
 Open access Proceedings Article DOI:10.1109/RESC.2011.6046716

Social threats and the new challenges for Requirements Engineering — Source link

Fabiano Dalpiaz

Institutions: University of Trento

Published on: 17 Oct 2011

Topics: Social software engineering, Social computing, Reputation, Requirements engineering and Delegation

Related papers:

 Security Policy Model for Ubiquitous Social Systems

 Security Requirements Engineering for Secure Business Processes

 The Trouble with Security Requirements

 Computer Aided Threat Identification

 Modelling the interplay of security, privacy and trust in sociotechnical systems: a computer-aided design approach

Share this paper:

View more about this paper here: https://typeset.io/papers/social-threats-and-the-new-challenges-for-requirements-
20ggcozcbx

https://typeset.io/
https://www.doi.org/10.1109/RESC.2011.6046716
https://typeset.io/papers/social-threats-and-the-new-challenges-for-requirements-20ggcozcbx
https://typeset.io/authors/fabiano-dalpiaz-1v4tte3xmh
https://typeset.io/institutions/university-of-trento-26z50udz
https://typeset.io/topics/social-software-engineering-2cgo6t19
https://typeset.io/topics/social-computing-ma773059
https://typeset.io/topics/reputation-ht6wjhwo
https://typeset.io/topics/requirements-engineering-4h5ayy7e
https://typeset.io/topics/delegation-13g003j8
https://typeset.io/papers/security-policy-model-for-ubiquitous-social-systems-21p1rejfwo
https://typeset.io/papers/security-requirements-engineering-for-secure-business-3562guq2tj
https://typeset.io/papers/the-trouble-with-security-requirements-2ghch7gufx
https://typeset.io/papers/computer-aided-threat-identification-2gweutik5o
https://typeset.io/papers/modelling-the-interplay-of-security-privacy-and-trust-in-47zj765t0n
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/social-threats-and-the-new-challenges-for-requirements-20ggcozcbx
https://twitter.com/intent/tweet?text=Social%20threats%20and%20the%20new%20challenges%20for%20Requirements%20Engineering&url=https://typeset.io/papers/social-threats-and-the-new-challenges-for-requirements-20ggcozcbx
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/social-threats-and-the-new-challenges-for-requirements-20ggcozcbx
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/social-threats-and-the-new-challenges-for-requirements-20ggcozcbx
https://typeset.io/papers/social-threats-and-the-new-challenges-for-requirements-20ggcozcbx

Social Threats and the New Challenges for Requirements Engineering

Fabiano Dalpiaz

Department of Information Engineering and Computer Science

Università degli Studi di Trento, Italy

dalpiaz@disi.unitn.it

Abstract—We understand social computing as a paradigm
based on abstractions that describe how social actors—humans
and organizations—interact to conduct their business. These
abstractions are part of a social layer that lies on top of
the technical layers that constitute software systems. This
social layer is founded upon social concepts such as agent,
role, commitment, delegation, trust, and reputation. Social
computing is affected by many of the threats we successfully
handle in our lives: business transactions with unknown parties,
volatile environments, existence and enforcement of norms that
regulate the marketplace, malicious actors, etc. These threats
pose new challenges for Requirements Engineering (RE): the
specification of artefacts able to deal with these threats. In this
vision paper (i) we argue for the social nature of the threats;
and (ii) we outline some of these new challenges for RE.

Keywords-requirements engineering; social computing; social
threats.

I. INTRODUCTION

Layering simplifies the engineering of complex computing

artefacts by hiding implementation details to other layers.

Current computing artefacts (e.g. network stacks and soft-

ware architectures) rely on purely technical layers. Our

position is that the topmost layer of computing artefacts

should be a social layer.

Such social layer does not refer to technological concepts

(node, port, channel); rather, it consists of social concepts,

such as actors and social relationships among them. This

layer represents the business meaning (the rationale) behind

the use of computing artefacts. Suppose you are using the

eBay website to create an auction for an old book. This usage

scenario creates a social relationship: your commitment [1]

to deliver the book to the auction’s winner, provided that

you receive the payment beforehand.

We understand social computing as a paradigm founded

upon the social layer. We conceive social computing in terms

of social primitives, such as roles, agents1, and commitments

(like Chopra and Singh [2]), as well as trust, reputation, and

identity. In social computing, for instance, a buyer agent may

want to opt for a seller’s commitment for a book only if he

trusts the seller, perhaps because of his good reputation, and

has proofs of the authenticity of the seller’s website.

The term social computing has been previously dis-

cussed [3] [4] in a broader sense, referring to computing

1In this paper, we use the terms “actor” and “agent” interchangeably

artefacts that facilitate collaboration between humans and

their interaction. We go a step further, as we argue for

treating the social layer as a first-class citizen in computing.

Service orientation—in its more general sense—provides

an adequate foundation for the social layer. Service-oriented

applications [5] consist of autonomous and heterogeneous

agents that socially interact in order to achieve their own

goals. Such interaction defines and evolves a network of

commitments among these agents. Agents can be either

service consumers, providers, or both. Services are captured

by the commitments agents make (publishing a service) and

discharge (service delivery).

In addition to the technical threats that exploit system

vulnerabilities (e.g. denial-of-service, back-doors, cross-site

scripting), social computing brings social threats that affect

social actors, relationships, and artefacts. These threats de-

rive from those we experience in our lives while interacting

with others: lack of trust between actors, decreasing reputa-

tion, fake opinions about providers, new laws that regulate

the marketplace. We investigate social threats in Section II.

Social threats pose new challenges for Software Engineer-

ing: new artefacts have to be designed to successfully cope

with these threats. All the phases of software development

are affected, since the early stages, i.e. Requirements Engi-

neering (RE). Researchers in RE are already investigating

these aspects, especially via goal-oriented approaches. Our

purpose is to revisit these challenges in the spirit of social

computing. In Section III, we outline some essential artefacts

to effectively cope with social threats.

II. THE NEW WAVE OF SOCIAL THREATS

Social Computing carries along social threats—affecting

the social layer—in addition to the technical threats that

affect lower layers. While technical threats exploit vulnera-

bilities in the system—often due to software errors [6]—

these new threats either concern social relationships and

social artefacts (e.g. reputation, trust, delegation, laws), or

are enacted via social mechanisms (e.g. assuming fake

identities, user interaction with interfaces).

We adopt a service-oriented perspective to illustrate the

following examples of social threats. We identified these

threats by analysing the usage scenarios of the EU-funded

project Aniketos (on secure and trustworthy service compo-

sitions); we are currently extending and refining such list.

T1. Fake reporting: reputation is one of the pillars of social

interaction, as it is a main factor to determine whether

an (unknown) actor is trustworthy. The eBay reputation

computation mechanism is perhaps the most considered

factor for customers to evaluate sellers trustworthiness.

Being rooted in social interaction, social computing

cannot help taking reputation into account. A related

threat is fake reporting, i.e. actors that intentionally

release fake ratings about service providers and con-

sumers, possibly acting under false identity.

T2. Decreasing reputation: reputation is volatile, as it is

updated whenever an actor submits a new rating. We

often change partnerships based on recent experience,

perhaps because our partners result less reliable than it

they used to be. Decreasing reputation implies deciding

whether to ignore the threat and stay with the current

partner or switch to a different partner. Such threat is

particularly severe in the case of composite services, as

the possible failure of a service might result in a cas-

cade failure that affects all services in the composition.

T3. Lack of trust: social computing is very different

from paradigms based on method-invocation (object-

orientation, software components, web-services). Each

actor is autonomous and decides upon whom to interact

with. An agent offering a service to the general audi-

ence is free to decide not to interact with consumers that

he does not trust. In such setting, method invocation

does not work. This is especially true for composite

services, which cannot be assembled the same way one

would orchestrate a set of software components.

T4. Untrusted delegation: it is often the case that you trust

a specific actor to carry out a task, but you would

not trust other actors, even though the trusted actor

trusts them. As observed earlier, e.g. in [7], trust is

not always transitive in real life. A service provider

that delegates (part of) service provision to another

provider—that the consumer does not trust—is a threat

in social computing, as it violates the trust relation

between the consumer and the original provider.

T5. Dissolved redundancy: redundancy is often devised

to ensure availability. In component-oriented systems,

redundancy means deploying at least two components

providing the same functionality. In social computing,

redundancy means relying on multiple providers for

the same service type. However, each provider might

further delegate the service, or part of it, to third parties.

Redundancy might vanish if all redundant providers

delegate the service to the same third party.

T6. Incompatible laws: laws are social artefacts that reg-

ulate relations in the society. You would not park your

car in a no parking zone, since police might issue

you with a parking ticket. Likewise, software systems

should comply with laws. For example, the public

disclosure of political views might be forbidden by law

in some countries. Running services in these countries

would infringe such law. Incompatible laws are a threat

both at deployment-time (is the service law-compliant?)

and at runtime (law changes over time).

T7. Unauthorized data disclosure: data confidentiality is a

hot topic in computer security. Many mechanisms have

been devised to preserve it, such as (role-based) access

control, data anonymisation, etc. Social computing is an

open and logically distributed setting. Due to openness,

actors might adopt a fake identity (perhaps someone

else’s) to access data they have no authorization for.

Logical distribution implies that each actor specifies

its own access control policy; if these policies are not

consistent, users can gain unauthorized access to data.

T8. User interaction: an orthogonal type of threat affects

users interaction with the system. If not adequately

designed, users might unintentionally open the way to

threats. For example, having too many confirmation

dialogues stimulates users to accept without knowing

what they are actually committing to (perhaps a credit

card payment or personal data disclosure).

III. NEW CHALLENGES FOR RE

The social threats described in the Section II introduce

new challenges for RE. In order to address these threats, new

artefacts have to be engineered. Though some approaches

have been already proposed to such extent, RE has to evolve

to enable a systematic and effective specification of these

artefacts. We list some challenges in the following sub-

sections, then show how they relate to the social threats.

A. Trustworthiness management systems

Social computing settings are open environments: the par-

ticipating agents and their services are unknown at design-

time, and agents join and leave as they wish at runtime.

Due to such volatility, traditional requirements engineering

methodologies are inadequate, as they make too many

assumptions about the goals/requirements of participants.

To overcome this limitation, RE has to support specifying

systems that enable interaction among unknown agents.

To this extent, trustworthiness management systems will

be essential. They have to consider a wide set of factors, such

as opinions by peers, information about compliance, and

certificates issued by trusted third parties. The mechanisms

to monitor and compute trustworthiness shall be robust to

bootstrapping (when little data is available) and malicious

actors (who aim to corrupt trustworthiness metrics).

B. Service interface specification and monitoring

In service orientation, service implementations are hidden

to the consumers. Service interfaces are the unique artefact

to express the functional and non-functional properties of

a service. In terms of the social layer, a service interface

implies a commitment by the service provider to deliver

the service as specified. Current languages and monitoring

frameworks do not support complex specifications of service

interfaces (apart from Quality-of-Service properties).

In social computing, rich service interfaces are neces-

sary to enable agents make a well-informed choice about

partners. Interfaces can include (i) flexible parameters to

enable negotiation with consumers; (ii) fine-grained access

control policies that specify which information can be shared

and with whom, as well as to which agents the service is

offered; (iii) redundant provision of a service; (iv) whether

the provider retains accountability in case of delegation;

and (v) compensation rules that define the consequences

(e.g. additional commitments) for a provider who violates

its commitments. All these factors shall be monitored to

identify violations and to enable compensation enforcement.

C. Early warning and response mechanisms

Software adaptation in response to failures is a very active

research area, which becomes crucial when considering the

social layer, as failures directly affect the business of the

agents. However, current mechanisms to respond to threats

are mainly reactive: they are enacted after a problem is

detected. This is a sub-optimal solution since failure effects

are just mitigated, rather than being avoided.

Early warning and response mechanisms will be funda-

mental to to prevent bad events from occurring. The key

is detecting threats before they result in a failure and pro-

actively switching to an alternative configuration—involving

different commitments—to avoid the failure. To specify

systems including these mechanisms, risk assessment tech-

niques could be exploited to relate risks to requirements and

enable evidence-based identification of threats.

D. Deployment-time certification

Agents deploy their services by manifesting service in-

terfaces, and they commit to comply with such interface

while delivering the service. When the service is deployed by

an agent who recently joined the environment, other agents

have very little information about the agent’s trustworthi-

ness. This might discourage other agents from interacting,

especially if the mission of an agent is critical.

Certificates—issued by trusted third parties—can be re-

leased as an additional guarantee. Certification authorities

commit to the trustworthiness of specific services (and their

providers). Certification might involve checking the way the

service is implemented, adding monitoring probes, ensuring

that a specific service development methodology is followed.

The certification authority becomes accountable in case the

service is not delivered as certified. In turn, the authority

will most likely make up for the non-compliant agent.

E. Adaptation mechanisms

Current mechanisms for software adaptation adopt a cen-

tralized perspective, in which software consists of cooper-

ating components (web-services are physically distributed

components) that can be re-routed as needed. Such per-

spective is incompatible with the logical decentralization of

social computing, wherein each agent is a locus of autonomy.

New adaptation mechanisms are needed to better take into

account the characteristics of social computing settings:

• Adaptation should be conceived from the perspective of

a single agent [8], and consists of changing the internal

strategy as well as the commitments made to and taken

from other agents (while preserving agents autonomy);

• Social threats are triggers for agent adaptation;

• In a volatile environment, it is hard to determine in

a single step the best configuration—including which

agents to interact with—to achieve an agent’s require-

ments. An alternative strategy is to rely on incremental

techniques (i.e. via partial planning): a partial configu-

ration is generated and is then refined incrementally.

F. Law representation and compliance

A key challenge in social computing is the representa-

tion of laws in a machine-understandable form. This will

enable determining compliance and enforcing law. Despite

of some promising efforts [9] [10], existing languages are

still inadequate to capture laws in a comprehensive way.

One challenge will be devising languages that support

temporal constraints, nested clauses, cross-references, com-

pensations and penalties. Another challenge is to specify

systems that enable enforcing compliance with laws. Law

representation, monitoring, and enforcement are useful, for

example, to represent data confidentiality restrictions that

apply in certain countries, as well as to prevent unautho-

rized disclosure of data (via monitoring and enforcement

functions).

G. Identity management systems

In social computing, each agent is characterized by an

identity, the same way each of us possesses an identity in

the physical world. This is a radical shift from current com-

puting paradigms, in which software does not always possess

a legal identity, and is often released without guarantees.

The challenge will be the development of robust identity

management systems that unequivocally bind a software

system to its legal entity. Such entity is accountable for

that software system. Identity management systems have to

prevent malicious users from assuming fake identities, as

well as using someone else’s identity to spoil his reputation.

H. Development methodologies

An orthogonal challenge to the previous ones is de-

velopment methodologies to alleviate or prevent threats.

Such methodologies should start from the early requirements

phase, so to determine how the threats affect system require-

ments. Important aspects to tackle are (i) avoiding confiden-

tiality violations, by taking into account the authorizations

Challenge for RE T1 T2 T3 T4 T5 T6 T7 T8

Trustworthiness management systems X X

Service interface specification and monitoring X X

Early warning and response mechanisms X

Deployment-time certification X

Adaptation mechanisms X X

Law representation and compliance X X

Identity management systems X X

Development methodologies X X X

Table I
MAPPING BETWEEN SOCIAL THREATS AND CHALLENGES FOR RE

provided by data owners; (ii) designing adequate user inter-

faces so that users are aware of the social relationships they

manipulate by interacting with the interface; (iii) ensuring

that the specification of the system is law-compliant.

Table I shows how these challenges relate to the social

threats of Section II. Fake reporting (T1) is addressed by

building robust management systems for trustworthiness and

identity, so to mitigate the effect and reduce the likelihood

of fake reports, respectively. Decreasing reputation (T2) is

handled if trustworthiness metrics include such factor, and

by developing systems able to early detect and respond

to the threat. An effective method to avoid lack of trust

(T3) is certification mechanisms, complemented by identity

management to prevent agents from assuming fake identi-

ties. Untrusted delegation (T4) necessitates adequate service

interfaces and monitoring functionalities to keep track of

delegations. To prevent dissolved redundancy (T5), service

interfaces shall allow specifying such property; also, adap-

tation patterns might introduce additional providers before

redundancy vanishes. Frameworks to represent, check, and

enforce law, as well as companion development method-

ologies are useful to deal with incompatible laws (T6) and

unauthorized data disclosure (T7). User interaction threats

require specific development methodologies (T8).

IV. CONCLUSIONS

We presented our perspective on social computing, de-

scribed a set of new threats such paradigm introduces, and

outlined some challenges Requirements Engineering will

have to address to successfully handle these threats.

We argue that social computing will be centred around a

social layer, including social actors, relationships, and arte-

facts. Unlike other computing paradigms, social computing

is about how social actors interact to conduct their business,

and treats software as a means to support their interaction.

The threats we introduced are social by nature, and derive

from the threats we encounter in our lives. Consequently, RE

is likely to address the new challenges by adapting pragmatic

solutions that demonstrate to be effective in the real world.

ACKNOWLEDGMENT

The research leading to these results has received funding

from the European Union Seventh Framework Programme

(FP7/2007-2013) under grant no 257930 (Aniketos).

REFERENCES

[1] M. P. Singh, “Agent Communication Languages: Rethinking
the Principles,” IEEE Computer, vol. 31, no. 12, pp. 40–47,
Dec. 1998.

[2] A. K. Chopra and M. P. Singh, “Elements of a Business-
Level Architecture for Multiagent Systems,” in Proceedings

of the 7th International Workshop on Programming Multi-
Agent Systems (ProMAS 09), ser. LNCS, vol. 5919. Springer,
2009, pp. 15–30.

[3] D. Schuler, “Social computing,” Communications of the ACM,
vol. 37, no. 1, p. 28, 1994.

[4] F.-Y. Wang, K. M. Carley, D. Zeng, and W. Mao, “Social
Computing: From Social Informatics to Social Intelligence,”
IEEE Intelligent Systems, vol. 22, no. 2, pp. 79–83, 2007.

[5] A. K. Chopra, F. Dalpiaz, P. Giorgini, and J. Mylopoulos,
“Modeling and Reasoning about Service-Oriented Applica-
tions via Goals and Commitments,” in Proceedings of 22nd
International Conference on Advanced Information Systems
Engineering (CAiSE’10), ser. LNCS, vol. 6051. Springer,
2010, pp. 113–128.

[6] K. Tsipenyuk, B. Chess, and G. McGraw, “Seven Pernicious
Kingdoms: A Taxonomy of Software Security Errors,” Secu-
rity & Privacy, IEEE, vol. 3, no. 6, pp. 81–84, 2005.

[7] B. Christianson and W. S. Harbison, “Why Isn’t Trust Tran-
sitive?” in Proceedings of the International Workshop on
Security Protocols. Springer-Verlag, 1996, pp. 171–176.

[8] F. Dalpiaz, A. K. Chopra, P. Giorgini, and J. Mylopoulos,
“Adaptation in Open Systems: Giving Interaction its Rightful
Place,” in Proceedings of the 29th International Conference
on Conceptual Modeling (ER 2010), ser. LNCS, vol. 6412.
Springer, 2010, pp. 31–45.

[9] E. Marengo, M. Baldoni, C. Baroglio, A. K. Chopra, V. Patti,
and M. P. Singh, “Commitments with Regulations: Reasoning
about Safety and Control in REGULA,” in Proceedings of
the 10th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2011), 2011, pp. 467–474.

[10] A. Siena, J. Mylopoulos, A. Perini, and A. Susi, “Designing
Law-Compliant Software Requirements,” in Proceedings of
the 28th International Conference on Conceptual Modeling
(ER 2009), ser. LNCS, vol. 5829. Springer, 2009, pp. 472–
486.

