Hindawi

Computational Intelligence and Neuroscience
Volume 2018, Article ID 6973103, 10 pages
https://doi.org/10.1155/2018/6973103

Research Article

Hindawi

Social Touch Gesture Recognition Using Convolutional

Neural Network

Saad Albawi®,"? Oguz Bayat,l Saad Al-Azawi,” and Osman N. Ucan!

! Altinbas University, Graduate School of Science and Engineering, Istanbul, Turkey
2University of Diyala, College of Engineering, Diyala, Iraq

Correspondence should be addressed to Saad Albawi; saad.albawi@engineering.uodiyala.edu.iq
Received 19 March 2018; Revised 12 May 2018; Accepted 5 July 2018; Published 8 October 2018
Academic Editor: Eric Lefevre

Copyright © 2018 Saad Albawi et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Recently, social touch gesture recognition has been considered an important topic for touch modality, which can lead to highly
efficient and realistic human-robot interaction. In this paper, a deep convolutional neural network is selected to implement a social
touch recognition system for raw input samples (sensor data) only. The touch gesture recognition is performed using a dataset
previously measured with numerous subjects that perform varying social gestures. This dataset is dubbed as the corpus of social
touch, where touch was performed on a mannequin arm. A leave-one-subject-out cross-validation method is used to evaluate
system performance. The proposed method can recognize gestures in nearly real time after acquiring a minimum number of
frames (the average range of frame length was from 0.2% to 4.19% from the original frame lengths) with a classification accuracy of
63.7%. The achieved classification accuracy is competitive in terms of the performance of existing algorithms. Furthermore, the
proposed system outperforms other classification algorithms in terms of classification ratio and touch recognition time without

data preprocessing for the same dataset.

1. Introduction

Social touch is one of the basic interpersonal methods used
to communicate emotions. Social touch classification is
a leading research area which has great potential for further
improvement and development [1]. Social touch classifica-
tion can benefit human-robot interaction [2]. The identifi-
cation of the type (or class) of touch when a human touches
arobot’s artificial skin is a demanding yet simple question in
this area [3, 4]. A human can easily distinguish and un-
derstand social touch. However, an interface with which to
record social touch should be developed in human-robot
interaction [5-7]. Several attempts have been made to build
devices to classify human social touch and record them for
the available dataset [8-15]. This paper concentrates on the
existing studies that proposed a setup with which to measure
the pressure of touch of recorded data and recognize the
classes of social touch gesture. This setup, which is used to
record the corpus of social touch (CoST), is a type of artificial
skin that records the pressure applied on it.

Previous studies have aimed to identify the touch classes
using 14 predefined classes [5-10, 12, 16]. These social
gestures consist of grab, hit, massage, pat, pinch, poke, press,
rub, scratch, slap, stroke, squeeze, tap, and tickle, which were
taken from the Yohanan dictionary [16]. However, they do
not satisfy a fully real-time system. Note that even humans
need to wait a certain amount of time (e.g., in the order of
milliseconds) to understand social touch class [2]. Therefore,
this paper aims to classify social touch in a reasonably short
time. Consequently, the amount of data (number of frames)
on average is necessary to recognize social gestures.

Another issue is the avoidance of preprocessing, which
develops case dependency, and, as previously discussed,
prevents real-time performance (e.g., using an average or
any measurement which performs temporal abstraction)
[17]. This paper introduces a model for the social touch
recognition which avoids the data preprocessing step. Thus,
the study explores the question “How can social touch be
classified by providing raw input samples (sensor data) only
instead of a set of features?” Furthermore, the use of sensor
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data without preprocessing is a challenged task, such that
a powerful approach to efficiently classify gesture classes is
required.

To handle this huge amount of data, we use a robust tool,
which has become popular in the literature [18-20]. Con-
volutional neural networks (CNN) constitute multiple layers
of artificial neural networks that currently surpass classical
methods in performance, such as pattern recognition and
image and object detection, in other fields [21-23]. The key
points of the proposed method are as follows:

(i) High performance and accuracy, which out-
performs other recognition algorithms applied to
the same dataset

(ii) A CNN is used to recognize social gestures in an
end-to-end architecture

(iii) No preprocessing operations are required (except
rescaling pressure data between 0 and 1 by dividing
them to 1,023, which is the maximum measureable
pressure)

(iv) Classification operation starts after receiving
a minimum number of frames (frame length = 85)

(v) Social gesture class is predicted in nearly real time,
after 629 ms of the raw input samples (sensor data)

(vi) Gestures are classified even if the data sample is
given in the middle of the gesture

The remainder of this paper is organized as follows:
Section 2 gives a brief introduction to the CoST dataset and
convolutional neural network. Section 3 describes the ar-
chitecture of our proposed convolutional neural network.
Section 4 presents the results and discussion of the proposed
method. Section 5 summarizes the main findings and
proposes future research.

2. Background

This section introduces the CoST, describes the CNN, and
sets up the parameters used to build the network.

2.1. CoST Dataset. The CoST dataset provides recorded
social touch gestures from various subjects. The data frame
was collected using a pressure sensor installed in the
mannequin arm. The pressure sensor grid detectable pres-
sure ranges from 1.8 x 107 to >0.1 megaPascal (MPa) at an
ambient temperature of 25°C. In an 8 x 8 grid, which covers
the artificial skin, the sensor data were sampled at 135Hz
(frame per second). A single experiment collected from
a subject consists of an 8 x 8 x N matrix (where N is the
number of frames or frame length, as called in this paper).
The experiment was conducted on 31 subjects (24 males and
7 females). A total of 14 social gestures, namely, grab, hit,
massage, pat, pinch, poke, press, rub, scratch, slap, stroke,
squeeze, tap, and, tickle [16], were recorded. The subjects
were also asked to perform each gesture in gentle, normal,
and rough variations, with each variation repeated six times.
In total, each subject performed 252 gestures, and the CoST
collected 7,805 gestures from the subjects (few gestures are
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missing from the dataset) [8, 9]. Figure 1 shows the summed
pressure (y-axis) with respect to a period of time (x-axis)
for gestures for one subject (#1) who performs 14 gentle
variation gestures (data available on request, https://doi.
org/10.4121/uuid:5ef62345-3b3e-479c-8e1d-c922748c9b29).

Several studies have classified the CoST dataset using
various classification methods depending on distinct
number of features extracted from raw input data. The first
method was introduced by Jung et al. [8, 9] using the
Bayesian classifier and support vector machine (SVM) for
classification.

They used 28 features extracted from the dataset based
on mean and maximum pressure, pressure variability, mean
pressure per column and row, contact area, peak count,
displacement, and duration. Classification results were
evaluated using leave-one-subject-out cross validation. Re-
sults of touch gesture recognition ranged from 24% to 75%
(M =54%, SD =12%) for Bayesian classifiers and from 32%
to 75% (M =53%, SD=11%) for SVM.

Gaus et al. [12] elicited various types of features. They
classified the CoST dataset using random forest (RF) and
boosting algorithms. They extracted five sets of high level
features, namely, statistical distribution of pressure surface,
binary motion history, motion statistical distribution, spatial
multiscale motion history histogram on touch dynamics,
and local binary pattern on three orthogonal places on touch
dynamics). The models were firstly trained on the training
subset and evaluated using a 10-fold cross-validation pro-
cess. The results obtained were 59.5% for RF and 58.1% for
the boosting algorithm.

To achieve high accuracy for gesture recognition,
Hughes et al. [13] employed gesture-level features. They
selected deep autoencoders as the classification method. To
estimate the performance of models, they used 10-fold
stratified cross validation. They obtained 56% accuracy for
gesture recognition. Seven distinct features were extracted
from the dataset based on the maximum value of pressure
through touch, area of pressure on the sensor, and number
of gestures repeated at each touch.

Ta et al. [15] divided 273 features into 3 categories.
Global, which consists of 40 features, represents the overall
statistics of the gesture. Channel-based consists of 192
features and describes the spatial relationship among
a number of channels. The sequence of average pressure
consists of 41 features, which utilized the sequence of av-
erage pressure over all channels for each frame. A threefold
cross-validation method was used to evaluate recognition
performance. The gesture recognition accuracy obtained was
60.51% and 60.81% for SVM and RF, respectively.

Hughes et al. [24] applied three different methods of
deep learning for social touch recognition on CoST and
HAART dataset. For CNNs and CNN-RNNs, the CoST data
were split into windows with a window size of 45 samples
(333 ms) and a hop size of 15 samples (111 ms). The HAART
data were split into windows with a window size of 27
samples (500 ms) and a hop size of 9 samples (167 ms). In
order to efficiently train the CNN-RNN model, they limited
the number of windows in a training sample to 36, which
resulted in some of the gesture captures being split into two
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Figure 1: Continued.
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FIGURE 1: Gesture instances for each class for time (x-axis) and summed pressure (y-axis).

or three training samples. The HAART dataset had con-
sistent gesture durations, and each training sample consisted
of a complete capture. For the autoencoder-recurrent neural
network, they used 7 distinct features taken from [13]. The
classification ratios of convolutional neural network used
were 42.34% and 56.10% for CoST and HAART dataset,
respectively. The classification ratios for a convolutional-
recurrent neural network (CNN-RNN) were 52.86% and
61.35%. While for an autoencoder-recurrent neural network,
the classification ratios were 33.52% and 61.35%, re-
spectively. The three used methods of deep learning satisfy
a similar level of recognition accuracy and make gestures
predicted in a short time at a rate of 6 to 9 Hz.

Zhou and Du [25] compared the performance for var-
ious types of the deep-learning algorithms for gesture rec-
ognition on the human-animal affective robot touch
(HAART) dataset, which consists of 7 different gestures
(constant, no touch, pat, rub, scratch, stroke, and tickle). The
algorithms consists of neural network structures including
2D CNNs, 3D CNNs, and LSTMs. GM-LSTMs, LRCNs, and
3D CNNs are compared on the social touch gestures rec-
ognition task. However, the proposed 3D CNN approach
when applied on HAART dataset satisfies a recognition
accuracy of 76.1%, significantly outperforming the other
proposed algorithms. The number of convolutional layers
was set to 4. They found the configuration of convolutional
layers to 4 layers, the number of filters at each layer set as 16-
32-64-128, respectively. 3D CNNs achieved the best per-
formance, compared with 8-16-32-64 and 32-64-128-256.
The kernel sizes in every convolutional layers were all set to
be 3x3x3.

Lastly, Jung et al. [17] applied 4 distinct methods and 54
features, such as mean and maximum pressure, pressure
variability, mean pressure per row and column, contact area
per frame, which were extracted from the dataset. Data were
divided into training and testing sets, and leave-one-subject-
out cross validation (31 folds) was utilized to evaluate the
accuracy of the algorithms. Four methods from machine
learning were applied on the CoST dataset to evaluate its
performance and classification ratios. The Bayesian classifier
achieved 57% (SD=11%), decision tree algorithm 48%
(SD=10%), and SVM with RBF kernel 60% (SD=11%),
when they used a feed-forward network and trained the
network by using Levenberg-Marguardt optimization

method. Stopping criteria were set to a maximum of 1000
training iterations or six subsequent increases of the error on
the validation set. Because of memory constraints, the ar-
chitecture was set to two layers of 54 and 27 neurons. The
subjects were split into a train set 70% and a validation set
30%; the accuracy of classification was 59% (SD =12%).

2.2. Convolutional Neural Network. CNN is a type of arti-
ficial neural network that requires a convolutional layer but
can have other types of layers, such as nonlinear, pooling,
and fully connected layers, to create a deep convolutional
neural network [19, 22, 26, 27]. Depending on the appli-
cation, CNN can be beneficial [20]. However, it brings
additional parameters for training. In the CNN, convolu-
tional filters are trained using the backpropagation method.
The shapes of the filter structure depend on the given task.
For example, in an application such as face detection, one
filter can perform edge extraction, whereas another can carry
out eye extraction. However, we do not fully control these
filters in CNN, and their values are determined through
learning [19, 28-30]. This section briefly introduces the
CNN.

2.2.1. Convolutional Layer. In the convolutional layer,
multiple filters slide over the layer for the given input data. A
summation of an element-by-element multiplication of the
filters and receptive field of the input is then calculated as the
output of this layer. The weighted summation is placed as an
element of the next layer. Figure 2 shows that the filter
matrix (middle) is multiplied by the focused area (left
matrix), which is denoted by the colors blue and red as its
center. Result of this multiplication will be stored in the
corresponding place of the center of focus in the next layer.
We can then slide the focus area and fill the other elements of
the convolution result [22, 27].

Each of the convolutional operation is specified by stride,
filter size, and zero padding. Stride, which is a positive
integer number, determines the sliding step. For example,
stride 1 means that we slide the filter one place to the right
each time and then calculate the output. Filter size (receptive
field) must be fixed across all filters used in the same
convolutional operation. Zero padding adds zero rows and
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source pixel. The source pixel is then replaced
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Figure 2: Convolution layer slides the filter over a given input.
Output is the summation of an element by the element matrix
multiplication of the filter and receptive field (image from [23]).

columns to the original input matrix to control the size of the
output feature map [23, 27, 31].

Zero padding mainly aims to include the data at the edge
of the input matrix. Without zero padding, the convolution
output is smaller in size than the input. Therefore, the
network size shrinks by having multiple layers of convo-
lutions, which limits the number of convolutional layers in
a network. However, zero padding prevents the shrinking of
networks and provides unlimited deep layers in our network
architecture.

2.2.2. Nonlinearity. The main task of using nonlinearity is to
adjust or cut off the generated output. Several nonlinear
functions can be utilized in the CNN. However, the rectified
linear unit (ReLU) is one of the most common nonlinearities
applied in various fields, such as image processing [27, 32].
The ReLU can be represented as

0, if x<0,

ReLUZ{ (1)
x, if x>0.

2.2.3. Pooling Layer. The pooling layer roughly reduces the
dimension of the inputs. The most popular pooling method,
max pooling, represents the maximum value inside the
pooling filter (2 x2) as the output [33, 34]. Other pooling
methods, such as averaging and summation, are available.
However, the max pooling is a widespread and promising
method in the literature because it provides significant re-
sults by downsampling input size by 75% [30, 35].

2.2.4. Softmax Layer. Softmax layer is considered an ex-
cellent method to demonstrate categorical distribution. The
softmax function, which is mostly used in the output layer, is
a normalized exponent of the output values [36]. This
function is differentiable and represents a certain probability

of the output. Moreover, the exponential element increases
the maximum value probability [29]. The softmax equation
is given as follows:
et
0 =M L (2)
L€

where o; is the softmax output number i, z; is the output i
before the softmax, and M is the total number of output
nodes.

3. The Proposed Method

Our approach uses CNN and raw sensor data to classify
social gestures. The main challenge is finding an optimal
architecture for the CNN. Therefore, we first defined the
input and output structures of the network. We then pre-
sented the optimal architecture based on the results of
various experiments. Each recorded sample is an 8 x8x N
matrix. However, the frame length (N) is variable for each
sample because each subject uniquely carries out social
gestures. For an effective implementation, the input size
should be fixed. One process assumes the input size
according to the sample with the maximum frame length
and utilizes zero padding (at the end of recorded samples)
for those with short frames. However, this process provides
CNN with a huge input size (i.e., 512x 8 x 8) and is com-
putationally expensive. Another method that we imple-
mented is splitting the samples with a fixed length, which
means dividing each sample into subsamples. Whenever the
number of frames is not completely divisible by the given
subsample length, the reminder of the subsample which has
less frame number than the given one is padded by zeros.
The results will determine the optimal frame length. This
method poses the following advantages:

(i) The number of samples used to train the neural
network increases, which, however, depends on the
frame length. Short frame lengths denote additional
subsamples with less information, and vice versa.

(ii) We obtained subsamples derived from another part
of the main sample (i.e., from the middle or toward
the end of social gestures). Thus, our method can
recognize the social gesture class although it is
unspecified in the beginning.

(iii) The proposed methods in previous studies were not
designed for real-time classification. Rather, these
methods recognize class after the gesture is com-
pleted. By contrast, our approach recognizes the
gesture after receiving a fixed length of data.

The softmax function with 14 classes is the output shape
of our method. Although we employed the peak value in the
output node as the calculated class, we relied on the softmax
values to consider other highly probable hypotheses.

Our approach is similar to that used in CNN for video
classification or image processing. Image classification uses
color images, in which the input shapes are, for example,
128 x 128 x 3. The output shape of our social gesture rec-
ognition is 8 x 8 x N, where N denotes the frame length. In



CNN, The number of output feature map from the con-
volutional stage is equal to the number of used filters. So,
increase in the filters which are used at the convolutional
layer leads to increase in the output feature maps. Increasing
the frame length leads to increase in the input channels,
thereby adding convolution operations, which are compu-
tationally expensive as previously mentioned.

We cascaded the convolutional layers together to build
the classifier. Each convolutional layer consists of convo-
lution, nonlinearity, and pooling. We proposed three con-
volutional layers with one fully connected layer and, lastly,
softmax for our gesture recognition system. The meta pa-
rameters of our CNN architecture are presented in Table 1.

4. Results and Discussion

For touch gesture recognition, we used MATLAB (Release
2016a) and LightNet Toolbox as a versatile and purely
Matlab-based environment for the deep-learning framework
[37]. The number of epochs is set to 50 and batch size to 250.
The simple stochastic gradient descent (SGD) is used as
a learning function. However, the momentum term is set to
0.9 and learning rates are selected as 1, 0.5, 0.1, 0.05, and
0.001; in every 10 epochs, we search for a new learning rate
over a batch of data and we select the learning which gives
the minimum loss. Figure 3 shows the loss/objective as
a function of training epoch; red and blue curves indicate the
training and test loss values, respectively. A grid search is
performed to select the optimal number of frame length.

We ran the experiments for frame lengths of 5, 10, 15, 20,
..., 100 to compute the optimum frame length. Five random
subjects were selected for the hold-out validation test to find
the hyperparameters (due to the computationally expensive
experiments). These subjects” IDs are 5, 10, 18, 23, and 31.
The criterion for the optimal frame length is the average
cross-validation accuracy. The results for the subjects and
their average are shown in Figure 4. In summary, increasing
frame length improves the classification rate. Also, using less
than 30 frames, which are equivalent to 222 ms, leads to poor
performance. This number seems to add sufficient content to
the samples. However, our system performance was not
equivalent to 222ms, leading to poor performance. This
number seems to add sufficient content to the samples.

However, our system performance did not importantly
increase after 40 frames. The proposed system achieved the
maximum classification rate at 85 frames, which are
equivalent to 629 ms. Thus, this value is selected as the input
dimension of our CNN.

Results of the leave-one-subject-out cross validation for
all subjects ranged from 39.1% to 73% (M=63.7%;
SD =11.852%) as presented in Table 2, which outperforms
state-of-the-art results.

To further understand the results, Table 3 presents the
confusion matrix. The table shows few large nondiagonal
numbers, which indicate a major confusion in our proposed
method. In addition, mutual confusion exists in the fol-
lowing classes: grab and stroke, massage and stroke, hit and
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TaBLE 1: Meta parameters of our CNN architecture.

Layer Element Parameter Value
number
Input channels 8x8x85
Convolutional Size 3x3
] filter Stride 1
Pad 1
. Size 2x2
Max pooling Pad )
Input channels 64
Convolutional Size 2x2
’ filter Stride 1
Pad 1
. Size 2x2
Max pooling Pad )
Input channels 128
Convolutional Size 3x3
3 filter Stride 1
Pad 1
. Size 2x2
Max pooling Pad )
Input to layer 256x2x2
4 Fully connected Output from 512
layer
5 Softmax Output units 14
26— owperepoqy
24+ 1
22+ g
2L ]
1.8 1
1.6 + g
14+ i
1.2 1
1t ]
0.8 1 1 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40 45 50

FIGURE 3: The loss/objective as a function of training epoch.

slap, pat and tap, rub and squeeze, rub and scratch, rub and
press, and tickle and scratch.

Indeed, the confusion makes sense because these gestures
are similarly performed by humans. An interesting outcome is
that important confusion is lacking between massage and
grab despite both being confused with stroke. The same is true
for tickle and rub, which has a mutual confusion with scratch.
The performance of the proposed system is slightly different
based on the gesture class as explained in Figure 5. The least
accurate classification is for stroke and scratch. These two
classes have multiple mutual conflicts with other classes,
whereas the peak performance belongs to the hit class. We
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Classification rate vs frame length (performance of our CNN based on 5 selected subjects)
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FIGURE 4: Evaluation of the performance of CNN with three convolutional layers using five randomly selected subjects from the CoST
dataset. The figure shows improved performance with the increase in the frame length of the data.

TaBLE 2: The average leave-one-subject-out cross-validation result using our proposed CNN for the gesture recognition.

The validation method

Correct classification rate (CCR)

Standard deviation

Leave-one-subject-out

63.7%

11.852%

TaBLE 3: Results of our proposed CNN for gesture recognition presented as the accumulated confusion matrix of the leave-one-subject-out

cross validation for all subjects.

Gesture 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total
Grab (1) 552 2 50 1 12 3 12 4 9 1 146 1 7 808
Hit (2) 1 198 5 7 7 7 4 2 5 27 4 1 15 6 289
Massage (3) 35 1 1090 3 37 8 38 140 57 1 103 49 2 102 1666
Pat (4) 5 7 8 220 4 3 6 8 21 14 9 9 37 37 388
Pinch (5) 9 1 42 1 392 25 14 9 15 2 48 16 1 21 596
Poke (6) 7 2 8 3 24 296 21 3 11 1 9 6 11 22 424
Press (7) 32 1 36 2 18 17 461 32 10 2 21 14 5 14 665
Rub (8) 13 0 125 7 15 3 72 580 170 3 15 125 1 79 1208
Scratch (9) 9 2 70 13 11 9 17 73 523 4 8 35 7 188 969
Slap (10) 1 31 4 15 3 3 5 4 8 230 9 8 16 12 349
Stroke (11) 126 1 116 2 57 2 17 10 7 3 345 7 1 21 715
Squeeze (12) 4 1 75 7 23 2 8 94 41 2 4 591 3 76 931
Tap (13) 2 10 8 48 5 11 4 7 13 14 0 7 186 47 362
Tickle (14) 10 4 69 13 29 20 8 28 155 6 9 19 16 986 1372
Total 806 261 1706 342 637 409 687 994 1045 310 730 895 302 1618 10 742
CCR% 68.5 7586 63.89 64.33 6154 7237 671 5835 50.05 7419 4726 663 61.6 6093 63.71

compare the performance and results of our method with
other existing methods for touch recognition gestures.

In comparison with the previous work, we have
addressed more challenging tasks which is classifying
a gesture using its subsamples. Although we used less
number of samples, we did not use the whole length of the
sample for prediction. Moreover, in our approach with
subsampling, we have generated more data for training and
more tests for evaluation. A subsampling of 85 frames (with
10 frames sliding samples) generates about 15 times more
test sets which of course is more challenging.

The leave-one-subject-out cross validation is used to evaluate
the classification accuracy of CNN for CoST dataset. However,
other previous approaches utilized 21 subjects for training and 10
subjects for testing. Thus, training on the additional nine subjects
would likely result in improved performance. Table 4 illustrates
the comparison between the proposed and other classification
algorithms applied on the CoST dataset. The proposed algorithm
improves the correct classification ratio (CCR) without pre-
processing, which depends on the original input data instead of
feature extraction. However, this process introduces loss of
certain information from raw data.
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FIGURE 5: Accuracy of the proposed model in predicting each gesture class.
TaBLE 4: Comparison of features from other existing classification methods applied on same dataset.
Features # # . Accuracy  S.D.
. . #
No Reference extracted Subject Touch Features Classify method (%) (%)
Bayesian classifier 53 11
1 [8] Yes 31 14 28 SVM 46 9
Bayesian classifier 54 12
2 [9] Yes 31 14 28 SVM 53 1
3 [10] Yes 31 14 45 Neural network 54 15
4 [11] Yes 31 14 42 Random forests (RF) 55.6 13
5 (2] Yes 31 14 5 set Random for.ests (RF) 59
Boosting 58
6 [13] Yes 31 14 7 Deep autoencoders 56
SVM 60.5
4 (1] Yes 3 14 273 Random forests (RF) 60.8
Bayesian classifier 57 11
Decision tree algorithm 48 10
8 [17] Yes 31 14 54 SVM 60 1
Neural network 59 12
Raw data 8x8x45 CNN 42.34
9 [24] No 31 14 Raw data 8x8x45 CNN-RNN 52.86
7 Deep autoencoders 33.52
Our proposed Input data (raw data) Convolutional neural
10 method No 31 14 8x8x85 network 63.7 1185

5. Conclusion

In this paper, a system that classifies touch gesture in nearly
real time using a deep neural network is proposed. The CNN
is presented, which is considered a good feature extractor
algorithm. The CoST dataset was used to train our CNN for
various classes. Results showed that our method performed
better compared with the previous work based on leave-one-
subject-out cross validation for the CoST dataset.

The proposed approach poses two benefits compared with
those in the existing literature. First, the proposed method
does not need data preprocessing or manual feature extrac-
tion and can be applied end-to-end. Second, this method can

recognize a class after receiving a minimum number of
frames. This minimum number of frames can be provided by
the CoST dataset using grid search. Meanwhile, the proposed
approach also has certain limitations. First, CNN perfor-
mance is affected by the size of the input frame. The smaller
the size of the frame (8 x 8 pixels), the more negative the effect
on CNN performance because CNN behavior reduces the size
of input data in the subsequent layers. Thus, zero padding for
rows and columns of a frame is utilized after convolutional
operation to repair the lost frame size before pooling oper-
ation. Second, increasing the number of filters used in con-
volutional operation improves CNN performance. However,
the time consumed to train the network will be increased.



Computational Intelligence and Neuroscience

Data Availability

The data used to support the findings of this study are
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