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ABSTRACT
Touch is a primary nonverbal communication channel used
to communicate emotions or other social messages. A va-
riety of social touch exists including hugging, rubbing and
punching. Despite its importance, this channel is still very
little explored in the affective computing field, as much more
focus has been placed on visual and aural channels. In this
paper, we investigate the possibility to automatically dis-
criminate between different social touch types. We propose
five distinct feature sets for describing touch behaviours cap-
tured by a grid of pressure sensors. These features are then
combined together by using the Random Forest and Boost-
ing methods for categorizing the touch gesture type. The
proposed methods were evaluated on both the HAART (7
gesture types over different surfaces) and the CoST (14 ges-
ture types over the same surface) datasets made available
by the Social Touch Gesture Challenge 2015. Well above
chance level performances were achieved with a 67% accu-
racy for the HAART and 59% for the CoST testing datasets
respectively.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation]: User
Interfaces; I.2.1 [Artificial Intelligence]: Applications and
Expert Systems—Touch

Keywords
Social Touch, Touch Gesture Recognition, Touch Features

1. INTRODUCTION
∗Corresponding author.

Touch is an important channel for affective communication
and experience, as such interactive embodied technology
should be endowed with the capabilities to interpret it. De-
spite this growing interest in various disciplines, and clear
opportunities for affective-touch aware technology, this af-
fective modality is still very little explored in the affective
computing community where the focus has been on other
affective modalities ( [44] [43] [24] [2] [33] [34]). The Social
Touch Gesture Challenge 2015 is timely attempting to stim-
ulate interest and lead to the development of social touch
automatic classification systems as the community has done
for the other modalities. This paper aims to contribute to
it by proposing ways to describe touch gesture types (e.g.,
tapping, caressing) and methods to automatically categorize
them.

Humans communicate emotions and other social messages
through touch. We explore and appreciate objects through
touch. The emerging understanding of the physiological and
neural mechanisms at the basis of affective touch [9],[40] has
led to a growing interest in investigating how we communi-
cate or express affect through touch. Studies on multimodal
communication, have shown that touch amplify the intensity
of an emotion conveyed by the face and through the voice
[25]. Burgoon [5] showed that touch itself can convey more
complex social feelings such as trust and affection. Herten-
stein et al. [18] [17] contributed to this body of work by
showing that through touch we do not only communicate
the intensity of an emotion, but also its valence and that
we are able to discriminate between at least nine discrete
emotions from touch behaviour alone.

In the field of Human-Computer Interaction, touch has been
explored as a way to build intimacy and facilitate distance
relationships. For example, Park et al. [31] have shown that,
when given an haptic channel, people develop haptic codes
to communicate at distance with their partners. In human-
robot interaction, social touch has been shown to increase
bond and trust in various therapeutically applications ( [35]
[36] [20]). In the commercial and design settings, [1] has
shown that we use different types of touches not only to un-



derstand the characteristics of an object (textile in this case)
but also the affective sensations it provokes in us. This is
further supported reported in [32], where the authors has
shown that, during creative design sessions, designers use
affective touch to stimulate their creative processes. They
also discuss how designers observe the hands of their cus-
tomers touching a product to understand what they feel. In
more general terms, [21] and [3] discuss the importance and
the possibilities that affective touch offers to evaluate the
user experience in human-computer interaction contexts.

Initial work towards building systems for the automatic de-
tection of affective touch are summarised in Gao et al. [13].
Through their study, the authors also shows that the kine-
matics of strokes during a touch-based computer games on
smartphone allow the detection of how a player feels with
very high performances. However, each of these works focus
on one touch type at the time (e.g., tapping, stroking). Dis-
criminating between different touch types is however very
important, as shown by Hertenstein [17]. In addition, for
affective and social touch to be ubiquitous, it is important
that the ability to classify it is independent of the type and
shape of a surface being touched. This has become very crit-
ical as embedding touch sensors in any type of mobile sur-
face is becoming achievable at a relatively low cost. Hence,
it is mandatory that this channel is investigated beyond the
flat surface of touch-based displays. The Social Touch Ges-
ture Challenge 2015 answers to these needs by providing
two touch behaviour datasets: the ‘Human-Animal Affec-
tive Robot Touch’(HAART) dataset [10] and the ‘Corpus of
Social Touch’ (CoST) [23]. These datasets provide a wide
range of type behaviour on surfaces of different shapes and
consistencies embedded with pressure sensors. Our paper
responds to this challenge by proposing a way to describe
the types of touch gestures tracked by the sensors and by
proposing an ensemble of machine learning methods to dis-
criminate between the different types of touch behaviour.

The rest of the paper is organized as follows. Section 2 pro-
vides an overview of related works. Afterwards, Section 3 il-
lustrates the methodology of our proposed approach includ-
ing the description of feature sets and classification methods.
Section 4 presents the experimental results on the challenge
datasets. The possible influencing factors for different per-
formance indicators are discussed in Section 5 together with
future directions.

2. RELATED WORKS
Human-Robot interaction is possibly one of the more active
areas where researchers have been investigating how to cre-
ate touch sensing capabilities. A typical approach is to cover
a robot with an artificial skin that simulates human touch
sensory system [8] [30] [42] [37] [39]. An indirect way to
give robots the capability to sense touch is instead to embed
them with sensors that measure temperature, proximity and
pressure [41] [19] [29] [46] [7] . Works using these two types
of approaches are discussed below.

The earliest work on artificial skin is in 1999, where a robot
was covered with gridded pressure-sensitive conductive ink
sheets . Five different touch gestures (‘pat’, ‘scratch’, ‘slap’,
‘stroke’ and ‘tickle’) were performed on the sensor sheet.
Absolute pressure values and temporal difference between

pressure values were used as features to discriminate be-
tween these different types of touch. Using K-Nearest Neigh-
bor classification method, it was possible to discriminate be-
tween ‘slap’, ‘pat’ and ‘scratch’ by simply using contact area
and absolute pressure values. For more similar gestures of
‘stroke’ and ‘tickle’, both temporal difference and contact
area were instead needed and the Fisher Linear Discrimi-
nant classification method [30] was used. These approaches
led to an overall accuracy of 60%.

Silvera-Tawil et al [42] developed further the concept of ar-
tificial skin by using the principle of electrical impedance
tomography (EIT). This innovation enabled to cover larger
areas of a robot and allowed to extract information such
as location, duration, displacement and intensity of touch.
‘pat’, ‘push’, ‘stroke’, ‘slap’ and ‘tap’ gestures were investi-
gated and the LogitBoost algorithm was used for classifica-
tion purpose. The overall accuracy reached on average 91%
for individual participant, but decreased to 74% when mod-
elling multiple participants together due to the variation of
touch patterns between individual participants. Individual
variability was also observed in Gao et al. [13] in terms of
stroke kinematics during touch-based games. In a follow-
up study, Silvera-Tawil et al [37] successfully implemented
an artificial skin to cover the arm of a full-size mannequin.
Increasing the number of touch gesture by adding ‘pull’,
‘slap’ and ‘squeeze’, they compared the classification accu-
racy obtained with the LogitBoost algorithm (71%) with
human recognition (90%). Further experiments were shown
in [38] by interpreting social touch on same artificial skin.
Up to 90% accuracy were achieved using Logitboost algo-
rithm for both emotions and social messages, similar with
human recognition.

The second approach simulates touch perception capabili-
ties by using sensors. This approach has been extensively
used in social robotics: Shibata’s baby seal Paro [35] [36],
SONY’s dog, Aibo [12] [11], Stiehl’s teddy bear the Huggable
[41], Saldien and Goris’s elephant-like creature Probo [15]
[14], and the latest one is a furry artificial lap-pet called
Haptic Creature [6] [46] [10]. Apart from robot-animal like
form, other types of interface such as Emoballon [29], TaSSt
project [19] can enable remote communication. We cover
below some of the more significant differentiating factors in
relation to these robots or interfaces.

The Huggable [41] is a robotic companion with the form of
a teddy bear, equipped with a combination of temperature,
electric field, and QTC force sensors intended to facilitate
affective haptic communication between two people. Nine
touch gestures (‘contact’, ‘pat’, ‘pet’, ‘poke’, ‘rub’, ‘scratch’,
‘slap’, ‘squeeze’ and ‘tickle’) were performed on an arm of
the robot, and features such as change in direction of motion,
average sensor value and the number of sensors active among
others, were extracted from the sensors. By using supervised
neural network as classification method, it was found that
only ‘slap’ gesture were not well classified. This was due to
delays in the sensor reading during ‘slap’ gestures as these
gestures are generally very fast.

Probo [15] [14] is an elephant-like social robot equipped with
a large variety of sensors. Probo can recognize whether it
is being hugged, scratched, or hurt. The robot is used to ad-



Figure 1: Overview of the proposed social touch ges-
ture recognition system (a) CoST (b) HAART (c)
SD (d) BMH (e) MSD (f) SMMHH (g) LBPTOP
(h) Random Forest (i) Boosting.

dress anxiety in hospitalized children. Similarly, Paro [35] [36],
the famous robot seal, responds to being touched, differen-
tiates between being stroked and hit, and tries to amend its
own behaviour accordingly, repeating actions that have been
rewarded with stroking, and avoiding actions that have led
to being hit. The Haptic Creature, developed by Yohanan
and his colleagues [45] [46], is a furry lap-sized social robot
that communicates with the world through touch. By ex-
pressing itself through ear stiffness modulations, breathing
rate, and purring patterns, the Haptic Creature aims to
create a comforting experience through touch-based inter-
actions by sensing and responding to human touch. The
first experiments with the Haptic Creature investigated the
recognition of four touch gesture types - ‘pat’, ‘stroke’, ‘slap’,
‘poke’- by attaching force sensitive resistors all over its body
[6]. These four gestures were differentiated with an average
of 77% accuracy, depending on the sensor density of where
it was touched.

Taking one step further, Yohanan and Maclean [46] exam-
ined how humans express their feelings for the Haptic Crea-
ture by means of touch gestures. Based on these reports,
Yohanan and MacLean compiled a touch dictionary, also
called the Yohanan’s dictionary. Their findings inspired [10]
and [23] to create two datasets containing labelled pres-
sure sensor data of social hand touch gestures: HAART and
CoST. The aim of these datasets is to challenge the creation
of automatic affective touch classification systems by provid-
ing a large variety of touch behaviour types and kinematics
as well as surfaces of different shapes and consistencies.

3. METHODOLOGY
This section introduces the two datasets of touch types used
in this study, the set of features proposed to describe the
touch instances and the methods to classify them. The over-
all system is shown in Fig 1.

3.1 Touch Gesture Capture

Table 1: HAART dataset: 7 touch gestures with
different substrates and covers.

Substrate Cover Gesture
CURVE Fur constant, no touch,
FOAM Long pat, rub, tickle,
NONE None scratch, stroke

Table 2: COST dataset: 14 touch gestures.
1 2 3 4 5 6 7

grab hit massage pat pinch poke press
8 9 10 11 12 13 14

rub scratch slap stroke squeeze tap tickle

This research is based on the two datasets provided by the
Social Touch challenge 2015: HAART and CoST.

3.1.1 HAART dataset
HAART [10] contains 7 touch gestures, performed by 10 sub-
jects on an 8-by-8 grid of pressure sensors, where each sensor
is approximately 1 square inch wide. The touch behaviour
was recorded at 54 Hz with 64 sensors of data cell per frame.
The sensors return integer values ranging between 0 and 972.
Each subject performed each gesture under different combi-
nations of substrates and different cover conditions with the
sensor lying between the substrate and the surface cover.
These are summarized in Table 1.

3.1.2 CoST dataset
CoST [23] contains 14 types of touch gestures (see Table 2).
The touch gestures were performed by 31 subjects on a 8-
by-8 grid of pressure sensors wrapped around a mannequin
arm. The gestures were recorded with a frame rate of 135
Hz with 64 channels per frame. The values obtained from
each channel are integers ranging between 0 and 1023. Each
participant performed each gesture 6 times with 3 variations:
gentle, normal and rough. More details on the data can be
found in [23].

3.2 Touch Feature Extraction
The original recording of the touch sensors provided by the
Social Touch Gesture Challenge 2015 needed to be trans-
formed into high-level features, to gain more meaningful
descriptions of the touch behaviour. The aim is to de-
velop general features that are as independent as possible of
the surface considered and of the kinematics of the gesture
type. Parameters tuning is used to optimize their discrimi-
native power to the different recording settings used for the
two dataset but not between surfaces within the HAART
dataset. Five sets of features are proposed.

3.2.1 Statistical distribution (SD) of pressure surface
We aimed to identify how much surface area (i.e., the num-
ber of sensor cells) is either not touched, touched (i.e., we
are sure the area is touched and it is not noise) or touched
with high pressure. The values used to capture these three
conditions are represented in Table 3. For the no-touch and
high-pressure conditions, we computed two features for each
dataset: one using values computed at gesture level and one
using values computed at frame level. For the touched con-
dition, the median pressure value was used as a threshold



Figure 2: An example of a sensor area distribution
feature for the ‘touched’ condition for a ‘grab’ in-
stance using the MATLAB function histcounts and
the relevant parameters listed in Table 4.

indicating that the surface had been touched. In the case of
the CoST, an analysis of the data, revealed that a pressure
value of 100 was also a good threshold for capturing when
the surface had been touched.

For each gesture instance and for each pressure value/range
(Table 3), we computed the underlying distribution of the
number of sensor cells per frames having such value/range.
The MATLAB ‘histcounts’ was used to this purpose. In or-
der to normalize the length of these features within a dataset
(given that gestures had different frame numbers), appro-
priate bin widths and edges (see Table 4) were set to fit all
instances. These parameters were estimated using the same
Matlab function. An example of resulting feature (repre-
sented by a histogram) is provided in Fig 2.

Table 4: Parameters computed for the MATLAB
function ‘histcount’

CoST HAART

bin bin edges bin bin edges
width leading, trailing width leading, trailing

hnotouch 1 -0.5, 11.5 5 -0.5, 55.5
htouched 10 -0.5, 80.5 5 -0.5, 65.5
hhighpre. 10 -0.5, 100.5 5 -0.5, 55.5

3.2.2 Binary Motion History (BMH)
This set of features were used to capture the ‘shape’ of a
gesture by computing a binary motion history (BMH) for
each gesture instance. For each instance, an 8 by 8 matrix
representing the sensor grid is created. A cell of the ma-
trix is set to 1 if throughout the gesture instance, the cor-
responding sensor cell was touched at least once with high
pressure (CoST: pressure >= (maximum − 100); HAART:
pressure >= (maximum − 5)), 0 otherwise. Fig. 3 shows
examples of BMH for CoST gestures: ‘grab’, ‘pinch’, ‘poke’,
‘rub’, ‘tickle’, and ‘pat’ instances (in order from left to right).
These examples illustrate how the BMH features provide an
intuitive description of the different shapes from the types
of the various gestures.

3.2.3 Motion statistical distribution (MSD)
Twelve statistic features are extracted from each sensor se-
quence F = (f1, f2, · · · , fL) including minimum, maximum,

Figure 3: CoST dataset: Binary Motion History im-
ages: (from Left): Grab, Pinch, Poke, Rub, Tickle,
and Pat.

mean, first quartile, median, third quartile, area, total varia-
tion, interquartile range, variance, skewness and kurtosis on
the changing information for each sensor. ‘L’ is the number
of the frame. ‘area’ is the sum of all values of each sensor
in all frames; ‘total variation’ is computed as the sum of
changes in values for each sensor in all frames. The num-
ber of frames for HAART dataset is fixed as 432 frames,
but the number of frames for CoST dataset varies between
instances. The extracted features are based on the whole
gesture movement of each sensor independently of the num-
ber of frames.

3.2.4 Spatial Multi-scale Motion History Histogram

(SMMHH) on touch dynamic
In order to study the touch dynamics of the recording, the
data was also treated as a video. On each frame, 8-by-8
sensors were treated as 8-by-8 pixels. Motion History His-
togram (MHH) is a method used for temporal-based motion
analysis, detecting pixel movements from a temporal domain
and summarizing them as patterns in a spatial domain. This
method was first developed for human action recognition by
Meng et al.[27] to discriminate between several motion ges-
tures such as walking, boxing, jumping etc. (for further
details see [26] and [28]). A variation of the MHH method,
called 1-D Motion History Histogram, was suggested by Jan
et al. to apply this concept onto a 1-dimensional feature
space [22], which looks for binary patterns within the fea-
ture vector sequence.

We propose a new variation to the original Motion His-
tory Histogram (MHH) algorithm, with two concepts that
have been applied to alter the MHH feature. The first con-
cept is the Multi-Scale Motion History Histogram (MMHH)
achieved by introducing a new dimension to MHH and by
skipping a fixed range of 1 to 5 frames during the motion
detection process. By comparing frame n with n+ 2 : 6 in-
stead of n+ 1, the motion is greatly amplified by the visual
differences across the short time range, resulting in captur-
ing motion at different speeds. This gives a more dynamic
feature than the original MHH feature, providing a different
viewpoint for each gesture as shown in Fig. 4.

The second concept uses the average spatial-pooling on the
reshaped data. This allows to extract the motion informa-
tion from the different scales in a similar way of the convo-
lution neural networks of deep learning.

For the touch challenge, we applied Spatial Pooling three
times, producing 4 videos (including the original one) of:
8x8, 4x4, 2x2 and 1x1 sensors resolutions per gesture. On
each of the videos we then extract the Multi-Scale MHH fea-
ture with appropriate thresholds. All the features produced
are then resized and concatenated together making a feature



Table 3: Pressure values per datset
CoST HAART

At frame level At gesture instance level At frame level At gesture instance level
no touch = min. pressure = min. pressure = min. pressure = min. pressure
touched – >= median pressure; – >= median pressure

>= 100
high pressure >= (max. pressure - 100) >= (max. pressure - 100) = max. pressure = max. pressure

Figure 4: Overview of the Spatial Multi-Scale Mo-
tion History Histogram (SMMHH) on Touch Dy-
namic. Average pooling is applied on the video data
and then the Multi-Scale Motion History Histogram
is used to capture the motion data across different
scales of time.

vector with the dimension of:

4∑

i=1

(S ×M × Pi) = 2125 (1)

where i refers to each of the Spatially pooled videos, Pi is
the total number of pixels in a frame for each video i, S = 5
is the size of the Multi-Scale dimension, which has been set
from 2:6 and M = 5 is the MHH pattern sequence size [27].

3.2.5 Local Binary Pattern on Three Orthogonal Place

(LBPTOP) on touch dynamic
Similar to the SMMHH feature where touch recording data
was treated as a video, the popupar video dynamic feature
LBPTOP [47] is extracted.

3.3 Touch Gesture Recognition
One of the goals of this challenge was to build automatic
social touch gesture recognition systems. Due to multiple
distinct feature sets, ensemble learning methods were cho-
sen in order to combine these features in an optimised way.
Within ensemble learning, Random Forest [4] and Boosting
methods have been selected for the classification process.

3.3.1 Random Forest
The Random Forest (RF) algorithm was selected given its
popularity and its generally good performance in solving
classification problems. The main idea behind this algorithm
is to form a forest by training and combining different kinds
of decision trees, and the final classification result is decided
through a voting over these trees. The method combines the
‘bagging’ idea and the random selection of features. Detailed
information can be found in [4].

3.3.2 Boosting Algorithm
The Boosting algorithm is another ensemble learning method
that can convert a weak learner into a strong one. It gives
different weights to different features and combines all dis-
tinct features together in an optimized way. The boosting
implementation algorithm here is called Stage-wise Addi-
tive Modelling [16]. The Boosting algorithm was used here
is similar to that of Adaboost, but the difference is in how
the error rate is computed.The Boosting algorithm gives to
erroneously classified data more weight.

4. EXPERIMENTAL RESULTS
The experiments adhered to the Social Touch Gesture Chal-
lenge 2015 protocol using the training and testing subsets
provided. The models were firstly trained on the training
subset and evaluated using a 10 fold cross-validation process.
This process was also used for optimizing the parameter set
for the feature extraction and for building the models. Once
the optimization was completed, the parameters were fixed
and the models were tested on the testing subsets by the
challenge’s organizer (i.e., the labels of the testing datasets
were unknown to us). Both HAART and CoST datasets
were used.

The Random Forest and the Boosting learning methods were
used for the gesture recognition in the testing. For RF,
1000 trees were used. In the Boosting implementation, the
Random Forest was used as the weak leaners. 500 iterations
were used in all experiments. Both are implemented using
Weka software. Accuracy was used as performance measure,
that is the percentage of testing samples correctly classified
with respect to the true class.

4.1 HAART
In the training subset, only the data from 7 subjects out of
10 subjects were given for a total of 578 gesture instances.

Table 5 shows the experimental results for both the individ-
ual feature sets and for the combination of all the feature
sets. In the training sets, the average results of 10 fold cross
validation were being used as an evaluation purpose to take
advantage of all available data. When considering only in-
dividual features, MSD, SMMHH and LBPTOP obtained
higher recognition rates. However, the combination of all
the features led to significant improvement for the training
subset, giving 76.7% accuracy on RF and 77.7% for Boost-
ing. Taking an advantage on combination of features, the
networks were trained on all sets of training data and test-
ing on separate sets of testing data. The effect of modelling
all training data together decreases accuracy to 66.5% for
RF and 64.5% for Boosting. However, despite the drops
in recognition accuracy in testing data, it is still indicate
consistent results across both classifiers.



The confusion matrix in Table 6 and Table 7 respectively, al-
lows us to compare the results of each of the touch gestures.
Despite the decreasing accuracy in testing data, both clas-
sifiers still able to model selected gestures successfully. For
example, it appears that gesture ‘constant’ and ‘no-touch’ is
easy to recognize by both classifier, while ‘pat’ is mainly rec-
ognizable in RF but not in Boosting and ‘stroke’ is mainly
recognizable in Boosting but not in RF. From all the gesture
presented, ‘tickle’ is very difficult to classify, showing obvi-
ous confusion with scratch, for both classifier. It is partly
because these two gestures performed in a similar manner,
making it harder for the features having clear distinction
between these two. The choice of RF as the best reported
models are consistent with [10], making RF model is signif-
icantly better on combined datasets, as reported in [10]

The results for the testing set1 are illustrated by the con-
fusion matrices for both Random Forest and Boosting clas-
sifiers on the combined features presented in Table 6 and
Table 7 respectively.

Table 5: HAART dataset: Gesture recognition rates
on different feature sets

Data Set Feature Set Random Forest Boosting

Training

SD 36.17% 33.50%
BMH 22.67% 22.34%
MSD 54.82% 53.61%

SMMHH 65.66% 60.84%
LBPTOP 53.01% 54.82%
Combined 76.65% 77.67%

Testing1 Combined 66.53% 64.54%

Table 6: HAART testing dataset: Confusion ma-
trix for the Random Forest classifier with an average
recognition rate of 66.53%

constant notouch pat rub scratch stroke tickle
constant 34 0 0 0 0 0 0
notouch 1 36 0 0 1 0 0
pat 0 0 30 0 1 0 2
rub 0 0 1 16 2 13 0
scratch 0 0 3 17 26 3 24
stroke 0 0 1 2 0 18 3
tickle 0 0 1 1 6 2 7

Table 7: HAART testing dataset: Confusion matrix
for the Boosting classifier with an average recogni-
tion rate of 64.54%.

constant notouch pat rub scratch stroke tickle
constant 34 1 0 0 0 0 0
notouch 1 35 0 0 0 0 0
pat 0 0 19 2 2 0 3
rub 0 0 0 14 2 4 0
scratch 0 0 6 12 26 1 20
stroke 0 0 8 7 2 30 9
tickle 0 0 3 1 4 1 4

4.2 CoST
For the CoST dataset, the data from 21 out of 31 subjects
were provided for the training, and the remaining were used
1A mistake was found and corrected in post-hoc analysis.

Table 8: CoST dataset: Gesture recognition accura-
cies for different feature sets

Data Set Feature Set Random Forest Boosting

Training

SD 41.24% 41.31%
BMH 27.55% 28.88%
MSD 44.82% 44.93%

SMMHH 52.68% 52.56%
LBPTOP 45.65% 46.36%
Combined 64.52% 64.44%

Testing Combined 59.50% 58.19%

by the challenge organizers for the testing. There were a
total of 3524 and 1679 samples in the training and testing
set respectively. The results for both training and testing
experiments are shown in Table 8. Similar to HAART, com-
bined features gives higher accuracy in training data com-
pared to individual features. It yields 64.5% accuracy in RF
and 64.4% in Boosting. In the testing dataset, classification
of 14 gesture classes resulting achieved accuracy of 59.5%
using RF and 58.2% using Boosting, which is increase by
four percent than reported by Jung et al [23] (Bayes: 54%;
SVM: 53%), using same database. However, direct compari-
son is still arguable since Jung et al using leave-one-subject-
out cross-validation while our method using separate sets of
testing data for evaluation purpose.

The confusion matrix in Table 9 and Table 10 respectively
shows gesture such as ‘massage’, ‘pinch’, ‘poke’, ‘press’, and
‘stroke’ is easy to recognize by both of classifiers, having
large number of correctly classified gestures than the rest.
The most frequent confusion was between the following ges-
tures: ‘hit with slap’, ‘rub with scratch’ and ‘stroke; squeeze
with grab’. These findings resemble those previous reported
on this dataset [23].

5. CONCLUSION AND DISCUSSION
In this paper, we investigate how to automatically discrimi-
nate between different touch behaviour types that are char-
acteristic of social affective interaction. The HAART and
the CoST datasets were used for this investigation. They
consist of various types of touch behaviour (e.g., patting,
tapping) captured using multiple pressure sensors in a grid
setting integrated into different types of substrates. Five sets
of high-level features were proposed to provide a rich descrip-
tion of each touch gesture over time. Both individual feature
and combined features were evaluated using the training
dataset by cross-validations with the ensemble of learning
methods Random Forest and Boosting. Within these five
sets of features, the video based feature set achieved best
performance on both datasets; however, the combination of
all features led to better performances.

Whilst the results are well beyond chance level, various as-
pects could be further investigated. 1) The selection of the
features and their tuning process (e.g., thresholds) could be
optimized to the type of touch surface, i.e., its substrate
and its cover. 2) Feature selection could be done on each
set of feature in order to maximize its discriminative power;
3)Rather than using a low-level features fusion, models could
be built on each set of features separately and then fused at
decision level. This would allow a better exploitation of



Table 9: CoST testing datset: Confusion matrix for the Randon Forest classifier with a recognition accuracy
of 59.5%.

grab hit massage pat pinch poke press rub scratch slap squeeze stroke tap tickle
grab 84 0 3 0 3 0 13 2 0 0 57 0 0 0
hit 0 57 0 19 0 3 0 0 0 27 0 0 22 0
massage 1 0 88 0 1 0 1 13 8 0 1 0 0 1
pat 0 0 0 41 1 1 0 0 0 0 0 1 18 5
pinch 1 2 4 2 91 4 9 0 1 0 8 3 1 5
poke 0 10 0 4 9 104 5 0 0 2 1 0 18 4
press 0 0 0 3 6 0 84 5 0 0 0 0 3 0
rub 3 0 5 0 0 0 0 37 1 0 0 13 0 0
scratch 4 0 12 2 0 0 0 23 72 0 0 2 0 29
slap 0 46 0 25 2 0 0 0 0 87 0 9 24 0
squeeze 26 0 3 1 7 0 7 4 2 0 52 0 0 0
stroke 1 0 3 2 0 0 1 27 10 0 0 80 0 2
tap 0 5 0 20 0 8 0 0 1 4 0 0 34 0
tickle 0 0 2 1 0 0 0 9 25 0 0 12 0 74

Table 10: CoST testing dataset: Confusion matrix for the Boosting classifier with a recognition accuracy of
58%.

grab hit massage pat pinch poke press rub scratch slap squeeze stroke tap tickle
grab 93 0 1 0 4 0 14 2 0 0 73 0 0 0
hit 0 71 0 24 1 1 0 0 0 42 0 0 29 0
massage 4 0 94 0 1 0 1 20 13 0 1 0 0 9
pat 0 1 0 52 2 2 0 0 1 0 0 1 23 6
pinch 0 1 3 3 83 4 4 0 1 1 6 1 2 3
poke 0 9 0 3 9 101 2 0 0 3 1 0 14 1
press 2 3 0 8 14 2 92 6 1 2 2 2 7 0
rub 3 0 5 0 0 0 0 28 3 0 0 9 0 2
scratch 2 0 5 1 0 0 0 17 53 0 0 1 0 15
slap 0 24 0 13 0 0 0 0 0 68 0 5 10 0
squeeze 16 0 4 0 6 0 6 3 1 0 36 0 0 0
stroke 0 0 5 2 0 0 1 32 15 0 0 94 0 5
tap 0 11 0 14 0 10 0 0 0 3 0 0 34 1
tickle 0 0 3 0 0 0 0 12 32 1 0 7 1 78

the different nature of the features and touch characteristics
each captures (e.g., its shapes and its dynamics). Finally,
whereas this work has focused on detecting touch types,
the next step would be to model their relation with the af-
fective or social message conveyed. This step will require
integrating the modelling of types behaviour with detailed
kinemtics [17, 13].
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