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ABSTRACT 

Social Network Analysis has emerged as a key paradigm in 
modern sociology, technology, and information sciences. The 
paradigm stems from the view that the attributes of an individual 
in a network are less important than their ties (relationships) with 
other individuals in the network. Exploring the nature and 
strength of these ties can help understand the structure and 
dynamics of social networks and explain real-world phenomena, 
ranging from organizational efficiency to the spread of 
information and disease.  

In this paper, we examine the communication patterns of millions 
of mobile phone users, allowing us to study the underlying social 
network in a large-scale communication network. Our primary 
goal is to address the role of social ties in the formation and 
growth of groups, or communities, in a mobile network. In 
particular, we study the evolution of churners in an operator’s 
network spanning over a period of four months. Our analysis 
explores the propensity of a subscriber to churn out of a service 
provider’s network depending on the number of ties (friends) that 
have already churned. Based on our findings, we propose a 
spreading activation-based technique that predicts potential 
churners by examining the current set of churners and their 
underlying social network. The efficiency of the prediction is 
expressed as a lift curve, which indicates the fraction of all 
churners that can be caught when a certain fraction of subscribers 
were contacted. 

 

1. INTRODUCTION 
In today’s extremely challenging business environment, many 
telecommunications carriers are measuring their success by the 
size and growth of their profit margins. As a result, carriers are 
under intense pressure to reduce or eliminate the major threats to 
these margins which arise from revenue leakage, inaccurate inter-
carrier billing, fraud, and churn. Carriers rely on analysis of 
terabytes of Call Detail Record (CDR) data to help them make 
business-critical decisions that will positively affect their bottom 

line. High-end data warehouses and powerful Business 
Intelligence (BI) solutions are thus becoming essential tools to 
help carriers meet profit goals. Analyzing and integrating in-depth 
data enables carriers to reduce revenue leakage and churn, 
mitigate fraud, optimize network usage and increase profits. 

Interestingly, as mobile penetration is increasing and even 
approaching saturation, the focus of Telecom BI is shifting from 
customer acquisition to customer retention. It has been estimated 
that it is much cheaper to retain an existing customer than to 
acquire a new one [8]. To maintain profitability, telecom service 
providers must control churn, i.e. the loss of subscribers who 
switch from one carrier to another. For the particular mobile 
operator we consider, annual churn rates in the prepaid segment 
average between a significant 50 to 70 percent. This implies that 
the operator must offer the right incentives, adopt the right 
marketing strategies, and place network assets appropriately to 
protect its customers.  

Retrieving information from CDR data can provide major 
business insights for designing such strategies. A CDR contains 
various details pertaining to each call, e.g. who called whom, 
when was it made, etc.  Based on this information, one can 
construct a call graph with customer mobile numbers as nodes and 
the calls as edges. The weight of an edge captures the strength of 
the relationship (tie) between two nodes. An edge with a high 
weight (e.g. call frequency or call volume) signifies a strong tie, 
while an edge with a low weight represents a weak one. 
Consequently, one can view the call graph as a social network 
consisting of n actors (nodes) and a relationship Ri,j measured on 
each ordered pair of actors i, j = 1,…,n.   

We consider the call graph obtained from CDR data of one of the 
largest mobile operators in the world. Our objective is to explore 
the local and global structure of the underlying social network in 
this massive communication graph, and understand the role of 
social relationships as it pertains to the formation of groups (or 
communities) in the network. Understanding the structure and 
dynamics of social groups is a natural goal for network analysis, 
since such groups tend to be embedded within larger social 
network structures, growing in a potentially complex fashion [2, 
31]. For example, a group that grows through aggressive 
recruitment of friends by other friends would appear as a subgraph 
branching out rapidly over time, while a group in which the 
decision to join depends relatively little on such influence might 
appear as a collection of disconnected components growing in a 
motley fashion.  
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The central question that we strive to answer is whether the 
decision of a subscriber to churn out of the operator’s network is 
dependent on the existing members of the community that the 
subscriber has a relationship with (referred to as friends). A social 
relationship between two friends, in this context, is based on the 
duration of voice calls, call frequency etc. that are exchanged 
during a certain period. Our analysis explores the propensity of a 
subscriber to churn out of a service provider’s network depending 
on the number of friends that have already churned. For example, 
consider a subscriber Joshua. His friend has recently churned out 
of the operator’s network. What is the probability of Joshua to 
churn? How would the probability change if Joshua had another 
friend who is also a churner? Some of these questions have been 
raised in the context of growth and evolution of communities in 
online social networks [2,18]. We believe that our analysis is a 
first of its kind that exploits the underlying social network in a 
telecom call graph, and interestingly, indicates that social ties play 
an important role in affecting customer churn. Further, we 
develop a prediction model that explores the social network of the 
churners to identify customers susceptible to churn in the near 
future. 

1.1 Challenges and Contribution 
The problem of churn prediction has been addressed by 
academicians as well as BI practitioners.  Traditional solutions 
have used data mining techniques [1,8,24] that create a customer 
profile from her calling pattern (often described by hundreds of 
variables), and then predict the probability of churn based on 
certain attributes of the subscriber. For these customers, there are 
various data sources available for modeling including historical 
usage, billing, payment, customer service, application, and credit 
card data. 

However, in our case, the mobile operator was interested in 
developing a churn prediction model for its prepaid segment, for 
which there exists very little data except for CDR data. What we 
could extract from this data, included aggregated call usage 
information for each customer, along with the call destination 
numbers, and call frequency and duration for each destination. 
Thus, any prediction model needed to be purely based on the 
available link information. Moreover, business rules and data 
availability restrictions imposed by the operator, required us to 
use a single month’s CDR data to design and validate any 
prediction technique. Such practical limitations certainly make the 
problem more challenging, but we will demonstrate how 
reasonable prediction accuracy can still be achieved using only 
link information. To do so, we explore a diffusion (or spreading 

activation)-based approach, which is based on the premise that a 
few key individuals (churners) may lead to strong “word-of-
mouth” effects, wherein they influence their friends to churn, who 
in turn spread the influence to others, and so forth. Such a 
diffusion process has a long history in social sciences [10, 20, 25] 
and essentially uses the underlying social network for spread of 
influences. We explore the use of this diffusion-based technique 
for identifying potential churners and report the success of the 
technique in terms of churn prediction accuracy.  

Interestingly, a key feature of the proposed technique is that it 
allows the operator to pro-actively identify potential churners and 
pursue them for retention, based on “early warnings”. For 
example, a subscriber Joshua can be identified as a potential target 
as soon as a number of his close friends churn. This is different 

from existing approaches where typically a customer is flagged 
when there is noticeable change in his recent usage profile (e.g. 
reduced spending, prepaid card not recharged etc.) - by which 
time he might have already decided to churn. Our feedbacks from 
multiple telecom operators suggest that this capability can provide 
a key value-add, where social network analytics can complement 
and enhance existing BI solutions for churn management. 
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Figure 1. (a) Degree Distribution (b) Call Volume Distribution 

(c) Call Frequency Distribution (d) Call Duration Distribution 

of the Mobile call graph 

2. DATA SET 
We consider the Call Detail Record (CDR) data of one of the 
largest mobile operators in the world between 1st March and 31st 
March 2007. The data set is about 60 Gigabytes large and 
contains detailed information about voice calls, SMS, value-added 
calls etc. of users. Our analysis is based on a representative region 
in the operator’s network and all intra-region (local) calls made 
during the specified period.  

The raw CDR data contained 3.1X106 nodes and 12.3X106 edges. 
Calls within 5 seconds are assumed to be accidentally dropped 
and filtered out. Further, we include a pair of nodes A and B, if 
and only if, A calls B and B calls A.  While a single call between 
two individuals may not carry much information, reciprocal calls 
of long duration (or high frequency) serve as a signature of a 
social relationship. Therefore, in order to translate the data into a 
network representation that captures the characteristics of the 
underlying communication network, we consider a directed edge 
<A,B> if there has been at least one reciprocated edge <B,A> 
between them, i.e., A called B, and B called A. We refer to two 
individuals as friends if they are connected by a pair of reciprocal 
edges. The weight WAB of a directed edge <A,B> is the aggregate 
of all calls made by A to B.   

During pre-processing, we also excluded the service numbers, e.g. 
the operator’s customer service number, number for retrieving 
voice mail, and numbers similar to 1-800 numbers. We observed 
that these numbers greatly skewed the call distributions in the 
operator’s network. The omission of these numbers resulted in the 
removal of about 450 nodes and 1.2X106 edges. The final 



(reciprocal) call graph contained 2.1X106 nodes and 9.3X106 
directed edges. Overall, the reciprocal graph contains 32.1 X106 
calls and total call duration of 955X103 hours. 

The rest of our analysis is based on this social network. Our 
objective is two-fold. First, we wish to extract characteristics of 
customer churn as it relates social influence in the underlying 
network. Second, we wish to address the fundamental question 
whether churn can be modeled as a diffusion process [10, 20, 25] 
that spreads through the network. 

3. MEASUREMENTS 
We begin by summarizing the overall characteristics of the 

call graph, referred to as GMarch. Next, using churner data available 
from the operator, we highlight the role of social ties (influences) 
in affecting churn in the prepaid customer segment 

 

3.1 Basic Call Graph Properties 
Figure 1 summarizes the basic structural properties of the call 
graph. As expected, the call graph is found to be characterized by 
presence of a highly heterogeneous topology, with degree 
distribution characterized by wide variability and heavy tails. 
Observing the log-log plot in Fig. 1(a) we can see that degree 
distribution fits well to a power law distribution. The power law 
exponent, in specific, is 2.91. The trend implies that most pre-paid 
customers call a relatively smaller number of people (friends), 
while a small number of individuals have relationships with a 
large group of people. Such a skewed distribution is also observed 
for the (node) call volume and (node) call frequency distributions, 
as shown in Fig. 1(b) and 1(c), respectively. In Fig. 1(d), we plot 
the distribution of call durations, obtained from the call duration 
of each directed edge in the graph. The plot shows that most calls 
in the mobile network are short-lived, while a few dozens of calls 
last for hours. Interestingly, the distribution exhibits a peak at 
around 1 minute. This reflects a caller’s tendency to finish a 
conversation within 60 seconds (which is the pulse rate of the 
operator for charging voice calls in prepaid segment). 

3.2 Analyzing the Churner Community 
We next turn to the community of churners in the mobile network. 
Our analysis is based on the churners between the months of April 
and July, as provided by the operator, and their observed 
interactions in the call graph of March.  The observation period is 
a month ahead of the churn period and hence contains a large 
portion of churner calls, which can be used to approximate the 
social network(s) of these churners. Table 1 gives the number of 
churners in different months. Note that, there are quite a few 
subscribers who have churned but not captured in the CDR data, 
simply because they did not make or receive calls in March. Since 
our objective is to gauge the role of social influences w.r.t churn, 
we evaluate our findings strictly based on churners with CDR data 
in March. 

Table 1: Churner Population during April to July  

Month Churners with CDRs 

April 44266 

May 42458 

June 65796 

July 58565 

To understand the characteristics of churn behavior and relate it to 
a diffusion process, we first need  to find out whether there is any 
evidence of influences in affecting a customer to churn. The 
underlying premise, in this case,  is that an individual’s 
probability of adopting a new behavior increases with the number 
of friends that have already engaged in the behavior—to be 
specific, the number of friends who have churned in an earlier 
period (e.g. the previous month). In Fig. 2(a), we show this 
relationship. We compute the probability P(k)  as suggested in [2]. 
For the churners of May, we consider churners of April. Then we 
find all triples <u,C,k> such that C is the set of churners, u is a 
user who has not churned in April, and u has k friends in C. P(k), 

for a given k, is then the fraction of all such triples <u,C,k>, such 
that u belongs to C in May (and not in April). Similarly, for June 
churners we can compute P(k) by considering April and May 
churners, and so on.  

Surprisingly, the curves indicate that the probability of churn is 
significantly influenced by the number of friends who have 
churned in previous months. In fact, the probabilities increase if 
an individual has these friends churning over subsequent months, 
hinting towards a cascading effect of these influences. To gain 
further insight, we also measured the probability of churning as a 
function of the internal connectedness of friends who have 
churned. While the details of the technique are omitted for the 
sake of brevity (refer to [2] for details), our results reveal that 
individuals whose churner friends are linked to each other are 
significantly more likely to churn (in Fig. 2(b)). Stated otherwise, 
the probability of churn is not only affected by the number of 
churner friends that one has, but also the local topology 
connecting these friends. This result is strikingly consistent with 
the growth of online communities observed in [2]. In fact, it forms 
the basis of our hypothesis that churn as a “behavior” could be 
attributed to diffusion models that posit very simple dynamics by 
which influence is transmitted in a (highly) connected social 
network. 

Role of Strong and Weak Ties in Diffusion. In order to build on 
this hypothesis, we must explore the role of social ties in driving a 
global diffusion process. 

Figure 3(a) shows the distribution of tie strengths in the mobile 
network, where tie strength is defined as the sum of the weights of 
the edges <A,B> and <B,A>. The tie strengths show wide 
variability and a heavy-tail, indicating that while majority of ties 
correspond to a few minutes of air time, a small fraction of users 
spend hours chatting with each other. Interestingly, the 
distribution is similarly skewed (w.r.t strong and weak ties), when 
we consider churner pairs only (Fig. 3(b)).  

At this point, we allude to sociological principles that suggest that 
the strength of a tie could depend only on the dyad, i.e. the 
relationship between two individuals (independent of the 
network), or alternatively, be dependent on the network i.e. 
friendship circles, resulting in the importance of the weak ties in 
connecting communities [5,11]. To understand the implications of 
this relationship between tie strength and the local network 
structure, one needs to explore the network’s ability to withstand 
the removal of either strong or weak ties. We measure the relative 
size of the giant component, providing the fraction of nodes that 
can all reach each others through connected paths as a function of 
the fraction of removed links f. Fig. 3(c) demonstrates the effect of 
removing links in order of strongest (or weakest) link. We also 



measure the relative topological overlap of the neighborhood of 
two users A and B, representing the proportion of their common 
friends, as OAB = NAB/((KA-1)+(KB-1)-NAB), where NAB  is the 
number of common neighbors of A and B, and KA (KB) denotes 
the degree of node A(B).1 Fig. 3(d) demonstrates the effect of 
removing links in order of strongest (or weakest) overlaps. In both 
cases, we find that removing ties in rank order of weakest to 
strongest ties will lead to a sudden disintegration of the network. 
In contrast, reversing the order shrinks the network without 
precipitously breaking it apart.  
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Figure 2. Probability of churning when (a) k friends have 

already churned (b) adjacent pairs of friends have already 

churned 

This result is broadly consistent with the strength of weak ties 
hypothesis [5], offering one of its first confirmations in mobile 
networks. Accordingly, tie strength is driven not only by the 
individuals involved in the tie, but also by the network structure 
in the tie’s immediate vicinity. Further, given that the strong ties 
are predominantly within communities, their removal will only 

                                                                 
1 If A and B have no common acquaintances we  have OAB =1. 

locally disintegrate a community, while the removal of the weak 
links will delete bridges that connect different communities, 
leading to a network collapse. Further, we believe that the 
observed local relationship, between network topology and tie 
strength affects any global information diffusion process (like 
churn). In fact, we opine that churn as a behavior can be viewed 

less as a dyadic phenomenon (affected only by strong churner-

churner ties), but more as a diffusion process where both strong 

and weak ties play a significant role in spreading the influence 

through the network topology. 

4. PREDICTING CHURNERS IN THE 

CALL GRAPH 
We next discuss how to exploit social ties to identify potential 
churners in an operator’s network. Our approach is as follows. We 
start with a set of churners (e.g. for April) and their social 
relationships (ties) captured in the call graph (for March). Using 
the underlying topology of the call graph, we then initiate a 
diffusion process with the churners as seeds. Effectively, we 
model a “word-of-mouth” scenario where a churner influences 
one of his neighbors to churn, from where the influence spreads to 
some other neighbor, and so on. At the end of the diffusion 
process, we inspect the amount of influence received by each 
node. Using a threshold-based technique, a node that is currently 
not a churner can be declared to be a potential future one, based 
on the influence that has been accumulated. Finally, we measure 
the number of correct predictions by tallying with the actual set of 
churners that were recorded for a subsequent month (e.g. for 
May). The diffusion model is based on Spreading Activation 
(SPA) techniques proposed in cognitive psychology and later used 
for trust metric computations [32]. In essence, SPA is similar to 
performing a breadth-first search on the call graph GMarch=(V,E). 
The basic steps are outlined below:- 

Node Activation: During each iterative step i, there is a set of 
active nodes. Let X be an active node which has associated energy 
E(X,i) at step i. Intuitively, E(X,i) is  the amount of (social) 
influence2  transmitted to the node via one or more of its 
neighbors. A node with high influence has a greater propensity to 
churn. Let N(X) be the set of neighbors of X.  Active nodes for  
step i+1 comprises of nodes which are neighbors of currently 
active members. Further, a currently active node X transfers a 
fraction of its energy to each neighbor Y (connected by a directed 
edge <X,Y>), in the process of activating it. The amount of 
energy that is transferred from X to Y depends on the Spreading 
Factor d and the Transfer Function F, respectively. 

Spreading Factor:  SPA starts with a set of active nodes (seed 
nodes) each having initial energy E(X,0). At each subsequent step 
i, an active node transfers a portion of its energy d· E(X,i)  to its 
neighbors, while retaining (1 − d) · E(X,i)  for itself, where d is 
the global Spreading Factor. The spreading factor concept is very 
intuitive and, in fact, very close to real models of energy 
spreading. Observe that the overall amount of energy in the 

network does not change over time, i.e. ∑X E(X,i) = ∑X∈V E(X,0) = 

E0, for each step i. The spreading factor determines the amount of 

                                                                 
2 The terms “energy” and “influence” are used interchangeably in 

this context. 

 



importance we wish to associate on the distance of an active node 
from the initial seed node(s). Low values of d favor influence 
proximity to the source of injection, while high values allow the 
influence to also reach nodes which are further away. We discuss 
the choice of values for d in the next section. 
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Figure 3. Tie Strength Distribution for (a) All Pairs (b) 

Churner-Churner Pairs; Stability of call graph w.r.t removal 

of links based on (c) Tie strengths (d) neighborhood overlap 

Energy Distribution: Once a node decides what fraction of 
energy to distribute, the next step is to decide what fraction of the 
energy is transferred to each neighbor. This is controlled by a 
Transfer Function F. In our case, we use a linear edge weight 
normalization, i.e., the energy distributed along the directed edge 
<X,Y> depends on its relative weight WXY compared to the sum of 
weights of all outgoing edges of X. In other words,  E(X→Y) = d · 

F· E(X,i), where F = W(X,Y)/∑<X,S>∈E W(X,S). We believe that this 
definition of the Transfer Function blends intuitively with how 
influence spreads through a call graph. People may be believed to 
exert a much stronger influence on those to whom they  speak for 
longer durations of time. 

Termination Condition: Since the directed call graph contains 
cycles, the computation of energy values for all reachable nodes is 
inherently recursive. Several iterations for all nodes are required 

in order to make computed information. Suppose Vi ⊆ V 

represents the set of nodes that have been discovered (activated) 
until step i. Then the algorithm terminates when both of the 
following conditions are satisfied: 

(a) Vi = Vi−1 

(b) ∀X ∈Vi :  E(X,i+1) - E(X,i) ≤  ET 

i.e. when no new nodes have been activated and when changes in 
influence w.r.t. prior iteration are not greater than accuracy 
threshold ET. 

5. EXPERIMENTAL RESULTS 
We next proceed to validate our approach using real churner data. 
We consider the directed call graph GMarch, with the churners as 
seed nodes. The weight of each directed edge in the graph is 
normalized between [0,1], using a function of the base form F(x)= 

2/(1+e^-x) – 1.  

Table 2: SPA Parameters for Churn Prediction 

Parameter Value(s) 

Initial Energy E0 1.0 

Spreading Factor d 0.25-0.90 

Accuracy Threshold ET 0.01 

Next, we run the iterative SPA routine on this directed graph. 
After termination, each node in the network accumulates a certain 
energy value (influence). If not a already a churner, this value 
reflects the propensity of the node to churn.  

Since decision making ultimately requires a “churn” (i.e.  likely to 
churn) or “no churn” (i.e. not likely to churn) prediction, the 
continuous energy measure must be thresholded to obtain a 
discrete predicted outcome. To this end, we use a simple 
threshold-based technique which works as follows: Fix a 

threshold TC. Label a node X as “churn” if its energy is greater 

than the threshold, else label it as “no churn”.   
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Figure 4. (a) Illustrative Lift Curves (b) Effect of the 

Spreading Factor on performance of SPA 

Having predicted a list of potential churners, we now need to 
quantify the accuracy of prediction. In the telecommunications 
industry the outcome is often expressed using a lift curve. The lift 
curve is related to the ROC curve of signal detection theory and 
the precision-recall curve in information retrieval. The lift curve 
plots the fraction of all churners having churn probability above 
the threshold TC against the fraction of all subscribers having 
churn probability above the threshold. The lift curve indicates the 
fraction of all churners can be caught (retained) if a certain 
fraction of all subscribers were contacted. Note that, an operator’s 
customer services center only has a fixed number of personnel to 
contact some fraction of all subscribers Hence, the lift curve, 
which can estimate the fraction of churners that can be caught 
given limited resources, is very useful. For ease of understanding, 
we illustrate two sample lift curves in Fig. 4(a) - the lift curve 
representing perfect discrimination of churners from non-churners 
(best case), and that representing no discrimination (worst case). 
In general, the more bowed the curve is to the upper-left corner of 
the graph, the better the predictor. Note that, in SPA, the fraction 
of subscribers contacted can be increased (decreased) by setting a 
low (high) threshold TC. 

For the sake of comparison, we also consider a simple churn 
prediction heuristic, based on ties strengths, which works as 
follows: Consider the top K-percentile of churners, in terms of 
total call duration (incoming and outgoing). For each of these 
high-volume churners, and for a given variable k, identify the 
nodes which constitute the top k-percentile of the churner’s tie 
strengths, i.e., the neighbors with whom the churners interact for 
longest duration. Label each of these neighbors as “churn”. We



Figure 5: Performance of SPA and K-Ties heuristic for different observation and validation periods 

refer to this as the K-Ties heuristic. As before, by setting a large 
(or small) k, the heuristic can contact more (or less) subscribers. 
We report the lift curves obtained by using representative values 
of K and k and compare them with SPA. Table 2 lists the 
parameters used by SPA. 

Effect of Spreading Factor: We first try to understand the how 
the Spreading Factor d affects the performance of SPA. As 
discussed earlier, this determines the diffusion process in the 
network. A low value of d would facilitate rapid spread of the 
influence. A higher value, on the other hand, would imply that the 
influence takes a while to spread, often being trapped in highly 
connected localities (e.g. communities) of the network , before 
finding an escape to other parts of the network. We present the 
results for three representative values, i.e. d = 0.3, 0.72. 0.9, in 
Fig. 4(b). The experiments were performed with April churners as 
the observation set, i.e. churners marked as seed nodes in the call 
graph. Further, the May-July churners were treated as the 
validation set, i.e. each “churn” prediction made by SPA was 
validated against the churner logs from these months to determine 
if the node actually churned in one of these months. Interestingly, 
we find that while the lift curve improves by using a higher value 
of spreading factor, it is not beneficial to use very large values of 
d. In fact, we found that the best predictor was obtained by using 
a value of d = 0.72. For the rest of the experiments, we report 
results with a spreading factor of 0.72. 

Predicting Churners over Time: We present results from three 
sets of experiment. In each experiment, we compare the 
performance of SPA with the K-Ties approach. In fact, we 
consider two instances of the K-Ties approach. In the 60-Ties 
heuristic, we consider the top 60th–percentile of churners and then 
predict future churners, based on subscribers who fall within the 
top k (= 10, 20,….90, 99) percentile of the churner ties. Similarly, 
for the 90-Ties heuristic, we consider the top 90th – percentile of 
churners and their strongest ties. In Figs. 5(a), 5(b), and 5(c), we 
demonstrate the relative performances of SPA and K-Ties 
approaches for the following sets of experiments, respectively. 

a) April churners as observation set, and May churners as 
validation set in Fig. 5(a). 

b) April-May churners as observation set, and June 
churners as validation set  in Fig. 5(b). 

c) April-May-June churners as observation set, and July 
churners as validation set in Fig. 5(c). 

From the plots we observe that, SPA consistently outperforms K-
Ties heuristic, in terms of the lift curve. This result agrees with 
our hypothesis that churn as a behavior is affected not only by 
strong ties between pairs of individuals (in particular, between an 
existing churner and a potential one), but more importantly, by the 
network topology and its local relationship with strong and weak 
ties.  There are a number of additional observations that are worth 
considering. First, we note that the 60-Ties heuristic performs 
much better than 90-Ties. In fact, we found that 60- Ties performs 
the best among all values of K (= 10, 20,…,90, 99) that we 
considered. Further, we observe that the relative differences 
between the lift curves obtained from SPA and 60(90)-Ties 
heuristics, increase noticeably as the observation set becomes 
larger. Intuitively, this points to the underlying social network in 
the call graph, which grows richer (denser) over time, and can 
then be exploited to reason about interesting behavioral processes, 
like churn. Finally, the lift curves saturate beyond a certain point 
simply due to the inherent limit imposed by the number of ties 
(and influences) that can be explored, by starting from a set of 
seed churners. 

Taking a closer look at the lift curves, we observe that SPA is 
generally successful in making correct predictions about 50-60% 
of future churners, by contacting a relatively small fraction (10-
20%) of the subscribers. At the same time, the numbers are not 
remarkable by themselves and leave scope for improvements. We 
remind the readers that the main objective of this study was to 
demonstrate to the operator, how ties in an underlying social 
network can be used to analyze and predict churn behavior in a 
telecom network. Going forward, we plan to extract additional 
CDR information (e.g. inter-region calls, SMS records, etc.), as 
well as, graph-theoretic properties (e.g. cliques, hubs, and 
authorities, etc.) that can be incorporated within the SPA to 
potentially enhance the lift curves.  

Hit Rate: We define hit rate to be the number of correct “churn” 
predictions, as a percentage of the total number of nodes labeled 
“churn”. A low hit rate implies a large number of “false 
positives”, and vice versa. We observe (Fig. 6) that the hit rate of 
all approaches usually reduces as the number of subscribers 
contacted increase. As expected, 60-Ties has a low hit rate, while 
SPA (with spreading factor of 0.72) performs best. What is 
interesting to note is that SPA, with d = 0.9, starts with a high hit 
rate (influence spreading rapidly through the network), but also 
suffers from rapidly diminishing returns as more subscribers are 
contacted. In fact, at one point, it falls even below 60-Ties. This 
also explains why very large values of d lead to inferior lift curves 
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in Figs. 5(a)-(c). Finally, as before, we note that hit rate of SPA 
can be potentially improved by incorporating other properties 
and/or additional information (from CDR data or other data 
sources) in the decision making process.  

6. DISCUSSIONS 
Our results demonstrate that a good prediction accuracy can be 
achieved by using a simple, diffusion-process that exploits social 
influences affecting churn. However, there exists scope for further 
improvements by either optimizing the SPA parameters and/or 
learning from similar flavored models. In particular, it is 
imperative to examine how well the notion of social influences 
can be captured in prevalent classification techniques.  In this 
section, we briefly discuss some of these issues. Most of these 
form a part of our future deliverables’ roadmap for the telecom 
operator. 

To start with, we revisit Fig. 2 that estimates the probability of a 
customer churning given on a single feature, i.e. the number of 
friends who have actually churned. While this is a single feature, 
we can derive a range of other features related to the individuals 
themselves (extracted from CDR data), as well as features related 
to social ties in the underlying network. By constructing a 
decision-tree model, one of the most common classification 
techniques, one can then estimate the probabilities of an 
individual to churn. Further, the predictions can be validated 
using churner information to compute a lift curve.  

Table 3 summarizes a broad range of features (attributes) that we 
have used in our experiments. As mentioned in the table, some of 
these attributes (i.e. usage attributes) are based purely on 
information extracted from CDR data. The second set of attributes 
(i.e. connectivity attributes) is based on the social ties of a 
(labeled) individual with existing (labeled) churners. Finally, the 
interconnectivity attributes are derived from the structural ties 
between these churners. We use the J48 classifier implemented as 
part of WEKA3 to obtain the predictions. The WEKA 
implementation of J48 uses information gain to select attributes 
while growing the tree. Our data set comprises of nodes in the 
March call graph, along with their attributes and “churn”/”no-
churn” labels. As is common, part of this data is used for training, 
after which we classify unlabeled data in the test set. 

Fig. 7 compares the lift curves obtained from a decision-tree 
based approach with SPA. Note that, the features described above 
are intentionally chosen to understand which ones among the 
activity/structural features are more relevant. For obtaining better 
accuracy, there are possibly other features that are of less  
importance for our current purpose. The results show that using a 
decision-tree technique with only usage attributes, i.e. DT-1, 
performs the worst. This simply implies that usage information 
based on prepaid CDR data is highly insufficient to perform any 
meaningful churn prediction. On the other hand, using the 
connectivity attributes along with usage attributes (DT-2), 
improves the lift curve by exploiting knowledge about direct or 
indirect relationships of an individual with the churner 
community. What is noticeable is that, adding the 
interconnectivity attributes, i.e. DT-3, significantly improves the 
performance of the lift curve. Note that, these features relate 
exclusively to the structure of the social network among the 

                                                                 
3 http://www.cs.waikato.ac.nz/ml/weka/ 

churners themselves – once again, corroborating the fact that 
churn depends not only on the relationships of an  individuals 
with churners, but more importantly, on the structural 
relationships that are present between them in a social  network 
setting. However, a traditional (label) attributes-based classifier 
loses out to SPA because it fails to adequately learn all the ties in 
the network neighborhood. To be more precise, links among the 
unlabeled data (or test set) can provide information that can help 
with classification. Similarly, links between labeled training data 
and unlabeled (test) data induce dependencies that should not be 
ignored. 

This leads us to believe that further gains in the prediction 
accuracy can be potentially achieved by applying link mining 
techniques, based on collective classification [20,21]. Link-based 
classification, unlike traditional classification, focuses on 
predicting the category (churn/no-churn) of a node, based not just 
on its attributes, but on the links it participates in, and on 
attributes of nodes linked by some path of edges. Going forward, 
it would be important to measure the efficiency (both in terms of 
complexity and prediction accuracy) of an iterative link-based 
classification algorithm (e.g. [21]) for churn prediction in a 
telecom call graph. We have started to investigate this as part of 
our current agenda, and plan to implement a pilot solution with 
the telecom operator in near future. 
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Figure 6. Hit Rates for SPA and K-Ties 
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Figure 7. Performance of Decision Tree-based approach 

compared to SPA 



Table 3: Feature set 

7. RELATED WORK 
Social network analysis (SNA) as a theme has been studied for 
years. There is a significant amount of work on mining a number 
of real world graphs (e.g. Internet, email,  citation graphs, and 
email graphs) that are formed by interactions amongst individuals 
of a social network.  One of the main areas of focus has been on 
degree power laws, showing that the set of node degrees has a 
heavy-tailed distribution [3, 4, 23]. Other properties include the 
small-world phenomenon, popularly known as “six degrees of 
separation”, which states that real graphs have small (average or 
effective) diameters [6, 18, 23]. With the web growing, much 
social network data is available and recent efforts try to leverage 
social ties for expertise location [15], viral marketing [7,16,27], 
and online social networking sites [2,18]. The well known link 
analysis algorithms, such as PageRank [4] and HITS [17], can 
also be viewed as social network analysis on the web. While 
initial studies were limited to identifying patterns in static graphs, 
more recent work has focused on studying the temporal evolution 
of real-world graphs. Some interesting time-varying properties, 
related to densification and diameter shrinkage, have been 
observed for a number of real-world social networks [18], There 
has been a considerable amount of work devoted to finding 
(connected) communities in graphs [6,9]. A particular area of 
interest has been to study how online communities evolve over 
time [2,18]. Based on the findings, a number of generative models 
have been proposed to generate graphs that resemble social 
communities (see [4,31] for a detailed review). 

 

 

Network models have been widely used to represent relational 
information (ties) between interacting units. The emphasis has 
been on random graph models [14] where nodes represent the 
actors and edges represent relationships between them.  Recently, 
generalized models [30] have been proposed to capture changing 
relationships over time.  In the same spirit, a number of models 
have been explored to explain how a new influence, idea or 
epidemic spreads in a social network using the relationships. [10] 
introduced a cellular automaton based model for simulating the 
spread of information in a social network. In [11], a model of 
information diffusion is proposed where a node gets converted 
when the fraction of its infected neighbors crosses a certain 
threshold. In a similar vein, [5] showed how actors can exploit the 
existence of structural holes in order to gain advantage in a 
competitive or cooperative scenario. The Bass diffusion model 
[22] and the game-theoretic model [26] are other notable efforts 
in this area. Recent research has concentrated on how to utilize 
diffusion-based models for  viral marketing [7, 29]. An 
approximate algorithm for solving the problem of “influence 
maximization” in this setting has also been proposed in [16]. 

Trust (distrust) also has an intuitive connotation in social 
networks. A person can only believe and propagate a piece of 
information conveyed to it by some other person depending on 
how much it trusts the source of information.  Trust management 
has been an important research issue stemming from the areas of 
cryptography and authentication [19]. Computation of trust 
metrics is central to the issue of trust management. A P2P-based 

Feature Set Feature Name 

Usage  Total Call Frequency 
Number of outgoing calls 
Number of incoming calls 
Total Call volume (seconds) 
Total Incoming call duration (seconds) 
Total Outgoing call duration (seconds) 
Number of unique incoming, outgoing edges 
Number of unique neighbors  
Number of incoming, outgoing calls to/from a different operator’s network 
Total Incoming call duration from a different operator’s network (seconds) 
Total Outgoing call duration to a different operator’s network (seconds) 
Total Incoming, Outgoing edges to/from a different operator’s network  
Total number of neighbors in a different operator’s network  
Call volume percentage (w.r.t total) to/from a different operator’s network 
Call frequency percentage (w.r.t total) to/from a different operator’s network 

Connectivity Total call frequency  to/from churner neighbors 
Total call volume to/from churner neighbors (seconds) 
Call volume and frequency percentages (w.r.t total) to/from a churner 
Maximum call volume, frequency to/from a churner neighbor 
Number of unique churner neighbors 
Percentage of churner neighbors (w.r.t total neighbors) 
Number of non-churner neighbors who have churners as neighbors 
Maximum call volume and frequency with any of these non-churners 
Call volume and frequency percentages (w.r.t total ) to/from these non-churners 

Interconnectivity Number of adjacent pairs in the set of churner friends i.e., connected by an edge 
Number of pairs in the set of churner friends connected by a path length of 2 
Number of pairs of churner friends connected by a path that only includes churners 
Total call frequency on edges connecting adjacent churner friends 
Total call volume on edges connecting adjacent churner friends 



reputation system called EigenTrust is presented in [14]. In [28],  
the issue of trust computation is addressed in a semantic web 
setting. [12] presents a broad taxonomy of schemes through which 
trust and distrust may propagate in a web of trust. Finally, a 
spreading-activation based technique is employed for computation 
of trust metrics in [32]. 

8. CONCLUSIONS 
Social Network Analysis (SNA) has emerged as an important 
paradigm for studying real-world, complex networks. In this 
paper, we provide substantial evidence that social relationships 
play an influential role in affecting churn in the operator’s 
network. We also demonstrate a simple, yet effective, diffusion-
based approach that exploits these influence to identify a 
significant fraction of churners in the network.  

Influences, in the current framework, are purely derived from call 
volumes between individuals. However, there are a number of 
graph-theoretic properties of nodes (edges) in the network that 
can be used to guide the diffusion process. For example, it would 
be interesting to study how the transfer function in SPA can be 
varied based on node/edge properties, and its effect on the lift 
curve. A related interesting problem is that of (budget-
constrained) churn prevention, where only a subset of potential 
churners is contacted, based on the value of the churner and cost 
of contacting the churner. Finally, there are a number of telecom 
analytics problems including customer segmentation, targeted 
advertising, and fraud detection, which are worth pursuing using 
SNA techniques. 
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