cases of loss), or review its actions

in an attempt to improve its valorisation and adjust its evaluation standards if it is

being too strict (or lenient) with the evaluation of services it receives (in cases of loss

or under-evaluation). For example, in cases in which α is under-valorised by β, α can

either continue cooperating with β and improve the quality of its service to get a better

evaluation, or cease its cooperation with β if the latter is not being fair in its valorisation.

Also, α tends to maintain the cooperation with β if it does not have to expend more

effort providing the service than the debt it acquired previously.

8.3.3.2 Simple Reciprocation

The simple reciprocation strategy instantiates the general decision-making in Algorithm

15 as below.

• The provider α does not cooperate with a requester βi if the latter did not recipro-

cate services in previous interactions, and thus it is unlikely to reciprocate in the

future. Thus, the refusal condition for this strategy is defined as:

RC = {Devalued(βi)}

The function, Devalued(βi), identifies agents that were devalued for not fulfilling

their debts, and is defined as in Section 7.4.2, Algorithm 11.

• When analysing an individual request, acceptance is restricted to those requesters

with which α has a debt. Since agents may accumulate debts with others over time,

we consider here the total debt that α has with each requester βi, represented by

totaltαβi
. Thus, the individual selection criterion is totaltαβi

> 0.

• For a group of requests, Qo is ordered with those requesters with which α has

higher debts first, indicating that the provider is more likely to reciprocate when

it has higher debts. Thus, Qo is determined as:

Qo = {〈β1, ..., βn〉 : Q| (totaltαβi
> totaltαβi+1

) ⇒ βi > βi+1}

Chapter 8 Requester Selection Mechanism 133

Algorithm 16 Algorithm for the refusal condition Low Valorisation(srv, β).

1: input: srv, β
2: condition = false
3: average valorisation = GetAverageV alorisation(srv)
4: for all itj ∈ IT do

5: vαβ = GetValues(itj , β, “credit”, 1)
6: if vαβ < average valorisation then

7: condition = true
8: end if

9: end for

10: output: condition

Algorithm 17 Algorithm for the refusal condition Only Provider(β).

1: input: β
2: condition = false
3: for all srvj ∈ Need do

4: P = FindProviders(srvj)
5: if β ⊂ P ∧ |P | = 1 then

6: condition = true
7: end if

8: end for

9: output: condition

8.3.3.3 Analysing Cooperative Situations

The analysing cooperative situations strategy selects according to the balance of ex-

change values of the provider, in addition to its debts, in previous interactions with each

requester. To avoid interacting with requesters with which the provider had negative

balances of exchange values in previous interactions, this strategy uses the causes of

unsuccessful interactions described in Section 8.3.3.1 as refusal conditions to discard

requests. Thus, there are three cases in which the provider does not cooperate even

with available resources: when the requester did not reciprocate in previous interactions

(that is, if it was devalued); when α received a low valorisation from the requester in

a previous interaction; and when the requester provided in a previous interaction with

lower quality than the service α reciprocated (that is, the situation in which r′αβi
> t′αβi

occurs). Since most unsuccessful interactions from the provider’s perspective are fil-

tered by the refusal conditions, apart from the exception cases, the remaining requests

are those that α considers for acceptance. Thus, this strategy instantiates Algorithm 15

as follows.

• There are three refusal conditions, which represent possible causes of unsuccessful

interactions, such that RC = {rc1, rc2, rc3}. They are described below.

Chapter 8 Requester Selection Mechanism 134

Algorithm 18 Algorithm for the refusal condition Poor Compensation(β).

1: input: β
2: condition = false
3: for all itj ∈ IT do

4: r′αβ = GetValues(itj , β, “renouncement”, 2)
5: t′αβ = GetValues(itj , β, “debt”, 2)
6: if r′αβ > t′αβ ∧ r′αβ > 0 ∧ t′αβ > 0 then

7: condition = true
8: end if

9: end for

10: output: condition

1. A devaluation (rc1), represented as:

rc1 = Devalued(βi)

where the function Devalued(βi) is defined in Algorithm 11.

2. A low valorisation (rc2), represented as:

rc2 = Low Valorisation(srv, βi) ∧ ¬ Only Provider(βi)

where the function Low Valorisation(srv, βi), defined in Algorithm 16,

identifies an under-valorisation of a service srv provided by α to βi,

which occurs when a valorisation vαβi
(or credit) received from βi is less

than the valorisation received from previous partners (calculated by the

GetAverageV alorisation(srv) function in Algorithm 16). The exception for

this condition is if βi is the only provider for a service that α needs (to avoid

α losing a cooperation with the only provider), represented by the function

Only Provider(βi), defined in Algorithm 17.

3. A poor compensation (rc3), represented as:

rc3 = Poor Compensation(βi) ∧ ¬ Only Provider(βi)

where the function Poor Compensation(βi), defined in Algorithm 18, iden-

tifies the relation r′αβi
> t′αβi

in α’s history of exchange values, and the

exception for this condition is if βi is the only provider for a needed service.

• When analysing an individual request, service provision is restricted to those re-

questers with which α has a debt, since most unsuccessful interactions from the

provider’s perspective are filtered by the refusal conditions. Thus, the individual

selection criterion for this strategy is totaltαβ > 0.

• For a group of requests, Qo is ordered according to two criteria, in sequence: higher

debts, and fewer negative balances of exchange values. That is, Qo is ordered with

requesters with which α has higher debts first and, if two consecutive requesters in

Chapter 8 Requester Selection Mechanism 135

Qo have the same debt, the one with which α has smaller proportion of negative

balances of exchange values in previous interactions (stbn
αβi

) is preferred over the

other. This is represented as:

Qo = {〈β1, ..., βn〉 : Q| ((totaltαβi
> totaltαβi+1

) ∨

(totaltαβi
= totaltαβi+1

∧ stbn
αβi

< stbn
αβi+1

)) ⇒ βi > βi+1}

8.3.4 Combined Strategies

Although the exchange values-based strategy of analysing cooperative situations can

capture most aspects of the provider’s previous interactions with other agents, it has

the following limitations: it does not distinguish, among potential cooperations, the

requesters that are not able to reciprocate in the future; it does not consider the re-

questers which, as providers, perform the best service; and it assumes that a provider

always prefers to interact with requesters with which it has a debt. However, in a po-

tential cooperation situation, it may be useful to find out if the requester may actually

provide a service that the provider may need in the future, so that reciprocation is

achievable. In addition, the provider can consider, from among the requesters that are

able to reciprocate, which provides the best quality service. Finally, the provider may

prefer an interaction in which it will earn a credit (when it does not have a debt) over

one in which it will pay a debt; for example, if a requester without a credit usually

provides a better service than another requester with credit.

To address these limitations, we define combined selection strategies, which consider:

information on dependence separately from exchange values, to find requesters that are

able to reciprocate; and, from the exchange values information, consider (in addition

to debts and balances of exchange values) the satisfaction of the provider in previous

interactions in which it received a service, to find those requesters able to reciprocate with

the best quality service from the provider’s perspective. These combined strategies also

provide alternative preference orderings for group selection so that others are possible

in addition to always preferring to pay debts.

Therefore, for the combined strategies, the preference criteria to be considered by a

provider are: debt, balance of exchange values, satisfaction (which is related to quality

of service), and dependence. The possible causes of negative balances of exchange val-

ues are used as refusal conditions, as in the analysing cooperative situations strategy.

The dependence criterion is used for preference when the provider has no information

about exchange values with other agents or when there is no distinction between two

requesters regarding the provider’s exchange values. Thus, the remaining criteria, debt

and satisfaction, are those considered for the main selection. Based on this, we define

two different combined strategies, such that one strategy is to prefer paying debts over

gaining credits (with requesters with which the provider has debts first), and the other

Chapter 8 Requester Selection Mechanism 136

is to prefer gaining credits over paying debts (with requesters with which the provider

has higher satisfaction first). These are described in the next sections.

8.3.4.1 Preference for Paying Debts

The combined strategy with preference for paying debts instantiates the general decision-

making in Algorithm 15 as below.

• There are three refusal conditions, which represent possible causes of unsuccessful

interactions, such that RC = {rc1, rc2, rc3}. They are described below.

1. A devaluation (rc1), represented as:

rc1 = Devalued(βi)

2. A low valorisation (rc2), represented as:

rc2 = Low Valorisation(srv, βi) ∧ ¬ Only Provider(βi)

3. A poor compensation (rc3), represented as:

rc3 = Poor Compensation(βi) ∧ ¬ Only Provider(βi)

These are the same as in the analysing cooperative situations strategy. The func-

tion Devalued(βi) is defined in Algorithm 11, Low Valorisation(srv, βi) in Al-

gorithm 16, Only Provider(βi) in Algorithm 17, and Poor Compensation(βi) in

Algorithm 18.

• When analysing an individual request, service provision is restricted to those re-

questers with which α has a debt or that α depends on. A dependence of α in

relation to β is identified if β is in the set Don. Thus, the individual selection

criterion for this strategy is totaltαβ > 0 ∨ β ∈ Don. Note that this is a combi-

nation of the individual selection criteria for the dependence-based and exchange

values-based strategies.

• A group of requests in Q is first ordered with those with which α has higher debts

first. For consecutive requesters with the same debt, the one that α depends on is

preferred, resulting in sequence Qm. This is represented as:

Qm = {〈β1, ..., βn〉 : Q| ((totaltαβi
> totaltαβi+1

) ∨

(totaltαβi
= totaltαβi+1

∧ βi ∈ Don ∧ βi+1 /∈ Don)) ⇒ βi > βi+1}

Finally, if α has the same debt with, or the same dependence with, two consecutive

requesters, α’s total satisfaction value with each of these requesters is used to decide

Chapter 8 Requester Selection Mechanism 137

which is preferred over the other, resulting in sequence Qo. This is represented

below:

Qo = {〈β1, ..., βn〉 : Qm| ((totaltαβi
= totaltαβi+i

) ∧

((βi, βi+1 ∈ Don) ∨ (βi, βi+1 /∈ Don)) ∧ (avsαβi
> avsαβi+1

)) ⇒ βi > βi+1}

8.3.4.2 Preference for Gaining Credits

An alternative strategy for selecting requests is to prefer gaining credits over paying

debts. The combined strategy with a preference for gaining credits has the same refusal

conditions as the previous strategy, based on the causes of negative balances of exchange

values, but different criteria for individual and group selection. This strategy instantiates

the general decision-making in Algorithm 15 as follows.

• When analysing an individual request, service provision is restricted to those re-

questers with which the provider has higher satisfaction values or to those re-

questers on which α depends (so that the credit gained can be used to request a

service in the future). Thus, the individual selection criterion is represented as

avsαβ > avsαall
∨ β ∈ Don, where avsαall

is α’s average satisfaction in all previous

interactions with other agents.

• A group of requests in Q is ordered in sequence Qm, with those with which α has

higher satisfaction first. For consecutive requesters with which the provider has

the same satisfaction, α prefers the one with which it has a debt. The ordering of

Qm is given below:

Qm = {〈β1, ..., βn〉 : Q| ((avsαβi
> avsαβi+1

) ∨

(avsαβi
= avsαβi+1

∧ totaltαβi
> totaltαβi+1

)) ⇒ βi > βi+1}

Finally, if for consecutive requesters, α has the same satisfaction and the same

debt, the one with which α has a dependence is preferred, resulting in sequence

Qo. This is given below:

Qo = {〈β1, ..., βn〉 : Qm| ((avsαβi
= avsαβi+1

∧ totaltαβi
= totaltαβi+1

) ∧

(βi ∈ Don ∧ βi+1 /∈ Don)) ⇒ βi > βi+1}

8.4 Conclusions

In this chapter, we have presented a requester selection mechanism for autonomous

agents that provide resource-consuming services in non-monetary cooperative applica-

tions. The analysis of incoming requests is necessary not only to support autonomous

decision-making about whether to accept requests, but also to allow agents to sensibly

manage their resources so as not to be overwhelmed with services to perform for other

Chapter 8 Requester Selection Mechanism 138

agents. Although agents are autonomous and are not obliged to accept requests, in a

non-monetary cooperative environment they need to provide services to improve their

chances of receiving services from others in the future. The challenge here is thus to bal-

ance the number of accepted requests with the availability of resources, so that chances

of future interactions are improved and beneficial cooperations are maintained. Without

a good balance, an agent may be continuously overwhelmed by services to perform for

others while not being able to find available providers to perform the services it needs.

An effective way to achieve this balance is to consider information about cooperative and

reciprocal relationships between requesters and providers, such as the exchange values

resulting from their interactions and service dependence.

Exchange values here motivate service provision in the sense that they form a system

of credits and debts that the provider can draw upon to receive services in the future.

They can also be used to analyse reciprocal relationships and their quality in order to

decide whether to accept requests. Such an analysis is possible through the observation

of the balance of exchange values in each cooperative situation in which an agent en-

gages, and indicates whether an agent is getting what it expects from a cooperation in

terms of compensation of provided and received services. Based on this, autonomous

agents can reason about maintaining or terminating cooperations with others. Finally,

information about service dependence between requesters and providers complements

the information derived from exchange values, since it helps to determine if a mutual

cooperation is possible — the provider may gain a credit after providing a service to

a requester, but this credit can only be spent if the requester is able to perform some

service that the provider needs in return.

Based on this, we have proposed five different requester selection strategies, which con-

sider either information on service dependence and exchange values separately (to ex-

plore their individual advantages), or a combination of both (to gain the benefits of each

in a single strategy). Different requester selection strategies or even different preference

orderings for criteria in the same strategy (as in the case of the combined strategies)

may influence the number and outcomes of interactions that the agent taking the deci-

sion engages in. This is because strategies that consider information on reciprocation

only, like the dependence-based and simple reciprocation strategies, focus on improving

the chances of future interactions, while strategies that consider additional information

on the quality of interactions, like the analysing cooperative situations strategy and the

combined strategies, focus not only on improving the chances of future interaction but

also on receiving better services in return.

Chapter 9

Experiments

9.1 Introduction

In the previous chapters we have argued that participants in cooperative and open sys-

tems, such as those in the bioinformatics domain, need mechanisms for partner selection,

when both requesting and providing services. In particular, in cooperative systems in

which there is service variety, participants requesting services are likely to find many

alternatives with similar functionality but different quality. Moreover, service requesters

may need to compete for busy and resource-bounded providers. In this context, the

aim of the provider selection mechanism is to find providers that perform good quality

services while being more likely to accept requests.

Different strategies were proposed in Chapter 7 to achieve this aim, some of which focus

on just service quality or just the likelihood of achieving cooperation, while others take

into account both characteristics during selection. Thus, there may be differences in the

efficiency of each strategy in finding providers, and better provider selection strategies are

those that allow requesters to find available providers in less time, and to find providers

that are able to perform their services to a high quality (according to the requesters’

perspective).

Conversely, from the provider’s perspective, in a cooperative system in which provided

services are required by a wide range of service users, resource-bounded providers must

limit the number of services they provide. At the same time, since cooperation is based

on reciprocation, providers must select which requests to accept based on existing or

potential reciprocal relationships, representing the chance of receiving services in the

future. In this context, the aims of the requester selection strategy are to manage the

provider’s resources by limiting request acceptance and to improve the provider’s chances

of future interactions by analysing reciprocal relationships with requesters.

We have proposed in Chapter 8 different requester selection strategies to achieve these

139

Chapter 9 Experiments 140

goals. Although they all consider reciprocation, they use different selection criteria to

identify reciprocal relationships and to choose those requesters that are more likely to

provide good quality services in the future. If the requester selection strategy to limit

requests is efficient, a provider will make less effort in finding available partners to

perform services and in finding those with high quality. Requester selection strategies

thus influence the performance of provider selection strategies, since selecting requesters

efficiently can actually improve the chance of selecting good providers more quickly.

Agents therefore depend on both selection processes for effective cooperation.

To test our proposed requester and provider selection strategies in relation to the aspects

described above, we undertook an empirical evaluation through several experiments,

described in the next sections. These experiments were performed through a Java-based

system that simulates the bioinformatics service domain. We start by describing the

strategies tested in Section 9.2, and the experimental set-up in Section 9.3. In Section

9.4, we explain the performance measures that we use to compare different provider and

requester selection strategies. We then present two sets of experiments in Sections 9.5

and 9.6, and conclude in Section 9.7.

9.2 Experimental Strategies

We have proposed five different provider selection strategies that take into account

different selection criteria, in Chapter 7. In this section, we provide an overview of these

strategies, highlighting the differences and similarities in their selection criteria, to allow

comparison of both individual strategies and groups of strategies.

In addition to the strategies defined in earlier chapters, in our experiments we also

consider a random strategy as a baseline for comparison. All strategies are listed in

Tables 9.1 and 9.2 in which provider and requester selection strategies are indicated

using prefixes ‘p-’ and ‘r-’ respectively (such as p-SR for the simple reciprocation provider

selection strategy or r-SR for the corresponding requester selection strategy). Here, the

exchange values-based provider selection strategies are p-SR and p-ACS, which differ

in that p-SR uses the requester’s credits with each possible provider as the selection

criterion, while p-ACS uses, in addition to credits, the balances of exchange values

in previous interactions. The evaluation-based provider selection strategy, p-EB, uses

evaluations of services received in previous interactions as the selection criterion, and

the dependence-based strategy, p-DB, uses service dependence between requester and

providers. The combined criteria strategy, p-CC, uses the requester’s exchange values,

previous service evaluations, and dependence. Finally, the random strategy is p-RD,

which selects providers at random.

Similarly, to select requesters, we proposed five different requester selection strategies,

in Chapter 8. All of these strategies take into account reciprocal relationships in the

Chapter 9 Experiments 141

Abbrev. Provider-Selection Strategy Class Criteria

p-SR Simple reciprocation Reciprocation Exchange values
p-ACS Analysis of cooperative situations Reciprocation Exchange values
p-EB Evaluation-based Non-reciprocation Service evaluation
p-DB Dependence-based Reciprocation Dependence
p-CC Combined criteria Reciprocation Exchange values,

Service evaluation,
Dependence

p-RD Random - -

Table 9.1: List of Provider Selection Strategies.

Abbrev. Requester-Selection Strategy Class Criteria

r-SR Simple reciprocation Reciprocation Exchange values
r-ACS Analysis of cooperative situations Reciprocation Exchange values
r-DB Dependence-based Reciprocation Dependence
r-CCP Combined criteria for paying debts Reciprocation Exchange values,

Dependence
r-CCG Combined criteria for gaining credits Reciprocation Exchange values,

Dependence

Table 9.2: List of Requester Selection Strategies.

form of different selection criteria, as listed in Table 9.2, and some have a corresponding

strategy for provider selection (using the same set of criteria, such as r-ACS and p-ACS,

or both r-CCP and r-CCG and p-CC). However, since we assume that agents operate in

a non-monetary cooperative system in which the motivation to provide services is based

on reciprocation, we do not consider requester selection strategies that do not take into

account reciprocation, such as evaluation-based and random strategies (so that p-EB and

p-RD do not have corresponding requester selection strategies). Importantly, a random

requester-selection strategy is not considered in Table 9.2 because when providers select

their requesters at random, the functionalities of the strategies used by these requesters

(the provider-selection strategies), such as finding providers more likely to reciprocate

through dependence or exchange values, do not work (since providers are not reciprocal

when selecting at random). Therefore, since providers selecting at random invalidate

the functionality of the strategies used by requesters, a random requester-selection strat-

egy (for providers) does not provide a base for comparison among selection strategies.

Note that the opposite does not happen, since reciprocity depends on the provider,

and requesters selecting at random (with a random provider-selection strategy) do not

invalidate the functionality of the strategies used by providers.

The exchange values-based r-SR strategy uses the provider’s debts as the selection crite-

rion; the r-ACS strategy uses, in addition to debts, the provider’s balances of exchange

values and, when these balances are negative, their possible causes. The r-DB strat-

egy uses service dependence between provider and requesters. Finally, the r-CCP and

r-CCG strategies use the requester’s exchange values, previous service evaluations, and

Chapter 9 Experiments 142

Strategies Selection Criteria

Provider Requester Reciprocity Service quality

Credits or Debts Dependence Balance Service evaluation
p-SR r-SR •

p-ACS r-ACS • •
p-EB •
p-DB r-DB •
p-CC r-CCP,r-CCG • • • •
p-RD

Table 9.3: Selection Criteria for Provider and Requester Selection Strategies.

dependence as selection criteria, the difference between them being that r-CCP uses

exchange values with debts preferred over credits, and r-CCG uses exchange values with

credits preferred over debts. A summary of the kind of selection criteria used by the

various provider and requester selection strategies is shown in Table 9.3.

9.3 The Experimental Set-Up

9.3.1 Providers and Requesters

In our experiments, we simulate a cooperative system in which agents exchange free

services, and providers are motivated to provide services to others on the basis of recip-

rocation. Agents are heterogeneous in terms of their abilities to perform a service (so

that the same service may be delivered with a different quality by distinct providers),

and have different perspectives over evaluation, so that the same service result may also

be seen as having different quality by distinct requesters. In addition, more than one

agent provides the same service and, in their role as providers, agents have limited re-

sources. This scenario is illustrated in Figure 9.1, in which agents provide and request

different services.

requestα1α2 α3

α4

α5

provide

request

request

?

α6
request α7

provide

provide

��

��

��

Figure 9.1: Cooperative Scenario.

To simulate a population of agents that provide services of various qualities, each

provider is assigned a skill level in the range of (0, 1], which represents the ability

Chapter 9 Experiments 143

����

�����

����

��	�

����

���	

����
����

����
��	�

���

�����������������

����������

�������������������

����������

����

�����

��	�

����

�����

Figure 9.2: Combining provider and requester selection strategies.

of providers to perform a service. To simplify the experiments, we have divided the

providers’ skill levels into three groups (resulting in roughly similar intervals sizes of 0.4,

0.3, and 0.3), as follows:

• low-skilled providers, with skill levels in the (0, 0.4] range;

• medium-skilled providers, with skill levels in the (0.4, 0.7] range; and

• highly-skilled providers, with skill levels in the (0.7, 1] range.

Similarly, to simulate a population of agents with different perspectives over service

evaluation, each requester is assigned an evaluation strictness in the range of [0.5, 1]1,

which it uses to determine the evaluation of a received service, as described in our

evaluation method in Section 5.3.3. We have also divided the requesters’ strictness levels

in three groups (and using roughly similar interval sizes of 0.2, 0.15, and 0.15), as follows:

• low-strictness requesters, with an evaluation strictness in the (0.8, 1] range;

• medium-strictness requesters, with an evaluation strictness in the [0.65, 0.8] range;

and

• high-strictness requesters, with an evaluation strictness in the [0.5, 0.65) range.

As a result, agents with different skill levels and evaluation strictness levels make up

the population. In addition, in order to allow reciprocal behaviour, we assume that

agents are both providers and requesters, so that each agent is assigned one provider

selection strategy and one requester selection strategy, as shown in Figure 9.2. As stated

earlier, provider and requester selection strategies are indicated by appropriate prefixes

so that combinations of strategies can be similarly represented (for example, as p-DB/r-

DB or p-ACS/r-SR). Although many combinations of provider and requester selection

strategies are possible, when comparing provider selection strategies we take all agents

to have the same requester selection strategy, and vice versa.

1Values smaller than 0.5 result in extremely low evaluations, so these values are not considered.

Chapter 9 Experiments 144

Parameter Value Description

TotalAgents 70 Number of agents in the system.
ProvidersPService 8 Number of providers for each available services.
TotalCycles 600 Number of cycles in the simulation.
Tolerance 0.15 Tolerance value for comparing exchange values that

are in the [0, 1] range.
MaxCapacity 2 Number of services that can be performed at the same

time.
Lskill 10 Proportion of low-skilled providers.
Mskill 80 Proportion of medium-skilled providers.
Hskill 10 Proportion of highly-skilled providers.
Lstric 10 Proportion of agents with low result expectations.
Mstric 80 Proportion of agents with medium result expectations.
Hstric 10 Proportion of agents with high result expectations.

Table 9.4: Default simulation configuration.

Selection strategies are compared through a number of experiments, each of which com-

prises a set of what we call sub-experiments. In a sub-experiment, the performance of

a given pair of strategies (for example, p-DB/r-DB and p-SR/r-DB) is compared under

a number of different settings, each defining a simulation run. In all our experiments,

there are equal numbers of agents using each strategy (with 50% of the agents using

one strategy and 50% using the other), and skill levels are also divided equally among

agents so that both strategies have the same number of representative agents with low,

medium, and high skills (otherwise, if one strategy has more low-skilled providers than

the competitor strategy, this may bias the final comparison).

A simulation run is made up of a fixed number of cycles, in each of which every agent

in the population takes an action such as requesting a service, providing a service,

evaluating results, and so on. If a request is accepted and a service is provided, we say

that there was an interaction between the two agents. Thus, for an interaction to occur,

a request must be accepted (the act of sending a request or receiving a refusal for a

request are not considered an interaction). Once the number of cycles is reached, the

simulation run finishes. After all sub-experiments finish, the results are analysed.

To increase the number of requests received by providers, so that we can test the re-

quester selection strategies, some fixed proportion of the total population of agents only

send requests but do not provide any service (so that the load of requests on providers

increases).

9.3.2 Simulation Configuration

A basic simulation configuration is shown in Table 9.4. Since agents can have three

different skill levels (that is, low-skilled, medium-skilled and highly skilled), and these

are divided equally among agents of each strategy, the minimum number of agents in

Chapter 9 Experiments 145

the simulation (TotalAgents) is six (three for each strategy, one for each skill level), and

to simulate a system in which several requests are sent and received the default number

of agents is set to 70.

The number of providers per service (ProvidersPService) must be greater than 1, so

that agents have alternatives to choose from and the provider selection strategies can

be tested. The total number of cycles (TotalCycles) indicates the duration of the sim-

ulation run: the longer the simulation, the better the choices made by agents since

their strategies will have more information available during selection. The tolerance

value (Tolerance), used only for exchange values-based selection strategies, as specified

in Tables 9.1 and 9.2, enables comparisons between exchange values on the [0, 1] scale.

Differences below this value are considered insignificant, so that roughly similar values

are deemed equal. Based on the results in Section 9.4.1, the tolerance should be less

than or equal to 0.15 so that exchange values with different quantities are discriminated.

The provider’s maximum capacity (MaxCapacity) must be greater than 1 to select from

among groups of requests as part of the requester selection strategies, but should be

less than the number of requests received in order to generate competition for resources.

High-skilled and low-skilled providers (Hskill and Lskill) are set to be 10% of the popu-

lation, and the medium-skilled providers (Mskill) are set to be 80% in the basic configu-

ration. These values are somewhat arbitrary, but reflect what we take to be a common

distribution, and the same proportions are used for low, medium and high strictness

requesters (Lstric, Mstric and Hstric).

Different strategies are compared pairwise using the same configuration. For example,

if the aim of an experiment is to compare the random strategy with our five proposed

provider strategies using the r-SR requester selection strategy, we must then perform

five sub-experiments, one for each pair of strategies (for example, p-SR/r-SR versus p-

RD/r-SR, p-ACS/r-SR versus p-RD/r-SR, p-CC/r-SR versus p-RD/r-SR, p-DB/r-SR

versus p-RD/r-SR, and p-EB/r-SR versus p-RD/r-SR), using the same configuration,

and compare the results.

All results are tested for statistical significance, as shown in Appendix B.

9.4 Performance Measures

To compare the efficiency of different selection strategies, given the aims of both provider

and requester selection mechanisms, we consider two performance measures, as described

below.

• The total interactions is defined as the percentage of accepted requests (from those

sent), resulting in an interaction between requester and provider. It provides a

Chapter 9 Experiments 146

measure of the ability of requesters to find available interaction partners even

though providers may limit request acceptance due to individual preferences and

resource constraints.

• The average satisfaction with received services provides a measure of whether

agents can identify good providers even though there are providers with different

skills and good providers may not always be available.

The total interactions achieved by agents is used to compare both provider and re-

quester selection strategies. The average satisfaction indicates the efficiency not only

of the provider selection strategies alone, but also of their use with different requester

selection strategies. Since exchange values are used as a selection criterion by some of

the strategies, and are compared through a tolerance threshold, we consider how this

tolerance value influences the performance measures described above.

9.4.1 Determining the Tolerance Threshold

Exchange values-based strategies that use the balance of exchange values as a criterion

to select providers and requesters may be affected by the tolerance threshold used to

compare two exchange values. If the difference between two exchange values is smaller

than or equal to the tolerance value, they are considered to be equal. To determine

an appropriate tolerance threshold for use in our later experiments, we undertook sub-

experiments with a number of simulation runs, with a population of 70 agents, with

services to request and services to provide.

Since the impact of the tolerance value is on selection criteria, to sensibly analyse this

impact, agents take a combination of provider and requester selection strategies that use

corresponding selection criteria (that is p-ACS/r-ACS, p-CC/p-CCP, and p-CC/r-CCG,

as detailed in Table 9.3). In each simulation a different tolerance threshold was used,2

varying from 0 to 1, and different selection strategies were compared in terms of the two

performance measures.

As shown in Figure 9.3(a), the tolerance threshold has no impact on the total interac-

tions, only on the average satisfaction (shown in Figure 9.3(b)), which is mainly affected

when agents use the p-ACS/r-ACS selection strategies, which achieve lower average sat-

isfaction for tolerance values higher than 0.15. This is because for this strategy the

balance of exchange values (to which tolerance applies) is the only criterion that in-

dicates service quality, so assessment of service quality also is affected. Although the

combined criteria strategies p-CC/r-CCP and p-CC/r-CCG also use the balance of ex-

change values, they include consideration of satisfaction with received services, which is

determined from service evaluation and is not influenced by the tolerance value.

2The tolerance value is defined in a [0, 1] range, as in Section 6.5.

Chapter 9 Experiments 147

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Tolerance Threshold

T
ot

al
 In

te
ra

ct
io

ns

p−ACS/r−ACS
p−CC/r−CCP
p−CC/r−CCG

(a) Total Interactions

0 0.2 0.4 0.6 0.8 1
0.3

0.35

0.4

0.45

0.5

0.55

0.6

Tolerance Threshold

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−ACS/r−ACS
p−CC/r−CCP
p−CC/r−CCG

(b) Average Satisfaction

Figure 9.3: Impact of the tolerance value on performance measures.

9.5 Busy Providers and Reciprocity

When service providers are busier, requesters must compete for them, possibly taking

too long for their requests to be accepted. Conversely, busy providers must cope with

bounded resources by limiting the number of requests they accept, potentially reducing

their chances of future interactions. In the first of our experiments, therefore, we tested

the effect of busy providers on the performance of selection strategies in terms of the

total interactions achieved by agents.

Hypothesis 1: when providers are busier, due either to an increase in the number of

requests that they receive or to a decrease in their resource capacity, provider selection

strategies that use reciprocity to find providers more likely to accept their requests achieve

higher total interactions than non-reciprocation based strategies (since they take less time

for their requests to be accepted).

To test this hypothesis, we compared those strategies using reciprocity — the exchange

values-based (p-SR and p-ACS), dependence-based (p-DB), and combined criteria (p-

CC) strategies — with those that do not — the evaluation-based (p-EB) strategy, as

specified in Table 9.1. The demand on providers was increased by increasing the number

of agents (and requests) in the population in Experiment 1, and by decreasing the

capacity of providers in Experiment 2. Results for both experiments are presented next.

9.5.1 Experiment 1: Increasing Numbers of Agents (and Requests)

In the first experiment, we used the default simulation configuration in Table 9.4, but

varied the number of agents in the population (TotalAgents) from 6 to 100 (in inter-

vals3 of 10), with each simulation being undertaken with a different population size.

3Note that the first interval is 4 (from 6 to 10), since we start with 6 agents, given the minimum of
3 agents per strategy.

Chapter 9 Experiments 148

Figure Requester Provider a Provider b Provider c Provider d

Figure 9.4 r-SR p-SR p-ACS p-DB p-CC

Figure 9.5 r-DB p-SR p-ACS p-DB p-CC

Figure A.1 r-ACS p-SR p-ACS p-DB p-CC

Figure A.2 r-CCP p-SR p-ACS p-DB p-CC

Figure A.3 r-CCG p-SR p-ACS p-DB p-CC

Table 9.5: Combinations of provider selection strategies for each requester selection
strategy, in comparison to p-EB, in Experiment 1.

10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−SR/r−SR
p−EB/r−SR

(a) p-SR/r-SR

10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−ACS/r−SR
p−EB/r−SR

(b) p-ACS/r-SR

10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−DB/r−SR
p−EB/r−SR

(c) p-DB/r-SR

10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−CC/r−SR
p−EB/r−SR

(d) p-CC/r-SR

Figure 9.4: Total interactions of provider selection strategies using r-SR.

Then, each of the four reciprocation-based provider selection strategies was compared

pairwise against the evaluation-based provider selection strategy p-EB. However, since

the requester selection strategy is also relevant in determining the total interactions, we

ran this combination of strategies five times, once for each different requester selection

strategy. Table 9.5 indicates the combinations of strategies run (grouped by requester

selection strategy), and identifies the figures in which they are shown: Figure 9.4 shows

the results of using the simple reciprocation requester selection strategy, such that the

combinations of provider and requester selection strategies being compared against p-

EB/r-SR are p-ACS/r-SR, p-SR/r-SR, p-DB/r-SR, and p-CC/r-SR. The other figures

Chapter 9 Experiments 149

are similar, but for the r-DB, r-ACS, r-CCP and r-CCG strategies.

According to the results, with r-SR, all reciprocation-based provider selection strategies,

p-ACS, p-CC, p-SR and p-DB, achieve more total interactions than the evaluation-based

strategy (p-EB), except for p-ACS in a population of more than 80 agents, as shown

in Figure 9.4. With the dependence-based requester selection strategy (r-DB), shown in

Figure 9.5, p-DB and p-CC achieve more total interactions than p-EB as the number

of agents increases (above 10), but the difference in performance is less substantial

than with r-SR, in particular for p-SR and p-ACS. For the p-ACS and p-SR strategies

against p-EB, however, there is now little difference in performance, with similar total

interactions. This is because the r-DB strategy uses dependence to select requests,

unlike the pure exchange values-based provider selection strategies, so that the latter

are not successful in predicting the requesters more likely to cooperate. Conversely, the

dependence-based p-DB strategy performs better against the p-EB strategy when using

the r-DB strategy, since they both use dependence to select requesters. Results for the

remaining three requester selection strategies, which use the quality of interactions in

addition to reciprocity (r-ACS, r-CCP and r-CCG), are shown in Figures A.1, A.2, and

A.3 in Appendix A.1. Here, p-DB and p-SR achieve more total interactions than p-EB

as the number of agents increases, and p-ACS and p-CC outperform p-EB in some cases

(with similar performance in others).

A summary of the performance of all reciprocation-based provider selection strategies

against the evaluation-based strategy, for each requester selection strategy, is shown in

Figure 9.6. Here, among the reciprocation-based strategies, the simple reciprocation

provider selection strategy (p-SR) and the dependence-based provider selection strategy

(p-DB) achieve the highest total interactions in most cases and are thus best at finding

providers more likely to reciprocate. This shows that provider selection strategies that

take into account service quality in addition to reciprocity (p-ACS and p-CC, as specified

in Table 9.3) are less efficient in finding providers more likely to reciprocate than those

that use reciprocity alone (p-SR and p-DB, as specified in Table 9.3).

Conversely, in Figure 9.7, we show the results by provider selection strategy, to compare

the impact of requester selection strategies on performance. It is clear that provider se-

lection strategies p-EB, p-DB and p-CC perform best when using r-DB, but for strategies

p-SR and p-ACS it is not significantly better than using r-CCP and r-CCG (because

p-SR and p-ACS use selection criteria that are different to those used by r-DB). In

addition, although r-CCP and r-CCG improve the performance of provider selection

strategies (except p-DB) in most cases, as shown in Figures 9.7(a), 9.7(b), 9.7(c), and

9.7(e), this is also not significant. Note that all of r-DB, r-CCP and r-CCG use depen-

dence as selection criteria, indicating that by using this for requesters providers are able

to choose those requesters that are likely to reciprocate in the future.

Chapter 9 Experiments 150

10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−SR/r−DB
p−EB/r−DB

(a) p-SR/r-DB

10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−ACS/r−DB
p−EB/r−DB

(b) p-ACS/r-DB

10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−DB/r−DB
p−EB/r−DB

(c) p-DB/r-DB

10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−CC/r−DB
p−EB/r−DB

(d) p-CC/r-DB

Figure 9.5: Total interactions of provider selection strategies using r-DB.

9.5.2 Experiment 2: Decreasing Resource Capacity

Figure Requester Provider a Provider b Provider c Provider d

Figure 9.8 r-SR p-SR p-ACS p-DB p-CC

Figure 9.9 r-DB p-SR p-ACS p-DB p-CC

Figure A.4 r-ACS p-SR p-ACS p-DB p-CC

Figure A.5 r-CCP p-SR p-ACS p-DB p-CC

Figure A.6 r-CCG p-SR p-ACS p-DB p-CC

Table 9.6: Combinations of provider selection strategies for each requester selection
strategy, in comparison to p-EB, in Experiment 2.

In a complementary experiment, we decreased the providers’ resource capacity, reducing

the number of requests that the providers can satisfy simultaneously. Again, the default

simulation configuration in Table 9.4 was used, but varying the number of services

that a provider can perform at the same time (MaxCapacity) from 4 to 1 (in intervals

of 1). Each of the four reciprocation-based provider selection strategies (p-ACS, p-

SR, p-DB, and p-CC) was compared pairwise against the evaluation-based provider

selection strategy (p-EB), using different requester selection strategies. The combination

Chapter 9 Experiments 151

10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−SR/r−SR
p−DB/r−SR
p−ACS/r−SR
p−CC/r−SR

(a) r-SR

10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−SR/r−ACS
p−DB/r−ACS
p−ACS/r−ACS
p−CC/r−ACS

(b) r-ACS

10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−SR/r−DB
p−DB/r−DB
p−ACS/r−DB
p−CC/r−DB

(c) r-DB

10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−SR/r−CCP
p−DB/r−CCP
p−ACS/r−CCP
p−CC/r−CCP

(d) r-CCP

10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−SR/r−CCG
p−DB/r−CCG
p−ACS/r−CCG
p−CC/r−CCG

(e) r-CCG

Figure 9.6: Summary of results for all reciprocation-based provider selection strategies
in terms of total interactions, for each requester selection strategy.

of strategies and the figures in which they are shown are presented in Table 9.6.

Results for r-SR are shown in Figure 9.8, in which the total interactions decrease with

the provider’s capacity. Here, the p-EB strategy achieves fewer total interactions when

competing with any other reciprocation-based provider selection strategy. This difference

Chapter 9 Experiments 152

10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−SR/r−SR
p−SR/r−DB
p−SR/r−ACS
p−SR/r−CCP
p−SR/r−CCG

(a) p-SR

10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−ACS/r−SR
p−ACS/r−DB
p−ACS/r−ACS
p−ACS/r−CCP
p−ACS/r−CCG

(b) p-ACS

10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−EB/r−SR
p−EB/r−DB
p−EB/r−ACS
p−EB/r−CCP
p−EB/r−CCG

(c) p-EB

10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−DB/r−SR
p−DB/r−DB
p−DB/r−ACS
p−DB/r−CCP
p−DB/r−CCG

(d) p-DB

10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−CC/r−SR
p−CC/r−DB
p−CC/r−ACS
p−CC/r−CCP
p−CC/r−CCG

(e) p-CC

Figure 9.7: Influence of requester selection strategies on the total interactions.

is more substantial when the provider’s capacity is low, which indicates that finding

providers more likely to reciprocate becomes relevant when there is greater competition

for request acceptance. Reciprocation-based provider selection strategies also achieve

more total interactions than p-EB with all other requester selection strategies (r-DB,

r-ACS, r-CCP and r-CCG), as shown in Figures 9.9, A.4, A.5, and A.6. Note that the

Chapter 9 Experiments 153

1 1.5 2 2.5 3 3.5 4
40

50

60

70

80

90

100

Providers Capacity

T
ot

al
 In

te
ra

ct
io

ns

p−SR/r−SR
p−EB/r−SR

(a) p-SR/r-SR

1 1.5 2 2.5 3 3.5 4
40

50

60

70

80

90

100

Providers Capacity

T
ot

al
 In

te
ra

ct
io

ns

p−ACS/r−SR
p−EB/r−SR

(b) p-ACS/r-SR

1 1.5 2 2.5 3 3.5 4
40

50

60

70

80

90

100

Providers Capacity

T
ot

al
 In

te
ra

ct
io

ns

p−DB/r−SR
p−EB/r−SR

(c) p-DB/r-SR

1 1.5 2 2.5 3 3.5 4
40

50

60

70

80

90

100

Providers Capacity

T
ot

al
 In

te
ra

ct
io

ns

p−CC/r−SR
p−EB/r−SR

(d) p-CC/r-SR

Figure 9.8: Total interactions for provider selection strategies using the r-SR requester
selection strategy when varying provider capacity.

only case in which p-EB performs similarly to a reciprocation-based strategy is against

p-ACS, when used with the r-DB requester selection strategy.

In addition, to determine the impact of requester selection strategies on provider se-

lection, we have grouped these results by provider selection strategy, in Figure 9.10.

Figure 9.10(a) shows that the exchange values-based p-SR achieves more total interac-

tions when used with any of the combined criteria requester selection strategies (r-CCP

and r-CCG), or with the dependence-based r-DB. However, in the extreme case in which

available resources are minimal (that is, a capacity of 1), r-CCP and r-CCG outperform

r-DB. Similarly, in Figure 9.10(b), higher total interactions are achieved for the exchange

values-based p-ACS when it is used with both r-CCP and r-CCG. The evaluation-based

p-EB also has better performance in terms of the total interactions when used with

r-CCP, r-CCG and r-DB, as shown in 9.10(c) but, with low capacity, the performance of

p-EB is higher with r-CCP than with r-DB and r-CCG. Conversely, for the dependence-

based p-DB, the best requester selection strategy is the corresponding r-DB, which also

uses dependence, as shown in 9.10(d) but, with low capacity, the performance of p-DB

is higher with r-DB and r-CCG than with r-CCP. Finally, the combined criteria p-CC

Chapter 9 Experiments 154

1 1.5 2 2.5 3 3.5 4
40

50

60

70

80

90

100

Providers Capacity

T
ot

al
 In

te
ra

ct
io

ns

p−SR/r−DB
p−EB/r−DB

(a) p-SR/r-DB

1 1.5 2 2.5 3 3.5 4
40

50

60

70

80

90

100

Providers Capacity

T
ot

al
 In

te
ra

ct
io

ns

p−ACS/r−DB
p−EB/r−DB

(b) p-ACS/r-DB

1 1.5 2 2.5 3 3.5 4
40

50

60

70

80

90

100

Providers Capacity

T
ot

al
 In

te
ra

ct
io

ns

p−DB/r−DB
p−EB/r−DB

(c) p-DB/r-DB

1 1.5 2 2.5 3 3.5 4
40

50

60

70

80

90

100

Providers Capacity

T
ot

al
 In

te
ra

ct
io

ns

p−CC/r−DB
p−EB/r−DB

(d) p-CC/r-DB

Figure 9.9: Total interactions for provider selection strategies using the r-DB requester
selection strategy when varying provider capacity.

performs best with r-CCP and r-CCG, which use similar selection criteria as p-CC, and

with the dependence-based r-DB, as shown in Figure 9.10(e).

From these results we can conclude that, as in the previous experiment, requester selec-

tion strategies using service dependence have the best performance. Here, in all cases,

the requester selection strategies using combined criteria, r-CCP and r-CCG, improve

the performance of all provider selection strategies, in comparison to the pure exchange

values-based r-SR and r-ACS. In addition, although the dependence-based r-DB out-

performs the combined criteria strategies r-CCP and r-CCG in some cases in which

providers have high capacity, r-CCP and r-CCG enable provider selection (except p-

DB) to achieve equal or more interactions than r-DB (as shown in Figures 9.10(a), in

situations in which resource capacity is low 9.10(b), 9.10(c) and 9.10(e)).

Chapter 9 Experiments 155

1 1.5 2 2.5 3 3.5 4
50

55

60

65

70

75

80

85

90

95

100

Provider Capacity

T
ot

al
 In

te
ra

ct
io

ns

p−SR/r−SR
p−SR/r−DB
p−SR/r−ACS
p−SR/r−CCP
p−SR/r−CCG

(a)

1 1.5 2 2.5 3 3.5 4
50

55

60

65

70

75

80

85

90

95

100

Provider Capacity

T
ot

al
 In

te
ra

ct
io

ns

p−ACS/r−SR
p−ACS/r−DB
p−ACS/r−ACS
p−ACS/r−CCP
p−ACS/r−CCG

(b)

1 1.5 2 2.5 3 3.5 4
40

50

60

70

80

90

100

Providers Capacity

T
ot

al
 In

te
ra

ct
io

ns

p−EB/r−SR
p−EB/r−DB
p−EB/r−ACS
p−EB/r−CCP
p−EB/r−CCG

(c)

1 1.5 2 2.5 3 3.5 4
50

55

60

65

70

75

80

85

90

95

100

Provider Capacity

T
ot

al
 In

te
ra

ct
io

ns

p−DB/r−SR
p−DB/r−DB
p−DB/r−ACS
p−DB/r−CCP
p−DB/r−CCG

(d)

1 1.5 2 2.5 3 3.5 4
50

55

60

65

70

75

80

85

90

95

100

Provider Capacity

T
ot

al
 In

te
ra

ct
io

ns

p−CC/r−SR
p−CC/r−DB
p−CC/r−ACS
p−CC/r−CCP
p−CC/r−CCG

(e)

Figure 9.10: Comparing requester selection strategies when varying provider capacity.

9.6 Low-skilled Providers and Received Service Quality

In addition to the time taken to find an available provider, quality of service is also

relevant in determining whether agents are able to achieve their goals, in particular if

they require service results of a certain quality level, or if they are in danger of not

selecting good quality services. As mentioned above, some provider selection strategies

Chapter 9 Experiments 156

Figure Requester Provider a Provider b Provider c Provider d Provider e

Figure 9.11 r-SR p-SR p-ACS p-DB p-CC p-EB

Figure A.7 r-DB p-SR p-ACS p-DB p-CC p-EB

Figure A.8 r-ACS p-SR p-ACS p-DB p-CC p-EB

Figure A.9 r-CCP p-SR p-ACS p-DB p-CC p-EB

Figure A.10 r-CCG p-SR p-ACS p-DB p-CC p-EB

Table 9.7: Combinations of provider selection strategies for each requester selection
strategy, in comparison to p-RD in terms of average satisfaction, in Experiment 3.

take into account just service quality or just reciprocity, while others focus on both, as

detailed in Table 9.3. Requesters using an evaluation-based provider selection strategy

(such as p-EB) are likely to be able to select good quality providers, since service quality

is the only criterion used, but other strategies based on reciprocation alone (such as p-

SR and p-DB) may not be able to do so. However, we believe that provider selection

strategies using service quality in combination with reciprocity either indirectly through

the balance of exchange values (such as p-ACS), or directly through service evaluation

(such as p-CC), are able to choose good quality providers as well as a pure evaluation-

based strategy. We can state this hypothesis more clearly, as follows.

Hypothesis 2: provider selection strategies that use the balance of exchange values

(p-ACS) or a combination of selection criteria (p-CC) can maintain higher average

satisfaction than a strategy using pure service evaluation, even when the number of low-

skilled providers increases.

In addition, we argue that requester selection strategies that use service quality (as

specified in Table 9.3) enable providers to build relationships with agents providing

good quality services so that, subsequently, when providers become requesters, not only

will they find agents willing to reciprocate, but agents providing better services willing

to reciprocate. Thus, for example, agents using the p-ACS provider selection strategy

when faced with the r-CCP requester selection strategy may achieve higher average

satisfaction than agents using p-ACS when faced with r-SR, which does not take service

quality into account.

Hypothesis 3: requester selection strategies that consider either the satisfaction of

the receiver or the balance of exchange values in addition to reciprocity (r-ACS, r-CCP

and r-CCG) improve the performance of provider selection strategies in relation to the

average satisfaction when the number of low-skilled providers increases.

In this section, therefore, we test the performance of selection strategies, focussing on

p-ACS and p-CC, in terms of their average satisfaction with received services, when

there is an increasing number of low quality services in the system.

Chapter 9 Experiments 157

9.6.1 Experiment 3: Provider Selection Strategies Against Baseline

More specifically, we fix the number of agents in the population and the capacity of

providers to 70 and 2, respectively, according to the default configuration described

in Table 9.4, and vary the proportion of low-skilled providers in the population from

0 to 100% (in intervals of 10). In each simulation, for each interaction in which an

agent participates, we record the satisfaction with the received service (or the service

evaluation), and use these values to calculate the average satisfaction.

Since we do not distinguish between reciprocity or otherwise here, we compare all

provider selection strategies (p-SR, p-ACS, p-EB, p-DB, and p-CC) with the baseline

random strategy (p-RD). As previously, these strategies are used with different requester

selection strategies to assess the performance of all. The combination of strategies and

the figures in which they are shown are specified in Table 9.7.

We start by comparing all provider selection strategies against the baseline strategy

(p-RD) when using the r-SR requester selection strategy. As expected, the results in

Figure 9.11 show that p-ACS, p-EB, and p-CC achieve higher average satisfaction than

p-RD, and that p-SR and p-DB are similar in performance to p-RD.

Similar results are produced when these strategies are used with other requester selection

strategies, r-DB, r-ACS, r-CCP and r-CCG, as shown in Appendix A (in Figures A.7,

A.8, A.9, A.10), and summarised in Figure 9.12 (for all provider selection strategies

against p-RD when using different requester selection strategies). When there are few

low-skilled providers (less than 10%), provider selection strategies perform similarly,

since it is easier to find good providers.

However, when the number of low-skilled providers increases, provider selection strate-

gies that use service quality (p-ACS, p-EB, and p-CC) perform best, achieving higher

average satisfaction than the others (p-SR and p-DB). Finally, among the best per-

forming strategies, p-ACS and p-CC achieve similar average satisfaction to the p-EB

strategy. Thus, although p-ACS and p-CC both perform well, they do not clearly out-

perform p-EB, in contrast to Hypothesis 2.

We also analyse the performance of different requester selection strategies, as they in-

fluence the performance of provider selection strategies in terms of average satisfaction

(as in Hypothesis 3). In Figure 9.13, we show the results by provider selection strategy,

according to which there is little difference in the average satisfaction achieved by all

provider selection strategies when using different requester selection strategies. This

suggests that, when strategies compete with the baseline strategy, performance in terms

of average satisfaction depends on the provider selection strategy alone. This is be-

cause provider selection strategies generally do not compete with the random strategy

for service providers.

Chapter 9 Experiments 158

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−SR/r−SR
p−RD/r−SR

(a) p-SR/r-SR

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−ACS/r−SR
p−RD/r−SR

(b) p-ACS/r-SR

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−EB/r−SR
p−RD/r−SR

(c) p-EB/r-SR

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−DB/r−SR
p−RD/r−SR

(d) p-DB/r-SR

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−CC/r−SR
p−RD/r−SR

(e) p-CC/r-SR

Figure 9.11: Average satisfaction for all provider selection strategies against the
baseline with r-SR requester selection strategy.

In summary, when competing in the same population as the baseline strategy, the pure

exchange values-based p-ACS and combined criteria p-CC achieve similar average sat-

isfaction to the evaluation-based p-EB (not supporting Hypothesis 2). The results also

do not support Hypothesis 3, since there is no evidence to suggest that requester se-

lection strategies influence the performance of provider selection strategies in terms of

Chapter 9 Experiments 159

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−SR/r−SR
p−DB/r−SR
p−ACS/r−SR
p−EB/r−SR
p−CC/r−SR

(a) r-SR

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−SR/r−ACS
p−DB/r−ACS
p−ACS/r−ACS
p−EB/r−ACS
p−CC/r−ACS

(b) r-ACS

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−SR/r−DB
p−DB/r−DB
p−ACS/r−DB
p−EB/r−DB
p−CC/r−DB

(c) r-DB

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−SR/r−CCP
p−DB/r−CCP
p−ACS/r−CCP
p−EB/r−CCP
p−CC/r−CCP

(d) r-CCP

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−SR/r−CCG
p−DB/r−CCG
p−ACS/r−CCG
p−EB/r−CCG
p−CC/r−CCG

(e) r-CCG

Figure 9.12: Comparing provider selection strategies against the random strategy
regarding the agents’ average satisfaction.

average satisfaction. Yet, while these results show the performance of p-ACS, p-CC, and

p-EB strategies individually against a baseline strategy, further testing is required for

Hypotheses 2 and 3, with strategies p-ACS and p-CC compared pairwise against p-EB

(so that they compete in the same population of agents). This experiment, Experiment

4, is described next.

Chapter 9 Experiments 160

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low−skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−SR/r−SR
p−SR/r−DB
p−SR/r−ACS
p−SR/r−CCP
p−SR/r−CCG

(a)

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low−skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−ACS/r−SR
p−ACS/r−DB
p−ACS/r−ACS
p−ACS/r−CCP
p−ACS/r−CCG

(b)

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low−skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−EB/r−SR
p−EB/r−DB
p−EB/r−ACS
p−EB/r−CCP
p−EB/r−CCG

(c)

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low−skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−DB/r−SR
p−DB/r−DB
p−DB/r−ACS
p−DB/r−CCP
p−DB/r−CCG

(d)

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low−skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−CC/r−SR
p−CC/r−DB
p−CC/r−ACS
p−CC/r−CCP
p−CC/r−CCG

(e)

Figure 9.13: Comparing requester selection strategies in terms of average satisfaction
when varying low-skilled providers.

9.6.2 Experiment 4: Pairwise Analysis of Provider Selection Strategies

In this additional experiment, we use the same set-up as previously, but compare different

pairs of provider selection strategies, so that the pairs are p-ACS/r-SR and p-EB/r-SR,

and p-CC/r-SR and p-EB/r-SR (and the same pairs with all other requester selection

Chapter 9 Experiments 161

0 10 20 30 40 50 60 70 80 90 100
0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−ACS/r−SR
p−EB/r−SR

(a) p-ACS/r-SR and p-EB/r-SR

0 10 20 30 40 50 60 70 80 90 100
0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−ACS/r−DB
p−EB/r−DB

(b) p-ACS/r-DB and p-EB/r-DB

0 10 20 30 40 50 60 70 80 90 100
0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−ACS/r−ACS
p−EB/r−ACS

(c) p-ACS/r-ACS and p-EB/r-ACS

0 10 20 30 40 50 60 70 80 90 100
0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−ACS/r−CCP
p−EB/r−CCP

(d) p-ACS/r-CCP and p-EB/r-CCP

0 10 20 30 40 50 60 70 80 90 100
0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−ACS/r−CCG
p−EB/r−CCG

(e) p-ACS/r-CCG and p-EB/r-CCG

Figure 9.14: Pairwise comparison of p-ACS with p-EB using all requester selection
strategies in terms of the agents’ average satisfaction.

strategies).

Comparing the performance of p-ACS and p-EB in terms of average satisfaction, p-ACS

achieves higher average satisfaction when competing in the same population as p-EB,

when low-skilled providers are more than 30% of the population, using all requester

Chapter 9 Experiments 162

0 10 20 30 40 50 60 70 80 90 100
0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−CC/r−SR
p−EB/r−SR

(a) p-CC/r-SR and p-EB/r-SR

0 10 20 30 40 50 60 70 80 90 100
0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−CC/r−DB
p−EB/r−DB

(b) p-CC/r-DB and p-EB/r-DB

0 10 20 30 40 50 60 70 80 90 100
0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−CC/r−ACS
p−EB/r−ACS

(c) p-CC/r-ACS and p-EB/r-ACS

0 10 20 30 40 50 60 70 80 90 100
0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−CC/r−CCP
p−EB/r−CCP

(d) p-CC/r-CCP and p-EB/r-CCP

0 10 20 30 40 50 60 70 80 90 100
0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−CC/r−CCG
p−EB/r−CCG

(e) p-CC/r-CCG and p-EB/r-CCG

Figure 9.15: Pairwise comparison of p-CC with p-EB using all requester selection
strategies in terms of the agents’ average satisfaction.

selection strategies except r-DB (with which p-ACS achieves similar performance to p-

EB), as shown in Figure 9.14. For the pair of strategies p-CC and p-EB, p-CC has

similar performance to p-EB across all requester selection strategies, as shown in Figure

9.15.

Chapter 9 Experiments 163

Therefore, of the provider selection strategies in Hypothesis 2, p-ACS performs better

than p-CC in maintaining higher average satisfaction than a strategy using pure service

evaluation, p-EB. Even though p-ACS does not consider the quality of service directly

when selecting providers, but indirectly through the balance of exchange values, it is

able to select those agents providing better quality services.

0 10 20 30 40 50 60 70 80 90 100
0.3

0.35

0.4

0.45

0.5

0.55

Low−skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−CC/r−SR
p−CC/r−DB
p−CC/r−ACS
p−CC/r−CCP
p−CC/r−CCG

(a) Average Satisfaction for p-CC

0 10 20 30 40 50 60 70 80 90 100
0.3

0.35

0.4

0.45

0.5

0.55

Low−skilled Providers (%)
A

ve
ra

ge
 S

at
is

fa
ct

io
n

p−ACS/r−SR
p−ACS/r−DB
p−ACS/r−ACS
p−ACS/r−CCP
p−ACS/r−CCG

(b) Average Satisfaction for p-ACS

0 10 20 30 40 50 60 70 80 90 100
0.3

0.35

0.4

0.45

0.5

0.55

Low−skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−EB/r−SR
p−EB/r−DB
p−EB/r−ACS
p−EB/r−CCP
p−EB/r−CCG

(c) Average Satisfaction for p-EB

Figure 9.16: Influence of requester selection strategies on each provider selection
strategy regarding average satisfaction.

The influence of requester selection strategies on the performance of provider selection

strategies p-ACS, p-CC and p-EB is detailed in Figure 9.16. It shows that, as the

number of low-skilled providers increases, provider selection strategies p-ACS and p-CC

have better performance in terms of average satisfaction when using requester selection

strategies r-CCP and r-CCG, which consider service quality. Importantly, p-EB is not

influenced by requester selection strategies because it uses service evaluation as the

selection criterion, which is not influenced by the choices of a requester selection strategy,

as opposed to exchange values which are used by p-ACS and p-CC. Thus, of the requester

selection strategies in Hypothesis 3, only r-CCP and r-CCG, which take into account

service quality in addition to reciprocity, facilitate the selection of available providers

offering good quality services, bringing higher average satisfaction for requesters, but

Chapter 9 Experiments 164

only for the provider selection strategies p-ACS and p-CC.

9.7 Conclusions

In this chapter we have presented an empirical study to evaluate and compare the

efficiency of provider and requester selection strategies used by agents in a cooperative

system with service variety and resource constraints. The efficiency of provider selection

strategies is related to their ability to find providers that perform good quality services,

and that are more likely to accept requests. Similarly, the efficiency of requester selection

strategies is related to their ability to improve chances of future interactions and their

quality when there are resource constraints. These abilities were evaluated through

two performance measures: the total number of interactions achieved; and the average

satisfaction with received services.

We have argued, in Chapters 7 and 8, that in a non-monetary cooperative system re-

questers must take into account reciprocal relationships with providers to find those more

likely to accept requests, since when providers are busier or have few available resources,

agents requesting services need to compete for available providers. By comparing the

total interactions achieved by agents using provider selection strategies considering re-

ciprocation with those not taking into account reciprocation, in Experiments 1 and 2

(Sections 9.5.1 and 9.5.2), we showed that, indeed, provider selection strategies that

consider reciprocation allow agents to find available providers easily (since they achieve

a higher number of total interactions). This ability is more evident when providers have

limited resources, as shown in Experiment 2.

In addition to finding providers more likely to accept requests, provider selection strate-

gies must identify those providers offering good quality services. Strategies that consider

quality of service are more likely to have higher average satisfaction. However, the rel-

ative emphasis on the balance of exchange values (represented by p-ACS) as opposed

to both service evaluation and reciprocal relationships (represented by the p-CC strat-

egy) is important to understand and determine in order for cooperation to be effective.

Results in Experiments 3 and 4, in Sections 9.6.1 and 9.6.2, show that the combined

criteria p-CC strategy performs well in terms of average satisfaction, and no worse than

a pure evaluation-based strategy. More importantly, the exchange values-based p-ACS

performs better than the purely evaluation-based strategy (p-EB) because, by balancing

reciprocity and service quality, p-ACS can identify providers that simultaneously provide

good services and are more likely to cooperate.

Moreover, achieving more efficient and effective cooperation depends not only on the

provider selection strategy but also on the requester selection strategy. For example, the

pure reciprocation dependence-based requester selection strategy (p-DB) has a positive

influence on provider selection strategies, improving their performance in terms of total

Chapter 9 Experiments 165

interactions. Conversely, the combined criteria requester selection strategies (r-CCP and

r-CCG) improve the performance of corresponding provider selection strategy p-CC in

terms of average satisfaction. This demonstrates that it is possible to balance reciprocal

interactions with the analysis of the quality of those interactions when providers need

to limit requests, in order for agents to operate effectively in heterogeneous cooperative

systems.

In summary our experiments have demonstrated the following key aspects.

• Provider selection strategies that identify reciprocal relationships are able to find

providers more likely to reciprocate than those strategies using service quality

alone, and are necessary for busy providers with resource limits or an increasing

number of requests.

• Provider selection strategies that identify reciprocal relationships, in addition to

service quality, through exchange values, are able to find providers that are, at the

same time, more likely to reciprocate and perform the best services, resulting in

agents with high satisfaction with received services. Such strategies are necessary

when agents operate in systems with many low quality services.

• Requester selection strategies that use dependence alone increase the number of

interactions in which agents engage, thus receiving more services. However, in ex-

treme situations in which providers have minimum resource capacities, dependence

alone is not enough; an efficient requester selection strategy requires a combination

of dependence and exchange values as selection criteria.

Chapter 10

Conclusions

In this thesis, we have proposed models, methods and mechanisms with the aim of sup-

porting effective cooperation and partner selection for computational entities operating

in open cooperative systems with free services. In this chapter, we summarise the key

characteristics of each proposed model, method and mechanism, and highlight the re-

search contributions resulting from this thesis. We also discuss the limitations of our

approaches, and explore possible extensions and alternative applications. With this ob-

jective, the chapter starts with a thesis summary in Section 10.1, followed by research

contributions in Section 10.2, and limitations in Section 10.3. Future work is presented

in Section 10.4, and we finish with concluding remarks in Section 10.5.

10.1 Thesis Summary

The work in this thesis is contextualised in the area of open cooperative distributed

systems, in particular, systems in which services are provided free of charge. Computa-

tional entities operating in such systems often have different capabilities and interests,

and need to cooperate with each other to achieve individual or common goals. Here, the

challenges imposed on cooperations are that services are dynamic and provide different

levels of quality, and service providers often have bounded resources and may not always

be willing to cooperate.

For cooperation to be efficient in this context, entities requesting services must select

among providers, first so that the services they receive have good quality, and second so

that they find available providers quickly. In addition, entities providing services must

have a non-monetary incentive for cooperation, and decide whether to cooperate with

others, such that they can manage their computational resources sensibly, improve their

chances of future interactions, and terminate cooperations that do not bring any benefit.

Given this, we can consider the computational entities that make up such distributed

systems as agents interacting in a multi-agent system.

166

Chapter 10 Conclusions 167

Although there are existing mechanisms in the multi-agent systems and distributed sys-

tems literature that address cooperation and partner selection, as discussed in Chapter

2, they have limitations in dealing with specific characteristics of domain applications

and of open systems, or do not provide a combined solution for achieving both efficient

and cooperative behaviour in the context of open non-monetary cooperative systems.

Therefore, we propose in this thesis a set of models, methods and mechanisms that are

combined to support effective cooperation in open systems with free services. More

specifically, we address the problems of incentivising non-monetary cooperation and of

partner selection in open cooperative contexts.

We started by identifying, in Chapter 3, an application scenario in the bioinformatics

domain, aiming at a concrete case study. The choice for bioinformatics in particular has

dual sides. First, due to the inherent characteristics of service variety in bioinformatics,

in which most services are available free of charge and data is inter-related, the benefits

that open cooperative distributed systems can bring to this domain are promising (Stein,

2002; Foster, 2005). However, these same characteristics offer additional challenges for

developing agents capable of efficient cooperative behaviour.

Indeed, in Chapter 3 we identified in more detail the specific issues that need to be ad-

dress so that agents achieve efficient cooperative behaviour in open cooperative systems

with free services, and presented an architecture with four components: a framework

for non-monetary cooperative interactions, which provides non-monetary incentives for

service provision and a means to analyse cooperations; an evaluation method, which is

responsible for evaluating dynamic services; a requester selection mechanism, which is

responsible for decision-making over service provision, and uses information on cooper-

ative relationships and their properties; and a provider selection mechanism, which is

responsible for decision-making over service requests.

The evaluation method for dynamic services, proposed in Chapter 5, aims at measuring

the properties of different services, so that agents have a means to identify those with

better properties according to their preferences. To achieve this, we developed a general

evaluation method using evaluation attributes, result measures for those attributes, and

evaluation functions. Here evaluation must be undertaken from the different perspectives

of providers and requesters, with agents using the evaluations generated by our method

to select among alternative interaction partners. The proposed evaluation method was

demonstrated through application in real bioinformatics services (ms/ms services) used

for protein identification.

In addition to an awareness of service quality, efficient cooperative behaviour in open sys-

tems also requires that providers have non-monetary incentives to cooperate and that

agents have a means to analyse the cooperations in which they engage. In response,

in Chapter 6, we described a computational framework for non-monetary interactions

among agents, based on Piaget’s theory of exchange values, but addressing the limita-

Chapter 10 Conclusions 168

tions of Piaget’s theory to provide a computational representation of exchange values,

and a computational model that determines how exchange values are acquired, stored,

and spent by agents over interactions. As part of the computational model, we use a

valorisation system to determine credits and debts, combining an agent’s objective eval-

uation of a service (through the evaluation method) with subjective evaluations of that

service (through subjective influences). Practical examples of cooperative interactions

that show how exchange values can be determined from service evaluation, with agents

providing and requesting protein identification services, demonstrated the applicability

of the framework.

Based on this, in Chapter 7 we described a provider selection mechanism for agents

requesting services. The objective here is to select providers that are, at the same time,

more likely to provide good services, and more likely to accept a request, given that

they are not obliged to do so. As part of the provider selection mechanism, therefore,

we developed an algorithm to select among alternative service providers, and a group

of strategies to instantiate it, using quality-related selection criteria (based on previous

service evaluations and the balance of exchange values), and persuasion-related selec-

tion criteria (based on reciprocal relationships among requester and providers, including

the credits, debts and service dependence among them). By combining information on

service evaluation and reciprocal relationships, it is possible to develop a selection mech-

anism that can help service requesters to find providers of good quality services without

spending too much time doing so.

Similarly, in Chapter 8, we developed a request selection mechanism, which aims not

only to support flexible decision making over whether to accept requests, but also to

allow agents to manage their resources. We developed an algorithm for dynamic decision-

making among incoming requests, and a group of strategies to instantiate this algorithm,

establishing preference orderings for requesters according to different combinations of the

selection criteria defined earlier.

For both of these selection mechanisms, we carried out an empirical study to test their

applicability and efficiency, in Chapter 9. In particular, we simulated a cooperative

system, with heterogeneous services, and with resource-constrained providers. We com-

pared our proposed provider and request selection strategies and showed that agents

using reciprocation-based provider selection strategies (using exchange values or depen-

dence) are able to find available providers much quicker than those not doing so (using

evaluation alone or at random). Moreover, our results showed that, when consider-

ing both service quality, through the balance of exchange values, and reciprocal rela-

tionships, agents using the exchange values-based provider selection strategies not only

achieve high proportions of successful interactions and high average satisfaction with

received services, but they are also better than the purely evaluation-based provider

selection strategy. This is because, by balancing reciprocal relationships and service

quality, provider selection strategies can identify providers that are, at the same time,

Chapter 10 Conclusions 169

providing good services and more likely to cooperate. For requester selection, we showed

that by considering reciprocal relationships, through a combination of dependence and

exchange values, agents can indeed improve their chances of future interaction by in-

creasing the performance of provider selection strategies in finding available providers

quicker. Also, our proposed combined strategy with a preference for paying debts not

only helps to improve the chances of future interactions but also improves the quality

of those interactions. More importantly, we showed that it is possible to improve the

quality of interactions even when providers need to limit requests.

10.2 Research Contributions

The key contribution of this thesis is in the efficient request and provision of services

in open cooperative systems with unpaid services. This is achieved through a set of

solutions ranging from the evaluation of services to non-monetary incentives for cooper-

ation. In this context, the general contributions are: a novel computational framework

to support and incentivise non-monetary cooperative interactions among self-interested

agents; a provider selection mechanism based on social techniques and service evalua-

tion; and a request selection mechanism for agents providing unpaid services and with

resource constraints. In what follows, we examine these contributions in more detail.

10.2.1 A Computational Framework for Non-monetary Cooperative

Interaction

To develop autonomous agents capable of operating in open cooperative systems with

unpaid services, agents providing services need some incentive to cooperate, and agents

requesting services need some means to avoid relying on altruism to guarantee service

provision. Although there are approaches in the literature that use non-monetary incen-

tives for cooperation, such as brownie points (Glass and Grosz, 2000) and reciprocation

ensured by norms and contracts (Dignum and Dignum, 2001; Dignum, 2003), these do

not apply to the kind of systems we focus on in this thesis.

In response, we have developed a framework for non-monetary exchanges among self-

interested agents, through a computational model of Piaget’s theory of exchange values,

in which the motivation to cooperate comes from acquiring, accumulating, and spending

(non-monetary) credits and debts that result directly from interactions. This work can

be broken down into the following specific contributions.

• A computational model of Piaget’s theory of exchange values to sup-

port non-monetary cooperative interactions between self-interested agents, and

sufficiently general to apply to different domains. More than merely providing a

Chapter 10 Conclusions 170

means for motivating and modeling cooperations, the model enables agents to make

decisions on whether to maintain or terminate cooperative interactions, through

exchange values and their balances.

• A system of credits and debts that represents the provision-reciprocation cy-

cle in which non-monetary credits and debts are accumulated and spent, yet is

compatible with self-interested behaviour. This provides the basic incentive for

non-monetary cooperative interactions among autonomous agents.

• A valorisation system that considers the evaluation of services provided or

received during an interaction according to the individual objective and subjec-

tive perspectives. Here, objectivity captures possible differences in service results,

while subjectivity captures possible influences on objective values caused by the

individual agent behaviour or social relationships among agents. By capturing

such individual perspectives over services, our valorisation system copes with di-

verse interaction partners that agents may encounter in open systems, and thus

provides a means for agents to better select the interactions in which they engage.

• A computational representation of subjective influences that may alter

an agent’s objective evaluation of a service. In systems in which interactions

depend on reciprocal relationships among heterogeneous agents, it is likely that

different social relations will develop, influencing objective evaluations of services

either to improve the chances of future interactions or to improve the value of an

interaction. These subjective influences thus enable the modeling of heterogeneous

social behaviour and the reasoning about such heterogeneous partners.

Importantly, the system of credits and debts and the valorisation system are dynamic, in

the sense that they manage and provide dynamic information on reciprocal relationships,

objective and subjective service evaluation, and on the outcome of interactions in terms

of compensation of provided services.

10.2.2 An Evaluation Method for Dynamic Services

In the service-oriented literature, some methods that address the evaluation of dynamic

services have been proposed (such as (Day and Deters, 2004; Casati et al , 2004; Sun

et al , 2006)), but they typically evaluate only a single aspect of a service or they require

pre-defined quality levels for service results. In this thesis, we have proposed an evalua-

tion method for dynamic services that evaluates their properties without requiring any

information on expected or ideal results, and generates consistent evaluations that can

be compared at different points in time. In particular, our method provides a means for

agents to evaluate dynamic services and to use these evaluations to subsequently select

among alternative services. Moreover, it allows for personalised definition of evaluation

Chapter 10 Conclusions 171

functions, in the sense that agents can be designed to be more or less strict in their

evaluations, according to need or purpose. Our technique is general enough to allow

the evaluation of services from the perspective of both service providers, which evaluate

services in terms of their cost, and service requesters, which evaluate services in terms

of their satisfaction. It can thus be used to support the selection processes for both

requesters and providers, in order to make better decisions over alternative, diverse in-

teraction partners, and in domains in which expectations or idealisations are difficult to

specify, such as services in the bioinformatics domain.

10.2.3 Provider Selection

In most open cooperative systems, selecting providers is important when agents re-

questing services find alternative providers for the same service but offering services

with different levels of quality. At the same time, finding providers that are more likely

to cooperate is indispensable when they are not obliged to accept requests and may

have to limit the services they provide due to resource constraints. Existing mecha-

nisms for provider selection consider either information on service properties (such as

service evaluation and similarity) (Casati et al , 2004; Caverlee et al , 2004) or coopera-

tive relationships between providers and requesters (Sichman et al , 1994; David et al ,

2001), and there is no attempt to balance these alternatives in a single provider selection

mechanism. Moreover, these mechanisms typically assume that providers always accept

requests, and thus do not consider the possibility of not finding an available provider.

To address these limitations for agents operating in open cooperative applications, we

have developed a provider selection mechanism that allows agents to take advantage, at

the same time, of service variety, by identifying service providers with better properties,

and of reciprocal relationships, as a way to find available providers quicker. Within this,

we have also specified different provider selection strategies that focus on particular selec-

tion criteria or on a combination of different criteria, providing flexible decision-making

for agents operating under different environmental conditions (such as the number of

participants or low quality services in the system) and social conditions (such as the

service dependencies among agents). These strategies have been tested and compared

to demonstrate their effectiveness in different contexts.

10.2.4 Request Selection

Although autonomous agents providing services in open systems are not obliged always

to accept requests, in a non-monetary cooperative environment they may need to provide

services to improve their chances of receiving services from others in the future. Also,

they may need to prioritise incoming requests in case of scarce resources. The challenge

here is to balance the number of accepted requests against the availability of resources,

Chapter 10 Conclusions 172

so that the chances of future interactions are improved and beneficial cooperations are

maintained, but without being overwhelmed by services to perform. However, existing

decision-making mechanisms in the literature to decide whether to cooperate (Saha et al ,

2003; Banerjee et al , 2005) do not consider resource limitations on the provider’s side,

nor the success of cooperative relationships in terms of the balance between provided

and received services. Yet this is important if the environment has agents with different

preferences and skills that reciprocate, but by providing low quality services.

In this thesis, we have developed a requester selection mechanism to support decision-

making over service provision in resource-constrained cooperative applications to deal

with the above problems. Experimental results show that our proposed requester se-

lection strategies that combine information on exchange values and service dependence

indirectly help to improve the agents’ performance in terms of the number of interactions

they achieve and the quality of those interactions. Thus, our request selection mech-

anism contributes to efficient and flexible decision-making for providers with resource

constraints operating in a cooperative context, such that agents improve their chances

of future interactions while managing their resources sensibly.

10.2.5 Metrics for Protein Identification Services

Outside the domain of computing, in bioinformatics, we have also made a distinct

contribution. Specifically, although benchmarks for ms/ms services, used in protein

identification experiments, have been presented in the literature (Chamrad et al , 2004;

Kapp et al , 2005), they are limited in application to real protein identification exper-

iments. In particular, they typically do not consider performance-related aspects of

ms/ms services, are based on analyses of biological data with known identity (as op-

posed to unidentified data), and are static in that they only evaluate services once. We

have addressed these limitations by identifying evaluation attributes and defining evalu-

ation functions for ms/ms services, directed at unknown biological data and considering

data and performance-driven aspects. Our evaluation method for ms/ms services thus

contributes to the efficient automation of in-silico protein identification experiments, so

that such experiments can improve in quality once the properties of alternative services

are known (and the best can be selected).

10.3 Limitations

While we have made substantial contributions through the various models and mecha-

nisms described above, there are still some limitations, as discussed below.

• Evaluation of previously unused services. Although the evaluation method

proposed in Chapter 5 provides accurate information about services that were

Chapter 10 Conclusions 173

received in previous interactions, it only helps the selection process if there are

previously used services among those available. In cases where there has been no

prior interaction with (or use of) a service, some combination of our evaluation

method with a reputation-based evaluation system, such as (Sabater and Sierra,

2001; Teacy et al , 2005), might be needed. Reputation essentially provides trusted

information from third parties on services that they have used perviously, which

is valuable in allowing others to evaluate services they have not yet encountered.

• Extensive list of possible providers. The provider selection mechanism loses

performance when the list of possible providers is extensive. Since partner selection

is based on information generated by an agent’s direct experience with others, a

large number of potential partners may excessively delay the ability to differentiate

among them. In this case, identifying those providing better services may simply

take too much time. As before, to acquire information on all potential providers

(for both evaluation and reciprocal relationships), could be addressed by using

trust and reputation mechanisms, such as (Sabater and Sierra, 2001; Teacy et al ,

2005), for using information from third parties. Such reputation systems address

the potential uncertainty and veracity of third party information and, in doing so,

complement mechanisms based on direct experience, such as those proposed here.

However, it is an entirely separate topic and is outside the scope of our work.

• Multiple evaluation scales. In our proposed framework for non-monetary co-

operation we use a fixed scale of [0, 1] to represent and determine exchange values,

compatible with our evaluation method. However, agents may evaluate services

and determine their exchange values according to different scales. If so, then they

need to agree upon a common scale to use in the interaction, so that they make

sense of the valorisations they receive from others. This would require that ser-

vice evaluations (both objective and subjective) used to determine exchange values

must be mapped to some common scale, with a means to reach agreements over

which scale to use, possibly through negotiation and argumentation techniques.

Independent of the solution, alternative scales must not interfere in the perception

that an agent has of a service. For example, if an agent receives a service s1 and

the evaluation of this service on a scale of [0, 1] indicates that s1 is a poor quality

service, the evaluation of s1 on a scale of [0, 10] should also indicate that the service

has poor quality.

• Cooperation among a group of agents. The functionalities of our proposed

framework for non-monetary interactions based on exchange values apply to pairs

of agents rather than groups of more than two. Indeed, in our model, these values

are not transferable from one agent to another. This means that, if agent A has

a debt with agent B and agent B has a debt with agent C, agent B could not ask

agent A to pay its debt by performing a service for agent C. Yet, in principle,

such transferable credits and debts might be useful when agents work in a team

Chapter 10 Conclusions 174

or form a coalition to take advantage of complementary skills. To account for

transferable credits and debts would require different ways of determining credits

and debts and different ways of analysing cooperations through exchange values

(since it would involve comparing exchange values acquired in interactions with

different partners).

10.4 Further Work

In addition to the limitations above, there are also several possible extensions and al-

ternative applications of our work.

1. Adjustable evaluations for dynamic systems. When agents analyse the result

of their cooperations, they should decide not only to continue a successful coop-

eration and terminate an unsuccessful one, but also to adjust their evaluations if

unsuccessful interactions result from strict application of evaluation requirements,

or if successful interactions result from relaxed evaluation standards. Although

our evaluation method allows for individual evaluation functions in this way, with

more or less strictness on service evaluations, we assume that this is pre-defined

by an agent to reflect its preference for standards of evaluation. However, in some

cases it may be useful to determine this strictness dynamically. For example, if the

quality of the services available in the system improves, and providers previously

considered to be offering average services are subsequently considered to provide

poor services in comparison to the majority of high quality services, agents might

tune their evaluation strictness to reflect this change. This would be valuable

for improving the accuracy of evaluations in a dynamic environment. Moreover,

agents may evaluate average services as being too low or too high, if they are either

too strict or to relaxed in their evaluation functions, and this can impact on future

interactions. In particular, an agent might terminate a cooperation with a partner

that actually provides good services as a result of too strict a level of evaluation.

Addressing this would require the development of a meta-evaluation mechanism to

operate on top of our proposed evaluation method, allowing agents to tune their

evaluation standards when necessary.

2. Enforcing reciprocation with normative systems. At present, when agents

do not pay their debts, they are devalorised by the creditor, decreasing their

chances of future interactions with it. Reciprocation is thus not imposed, but

results from individual agent decisions. However, it may be useful in some con-

texts to enforce the debtor’s commitment by establishing explicit norms and rules

for the reciprocation process. This would require combining our framework with a

normative system, such as (Lopez y Lopez et al , 2005). Such a system would not

Chapter 10 Conclusions 175

interfere in the process of determining exchange values, but only act on the tran-

sition from the provision to the reciprocation stage of the interaction by enforcing

the commitments resulting from credits and debts.

3. Improving cooperation in complex scenarios through negotiation. In the

current work, we do not consider any formal commitments among requester and

provider regarding expected properties of the service to be delivered. However,

more complex scenarios might demand the establishment of explicit constraints on

the provided or reciprocated service through contracts and negotiation. For exam-

ple, in a time-constrained scenario, interacting agents could establish a contract

specifying the deadline by which a creditor should receive a reciprocated service,

and additionally, the sanctions if a debtor does not meet the deadline (such as the

debt doubling in value). Negotiation could also be used after an unsuccessful coop-

eration to address a perceived imbalance in values by, for example, negotiating for

an extra service as a precondition for maintaining the cooperative relationship. In

a different context, negotiation could be used to enable agents to reach agreement

over a common scale for determining exchange values (as discussed above). Adding

a negotiation mechanism to our current architecture does not require any changes

to the framework, since exchange values and evaluations are still determined in the

same way. However, the commitments and sanctions established in contracts, and

whether they are violated, may influence credits and debts, in which case these

influences must be represented just as other subjective influences.

4. Pro-active behaviour. In a reciprocation-based cooperative environment in

which requesters need a persuasive element (such as service dependence, and cred-

its and debts) to get priority in a provider’s incoming requests, pro-active be-

haviour may be necessary if the selection mechanism does not identify any suit-

able provider. In this case, an agent could pro-actively offer services to potential

providers in order to build up cooperative relationships and improve the subse-

quent chances of interacting with these providers. This would entail an exten-

sion to our agent architecture to include a mechanism to support such pro-active

behaviour towards interactions. A mechanism of this kind would need to be ef-

ficient in identifying providers to send service offers, in order to avoid choosing

those that do not reciprocate or that reciprocate by providing low quality ser-

vices. Pro-activeness in this way would complement the functionalities of both the

provider and request selection mechanisms, in support of greater opportunities for

interaction in open cooperative systems.

Chapter 10 Conclusions 176

10.5 Concluding Remarks

Many of today’s important scientific discoveries have only become possible with the

introduction of cooperative initiatives to make data and tools, generated by organisations

and individuals for personal use, available to global communities through the Internet.

One notable example is the domain of genetic research, in which the online availability

of several databases of biological data and bioinformatics tools has contributed to the

discovery of genes and proteins connected to biological process of living organisms. In

turn, the understanding and analysis of the function of such genes and proteins is helping

to design more effective drugs for disease control (The Wellcome Trust Case Control

Consortium, 2007), and to prevent (and sometimes cure) genetic diseases (Campbell

and Heyer, 2002).

As the number and diversity of tools and data that are made available to global commu-

nities continues to grow, it becomes increasingly difficult for human users to keep track

of such resources manually, hence the need to automate user tasks (such as through in

silico experiments), so that these tools and data can be used effectively and efficiently.

The final goal here is that global cooperative communities are seen as open cooperative

systems rich in tools and data, in which tasks are performed efficiently and free of charge

to allow further discoveries and progress in the domain of expertise of such communities.

While initiatives for sharing private resources are the first step in creating such open

cooperative systems, the second step is the development of infrastructures to support

the interoperability and access of diverse data and tools (such as with service-oriented

architectures, Semantic Web and Grid technologies). The current challenge is to address

the dynamism and diversity of participants and services through the development of

computational entities that can operate effectively in such systems. In this thesis, we

have focussed on this third step towards developing open cooperative systems rich in

data and services, through development of autonomous agents capable of efficient and

effective cooperation with others in open systems with unpaid services.

Appendix A

Additional Results

In this appendix, we provide full details of the experiments in Chapter 9, including the

full set of graphs.

A.1 Experiment 1

177

Appendix A Additional Results 178

10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−SR/r−ACS
p−EB/r−ACS

(a) p-SR/r-ACS

10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−ACS/r−ACS
p−EB/r−ACS

(b) p-ACS/r-ACS

10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−DB/r−ACS
p−EB/r−ACS

(c) p-DB/r-ACS

10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−CC/r−ACS
p−EB/r−ACS

(d) p-CC/r-ACS

Figure A.1: Comparing provider selection strategies when using the r-ACS requester
selection strategy.

Appendix A Additional Results 179

10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−SR/r−CCP
p−EB/r−CCP

(a) p-SR/r-CCP

10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−ACS/r−CCP
p−EB/r−CCP

(b) p-ACS/r-CCP

10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−DB/r−CCP
p−EB/r−CCP

(c) p-DB/r-CCP

10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−CC/r−CCP
p−EB/r−CCP

(d) p-CC/r-CCP

Figure A.2: Comparing provider selection strategies when using the r-CCP requester
selection strategy.

Appendix A Additional Results 180

10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−SR/r−CCG
p−EB/r−CCG

(a) p-SR/r-CCG

10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−ACS/r−CCG
p−EB/r−CCG

(b) p-ACS/r-CCG

10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−DB/r−CCG
p−EB/r−CCG

(c) p-DB/r-CCG

10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

100

Number of Agents

T
ot

al
 In

te
ra

ct
io

ns

p−CC/r−CCG
p−EB/r−CCG

(d) p-CC/r-CCG

Figure A.3: Comparing provider selection strategies when using the r-CCG requester
selection strategy.

Appendix A Additional Results 181

A.2 Experiment 2

1 1.5 2 2.5 3 3.5 4
40

50

60

70

80

90

100

Providers Capacity

T
ot

al
 In

te
ra

ct
io

ns

p−SR/r−ACS
p−EB/r−ACS

(a) p-SR/r-ACS

1 1.5 2 2.5 3 3.5 4
40

50

60

70

80

90

100

Providers Capacity

T
ot

al
 In

te
ra

ct
io

ns

p−ACS/r−ACS
p−EB/r−ACS

(b) p-ACS/r-ACS

1 1.5 2 2.5 3 3.5 4
40

50

60

70

80

90

100

Providers Capacity

T
ot

al
 In

te
ra

ct
io

ns

p−DB/r−ACS
p−EB/r−ACS

(c) p-DB/r-ACS

1 1.5 2 2.5 3 3.5 4
40

50

60

70

80

90

100

Providers Capacity

T
ot

al
 In

te
ra

ct
io

ns

p−CC/r−ACS
p−EB/r−ACS

(d) p-CC/r-ACS

Figure A.4: Total interactions for provider selection strategies using the r-ACS re-
quester selection strategy when varying the providers capacity.

Appendix A Additional Results 182

1 1.5 2 2.5 3 3.5 4
40

50

60

70

80

90

100

Providers Capacity

T
ot

al
 In

te
ra

ct
io

ns

p−SR/r−CCP
p−EB/r−CCP

(a) p-SR/r-CCP

1 1.5 2 2.5 3 3.5 4
40

50

60

70

80

90

100

Providers Capacity

T
ot

al
 In

te
ra

ct
io

ns

p−ACS/r−CCP
p−EB/r−CCP

(b) p-ACS/r-CCP

1 1.5 2 2.5 3 3.5 4
40

50

60

70

80

90

100

Providers Capacity

T
ot

al
 In

te
ra

ct
io

ns

p−DB/r−CCP
p−EB/r−CCP

(c) p-DB/r-CCP

1 1.5 2 2.5 3 3.5 4
40

50

60

70

80

90

100

Providers Capacity

T
ot

al
 In

te
ra

ct
io

ns

p−CC/r−CCP
p−EB/r−CCP

(d) p-CC/r-CCP

Figure A.5: Total interactions for provider selection strategies using the r-CCP re-
quester selection strategy when varying the providers capacity.

Appendix A Additional Results 183

1 1.5 2 2.5 3 3.5 4
40

50

60

70

80

90

100

Providers Capacity

T
ot

al
 In

te
ra

ct
io

ns

p−SR/r−CCG
p−EB/r−CCG

(a) p-SR/r-CCG

1 1.5 2 2.5 3 3.5 4
40

50

60

70

80

90

100

Providers Capacity

T
ot

al
 In

te
ra

ct
io

ns

p−ACS/r−CCG
p−EB/r−CCG

(b) p-ACS/r-CCG

1 1.5 2 2.5 3 3.5 4
40

50

60

70

80

90

100

Providers Capacity

T
ot

al
 In

te
ra

ct
io

ns

p−DB/r−CCG
p−EB/r−CCG

(c) p-DB/r-CCG

1 1.5 2 2.5 3 3.5 4
40

50

60

70

80

90

100

Providers Capacity

T
ot

al
 In

te
ra

ct
io

ns

p−CC/r−CCG
p−EB/r−CCG

(d) p-CC/r-CCG

Figure A.6: Total interactions for provider selection strategies using the r-CCG re-
quester selection strategy when varying the providers capacity.

Appendix A Additional Results 184

A.3 Experiment 3

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−SR/r−DB
p−RD/r−DB

(a) p-SR/r-DB

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−ACS/r−DB
p−RD/r−DB

(b) p-ACS/r-DB

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−EB/r−DB
p−RD/r−DB

(c) p-EB/r-DB

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−DB/r−DB
p−RD/r−DB

(d) p-DB/r-DB

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−CC/r−DB
p−RD/r−DB

(e) p-CC/r-DB

Figure A.7: Average satisfaction for all provider selection strategies against the base-
line with r-DB requester selection strategy.

Appendix A Additional Results 185

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−SR/r−ACS
p−RD/r−ACS

(a) p-SR/r-ACS

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−ACS/r−ACS
p−RD/r−ACS

(b) p-ACS/r-ACS

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−EB/r−ACS
p−RD/r−ACS

(c) p-EB/r-ACS

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−DB/r−ACS
p−RD/r−ACS

(d) p-DB/r-ACS

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−CC/r−SR
p−RD/r−SR

(e) p-CC/r-ACS

Figure A.8: Average satisfaction for all provider selection strategies against the base-
line with r-ACS requester selection strategy.

Appendix A Additional Results 186

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−SR/r−CCP
p−RD/r−CCP

(a) p-SR/r-CCP

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−ACS/r−CCP
p−RD/r−CCP

(b) p-ACS/r-CCP

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−EB/r−CCP
p−RD/r−CCP

(c) p-EB/r-CCP

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−DB/r−CCP
p−RD/r−CCP

(d) p-DB/r-CCP

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−CC/r−CCP
p−RD/r−CCP

(e) p-CC/r-CCP

Figure A.9: Average satisfaction for all provider selection strategies against the base-
line with r-CCP requester selection strategy.

Appendix A Additional Results 187

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−SR/r−CCG
p−RD/r−CCG

(a) p-SR/r-CCG

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−ACS/r−CCG
p−RD/r−CCG

(b) p-ACS/r-CCG

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−EB/r−CCG
p−RD/r−CCG

(c) p-EB/r-CCG

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−DB/r−CCG
p−RD/r−CCG

(d) p-DB/r-CCG

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Low Skilled Providers (%)

A
ve

ra
ge

 S
at

is
fa

ct
io

n

p−CC/r−CCG
p−RD/r−CCG

(e) p-CC/r-CCG

Figure A.10: Average satisfaction for all provider selection strategies against the
baseline with r-CCG requester selection strategy.

Appendix B

Significance Results

This appendix provides the statistical significance data for experimental results in Chap-

ter 9. To that end, here we present tables with p-values for the t statistics used to test

the difference between means from pairs of strategies.

B.1 Experiment 1

Figure Strategies Observations

6 10 20 30 40 50 60 70 80 90 100

9.4(a) p-SR/r-SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9.4(b) p-ACS/r-SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.33
9.4(c) p-DB/r-SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9.4(d) p-CC/r-SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02

9.5(a) p-SR/r-DB 0.00 0.00 0.28 0.00 0.01 0.00 0.00 0.21 0.00 0.00 0.07
9.5(b) p-ACS/r-DB 0.01 0.07 0.00 0.12 0.41 0.74 0.92 0.68 0.12 0.21 0.67
9.5(c) p-DB/r-DB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9.5(d) p-CC/r-DB 0.25 0.14 0.07 0.00 0.00 0.00 0.00 0.00 0.01 0.07 0.02

A.1(a) p-SR/r-ACS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A.1(b) p-ACS/r-ACS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.34
A.1(c) p-DB/r-ACS 0.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07
A.1(d) p-CC/r-ACS 0.03 0.00 0.00 0.00 0.01 0.00 0.00 0.20 0.18 0.30 0.03

A.2(a) p-SR/r-CCP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A.2(b) p-ACS/r-CCP 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.34 0.12 0.50 0.10
A.2(c) p-DB/r-CCP 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A.2(d) p-CC/r-CCP 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.14 0.00 0.00 0.00

A.3(a) p-SR/r-CCG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A.3(b) p-ACS/r-CCG 0.00 0.00 0.00 0.00 0.05 0.00 0.47 0.00 0.00 0.05 0.79
A.3(c) p-DB/r-CCG 0.20 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A.3(d) p-CC/r-CCG 0.30 0.00 0.00 0.00 0.03 0.00 0.01 0.00 0.15 0.07 0.17

Table B.1: Significance levels for Experiment 1. Strategies are compared against
p-EB.

188

Appendix B Significance Results 189

Figure Strategies Observations

0 10 20 30 40 50 60 70 80 90 100

9.6(a) p-DB/r-SR
p-ACS/r-SR

0.00 0.46 0.05 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-DB/r-SR
p-CC/r-SR

0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00

p-DB/r-SR
p-SR/r-SR

0.09 0.40 0.11 0.75 0.01 0.00 0.00 0.12 0.00 0.00 0.01

p-SR/r-SR
p-ACS/r-SR

0.20 0.15 0.00 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-SR/r-SR
p-CC/r-SR

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00

p-ACS/r-SR
p-CC/r-SR

0.00 0.00 0.28 0.00 0.09 0.74 0.57 0.46 0.00 0.34 0.27

9.6(b) p-DB/r-ACS
p-ACS/r-ACS

0.00 0.00 0.02 0.01 0.64 0.05 0.00 0.00 0.00 0.00 0.10

p-DB/r-ACS
p-CC/r-ACS

0.00 0.07 0.03 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.25

p-DB/r-ACS
p-SR/r-ACS

0.00 0.00 0.00 0.00 0.00 0.00 0.37 0.07 0.18 0.82 0.00

p-SR/r-ACS
p-ACS/r-ACS

0.02 0.77 0.02 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-SR/r-ACS
p-CC/r-ACS

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-ACS/r-ACS
p-CC/r-ACS

0.00 0.00 0.00 0.00 0.00 0.23 0.61 0.95 0.61 0.79 0.64

9.6(c) p-DB/r-DB
p-ACS/r-DB

0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-DB/r-DB
p-CC/r-DB

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-DB/r-DB
p-SR/r-DB

0.12 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-SR/r-DB
p-ACS/r-DB

0.52 0.28 0.03 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-SR/r-DB
p-CC/r-DB

0.00 0.00 0.00 0.07 0.11 0.82 0.25 0.74 0.00 0.37 0.10

p-ACS/r-DB
p-CC/r-DB

0.00 0.00 0.10 0.49 0.17 0.01 0.10 0.07 0.00 0.00 0.14

Table B.2: Significance levels for Experiment 1. Comparing reciprocation-based
provider selection strategies.

Appendix B Significance Results 190

Figure Strategies Observations

0 10 20 30 40 50 60 70 80 90 100

9.6(d) p-DB/r-CCP
p-ACS/r-CCP

0.00 0.00 0.00 0.10 0.18 0.01 0.00 0.00 0.00 0.00 0.00

p-DB/r-CCP
p-CC/r-CCP

0.99 0.63 0.82 0.21 0.00 0.20 0.00 0.00 0.00 0.00 0.00

p-DB/r-CCP
p-SR/r-CCP

0.00 0.00 0.00 0.00 0.68 0.07 0.21 0.51 0.77 0.38 0.01

p-SR/r-CCP
p-ACS/r-CCP

0.61 0.79 0.75 0.18 0.05 0.00 0.00 0.00 0.00 0.00 0.00

p-SR/r-CCP
p-CC/r-CCP

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-ACS/r-CCP
p-CC/r-CCP

0.00 0.00 0.00 0.00 0.15 0.28 0.92 0.40 0.28 0.40 0.87

9.6(e) p-DB/r-CCG
p-ACS/r-CCG

0.00 0.00 0.34 0.81 0.00 0.07 0.00 0.00 0.00 0.00 0.00

p-DB/r-CCG
p-CC/r-CCG

0.28 0.01 0.01 0.02 0.00 0.36 0.00 0.00 0.00 0.00 0.00

p-DB/r-CCG
p-SR/r-CCG

0.00 0.00 0.00 0.20 0.54 0.23 0.81 0.02 0.50 0.09 0.30

p-SR/r-CCG
p-ACS/r-CCG

0.14 0.56 0.05 0.11 0.00 0.00 0.00 0.02 0.01 0.00 0.00

p-SR/r-CCG
p-CC/r-CCG

0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.02 0.00 0.00 0.11

p-ACS/r-CCG
p-CC/r-CCG

0.00 0.00 0.00 0.03 0.15 0.37 0.23 0.51 0.61 0.72 0.15

Table B.3: Significance levels for Experiment 1. Comparing reciprocation-based
provider selection strategies.

Figure Strategies Observations

0 10 20 30 40 50 60 70 80 90 100

9.7(a) r-DB, r-SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
r-DB, r-CCP 0.00 0.00 0.09 0.15 0.00 0.36 0.05 0.62 0.00 0.31 0.05
r-DB, r-CCG 0.00 0.00 0.05 0.00 0.03 0.07 0.10 0.47 0.00 0.46 0.03
r-DB, r-ACS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00
r-CCP, r-SR 0.00 0.62 0.15 0.07 0.85 0.00 0.14 0.10 0.02 0.00 0.47
r-CCP, r-ACS 0.52 0.00 0.00 0.00 0.00 0.00 0.01 0.14 0.05 0.00 0.14
r-SR, r-ACS 0.00 0.00 0.02 0.00 0.00 0.40 0.25 0.86 0.70 0.74 0.38

Table B.4: Significance levels for Experiment 1. Comparing requester selection strate-
gies for p-SR.

Figure Strategies Observations

0 10 20 30 40 50 60 70 80 90 100

9.7(b) r-DB, r-SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.47 0.03
r-DB, r-CCP 0.00 0.00 0.60 0.15 0.18 0.02 0.00 0.00 0.69 0.91 0.93
r-DB, r-CCG 0.00 0.00 0.01 0.01 0.00 0.05 0.28 0.97 0.12 0.77 0.20
r-DB, r-ACS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.03 0.01
r-CCP, r-SR 0.00 0.20 0.00 0.20 0.00 0.01 0.30 0.72 0.01 0.44 0.01
r-CCP, r-ACS 0.05 0.00 0.00 0.00 0.00 0.00 0.14 0.15 0.01 0.05 0.00
r-SR, r-ACS 0.00 0.01 0.31 0.00 0.27 0.14 0.62 0.05 0.91 0.15 0.68

Table B.5: Significance levels for Experiment 1. Comparing requester selection strate-
gies for p-ACS.

Appendix B Significance Results 191

Figure Strategies Observations

0 10 20 30 40 50 60 70 80 90 100

9.7(c) r-DB, r-SR 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.00 0.10 0.20
r-DB, r-CCP 0.00 0.00 0.00 0.00 0.01 0.01 0.05 0.01 0.10 0.98 0.74
r-DB, r-CCG 0.00 0.00 0.00 0.00 0.12 0.37 0.40 0.68 0.18 0.12 0.10
r-DB, r-ACS 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.03 0.28 0.10
r-CCP, r-SR 0.00 0.10 0.20 0.83 0.33 0.86 0.95 0.91 0.41 0.05 0.28
r-CCP, r-ACS 0.85 0.00 0.01 0.10 0.10 0.57 0.40 0.94 0.80 0.21 0.14
r-SR, r-ACS 0.00 0.00 0.00 0.10 0.40 0.68 0.40 0.94 0.50 0.61 0.62

Table B.6: Significance levels for Experiment 1. Comparing requester selection strate-
gies for p-EB.

Figure Strategies Observations

0 10 20 30 40 50 60 70 80 90 100

9.7(d) r-DB, r-SR 0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
r-DB, r-CCP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
r-DB, r-CCG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
r-DB, r-ACS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
r-CCP, r-SR 0.00 0.00 0.07 0.25 0.07 0.12 0.98 0.62 0.93 0.77 0.50
r-CCP, r-ACS 0.76 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00
r-SR, r-ACS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table B.7: Significance levels for Experiment 1. Comparing requester selection strate-
gies for p-DB.

Figure Strategies Observations

0 10 20 30 40 50 60 70 80 90 100

9.7(e) r-DB, r-SR 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
r-DB, r-CCP 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.05 0.02 0.11
r-DB, r-CCG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.01 0.20
r-DB, r-ACS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
r-CCP, r-SR 0.00 0.28 0.56 0.07 0.63 0.00 0.86 0.93 0.18 0.56 0.47
r-CCP, r-ACS 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.05 0.00 0.00 0.11
r-SR, r-ACS 0.00 0.00 0.00 0.12 0.00 0.01 0.15 0.02 0.09 0.07 0.34

Table B.8: Significance levels for Experiment 1. Comparing requester selection strate-
gies for p-CC.

Appendix B Significance Results 192

B.2 Experiment 2

Figure Strategies Observations

1 2 3 4

9.8(a) p-SR/r-SR 0.00 0.00 0.00 0.00
9.8(b) p-ACS/r-SR 0.00 0.00 0.01 0.00
9.8(c) p-DB/r-SR 0.00 0.00 0.00 0.00
9.8(d) p-CC/r-SR 0.00 0.00 0.00 0.25

9.9(a) p-SR/r-DB 0.00 0.00 0.00 0.00
9.9(b) p-ACS/r-DB 0.44 0.63 0.17 0.31
9.9(c) p-DB/r-DB 0.00 0.00 0.00 0.00
9.9(d) p-CC/r-DB 0.00 0.00 0.00 0.20

A.4(a) p-SR/r-ACS 0.00 0.00 0.00 0.00
A.4(b) p-ACS/r-ACS 0.00 0.00 0.00 0.00
A.4(c) p-DB/r-ACS 0.00 0.00 0.00 0.91
A.4(d) p-CC/r-ACS 0.00 0.00 0.00 0.00

A.5(a) p-SR/r-CCP 0.00 0.00 0.00 0.00
A.5(b) p-ACS/r-CCP 0.00 0.10 0.00 0.00
A.5(c) p-DB/r-CCP 0.00 0.00 0.12 0.07
A.5(d) p-CC/r-CCP 0.00 0.00 0.31 0.00

A.6(a) p-SR/r-CCG 0.00 0.00 0.00 0.02
A.6(b) p-ACS/r-CCG 0.00 0.00 0.01 0.00
A.6(c) p-DB/r-CCG 0.00 0.00 0.00 0.11
A.6(d) p-CC/r-CCG 0.00 0.00 0.01 0.00

Table B.9: Significance levels for Experiment 2. Strategies are compared against
p-EB.

Figure Strategies Observations

1 2 3 4

9.10(a) r-DB, r-SR 0.01 0.00 0.00 0.02
r-DB, r-CCP 0.00 0.92 0.40 0.00
r-DB, r-CCG 0.00 0.11 0.46 0.00
r-DB, r-ACS 0.00 0.00 0.00 0.00
r-CCP, r-SR 0.00 0.00 0.00 0.00
r-CCP, r-ACS 0.00 0.00 0.00 0.00
r-SR, r-ACS 0.30 0.01 0.12 0.00

Table B.10: Significance levels for Experiment 2. Comparing requester selection
strategies for p-SR.

Figure Strategies Observations

1 2 3 4

9.10(b) r-DB, r-SR 0.00 0.00 0.00 0.85
r-DB, r-CCP 0.00 0.12 0.00 0.00
r-DB, r-CCG 0.00 0.00 0.00 0.34
r-DB, r-ACS 0.28 0.15 0.18 0.15
r-CCP, r-SR 0.00 0.00 0.00 0.00
r-CCP, r-ACS 0.00 0.01 0.00 0.10
r-SR, r-ACS 0.00 0.41 0.05 0.18

Table B.11: Significance levels for Experiment 2. Comparing requester selection
strategies for p-ACS.

Appendix B Significance Results 193

Figure Strategies Observations

1 2 3 4

9.10(c) r-DB, r-SR 0.00 0.00 0.00 0.00
r-DB, r-CCP 0.00 0.00 0.03 0.00
r-DB, r-CCG 0.58 0.00 0.60 0.02
r-DB, r-ACS 0.00 0.00 0.00 0.00
r-CCP, r-SR 0.00 0.00 0.69 0.05
r-CCP, r-ACS 0.00 0.00 0.14 0.18
r-SR, r-ACS 0.43 0.00 0.20 0.37

Table B.12: Significance levels for Experiment 2. Comparing requester selection
strategies for p-EB.

Figure Strategies Observations

1 2 3 4

9.10(d) r-DB, r-SR 0.00 0.00 0.00 0.00
r-DB, r-CCP 0.07 0.00 0.00 0.00
r-DB, r-CCG 0.93 0.00 0.00 0.00
r-DB, r-ACS 0.00 0.00 0.00 0.00
r-CCP, r-SR 0.02 0.00 0.00 0.00
r-CCP, r-ACS 0.00 0.00 0.15 0.00
r-SR, r-ACS 0.00 0.00 0.00 0.00

Table B.13: Significance levels for Experiment 2. Comparing requester selection
strategies for p-DB.

Figure Strategies Observations

1 2 3 4

9.10(e) r-DB, r-SR 0.00 0.23 0.00 0.00
r-DB, r-CCP 0.18 0.03 0.00 0.00
r-DB, r-CCG 0.80 0.87 0.00 0.00
r-DB, r-ACS 0.00 0.07 0.00 0.00
r-CCP, r-SR 0.00 0.00 0.67 0.03
r-CCP, r-ACS 0.00 0.00 0.20 1.00
r-SR, r-ACS 0.23 0.70 0.31 0.01

Table B.14: Significance levels for Experiment 2. Comparing requester selection
strategies for p-CC.

Appendix B Significance Results 194

B.3 Experiment 3

Figure Strategies Observations

0 10 20 30 40 50 60 70 80 90 100

9.11(a) p-SR/r-SR 0.94 0.43 0.76 0.97 0.75 0.62 0.77 0.76 0.95 0.62 0.69
9.11(b) p-ACS/r-SR 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9.11(d) p-DB/r-SR 0.93 0.23 0.33 0.54 0.87 0.28 0.75 0.40 0.15 0.07 0.38
9.11(e) p-CC/r-SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9.11(c) p-EB/r-SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A.7(a) p-SR/r-DB 0.10 0.44 0.80 0.72 0.02 0.52 0.69 0.89 0.87 0.85 0.54
A.7(b) p-ACS/r-DB 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A.7(d) p-DB/r-DB 0.43 0.74 0.93 0.86 0.92 0.69 0.98 0.30 0.93 0.18 0.34
A.7(e) p-CC/r-DB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A.7(c) p-EB/r-DB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A.8(a) p-SR/r-ACS 0.81 0.56 0.68 0.31 0.09 0.25 0.74 0.76 0.99 0.77 0.34
A.8(b) p-ACS/r-ACS 0.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A.8(d) p-DB/r-ACS 0.31 0.93 0.14 0.28 0.02 0.18 0.43 0.20 0.14 0.80 0.86
A.8(e) p-CC/r-ACS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A.8(c) p-EB/r-ACS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A.9(a) p-SR/r-CCP 0.69 0.99 0.15 0.18 0.15 0.23 0.00 0.30 0.14 0.67 0.51
A.9(b) p-ACS/r-CCP 0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A.9(d) p-DB/r-CCP 0.25 0.87 0.56 0.02 0.28 0.81 0.63 0.17 0.64 0.40 0.18
A.9(e) p-CC/r-CCP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A.9(c) p-EB/r-CCP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A.10(a) p-SR/r-CCG 0.88 0.46 0.40 0.05 0.18 0.18 0.28 0.23 0.56 0.89 0.10
A.10(b) p-ACS/r-CCG 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A.10(d) p-DB/r-CCG 0.50 0.94 0.79 0.72 0.68 0.55 0.20 0.18 0.27 0.68 0.07
A.10(e) p-CC/r-CCG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A.10(c) p-EB/r-CCG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table B.15: Significance levels for Experiment 3. Strategies are compared against
p-RD in terms of average satisfaction.

Figure Strategies Observations

0 10 20 30 40 50 60 70 80 90 100

9.12(a) p-ACS/r-SR
p-CC/r-SR

0.00 0.00 0.11 0.01 0.18 0.36 0.00 0.01 0.47 0.40 0.00

p-ACS/r-SR
p-EB/r-SR

0.00 0.00 0.00 0.11 0.01 0.75 0.95 0.20 0.12 0.30 0.03

p-ACS/r-SR
p-SR/r-SR

0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-ACS/r-SR
p-DB/r-SR

0.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

p-CC/r-SR
p-EB/r-SR

0.66 0.10 0.23 0.94 0.40 0.66 0.05 0.40 0.46 0.88 0.68

p-CC/r-SR
p-SR/r-SR

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-CC/r-SR
p-DB/r-SR

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-EB/r-SR
p-SR/r-SR

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-EB/r-SR
p-DB/r-SR

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-SR/r-SR
p-DB/r-SR

0.83 0.70 0.75 0.31 0.75 0.67 0.25 0.50 0.60 0.01 0.09

Table B.16: Significance levels for Experiment 3. Comparing provider selection strate-
gies for r-SR in terms of average satisfaction.

Appendix B Significance Results 195

Figure Strategies Observations

0 10 20 30 40 50 60 70 80 90 100

9.12(b) p-ACS/r-ACS
p-CC/r-ACS

0.00 0.07 0.00 0.92 0.93 0.03 0.25 0.50 0.18 0.62 0.00

p-ACS/r-ACS
p-EB/r-ACS

0.00 0.00 0.00 0.18 0.01 0.77 0.00 0.00 0.89 0.25 0.00

p-ACS/r-ACS
p-SR/r-ACS

0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-ACS/r-ACS
p-DB/r-ACS

0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-CC/r-ACS
p-EB/r-ACS

0.97 0.38 0.97 0.34 0.05 0.21 0.12 0.14 0.36 0.17 0.46

p-CC/r-ACS
p-SR/r-ACS

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-CC/r-ACS
p-DB/r-ACS

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-EB/r-ACS
p-SR/r-ACS

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-EB/r-ACS
p-DB/r-ACS

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-SR/r-ACS
p-DB/r-ACS

0.07 0.61 0.68 0.54 0.05 0.34 0.61 0.07 0.09 0.27 0.07

Table B.17: Significance levels for Experiment 3. Comparing provider selection strate-
gies for r-ACS in terms of average satisfaction.

Figure Strategies Observations

0 10 20 30 40 50 60 70 80 90 100

9.12(c) p-ACS/r-DB
p-CC/r-DB

0.00 0.00 0.05 0.99 0.75 0.20 0.54 0.81 0.36 0.68 0.00

p-ACS/r-DB
p-EB/r-DB

0.00 0.00 0.05 0.50 0.93 0.50 0.10 0.07 0.23 0.23 0.37

p-ACS/r-DB
p-SR/r-DB

0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-ACS/r-DB
p-DB/r-DB

0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-CC/r-DB
p-EB/r-DB

0.75 0.37 0.76 0.62 0.86 0.14 0.10 0.07 0.73 0.49 0.17

p-CC/r-DB
p-SR/r-DB

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-CC/r-DB
p-DB/r-DB

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-EB/r-DB
p-SR/r-DB

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-EB/r-DB
p-DB/r-DB

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-SR/r-DB
p-DB/r-DB

0.00 0.76 0.66 0.98 0.41 0.76 0.44 0.68 0.87 0.05 0.50

Table B.18: Significance levels for Experiment 3. Comparing provider selection strate-
gies for p-DB in terms of average satisfaction.

Appendix B Significance Results 196

Figure Strategies Observations

0 10 20 30 40 50 60 70 80 90 100

9.12(d) p-ACS/r-CCP
p-CC/r-CCP

0.00 0.00 0.00 0.00 0.38 0.62 0.64 0.30 0.07 0.57 0.00

p-ACS/r-CCP
p-EB/r-CCP

0.00 0.00 0.15 0.40 0.68 0.43 0.20 0.72 0.34 0.56 0.33

p-ACS/r-CCP
p-SR/r-CCP

0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-ACS/r-CCP
p-DB/r-CCP

0.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-CC/r-CCP
p-EB/r-CCP

0.20 0.93 0.36 0.21 0.38 0.75 0.14 0.27 0.02 0.31 0.00

p-CC/r-CCP
p-SR/r-CCP

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-CC/r-CCP
p-DB/r-CCP

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-EB/r-CCP
p-SR/r-CCP

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-EB/r-CCP
p-DB/r-CCP

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-SR/r-CCP
p-DB/r-CCP

0.38 0.94 0.56 0.10 0.93 0.88 1.00 0.18 0.93 0.43 0.31

Table B.19: Significance levels for Experiment 3. Comparing provider selection strate-
gies for r-CCP in terms of average satisfaction.

Figure Strategies Observations

0 10 20 30 40 50 60 70 80 90 100

9.12(e) p-ACS/r-CCG
p-CC/r-CCG

0.00 0.00 0.43 0.91 0.54 0.15 0.40 0.34 0.05 0.20 0.15

p-ACS/r-CCG
p-EB/r-CCG

0.00 0.00 0.33 0.33 0.56 0.21 0.79 0.61 0.92 0.33 0.66

p-ACS/r-CCG
p-SR/r-CCG

0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-ACS/r-CCG
p-DB/r-CCG

0.20 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-CC/r-CCG
p-EB/r-CCG

0.07 0.66 0.88 0.38 0.95 0.05 0.38 0.27 0.17 0.05 0.50

p-CC/r-CCG
p-SR/r-CCG

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-CC/r-CCG
p-DB/r-CCG

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-EB/r-CCG
p-SR/r-CCG

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-EB/r-CCG
p-DB/r-CCG

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-SR/r-CCG
p-DB/r-CCG

0.00 0.93 0.57 0.37 0.11 0.70 0.89 0.58 0.28 0.74 0.87

Table B.20: Significance levels for Experiment 3. Comparing provider selection strate-
gies for r-CCG in terms of average satisfaction.

Appendix B Significance Results 197

Figure Strategies Observations

0 10 20 30 40 50 60 70 80 90 100

9.13(a) r-CCP, r-SR 0.40 0.58 0.20 0.85 0.23 0.15 0.37 0.92 0.40 0.62 0.43
r-CCP, r-DB 0.00 0.12 0.07 0.43 0.86 0.12 0.10 0.89 0.10 0.52 0.74
r-CCP, r-ACS 0.87 0.46 0.05 0.56 0.58 0.40 0.23 0.80 0.12 0.50 0.37
r-CCP, r-CCG 0.00 0.49 0.12 0.49 0.81 0.89 0.60 0.33 0.68 0.28 0.25
r-ACS, r-SR 0.50 0.88 0.62 0.50 0.46 0.50 0.80 0.73 0.54 0.89 0.05
r-ACS, r-DB 0.00 0.02 0.85 0.23 0.46 0.44 0.57 0.72 0.86 0.18 0.56
r-ACS, r-CCG 0.01 0.91 0.81 0.93 0.44 0.49 0.61 0.50 0.25 0.64 0.77
r-DB, r-SR 0.05 0.05 0.56 0.60 0.15 0.91 0.43 0.98 0.44 0.28 0.20

Table B.21: Significance levels for Experiment 3. Comparing requester selection
strategies for p-SR in terms of average satisfaction.

Figure Strategies Observations

0 10 20 30 40 50 60 70 80 90 100

9.13(b) r-CCP, r-SR 0.64 0.49 0.05 0.02 0.00 0.00 0.10 0.12 0.33 0.03 0.00
r-CCP, r-DB 0.81 0.02 0.73 0.97 0.11 0.37 0.09 0.67 0.98 0.86 0.49
r-CCP, r-ACS 0.94 0.34 0.46 0.82 0.57 0.31 0.91 0.41 0.18 0.34 0.11
r-CCP, r-CCG 0.69 0.21 0.30 0.66 0.34 0.81 0.64 0.80 0.58 0.56 0.40
r-ACS, r-SR 0.57 0.85 0.23 0.05 0.03 0.01 0.10 0.40 0.68 0.20 0.15
r-ACS, r-DB 0.75 0.20 0.25 0.87 0.41 0.97 0.10 0.75 0.14 0.37 0.40
r-ACS, r-CCG 0.63 0.75 0.05 0.82 0.82 0.17 0.56 0.52 0.03 0.75 0.00
r-DB, r-SR 0.82 0.17 0.01 0.05 0.20 0.03 0.92 0.30 0.27 0.03 0.02

Table B.22: Significance levels for Experiment 3. Comparing requester selection
strategies for p-ACS in terms of average satisfaction.

Figure Strategies Observations

0 10 20 30 40 50 60 70 80 90 100

9.13(c) r-CCP, r-SR 0.57 1.00 0.91 0.91 0.43 0.54 0.80 0.15 0.54 0.86 0.31
r-CCP, r-DB 0.61 0.50 0.46 0.87 0.74 0.47 0.15 0.15 0.99 0.58 0.56
r-CCP, r-ACS 0.34 0.10 0.46 0.74 0.09 0.99 0.17 0.05 0.83 0.33 0.74
r-CCP, r-CCG 0.60 0.56 0.87 0.86 0.68 0.73 0.30 0.81 0.23 0.46 0.97
r-ACS, r-SR 0.69 0.10 0.51 0.68 0.31 0.54 0.10 0.58 0.31 0.37 0.15
r-ACS, r-DB 0.66 0.02 0.95 0.62 0.05 0.46 0.00 0.62 0.80 0.70 0.31
r-ACS, r-CCG 0.11 0.33 0.56 0.92 0.18 0.73 0.00 0.10 0.23 0.83 0.76
r-DB, r-SR 0.94 0.50 0.52 0.98 0.27 0.18 0.25 0.98 0.50 0.67 0.64

Table B.23: Significance levels for Experiment 3. Comparing requester selection
strategies for p-EB in terms of average satisfaction.

Figure Strategies Observations

0 10 20 30 40 50 60 70 80 90 100

9.13(d) r-CCP, r-SR 0.76 0.58 0.97 0.01 0.62 0.49 0.18 0.09 0.89 0.18 0.97
r-CCP, r-DB 0.07 0.51 0.37 0.10 0.54 0.50 0.82 0.44 0.43 0.01 1.00
r-CCP, r-ACS 0.30 0.93 0.43 0.69 0.05 0.87 0.83 0.01 0.03 0.25 0.05
r-CCP, r-CCG 0.18 0.68 0.43 0.12 0.23 0.63 0.69 0.88 0.56 0.74 0.93
r-ACS, r-SR 0.25 0.50 0.40 0.07 0.15 0.34 0.23 0.43 0.02 0.00 0.07
r-ACS, r-DB 0.00 0.56 0.79 0.23 0.20 0.37 0.98 0.11 0.25 0.15 0.09
r-ACS, r-CCG 0.02 0.62 0.94 0.25 0.50 0.50 0.83 0.01 0.00 0.40 0.07
r-DB, r-SR 0.20 0.23 0.34 0.62 0.91 0.92 0.28 0.40 0.47 0.00 0.97

Table B.24: Significance levels for Experiment 3. Comparing requester selection
strategies for p-DB in terms of average satisfaction.

Appendix B Significance Results 198

Figure Strategies Observations

0 10 20 30 40 50 60 70 80 90 100

9.13(e) r-CCP, r-SR 0.68 0.10 0.02 0.15 0.34 0.50 0.00 0.00 0.00 0.18 0.00
r-CCP, r-DB 0.60 0.77 0.68 0.07 0.12 0.21 0.09 0.34 0.01 0.34 0.03
r-CCP, r-ACS 0.70 0.00 0.94 0.05 0.34 0.07 0.15 0.07 0.09 0.46 0.09
r-CCP, r-CCG 0.86 0.79 0.38 0.05 0.58 0.10 0.47 0.79 0.72 0.93 0.01
r-ACS, r-SR 0.99 0.31 0.05 0.50 0.99 0.25 0.07 0.07 0.14 0.52 0.09
r-ACS, r-DB 0.86 0.00 0.75 0.99 0.51 0.69 0.67 0.37 0.38 0.83 0.80
r-ACS, r-CCG 0.83 0.00 0.44 0.80 0.67 0.00 0.07 0.11 0.03 0.37 0.68
r-DB, r-SR 0.86 0.14 0.10 0.52 0.54 0.51 0.23 0.00 0.61 0.67 0.12

Table B.25: Significance levels for Experiment 3. Comparing requester selection
strategies for p-CC in terms of average satisfaction.

Appendix B Significance Results 199

B.4 Experiment 4

Figure Strategies Observations

0 10 20 30 40 50 60 70 80 90 100

9.14(a) p-ACS/r-SR 0.00 0.00 0.56 0.27 0.07 0.00 0.05 0.00 0.00 0.63 0.02
9.14(b) p-ACS/r-DB 0.00 0.00 0.00 0.92 0.66 0.28 0.70 0.28 0.72 0.18 0.37
9.14(c) p-ACS/r-ACS 0.00 0.00 0.57 0.01 0.00 0.00 0.00 0.00 0.00 0.03 0.09
9.14(d) p-ACS/r-CCP 0.00 0.00 0.82 0.38 0.02 0.00 0.00 0.00 0.00 0.05 0.44
9.14(e) p-ACS/r-CCG 0.00 0.01 0.02 0.20 0.07 0.00 0.00 0.00 0.00 0.05 0.99

Table B.26: Significance levels for Experiment 4. Strategy p-ACS is compared against
p-EB in terms of average satisfaction.

Figure Strategies Observations

0 10 20 30 40 50 60 70 80 90 100

9.15(a) p-CC/r-SR 0.69 0.28 0.11 0.15 0.86 0.09 0.07 0.38 0.28 0.70 0.07
9.15(b) p-CC/r-DB 0.54 0.50 0.62 0.14 0.99 0.07 0.44 0.75 0.05 0.07 0.50
9.15(c) p-CC/r-ACS 0.12 0.46 0.61 0.23 0.91 0.76 0.55 0.52 0.73 0.05 0.77
9.15(d) p-CC/r-CCP 0.40 0.43 0.56 0.58 0.41 0.47 0.72 0.14 0.20 0.12 0.30
9.15(e) p-CC/r-CCG 0.37 0.11 0.11 0.88 0.20 0.15 0.33 0.40 0.21 0.76 0.31

Table B.27: Significance levels for Experiment 4. Strategy p-CC is compared against
p-EB in terms of average satisfaction.

Figure Strategies Observations

0 10 20 30 40 50 60 70 80 90 100

9.16(a) r-CCP, r-SR 0.11 0.93 0.18 0.03 0.07 0.01 0.05 0.00 0.00 0.07 0.01
r-CCP, r-DB 0.92 0.27 0.10 0.79 0.07 0.00 0.64 0.00 0.01 0.00 0.31
r-CCP, r-ACS 0.05 0.50 0.82 0.62 0.01 0.15 0.46 0.09 0.09 0.75 0.77
r-CCP, r-CCG 0.37 0.10 0.64 0.66 0.47 0.34 0.91 0.58 0.93 0.55 0.31
r-CCG, r-SR 0.01 0.09 0.07 0.02 0.30 0.00 0.05 0.00 0.00 0.31 0.00
r-CCG, r-DB 0.44 0.01 0.05 0.87 0.23 0.00 0.75 0.02 0.02 0.05 0.03
r-CCG, r-ACS 0.00 0.01 0.49 0.40 0.09 0.00 0.60 0.25 0.11 0.75 0.18
r-ACS, r-SR 0.97 0.43 0.23 0.10 0.40 0.37 0.00 0.05 0.52 0.12 0.03
r-ACS, r-DB 0.05 0.54 0.15 0.49 0.66 0.18 0.88 0.23 0.49 0.01 0.43
r-DB, r-SR 0.10 0.23 0.62 0.03 0.75 0.56 0.03 0.62 0.87 0.28 0.25

Table B.28: Significance levels for Experiment 4. Comparing requester selection
strategies for p-CC in terms of average satisfaction.

Figure Strategies Observations

0 10 20 30 40 50 60 70 80 90 100

9.16(b) r-CCP, r-SR 0.34 0.00 0.17 0.40 0.73 0.00 0.00 0.00 0.01 0.25 0.00
r-CCP, r-DB 0.83 0.30 0.33 0.36 0.23 0.00 0.00 0.00 0.00 0.54 0.64
r-CCP, r-ACS 0.01 0.46 0.68 0.87 0.98 0.03 0.25 0.00 0.15 0.18 0.62
r-CCP, r-CCG 0.11 0.64 0.88 0.43 0.00 0.44 0.62 0.31 0.89 0.56 0.12
r-CCG, r-SR 0.41 0.02 0.18 0.12 0.00 0.00 0.01 0.00 0.00 0.07 0.00
r-CCG, r-DB 0.09 0.50 0.37 0.12 0.00 0.00 0.00 0.02 0.00 0.23 0.05
r-CCG, r-ACS 0.49 0.77 0.55 0.33 0.00 0.14 0.46 0.02 0.12 0.05 0.05
r-ACS, r-SR 0.09 0.05 0.07 0.44 0.70 0.10 0.10 0.34 0.27 0.79 0.02
r-ACS, r-DB 0.00 0.66 0.20 0.40 0.21 0.01 0.00 0.63 0.00 0.50 0.99
r-DB, r-SR 0.27 0.23 0.92 0.89 0.40 0.36 0.54 0.75 0.02 0.64 0.03

Table B.29: Significance levels for Experiment 4. Comparing requester selection
strategies for p-ACS in terms of average satisfaction.

Appendix B Significance Results 200

Figure Strategies Observations

0 10 20 30 40 50 60 70 80 90 100

9.16(c) r-CCP, r-SR 0.18 0.64 0.93 0.52 0.92 0.03 0.43 0.20 0.27 0.62 0.43
r-CCP, r-DB 0.56 0.76 0.01 0.93 0.12 0.18 0.93 0.64 0.61 0.92 0.91
r-CCP, r-ACS 0.10 0.50 0.46 0.23 0.94 0.05 0.09 0.05 0.25 0.28 0.68
r-CCP, r-CCG 0.46 0.62 0.09 1.00 0.14 0.27 0.38 0.93 0.98 0.70 0.51
r-CCG, r-SR 0.05 0.93 0.05 0.52 0.17 0.34 0.80 0.33 0.18 0.92 0.15
r-CCG, r-DB 0.81 0.46 0.37 0.93 0.98 0.83 0.43 0.63 0.54 0.63 0.50
r-CCG, r-ACS 0.02 0.92 0.25 0.23 0.07 0.50 0.46 0.12 0.17 0.15 0.80
r-ACS, r-SR 0.81 0.81 0.38 0.55 0.86 0.70 0.21 0.50 0.99 0.10 0.21
r-ACS, r-DB 0.02 0.34 0.05 0.20 0.07 0.67 0.10 0.03 0.58 0.34 0.62
r-DB, r-SR 0.05 0.44 0.00 0.47 0.15 0.46 0.47 0.11 0.60 0.56 0.55

Table B.30: Significance levels for Experiment 4. Comparing requester selection
strategies for p-EB in terms of average satisfaction.

Bibliography

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment

search tool. Journal of Molecular Biology, 215(3):403–410, 1990.

A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, and J. Pruyne. Web

services agreement specification. Technical report, Global Grid Forum, 2004.

G. Armano, G. Mancosu, A. Orro, and E. Vargiu. A multi-agent system for protein

secondary structure prediction. In Transactions on Computational Systems Biology

III, volume 3737 of Lecture Notes in Computer Science, pages 14–32. Springer-Verlag,

2005.

M. Balmer, N. Cetin, K. Nagel, and B. Raney. Towards truly agent-based traffic and

mobility simulations. In Proceedings of the Third International Joint Conference on

Autonomous Agents and Multiagent Systems, pages 60–67. IEEE Computer Society,

July 2004.

D. Banerjee, S. Saha, P. Dasgupta, and S. Sen. Reciprocal resource sharing in P2P

environments. In Proceedings of the Fourth International Joint Conference on Au-

tonomous Agents and Multiagent Systems, pages 853–859. ACM Press, 2005.

J. Bates. The role of emotion in believable agents. Communications of the ACM, 37(7):

122–125, 1994.

M. Beer, M. d’Inverno end N. Jennings, M. Luck, C. Preist, and M. Schroeder. Negoti-

ation in multi-agent systems. Knowledge Engineering Review, 14(3):285–289, 1999.

A. Birk. Learning to trust. In R. Falcone, M. Singh, and Yao-Hua Tan, editors, Trust

in Cyber-societies: Integrating the Human and Artificial Perspectives, volume 2246 of

Lecture Notes in Computer Science, pages 133–144. Springer-Verlag, 2001.

M. Borodovsky and J. McIninch. GeneMark: parallel gene recognition for both DNA

strands. Computers & Chemistry, 17(19):123–133, 1993.

K. Bryson, M. Luck, M. Joy, and D. T. Jones. Applying agents to bioinformatics in

geneweaver. In M. Klush and L. Kerschberg, editors, Cooperative Information Agents

IV, volume 1860 of Lecture Notes in Artificial Intelligence, pages 60–71. Springer-

Verlag, 2000.

201

BIBLIOGRAPHY 202

C. Burge and S. Karlin. Prediction of complete gene structures in human genomic DNA.

Journal of Molecular Biology, 268(1):78–94, 1997.

R. Burt. The network structure of social capital. In R. Sutton and B. Staw, editors,

Research in Organizational Behavior, volume 22, pages 345–423. Elsevier Science JAI,

2000.

A. M. Campbell and L. J. Heyer. Discovering Genomics Proteomics and Bioinformatics.

Benjamin Cummings, 2002.

F. Casati, M. Castellanos, U. Dayal, and M. Shan. Probabilistic context-sensitive and

goal-oriented service selection. In Proceedings of the Second International Conference

On Service Oriented Computing, pages 316–321. ACM Press, 2004.

C. Castelfranchi. Social Power: A point missed in multi-agent, DAI and HCI. In

Y. Demazeau and J. Müller, editors, Decentralized A.I., pages 49–62. Elsevier Science,

1990.

C. Castelfranchi. Modelling social action for AI agents. Artificial Intelligence, 103(1-2):

157–182, 1998.

C. Castelfranchi and R. Conte. Limits of economic and strategic rationality for agents

and MA systems. Robotics and Autonomous Systems, 24(3-4):127–139, 1998.

C. Castelfranchi, M. Miceli, and A. Cesta. Dependence relations among autonomous

agents. In E. Werner and Y. Demazeau, editors, Decentralized A.I 3, pages 215–227.

Elsevier Science, 1992.

J. Caverlee, L. Liu, and D. Rocco. Discovering and ranking web services with BASIL: a

personalized approach with biased focus. In Proceedings of the Second International

Conference on Service-oriented Computing, pages 153–162. ACM Press, 2004.

D. C. Chamrad, G. Koerling, J. Gobom, H. Thiele, J. Klose, H. E. Meyer, and

M. Blueggel. Interpretation of mass spectrometry data for hight-throughtput pro-

teomics. Analytical and Bioanalytical Chemistry, 376(7):1014–1022, 2003.

D. C. Chamrad, G. Korting, K. Stuhler, H. E. Meyer, J. Klose, and M. Bluggel. Eval-

uation of algorithms for protein identification from sequence databases using mass

spectrometry data. Proteomics, 4(3):619–628, 2004.

G. Chin, J. Myers, and D. Hoyt. Social networks in the virtual science laboratory.

Communications of the ACM, 45(8):87–92, 2002.

J. Cohen. Bioinformatics - An introduction for computer scientists. ACM Computing

Surveys, 36(2):122–158, 2004.

R. Conte, C. Castelfranchi, and F. Dignum. Autonomous norm acceptance. In Proceed-

ings of the Fifth International Workshop on Intelligent Agents V, Agent Theories,

Architectures, and Languages, pages 99–112. Springer-Verlag, 1998.

BIBLIOGRAPHY 203

R. Conte and R. Falcone. Norms obligations and conventions. AI Magazine, 18(4):

145–147, 1997.

R. Conte, R. Hegselmann, and P. Terna. Social simulation - A new disciplinary synthesis.

In R. Conte, R. Hegselmann, and P. Terna, editors, Simulating Social Phenomena,

volume 456 of Lectures Notes in Economics and Mathematical Systems, pages 1–20.

Springer-Verlag, 1997.

G. Coulouris, J. Dollimore, and T. Kindberg. Distributed systems : concepts and design.

Addison-Wesley, 2001.

R. Craig and R. C. Beavis. A method for reducing the time required to match protein

sequences with tandem mass spectra. Rapid communications in mass spectrometry,

17(20):2310–2316, 2003.

F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana. The next step in web

services. Communications of the ACM, 46(10):29–34, 2003.

N. David, J. S. Sichman, and H. Coelho. Agent-based simulation with coalitions in social

reasoning. In S. Moss and P. Davidson, editors, Multi-Agent-Based Simulation, volume

1979 of Lecture Notes in Artificial Intelligence, pages 245–266. Springer-Verlag, 2001.

H. Dawid, M. Reimann, and B. Bullnheimer. To innovate or not to innovate? IEEE

Transactions on Evolutionary Computation, 5(5):471–481, 2001.

J. Day and R. Deters. Selecting the best web service. In Proceedings of the 2004

Conference of the Centre for Advanced Studies on Collaborative Research, pages 293–

307. IBM Press, 2004.

D. De Roure and J. A. Hendler. E-science: The grid and the semantic web. IEEE

Intelligent Systems, 19(1):65–71, 2004.

K. Decker, S. Khan, C. Schmidt, G. Situ, R. Makkena, and D. Michaud. BioMAS:

A multi-agent system for genomic annotation. International Journal of Cooperative

Information Systems, 11(3–4):265–292, 2002.

K. Decker, X. Zheng, and C. Schmidt. A multi-agent system for automated genetic

annotation. In Proceedings of the Fifth International Conference on Autonomous

Agents, pages 433–440. ACM Press, 2001.

D. Dhyani, K. Wee, and S. S. Showmick. A survey of web metrics. ACM Computing

Surveys, 34(4):469–503, 2002.

F. Dignum. Autonomous agents with norms. Artificial Intelligence and Law, 7(1):69–79,

1999.

V. Dignum. Using agent societies to support knowledge sharing. In Proceedings of the

Workshop on Autonomy, Delegation and Control at AAMAS Conference, 2003.

BIBLIOGRAPHY 204

V. Dignum and F. Dignum. Modelling agent societies: Co-ordination frameworks and

institutions. In Progress in Artificial Intelligence Knowledge Extraction, Multi-agent

Systems, Logic Programming, and Constraint Solving, volume 2258 of Lecture Notes

in Computer Science, pages 191–204. Springer-Verlag, 2001.

V. Dignum and F. Dignum. Knowledge market: Agent-mediated knowledge sharing. In

Proceedings of the Third International/Central and Eastern European Conference on

Multi-Agent Systems, pages 168–179, 2003.

V. Dignum, J. Meyer, H. Weigand, and F. Dignum. An organizational-oriented model for

agent societies. In G. Lindemann, D. Moldt, M. Paolucci, and B. Yu, editors, Proceed-

ings of the First International Workshop on Regulated Agent-Based Social Systems:

Theories and Applications, pages 31–50, 2002.

D. Dubois and H. Prade. Fuzzy sets and systems: theory and applications. Academic

Press, 1980.

E. H. Durfee. Distributed problem solving and planning. In G. Weiss, editor, Multiagent

Systems: A Modern Approach to Distributed Artificial Intelligence, pages 121–164.

MIT Press, 1999.

N. Edwards and R. Lippert. Generating peptide candidates from amino-acid sequence

databases for protein identification via mass spectrometry. In R. Guigo and D. Gus-

field, editors, Proceedings of the Second Workshop on Algorithms in Bioinformatics,

volume 2452 of Lectures Notes in Computer Science, pages 68–81. Springer-Verlag,

2002.

W. Edwards and J. R. Newman. Multiattribute Evaluation, volume 26 of Quantitative

Applications in the Social Sciences. Sage, 1982.

A. Elfatatry and P. Layzell. Negotiating in service-oriented environments. Communica-

tions of the ACM, 47(8):103–108, 2004.

M. Ellisman, M. Brady, and et al. The emerging role of BioGrids. Communications of

the ACM, 47(11):53–62, November 2004.

D. G. Feitelson and M. Treinin. The blueprint for life? IEEE Computer, 35(7):34–40,

2002.

M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust incentive techniques for peer-to-

peer networks. In Proceedings of the Fifth ACM conference on Electronic commerce,

pages 102–111. ACM Press, 2004.

I. Foster. Service-oriented science. Science, 308(5723):814–817, 2005.

I. Foster, N. Jennings, and C. Kesselman. Brain meets brawn: Why grid and agents need

each other. In Proceedings of the Third International Joint Conference on Autonomous

Agents and Multiagent Systems, pages 8–15. IEEE Computer Society, 2004.

BIBLIOGRAPHY 205

I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable

virtual organizations. International Journal of Supercomputer Applications, 15(3):

200–222, 2001.

H. T. Gao, J. H. Hayes, and H. Cai. Integrating biological research through web services.

IEEE Computer, 38(3):26–31, 2005.

L. Y. Geer, S. P. Markey, J. A. Kowalak, L. Wagner, M. Xu, D. M. Maynard, X. Yang,

W. Shi, and S. H. Bryant. Open mass spectrometry search algorithm. Proteomics

Research, 3(5):958–964, 2004.

M. P. Georgeff. Communication and interaction in multi-agent planning. In Proceedings

of the Third National Conference on Artificial Intelligence, pages 125–129, 1983.

N. Gilbert and K. G. Troitzsch. Simulation for the Social Scientist, chapter Simulation

and Social Science, pages 15–26. Open University Press, 2005.

A. Glass and B. Grosz. Socially conscious decision-making. In Proceedings of the Fourth

International Conference on Autonomous Agents, pages 217–224. ACM Press, 2000.

R. H. Glitho, E. Olougouna, and S. Pierre. Mobile agents and their use for information

retrieval: a brief overview and an elaborate case study. IEEE Network, 16(1):34–41,

2002.

C. Goble, C. Wroe, R. Stevens, and the myGrid consortium. The mygrid project: services

architecture and demonstrator. In Proceedings of the UK e-Science All Hands Meeting,

pages 595–603, 2003.

D. Hales and S. Arteconi. SLACER: a self-organizing protocol for coordination in peer-

to-peer networks. IEEE Intelligent Systems, 21(2):29–35, 2006.

D. Hales and B. Edmonds. Applying a socially-inspired technique (tags) to improve

cooperation in P2P networks. IEEE Transactions in Systems Man and Cybernetics -

Part A: Systems and Humans, 35(3):385–395, 2005.

S. Hanash. Disease proteomics. Nature, 422(6928):226–232, 2003.

G. C. Homans. Sentiments and Activities, chapter Social Behaviour as Exchange, pages

278–293. Routledge and Kegan Paul, 1962.

G. C. Homans. Social Behaviour: Its Elementary Forms. Harcourt Brace Jovanovich,

1974.

M. N. Huhns and M. P. Singh. Service-oriented computing: Key concepts and principles.

IEEE Internet Computing, 9(1):75–81, 2005.

M. N. Huhns, M. P. Singh, M. Burstein, K. Decker, E. Durfee, T. Finin, L. Gasser,

H. Goradia, N. Jennings, K. Lakkaraju, H. Nakashima, V. Parunak, J. S. Rosenschein,

BIBLIOGRAPHY 206

A. Ruvinsky, G. Sukthankar, S. Swarup, K. Sycara, M. Tambe, T. Wagner, and

L. Zavala. Research directions for service-oriented multigent systems. IEEE Internet

Computing, 9(6):65–70, 2005.

P. C. K. Hung, H. Li, and J. Jeng. Ws-negotiation: An overview of research issues.

In Proceedings of the Thirthy Seventh Annual Hawaii International Conference on

System Sciences, pages 33–42. IEEE Computer Society, 2004.

N. R. Jennings. Coordination techniques for distributed artificial intelligence. In G. M. P.

O’Hare and N. R. Jennings, editors, Foundations of Distributed Artificial Intelligence,

pages 187–210. 1996.

N. R. Jennings, K. P. Sycara, , and M. Wooldridge. A roadmap of agent research and

development. Autonomous Agents and Multi-Agent Systems, 1(1):7–36, 1998.

E. A. Kapp, F. Sch́’utz, L. M. Connolly, and et al. An evaluation, comparison, and accu-

rate benchmarking of several publicly available ms/ms search algorithms: Sensitivity

and specificity analysis. Proteomics, 5(13):3475–3490, 2005.

K. Karasavvas, A. Burger, and R. A. Baldock. A multi-agent bioinformatics integra-

tion system with adjustable autonomy. In Proceedings of the Seventh Pacific Rim

International Conference on Artificial Intelligence, pages 492–501. Springer-Verlag,

2002.

J. Kim. Computers are from Mars, Organisms are from Venus. IEEE Computer, 35(7):

25–32, 2002.

K. Lee, J. Jeon, W. Lee, S. Jeong, and S. Park. Qos for web services: Requirements and

possible approaches. Working group note, W3C, November 2003.

M. Little. Transactions and web services. Communications of the ACM, 46(10):49–54,

2003.

R. Lopez. EBI - Bioinformatics educational resources. Available at

http://www.ebi.ac.uk/2can/home.html, November 2003.

F. Lopez y Lopez, M. Luck, and M. d’Inverno. A normative framework for agent-based

systems. Computational and Mathematical Organization Theory, 12(2-3):227–250,

2005.

P. Lord, Chris Wroe, Robert Stevens, Carole Goble, S. Miles, L. Moreau, K. Decker,

T. Payne, and J. Papay. Semantic and personalised service discovery. In Proceedings

of the UK e-Science All Hands Meeting, pages 787–794, 2003.

M. Luck and M. d’Inverno. Autonomy: A nice idea in theory. In C. Castelfranchi

and Y. Lesperance, editors, Intelligent Agents VII, volume 1986 of Lecture Notes in

Artificial Intelligence, pages 351—353. Springer-Verlag, 2001.

BIBLIOGRAPHY 207

M. Luck and M. d‘Inverno. Understanding Agent Systems. Springer-Verlag, 2001.

M. Luck, P. McBurney, O. Shehory, and S. Willmott. Agent Technology: Computing as

Interaction (A Roadmap for Agent Based Computing). AgentLink, 2005.

S. A. McIlraith, T. C. Son, and H. Zeng. Semantic web services. IEEE Intelligent

Systems, 16(2):46–53, 2001.

L. Moreau, S. Miles, C. Goble, and et al. On the use of agents in a bioinformatics grid. In

Proceedings of the Network Tools and Applications in Biology Workshop (NETTAB)

- Agents in Bioinformatics, pages 14–27, 2002.

S. Munroe, M. Luck, and M. d’Inverno. Motivation-based selection of negotiation part-

ners. In Proceedings of the Third International Joint Conference on Autonomous

Agents and Multiagent Systems, pages 1520–1521. IEEE Computer Society, 2004.

T. J. Norman, A. Preece, S. Chalmers, N. R. Jennings, M. Luck, V. D. Dang, T. D.

Nguyen, V. Deora, J. Shao, A. Gray, and N. Fiddian. Agent-based formation of virtual

organisations. Knowledge Based Systems, 17(2-4):103–111, 2004.

R. Overbeek, T. Disz, and R. Stevens. The SEED: A peer-to-peer environment for

genome annotation. Communications of the ACM, 47(11):47–50, 2004.

S. Parsons and N. R. Jennings. Negotiation through argumentation - A preliminary

report. In Proceedings of the Second International Conference on Multiagent Systems,

pages 267–274. AAAI Press, 1996.

S. Parsons and M. Wooldridge. Game theory and decision theory in multi-agent systems.

Autonomous Agents and Multi-Agent Systems, 5(3):243–254, 2002.

D. N. Perkins, D. J. C. Pappin, D. M. Creasy, and J. S. Cottrell. Probability-based

protein identification by searching sequence databases using mass spectrometry data.

Electrophoresis, 20(18):3551–3567, 1999.

E. Phizicky, P. Bastiaens, H. Zhu, M. Snyder, and S. Fields. Protein analysis on a

proteomic scale. Nature, 422(6928):208–215, 2003.

J. Piaget. Sociological Studies. Routlege, 1973.

R. L. Riolo, M. D. Cohen, and R. Axelrod. Evolution of cooperation without reciprocity.

Nature, 414(6862):441–443, 2001.

M. R. Rodrigues and M. Luck. Analysing partner selection through exchange values. In

J. Sichman and L. Antunes, editors, Multi-Agent-Based Simulation VI, volume 3891

of Lecture Notes in Artificial Intelligence, pages 24–40. Springer-Verlag, 2006a.

M. R. Rodrigues and M. Luck. Cooperative interactions: An exchange values model.

In Proceedings of the Coordination, Organization, Institutions and Norms in Agent

BIBLIOGRAPHY 208

Systems Workshop at the Seventeenth European Conference on Artificial Intelligence,

pages 63–70, 2006b.

M. R. Rodrigues and M. Luck. Evaluating dynamic services in bioinformatics. In

M. Klusch, M. Rovatsos, and T. Payne, editors, Cooperative Information Agents X,

volume 4149 of Lecture Notes in Artificial Intelligence, pages 183–197. Springer-Verlag,

2006c.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, chapter Intelligent

Agents, pages 31–50. Prentice Hall, 1995.

J. Sabater and C. Sierra. REGRET: Reputation in gregarious societies. In Proceedings

of the Fifth International Conference on Autonomous Agents, pages 194–195. ACM

Press, 2001.

S. Saha, S. Sen, and P. S. Dutta. Helping based on future expectations. In Proceedings

of the Second International Joint Conference on Autonomous Agents and Multiagent

Systems, pages 289–296. ACM Press, 2003.

S. Salzberg, A. Delcher, S. Kasif, and O. White. Microbial gene identification using

interpolated markov models. Nucleic Acids Research, 26(2):544–548, 1998.

T. W. Sandholm. Distributed rational decision making. In G. Weiss, editor, Multiagent

Systems: A Modern Approach to Distributed Artificial Intelligence, pages 201–258.

MIT Press, 1999.

S. Sen and P. S. Dutta. The evolution and stability of cooperative traits. In Proceedings

of the First International Joint Conference on Autonomous Agents and Multiagent

Systems, pages 1114–1120. ACM Press, 2002.

S. Sen, P. S. Dutta, and S. Saha. Emergence and stability of collaborations among

rational agents. In Cooperative Information Agents VII, volume 2782 of Lecture Notes

in Computer Science, pages 192–205. Springer-Verlag, 2003.

J. S. Sichman, R. Conte, C. Castelfranchi, and Y. Demazeau. A social reasoning mech-

anism based on dependence networks. In Proceedings of the Eleventh European Con-

ference on Artificial Intelligence, pages 188–192, 1994.

R. G. Smith. The Contract Net Protocol: High-level communication and control in a

distributed problem solver. IEEE Transactions on Computers, C-29(12):1104–1113,

1981.

L. Stein. Creating a bioinformatics nation. Nature, 417(6885):119–120, 2002.

L. D. Stein, P. Sternberg, M. Mangone, R. Durbin, J. Thierry-Mieg, and J. Spieth.

Wormbase: network access to the genome and biology of caenorhabditis elegans. Nu-

cleic Acids Research, 29(1):82–86, 2001.

BIBLIOGRAPHY 209

R. Stevens, K. Glover, C. Greenhalgh, C. Jennings, S. Pearce, P. Li, M. Radenkovic,

and A. Wipat. Performing in silico experiments on the grid: A users perspective. In

Proceedings of the UK e-Science All Hands Meeting, pages 43–50, 2003.

H. Sun, B. Fang, and H. Zhang. User-perceived web QoS measurement and evaluation

system. In X. Zhou, J. Li, H. T. Shen, M. Kitsuregawa, and Y. Zhang, editors,

Proceedings of the Eighth Asia-Pacific Web Conference, volume 3841 of Lecture Notes

in Computer Science, pages 157–165. Springer-Verlag, 2006.

A. Tate. The helpful environment: Distributed agents and services which cooperate. In

M. Klusch, M. Rovatsos, and T. Payne, editors, Cooperative Information Agents X,

volume 4149 of Lecture Notes in Artificial Intelligence, pages 23–32. Springer-Verlag,

2006.

W. T. L. Teacy, J. Patel, N. R. Jennings, and M. Luck. Coping with inaccurate repu-

tation sources: Experimental analysis of a probabilistic trust model. In Proceedings

of Fourth International Joint Conference on Autonomous Agents and Multiagent Sys-

tems, pages 997–1004. ACM Press, 2005.

The Gene Ontology Consortium. Gene Ontology: tool for the unification of biology.

Nature Genetics, 25(1):25–29, 2000.

The Wellcome Trust. Key facts about the human genome. Available at

http://www.wellcome.ac.uk/en/genome, February 2001.

The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000

cases of seven common diseases and 3,000 shared controls. Nature, 447(7145):661–678,

2007.

M. Tyers and M. Mann. From genomics to proteomics. Nature, 422(6928):193–197,

2003.

M. P. Wellman. The economic approach to artificial intelligence. ACM Computing

Surveys, 27(3):360–362, 1995.

A. B. Williams, T. A. Krygowski, and T. L. Casavant. I-DOCS: distributed agent-

assisted knowledge fusion for disease gene discovery. In Proceedings of the Eighth

International Conference on Parallel and Distributed Systems, pages 698–705. IEEE

Computer Society, 2001.

M. Wooldridge. Intelligent agents. In G. Weiss, editor, Multiagent Systems: A Modern

Approach to Distributed Artificial Intelligence, pages 27–77. MIT Press, 1999.

M. Wooldridge. An Introduction to Multiagent Systems. John Wiley and Sons, 2002.

M. J. Wooldridge and N. R. Jennings. Cooperative problem solving. Journal of Logic

and Computation, 9(4):563–592, 1999.

BIBLIOGRAPHY 210

C. Wroe, C. Goble, M. Greenwood, P. Lord, S. Miles, J. Papay, T. Payne, and L. Moreau.

Automating experiments using semantic data on a bioinformatics grid. IEEE Intelli-

gent Systems, 19(1):48–55, 2004.

K. P. Yoon and C. Hwang. Multiple attribute decision making: An introduction. volume

104 of Quantitative Applications in the Social Sciences. Sage, 1995.

