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Social training reconfigures prediction errors
to shape Self-Other boundaries
Sam Ereira 1,2✉, Tobias U. Hauser 1,2, Rani Moran 1,2, Giles W. Story1,2, Raymond J. Dolan 1,2 &

Zeb Kurth-Nelson1,3

Selectively attributing beliefs to specific agents is core to reasoning about other people and

imagining oneself in different states. Evidence suggests humans might achieve this by

simulating each other’s computations in agent-specific neural circuits, but it is not known

how circuits become agent-specific. Here we investigate whether agent-specificity adapts to

social context. We train subjects on social learning tasks, manipulating the frequency with

which self and other see the same information. Training alters the agent-specificity of pre-

diction error (PE) circuits for at least 24 h, modulating the extent to which another agent’s PE

is experienced as one’s own and influencing perspective-taking in an independent task.

Ventromedial prefrontal myelin density, indexed by magnetisation transfer, correlates with

the strength of this adaptation. We describe a frontotemporal learning network, which

exploits relationships between different agents’ computations. Our findings suggest that Self-

Other boundaries are learnable variables, shaped by the statistical structure of social

experience.
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H
umans tend to align their beliefs and values with each
other1–4, particularly if they are part of a common social
group5–7. Adopting another agent’s beliefs facilitates

social integration and enables exploitation of the other agent’s
knowledge about an environment8. However, representing
another agent’s beliefs without adopting those beliefs is equally
crucial for predicting the behaviour of others and engaging in
fluid social interactions9–12. It is necessary then to strike a
context-dependent balance between Self-Other distinction on the
one hand and Self-Other mergence on the other.

Humans revise their beliefs about the world by computing
prediction error (PE) signals, which compare internal predictions
with actual experiences of the environment13. There is evidence
suggesting that the brain can also simulate another agent’s pre-
dictive signals. Simulated reward prediction errors (RPEs) have
been observed in the medial prefrontal cortex (mPFC) of humans
engaged in observational learning14,15, explicit mentalising16,
social teaching17 and prosocial learning18. Beyond the domain of
reward learning, simulations of another agent’s sensory surprise
signals, have been observed in humans, using both functional
magnetic resonance imaging (fMRI)19 and magnetoencephalo-
graphy (MEG)20.

When simultaneously tracking one’s own beliefs and another
agent’s beliefs, the brain computes sensory PEs for each agent
using distinct agent-specific neural circuits, where the degree of
neural distinction predicts a behavioural Self-Other distinction20.
This means that neural representations of PEs contain informa-
tion, not only about events taking place in the environment, but
also about the identity of the agent who is modelling that
environment. If Self-Other distinction is indeed achieved by
representing computations in agent-specific circuits, one should
expect the agent-specificity of these circuits to adapt to changes in
social context. In other words, a high-level learning process
should enable the brain to reconfigure low-level learning signals
to be either more or less agent-specific, as a function of prior
social experience.

Here, we examine whether a Self-Other distinction is suscep-
tible to experience-dependent plasticity by training subjects on a
mentalising task with two social contexts. We show, using com-
putational modelling and fMRI, that when Self and Other share a
high number of concurrent experiences, there is a sustained
increase in the neural overlap between Self-attributed and Other-
attributed PEs. Conversely, when Self and Other share a low
number of concurrent experiences, there is a sustained reduction
in the neural overlap between Self-attributed and Other-
attributed PEs. This training manipulation also modifies Self-
Other distinction in a separate transfer task that does not involve
learning. We use quantitative MRI to show that the myeloarch-
itecture of ventromedial prefrontal white matter is associated with
this relearning of Self-Other boundaries and we also find evidence
that the ventromedial prefrontal cortex (vmPFC) directly tracks
the probability of sharing experiences with another agent. Finally,
we present results that suggest the mechanisms through which
Self-Other boundaries are acquired are also used in the non-social
context of intertemporal reasoning.

Results
Experimental set up. We trained subjects on a probabilistic false
belief task (FBT)20 with two social contexts (Fig. 1a). On each
trial, subjects received a sample from a Bernoulli distribution with
a parameter, p, that drifted across trials. They were tasked with
periodically predicting p or another player’s estimate of p, by
reporting a corresponding value on a continuous probability
scale. The other player had a false belief about p because they
received a corrupted stream of information (Fig. 1b), as follows.

On ‘privileged’ trials, the Bernoulli sample was visible only to the
subject. On ‘shared’ trials, the sample was visible to both players.
On ‘decoy’ trials, a false sample was delivered to the other player,
which the subject could see and knew was misleading. This design
results in belief trajectories for Self and Other that are essentially
uncorrelated (Fig. 1c and Methods). The other player was a real
person, playing a simplified version of the game (Methods).

Subjects played two separate games, each game with a different
other player, depicted by a distinct cartoon avatar. During
training with a ‘Hi-Share’ avatar, 50% of trials were ‘shared’. With
a ‘Lo-Share’ avatar 12.5% of trials were ‘shared’. During testing,
24 h later and concurrent with functional magnetic resonance
imaging (fMRI), subjects played with both agents again,
experiencing now 1/3 ‘shared’ trials with each agent. We
predicted that subjects would simulate the PEs of the other
agent, but also that the degree of experience-sharing in training
would determine the extent to which Self- and Other-attributed
PEs were neurally segregated. Thus, we predicted that, at test,
Self-Other distinction would be greater in the Lo-Share context
than in the Hi-Share context.

Behavioural adaptation of Self-Other distinction. We quanti-
fied performance by correlating subjects’ predictions of the Ber-
noulli parameter, p, with the true p used to generate the observed
outcomes (Fig. 2a). We were interested in whether any beha-
vioural differences would persist into the testing session, where
the Hi-Share and Lo-Share tasks were statistically identical.
Indeed, in the testing session subjects performed significantly
worse in the Hi-Share context [repeated measures ANOVA:
F(1, 39)= 6.76, p= 0.013]. We also observed an interaction
between context (Hi- or Lo-Share) and probe trial (Self or Other)
on performance [repeated measures ANOVA: F(1, 39), p= 0.023].
Specifically, performance in the Hi-Share context was impaired on
Self probe trials [paired t-test: t(39)= 2.96, p= 0.005] but not on
Other probe trials [paired t-test: t(39)= 0.15, p= 0.89].

We fit learning models (see Methods) to subjects’ choice
behaviour in order to assess whether disrupted Self-Other
distinction provided an explanation for the impaired performance
in the Hi-Share context. For example, a belief (B) update for Self
could be implemented as follows:

Btþ1 ¼ Bt þ αPEself þ δ 0:5� Btð Þ þ λPEother ð1Þ

Here a participant’s belief, Bt+1, about the Bernoulli parameter
is given by their belief on the previous trial, Bt, plus a prediction
error, PEself, based on Self-relevant information seen during the
trial, weighted by a learning rate, α. The third term implements a
memory decay, whereby beliefs drift towards chance level with
rate δ. The final term captures an inability to completely segregate
learning for Self and Other, such that belief updates for Self are
sensitive to the Other’s prediction error, PEother, governed by a
leak parameter, λ. A parallel belief update is also implemented for
the simulation of the Other’s learning. We tested variant models
of the form above with separate parameters for Self and Other, or
for ‘shared’ and ‘privileged’/‘decoy’ trials (see Supplementary
Table 2). All models had at least one learning rate (α) and at least
one decision temperature (τ). Some models included 1 or 2
memory decay parameters (δ) and some models included 1 or 2
Self-Other leak parameters (λ).

Behaviour in the Hi-Share context, in both training and testing,
was best explained by learning models that included a λ
parameter, whilst behaviour in the Lo-Share context was best
explained by models without λ. This parameter adds an
additional update to one agent’s belief that reflects the irrelevant
agent’s PE20. Thus, a Self-attributed PE is also used to update an
Other-attributed belief and vice versa, merging the belief
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trajectories for Self and Other (Methods, Supplementary Figs. 1–3).
The model that best explained behaviour in the Hi-Share task in
testing contained a single λ parameter, but multiple learning rates
(α) for different trial types. We found that α was higher for learning
on behalf of Other than for Self [paired t-test: t(39)=−2.27, p=
0.029] and therefore λ made a stronger contribution to Self-updates
than Other-updates. The difference in λ:α ratio for Self and Other in
the Hi-Share task, in testing, negatively correlated with the
difference in performance between Self and Other probe trials
[Spearman’s rank correlation: ρ=−0.45, p= 0.004] and so may
partially explain the interaction shown in Fig. 2a.

Fig. 2b shows a Self-Other merging effect induced by λ,
by visualising the correlation between model-derived Self-
and Other-attributed belief trajectories. A main effect of context
on Self-Other correlation was observed in both training
[repeated measures ANOVA: F(1, 39)= 21.7, p < 0.001] and
testing [repeated measures ANOVA: F(1, 39)= 3.8, p < 0.001],
with higher Self-Other correlation in Hi-Share than Lo-Share.
By simulating belief trajectories using different values of λ
we observed that λ was a strong determinant of this Self-
Other merging effect (Supplementary Fig. 3). The learning

models approximated the empirical data well and the
parameters were identifiable (Fig. 2a, c, d). The different types
of model were identifiable in a recovery analysis (Supplemen-
tary Fig. 4).

Behavioural training transfers to a perspective-taking task. We
next examined whether this training effect on Self-Other dis-
tinction generalises to a different cognitive domain. Subjects were
exposed to an adapted version of a visual perspective-taking
task21 before and after FBT training (Fig. 3a). Subjects were
required to process visual scenes either on behalf of Self or of
avatars who had restricted visual perspectives. All trials started by
asking the subject to adopt a perspective, either Self or Other.
This was followed by presenting the subject with a target pattern
and number. Finally, subjects were presented with a visual scene
with an avatar in the centre who saw only half of the scene. The
scene contained four patterns, some of which were identical to the
target pattern and some of which were distractors. Subjects had
three seconds to give a binary response, indicating whether or not
they saw the target number of target patterns, if adopting the
relevant perspective, Self or Other.
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Fig. 1 Experimental design. a Three-day experimental timeline. On day 1 subjects played an intertemporal choice task followed by a visual perspective-

taking task (see Fig. 3a). On day 2 subjects were trained on the false belief task shown in b, with two different social contexts. Here, the Lo-Share context is

represented by the female avatar and the Hi-Share context is represented by the male avatar. Subjects then played the visual perspective-taking task again

to measure transfer effects. On day 3 subjects were tested on the false belief task with concurrent fMRI. This time there were no statistical differences

between the two social contexts. b Trial structure of the probabilistic false belief task. The middle row shows what the subject sees on the computer

display. Each trial comprises a Bernoulli outcome on the bottom half of the display (pink or yellow), and an image on the top half of the display, which

indicates whether the trial is ‘privileged’ (blue), ‘shared’ (purple), or ‘decoy’ (red). Subjects were intermittently probed to report their estimate of the

Bernoulli parameter, p (Self-probe), or their estimate of the other agent’s false belief about p (Other-probe). c An example pair of random walks used to

generate a trial sequence for the false belief task. The trial sequence is designed to induce uncorrelated beliefs in Self and Other.
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Typically, in such tasks, subjects perform poorly if the avatar’s
visual perspective of the scene is incongruent with the subject’s21.
Our adapted task alternated between trials with the avatar from
the Hi-Share context of the FBT and trials with the avatar from
the Lo-Share context. Thus, subjects were required to distinguish
between the visual perspectives of Self and multiple Others.
Furthermore, in a third of trials, instead of seeing an avatar,
subjects saw an arrow in the centre of the scene. On these trials,
subjects were required to indicate whether or not the arrow was
pointing to the target number of target patterns. These ‘arrow’
trials, enabled us to quantify FBT training-related changes, over
and above non-specific repeat effects that were unrelated to FBT
training (Methods).

We quantified behaviour with drift rate parameters from a
drift–diffusion model fit to response time and accuracy data (see
Methods), where a higher drift rate indicates faster and more
accurate responses22. Empirical and simulated data are shown in
Supplementary Fig. 6. We found higher drift rates on congruent
compared to incongruent trials (Fig. 3b) at both baseline [paired
t-test: t(45)= 7.6, p < 0.001] and transfer [paired t-test: t(45)=
6.7, p < 0.001]. We also observed a main effect of avatar on
corrected drift rate change (Methods) from baseline to transfer

[repeated measures ANOVA: F(1, 45)= 7.4, p= 0.009], with
performance improving on trials with the Lo-Share avatar and
worsening on trials with the Hi-Share avatar (Fig. 3c), consistent
with increased and reduced Self-Other distinctions, respectively.

The training task (FBT) required subjects to attribute learning
signals to Self and Other but the transfer task required subjects to
attribute visual perspectives to Self and Other, with no learning
involved. These results suggest that during FBT training, subjects
learned about the relationship between computations of Self and
Other, in a manner specific to the identity of the other agent, but
invariant to the computations being attributed to that agent.

Adaptation of neural Self-Other distinction. In addition to
behavioural effects, our hypothesis predicts that the neural seg-
regation of Self- and Other-attributed computational signals
should change with experience. We first localised unsigned PE
signals in the brain, collapsing over the Hi-Share and Lo-Share
contexts. Using both mass-univariate and searchlight multi-voxel
pattern analyses (Methods), we found Self- and Other-attributed
sensory PEs in extrastriate, parietal and supplementary motor
cortices (Fig. 4a, Supplementary Fig. 7, Supplementary Table 1).
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Fig. 2 Behavioural training induces sustained changes in Self-Other distinction ability. a Performance in FBT, split by session (train or test), context (Lo-

Share or Hi-Share) and probe trial (Self or Other). In both sessions, there was a main effect of context with worse performance in the Hi-Share context.

Large white circles show the behaviour predicted by the winning models. n= 40 independent subjects. Repeated measures ANOVA testing for main effect

of condition in training session F(1, 39)= 12.64, p= 0.001. Repeated measures ANOVA testing for main effect of condition in testing session F(1, 39)=

6.78, p= 0.013. b Correlation between model-derived Self- and Other-attributed beliefs in different trial bins, split by session and context. In both sessions,

there was a main effect of context with a higher Self-Other correlation in the Hi-Share context (pink line) than in the Lo-Share context (purple line). This

finding was invariant to the number of trial bins used in the analysis (see Supplementary Fig. 5) and was driven largely by the λ parameter (Supplementary

Figs. 2 and 3). Repeated measures ANOVA testing for main effect of condition in training session F(1, 39)= 21.7, p < 0.001. Repeated measures ANOVA

testing for main effect of condition in testing session F(1, 39)= 3.8, p < 0.001. c Generative performance of the best-fitting model for the Hi-Share context

in the test session for two exemplar subjects. Self and Other probe trials are intermixed in the order they were presented to the subjects. d Parameter

identifiability of the most complex winning model (Hi-Share context test session). Each cell shows a Spearman correlation coefficient derived from

correlating subjects’ true parameter estimates with recovered parameter estimates. A subscript ‘s’ indicates that the parameter is specific to Self updates.

A subscript ‘o’ indicates that the parameter is specific to Other updates. A subscript ‘1’ indicates that the learning rate is specific to ‘privileged’ and ‘decoy’

trials. A subscript ‘2’ indicates that the learning rate is specific to ‘shared’ trials. All error bars denote s.e.m. Source data are provided as a Source Data file.
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Fig. 4 Representations of PEs adapt with behavioural training. a Clusters of voxels where BOLD signal covaried with |PE|, either Self-attributed (PEs) or

Other-attributed (PEo), from a searchlight analysis, using two one-sided t-contrasts on n= 40 independent subjects. Clusters were defined with a cluster-

forming threshold of p < 0.001. Only clusters large enough to survive FWE-correction at p < 0.05 are displayed (top). BOLD signal was extracted from

these clusters and patterns of PE-related activity were compared for Self- and Other-attributed signals for the Lo-Share and Hi-Share contexts. Exemplar

trial patterns are shown from a single subject. The ‘signal change’ refers to the difference in BOLD signal between a trial with a large PE and a trial with a

small PE (see Methods). Patterns for PEself and PEother are more similar for the Hi-Share context than the Lo-Share context (bottom). b Decoding

performance (cross-entropy below chance) when classifying PE activity patterns as Self- or Other-attributed. Classification accuracy was significantly

higher in the Lo-Share context than the Hi-Share context. n= 40 independent subjects. Paired two-sided t-test: t(39)= 2.1, p= 0.041. c Decoding

performance when predicting |PEother| after training on |PEself| and vice versa. Cross-decoding accuracy (Fisher Z-transformed correlation) was significantly

higher in the Hi-Share context than the Lo-Share context. n= 40 independent subjects. Paired two-sided t-test: t(39)= 2.75, p= 0.009. d The difference

in cross-decoding performance shown in c, is positively correlated with the ratio of leak to learning rate (parameters derived from the Hi-Share context).

This indicates a relationship between neural Self-Other mergence and behavioural Self-Other mergence. n= 40 independent subjects. Pearson correlation:

r= 0.41, p= 0.009. e Cluster of voxels where myelin-related MT covaried with the difference in cross-decoding shown in c, overlaid on white matter.

Clusters were defined with a cluster-forming threshold of p < 0.001. Only clusters that were large enough to survive FWE-correction at p < 0.05 are

displayed. All error bars denote s.e.m. Source data are provided as a Source Data file.
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We defined a mask as the union of these clusters. Within this
multi-cluster mask we trained classifiers on activity patterns of
Self- and Other-attributed PEs and tested their ability to classify
PEs from left-out trials, as being Self- or Other-attributed
(Methods). Self-Other classification was significantly better than
chance in the Lo-Share context [one-sample t-test: t(39)= 2.6,
p= 0.013] but not in the Hi-Share context [one-sample t-test:
t(39)=−0.26, p= 0.8], with a significant difference in classifica-
tion accuracy between the two contexts [paired t-test: t(39)= 2.1,
p= 0.041] (Fig. 4b). This finding is consistent with the activity
patterns for Self- and Other-attributed PEs being distinct in the
Lo-Share context and overlapping in the Hi-Share context.

To exclude the possibility that the null result in Hi-Share did
not reflect overlapping activity patterns, but instead reflected
noisier data, we tested for the logical inverse of the classification
analysis. Here, we directly tested for similarity of Self- and Other-
attributed PE representations by training linear regression models
on patterns of Self-attributed PEs and testing them on patterns of
Other-attributed PEs, and vice versa. As shown in Fig. 4c, we
found that cross-decoding accuracy was significantly better than
chance in the Hi-Share context [one-sample t-test: t(39)= 4.22,
p < 0.001] but not in the Lo-Share context [one-sample t-test:
t(39)= 0.06, p= 0.95], with a significant difference in cross-
decoding performance between the two contexts [paired t-test:
t(39)= 2.75, p= 0.009]. These findings are consistent with FBT-
training inducing plasticity in the neural representations of PEs,
such that Self-Other mergence of PE signals was promoted in the
Hi-Share context, and Self-Other distinction was promoted in the
Lo-Share context.

An important question is whether a neural segregation of PEs
is functionally meaningful. The contextual difference in cross-
decoding accuracy correlated with mean λ:α ratio in the Hi-Share
context (after controlling for accuracy and decision temperature)
[Pearson correlation: r= 0.41, p= 0.009]. This behavioural
measure quantifies the extent to which Self-attributed PEs
contributed to learning for Other and vice versa (Fig. 4d). Thus,
subjects who showed the greatest neural overlap between PEself

and PEother were also those subjects that showed the strongest
behavioural evidence of conflating Self- and Other-attributed
learning.

vmPFC myeloarchitecture is associated with PE adaptation.
The observed results suggest that subjects learned relations
between Self- and Other-attributed computations. To probe
which brain regions are important for acquiring or deploying this
relational knowledge, we obtained quantitative MRI maps
(Methods) of magnetisation transfer (MT), a biophysical marker
of myelin density23–25.

Social isolation causes hypomyelination in rats26,27, which can
be reversed through social re-integration26,28. Furthermore, false
belief understanding in human infants is associated with the
development of white matter tracts in so-called ‘social’ brain
regions such as the mPFC and temporo-parietal junction29. On
this basis, we predicted that an ability to acquire or deploy
knowledge about the relations between different agents’ compu-
tations would correlate with myeloarchitectural variability in
these brain regions.

We conducted a whole-brain analysis to identify any regions
where myelin-related MT varied, across subjects, with the
context-dependent difference in cross-decoding from the fMRI
analysis. Age, gender and intracranial volume were included as
covariates of no interest. Here we did not measure any within-
subject longitudinal structural brain changes, but correlated a
measure of neural microstructure with a measure of PE
reconfiguration, across subjects.

We found one significantly large cluster (Fig. 4e) of white
matter adjacent to the right vmPFC [844 voxels, p < 0.001, whole-
brain family-wise error (FWE) corrected, peak co-ordinates: x=
12.8, y= 59.2, z=−18.4]. Subjects with higher MT in this cluster
showed a greater difference in cross-decodability between the two
social contexts. This finding suggests that subjects with greater
myelin density in this region may be more sensitive to learning
about Self-Other relations, or deploying that relational knowledge
in a context-dependent manner.

The probability of sharing information is tracked in vmPFC.
The results presented in the previous section led us to ask what
role the vmPFC might play in shaping Self-Other distinction. We
hypothesised that the vmPFC might track the degree to which
Self-attributed signals are associated with Other-attributed sig-
nals, using an abstract representational code, divorced from the
PEs themselves. In the FBT, the probability of encountering a
‘shared’ trial is a proxy for the strength of this association.

We constructed a new model-based regressor (Fig. 5a) to
describe subjects’ perceived probability of encountering a ‘shared’
trial (see Methods). The model used trial-wise error-driven
updates, as a function of whether a trial was ‘shared’ or not. The
model used a single parameter, η, a learning rate that governs
how quickly the subject learns about the probability of observing
a ‘shared’ trial.

We constructed a mask of bilateral vmPFC and tested whether
the blood oxygen-level dependent (BOLD) signal in this mask
correlated with our new regressor (Fig. 5b). The analysis was
repeated with a set of five arbitrary values of η, ranging from 0.01
to 0.1. We used Bonferroni correction to account for these repeat
analyses, yielding a FWE-corrected significance threshold of p=
0.01. At η= 0.01, we found a significant cluster in bilateral
vmPFC [192 voxels, p= 0.008, small-volume corrected, peak co-
ordinates: x= 3, y= 46, z=−15]. We also conducted a whole-
brain analysis (Fig. 5b). At η= 0.025 we found a significant
cluster in the left lateral temporal cortex, extending to the left
temporal pole [583 voxels, p= 0.006, whole-brain FWE-cor-
rected, peak co-ordinates: x=−62, y=−16, z=−16].

These clusters may form part of a network that tracks
fluctuations in the statistical relationship between Self- and
Other-attributed PEs. In view of the learning rates that generated
these regressors, it seems that the vmPFC may track low-
frequency fluctuations whilst the lateral temporal cortex may
track higher-frequency fluctuations. The mean contrast estimate
within the vmPFC cluster correlated positively with the mean
contrast estimate within the temporal cluster [Pearson correla-
tion: r= 0.45, p= 0.004]. This means that subjects who showed
strong evidence of tracking the low-frequency drifts in vmPFC
were the same subjects who showed strong evidence of tracking
the high-frequency drifts in temporal cortex.

If this relational learning process drove the PE reconfiguration
that we observed, then the adaptation effect should be correlated
with the relational learning effect. We found that the mean
contrast estimate in the vmPFC cluster was indeed positively
correlated with the adaptation effect (Fig. 5c), quantified again as
the difference in Self-Other cross-decoding between the Hi-Share
and Lo-Share conditions [Pearson correlation: r= 0.35, p=
0.032]. This correlation was only significant after excluding two
subjects with extreme (|Z| > 2.5) contrast estimates. However,
there was no association between mean contrast estimate in the
temporal cluster and the adaptation effect, irrespective of whether
outliers were excluded [Pearson correlation: r=−0.05, p= 0.74].

This is consistent with vmPFC and lateral temporal cortex
tracking drifts, of different frequencies, in the statistical relation-
ship between Self- and Other-attributed signals. The neural
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adaptation effect ought only be detectable during the test session
if the statistical relationships are re-learned slowly. Conversely,
fast relational learning should quickly eliminate any previously
learned difference between the two contexts.

Domain-general computation of Self-Other boundaries. A final
question is whether the neural computation of Self-Other dis-
tinction is uniquely relevant to social contexts, or whether it
might also be important for attributing mental states in non-
social contexts. In addition to false-belief understanding and
perspective-taking, episodic thinking or ‘mental time-travel’ is a
cognitive process that involves attributing mental states to dif-
ferent agents30–32. We used an intertemporal choice task to probe

between-subject variability in mental time-travel. We predicted
that subjects who strongly distinguish between Self and Other
would distinguish more between Self and future Self, and thus
discount future rewards more steeply.

To test this prediction, subjects played an intertemporal choice
task, choosing between immediate small monetary rewards and
delayed large rewards. Choice behaviour (Fig. 6a) was well-
described by a two-parameter hyperbolic discounting model
(Methods and Supplementary Fig. 8). Consistent with our
prediction, we found that the leak factor, λ:α (averaged across
the Hi-Share tasks on both days, after controlling for accuracy
and decision temperature) negatively correlated with the log
product of the two discounting parameters [Spearman’s rank
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correlation: ρ=−0.32, p= 0.043]. In effect, subjects who showed
more Self-Other mergence displayed less discounting of future
rewards.

To probe this relationship further, we attempted to classify
subjects as high or low discounters using each parameter of the
learning model from the FBT, using leave-one-subject-out cross-
validation (Fig. 6b and Methods). Only λ predicted discounting
above chance [p= 0.005, permutation test]. Importantly, when
fMRI measures of Self-Other mergence (cross-decodability) were
included as additional training features, classification accuracy
improved significantly [p= 0.016, permutation test]. Finally, in
the same brain region where MT covaried with the fMRI training
effect, we found MT was negatively associated with discount
factor across subjects [p= 0.022, voxel-level inference, small-
volume corrected] (Supplementary Fig. 9).

Discussion
We show that the degree to which sensory PEs are expressed in
agent-specific activity patterns is susceptible to experience-
dependent plasticity. When tracking the beliefs of an agent with
whom there had been a high proportion of shared experiences,
Self-Other mergence is promoted. When tracking the beliefs of an
agent with whom there had been a low proportion of shared
experiences, Self-Other distinction is promoted.

Our findings show that the spatial topography of a PE signal is
plastic; the way in which a learning signal is expressed in the
brain can itself be learned. This adaptation may drive the learning
of Self-Other boundaries that act as priors for different social
contexts. For instance, we recently showed that subtle changes in
how social agents are described in a cover story, are sufficient to
modulate neural Self-Other distinction20. In light of the current
findings, we predict that the degree of Self-Other PE circuit
overlap should be higher between Self and a familiar other than
Self and a stranger, because Self- and Other-attributed PEs will
have co-occurred more in the case of the familiar other. Indeed,
close interpersonal relationships have historically been described
in psychology as an incorporation of Other into the Self33. Fur-
thermore, neural activity patterns underpinning Self-reflection
are more similar to those underpinning reflection on similar

Others than those underpinning reflection on dissimilar
Others34,35.

The FBT training was general enough to affect behaviour in an
independent cognitive task. Both tasks involved the same social
agents, but whilst the training task required subjects to track
beliefs about numerical probabilities, the transfer task required
subjects to count objects in a visual scene from different per-
spectives. The relational learning that occurred in FBT training
was therefore not specific to learning signals, but was general
enough to impact on non-learning related decision variables. The
visual perspective-taking task is designed such that Self-Other
distinction is required on incongruent trials but not required on
congruent trials. However, we observed agent-specific transfer
effects on both congruent and incongruent trials. It may be the
case that when Self-Other distinction is reduced, the use of a
shared model for Self and Other prevents independent sensory
sampling on behalf of a single agent. Simultaneous sensory
sampling on behalf of Self and Other may carry a cognitive load
that slows evidence accumulation, regardless of whether the
samples for Self and Other are congruent or incongruent, akin to
the performance deficits seen under dual-task demands36,37.

In localising PE signals, we found both distinct and over-
lapping brain regions for Self and Other, consistent with previous
experiments on simulated learning16,18. The regions identified are
consistent with previous studies examining unsigned PE signals.
Extrastriate visual cortex has previously been shown to encode
visual sensory surprise38,39, whilst the intraparietal sulcus has
been associated with the encoding of state prediction errors
during navigation of a probabilistic environment40. In our main
fMRI analysis we combined all of these clusters into a single
multi-cluster mask, to perform multi-voxel pattern analysis.
Although this analysis lacked anatomical specificity, our aim was
not to localise a function, but rather to test whether representa-
tions of PEs could be changed through our training manipulation.

Consistent with our prediction, we found that myelin-related
MT in ventromedial prefrontal white matter, was associated with
the degree of training-induced representational change. Specifi-
cally, subjects with higher MT in this region showed a larger
difference in Self-Other representational similarity between the
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two conditions. This is consistent with previous research showing
that mPFC microstructure in rodents26–28,41, and macrostructure
in humans29, is a determinant of social cognition.

Our experimental design was based on the hypothesis that
exposure to a strong temporal contingency between Self- and
Other-attributed PEs would increase the representational simi-
larity of these update signals through statistical learning. Con-
versely, we hypothesised that exposure to a weak temporal
contingency between Self- and Other-attributed PEs would
weaken the associative strength between these two update signals,
and hence reduce their representational similarity. Our results
suggested that vmPFC, along with the lateral temporal cortex,
may track the associative strength between Self- and Other-
attributed signals. In our study, we did not manipulate the tem-
poral contingency between these signals per se, simply using the
proportion of ‘shared’ trials as a proxy for this. It will be
important for future work to further investigate the learning
algorithm behind this adaptation of Self-Other boundaries.

The human vmPFC is involved in self-referential processing42

and tracks the degree to which objects are associated with Self43.
Other-attributed mental states can also be represented in the
vmPFC, depending on the precise framing of the cognitive task,
and the extent of Self-Other distinction3,35,44. We note that in our
experiment, Self- and Other-attributed PEs were not themselves
encoded in the vmPFC. This is not surprising because, whereas
most studies on the simulation of Others’ mental states have
investigated value-based decision variables3,16,44, the mental
states represented in our task were visual surprise signals. The
vmPFC is known to represent state and action values45 and in
studies where other agents’ preferences are simulated, one should
expect the contents of the mental states to be encoded in the
vmPFC. In the current study, the vmPFC may be involved in
mapping relations between different agents’ mental states onto
contextual cues, allowing them to be flexibly deployed when the
relevant cue, such as a face, is re-encountered. Prior accounts
describe a role for the mPFC in modulating behaviour to suit the
current social context46.

It is important to consider whether our FBT engages cognitive
processes that are social per se. In essence, the task merely
requires subjects to track two random variables. However, we
have previously shown that the degree to which sensory PEs are
encoded in agent-specific neural activity patterns depends on the
social nature of the cover story20. Furthermore, in the current
study we show that training subjects on the Hi- and Lo-Share
contexts of the FBT induces a behavioural change in a visual
perspective-taking task, suggesting that the FBT does tap into
social processes.

Despite the above considerations, there remains a possibility
that neither the FBT nor the perspective-taking task engages
social cognition. The behavioural transfer from one task to the
other may simply reflect a form of non-social learning47. Whilst
we cannot say that our subjects engaged in computations that are
exclusive to socially interactive settings, we nevertheless consider
these computations are likely co-opted when attributing mental
states to social agents. For instance, being able to represent
multiple models of the same environment may be a necessary
component of social cognition, whilst also useful in non-social
situations. Our results show that information about agent-identity
and relationships between different agents’ mental states can be
encoded in fundamental sensory processing signals. Whilst these
signals may not be ‘social’ in isolation, they appear to contribute
to complex social cognitive processes.

The ability to learn relationships between different agents’
computations may be just one example of a form of relational
learning, that is not ‘social’ per se. Relational learning allows
organisms to represent the world efficiently. By representing

environments in terms of abstract ‘concepts’48, ‘task sets’49 or
‘cognitive maps’50, animals can rapidly generalise a structure
learned in one environment to a totally new environment51,52.
The vmPFC has also been associated with mapping latent, con-
textual states of the environment, in non-social situations53,54.
Agent identity might be one example of a latent environmental
state, that shapes learning and behaviour to suit the current
context.

Consistent with the notion that common computations can be
used in both social and non-social contexts, we found that
behavioural and neural measures of Self-Other distinction are
related to discounting behaviour in an intertemporal choice task.
Subjects who discounted future rewards more steeply also
represented other agents’ mental states more distinctly from their
own mental states, and were better able to distinguish the beliefs
of Self and Other. This finding is consistent with a common
relational learning process regulating a generalisation between
Self-attributed mental states and mental states attributed to both
other agents and to one’s future Self. It is also consistent with
prior accounts that propose a common mechanism for traversing
social and temporal distances30–32,55,56.

We considered whether a hidden variable, such as general task
engagement or cognitive control, might explain the association
between Self-Other distinction and temporal discounting. In
intertemporal choice tasks, people with better cognitive function,
across a range of tasks, tend to discount future rewards less than
those with cognitive impairments57. We would expect this effect
to promote a positive correlation between leak factor and dis-
count factor. It is striking then that a negative association between
leak factor and discount factor is detectable. We note, however,
that the notion that future Self is represented like Other is, at this
stage, speculative.

In summary, our results support a computational mechanism
that enables updates to one model to influence change in another
model. Furthermore, we show that the degree to which updates to
one agent’s model generalise, is itself learnable. This may facilitate
generalisation of knowledge structure to new situations, and in
the special case of social cognition, the generalisation from one
agent’s mental states to another’s, enabling traversal across both
social and temporal dimensions, in a flexible context-dependent
fashion. The vmPFC appears to play a role in acquiring this
relational knowledge, consistent with previous accounts that
implicate this region in both social cognitive development29 and
abstract structure learning53,54.

Methods
Participants. 47 adults (26 female) aged 19-54, participated in a 3-day experiment.
They were recruited from the UCL Institute of Cognitive Neuroscience subject
pool. All participants had normal or corrected-to-normal vision and had no history
of psychiatric or neurological disorders. All participants provided written informed
consent, which was approved by the Research Ethics Committee at University
College London, under ethics number 4446/003.

Six participants only completed days 1 and 2 of the experiment. One further
participant was excluded from all analyses as it was evident, on debriefing, that they
did not understand some of the tasks. This left 46 subjects (25 female) with a mean
age of 26.5 (s.d. 7.8) who were included in the analysis of the visual perspective-
taking task, and a subgroup of 40 subjects (22 female) with a mean age of 26.8 (s.d.
8.1) who were included in all other analyses.

False belief task. Subjects were trained on two probabilistic false belief tasks (FBT)
on day 2, and then tested on two FBTs on day 3 (Fig. 1a). On both days, one FBT
was with a male cartoon avatar and one was with a female cartoon avatar. In the
FBT, subjects were instructed that they would be trying to keep track of an
environment while also trying to keep track of another participant’s false belief
about the same environment.

The avatars represented two real participants, who had experienced what the
avatars observed in a simplified version of the task. In the simplified task,
participants only needed to keep track of a single fluctuating Bernoulli parameter,
with no social element. Every participant played this simplified version of the task
on day 1. Then on days 2 and 3, each participant was linked with trial sequences
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observed on day 1 by two previous participants, one represented by the male avatar
and one represented by the female avatar. This social set up was explained in a
detailed, standardised way to all participants. There was no deception involved.
Getting participants to play the simplified version of the task on day 1 was useful
for several reasons. Firstly, it provided a stream of experiences for the next
participant to model as one of the avatars. Secondly, the experience in the
simplified task would make it easier for subjects to put themselves into the avatars’
shoes in the FBT. Finally, the simplified task on day 1 helped participants
understand how to play the FBT on days 2 and 3.

In the FBT, subjects were instructed to update their belief on ‘privileged’ trials,
to update their estimate of the other agent’s belief on ‘decoy’ trials, and to update
both simultaneously on ‘shared’ trials. In the training tasks on day 2, there was a
difference in the distribution of these three trial types between the two tasks. In one
‘Hi-Share’ context, there were 112 ‘privileged’ trials, 112 ‘decoy’ trials, and 224
‘shared’ trials. In one ‘Lo-Share’ context, there were 196 ‘privileged’ trials, 196
‘decoy’ trials, and 56 ‘shared’ trials. Subjects were not told about this difference in
trial proportions. Each context was paired with a specific avatar. This paring was
counterbalanced across subjects. In the testing tasks on day 3, there was no
difference in the distribution of trial types between the two contexts. In both cases,
there were 148 of each of the three trial types.

All trial sequences were pre-generated using two uncorrelated random walks.
These random walks proceeded in step sizes of 0.025 and were reflected by the
boundaries 0 and 1. Only pairs of walks which were uncorrelated were used to
generated trial sequences. ‘Privileged’ samples were drawn from the first walk
whilst ‘decoy’ samples were drawn from the second walk. ‘Shared’ samples were
drawn randomly. We selected trial sequences which produced no correlation
between trial-by-trial Self-and Other-attributed beliefs and PEs, according to
behavioural simulations with a learning rate of 0.1 and no Self-Other leak.

The two social contexts were presented with two different cover stories. The
mapping between social context and cover story was counterbalanced across
subjects. In one cover story subjects played the role of a shop-assistant selling pink
umbrellas and yellow sunshades to tourists on a tropical island, with the help of a
‘shop manager’ (the other agent). The fluctuating Bernoulli parameter (probability
of selling a pink umbrella) was justified as changes in the weather. In the other
cover story subjects played the role of a shop-assistant selling red and blue flavours
of cola to tourists in a city with the help of a ‘shop manager’. The fluctuating
Bernoulli parameter (probability of selling a red can) was justified as changes in the
popularity of the drinks, based on what was being advertised on digital displays
outside the shop. Subjects were instructed that on some trials, the manager would
be in a back-room and would not get to observe the sale (‘privileged’). On other
trials, the manager would come out of the back-room and observe the sale
(‘shared’). Finally, subjects were instructed that the manager was watching CCTV
footage in the backroom, to track the sales, but was mistakenly watching last week’s
footage, so was observing misleading information (‘decoy’ trials). Subjects had
already played in the role of the ‘manager’ in the simplified task on day 1 and so
they were already familiar with the cover stories when they played the FBT.

On each sampling trial subjects observed a display with three visual
components (Fig. 1a). At the bottom of the display subjects saw a Bernoulli
outcome (e.g. pink or yellow). In the middle of the display subjects saw an image
that indicated whether the trial was ‘privileged’, ‘shared’ or ‘decoy’. At the top of
the display subjects saw the cartoon avatar depicting the other agent whose beliefs
they were trying to track. The display was presented for 1500 ms, followed by a
variable inter-trial interval with a fixation cross on screen for 1000–1500 ms. After
4–9 sampling trials, subjects were probed with either a Self-probe or an Other-
probe. Subjects had to position an arrow along a continuous scale to report an
estimate of the Bernoulli parameter, either on behalf of Self or Other. Subjects had
seven seconds to give their response. They received no feedback on their
performance but were told that their reimbursement at the end of the experiment
depended on how well they could keep track of the environment on Self-probes
and how well they could predict the choices of the other agent on Other-probes.
The simplified task on day 1 presented the Bernoulli outcomes alone and subjects
were only probed with Self-probe trials. Here subjects’ sole task was to keep track of
a single fluctuating Bernoulli parameter.

MATLAB R_2018a was used for coding the behavioural tasks, and acquiring
and analysing data. Behavioural tasks were illustrated and visualised using Cogent
2000 (v125) and Cogent Graphics (v1.29).

All statistical tests performed were two-sided, unless otherwise stated.
Normality in performance measures was determined with Schapiro-Wilk tests.

Learning models. 72 Rescorla–Wagner learning models were fit to subjects’
reports on the Self-probes and Other-probes. The winning models and the esti-
mated parameters are shown in Supplementary Fig. 1. The models tested various
combinations of parameters. They all utilised parallel belief updates for Self and
Other. Self-attributed PEs were modelled as 0 on ‘decoy’ trials. Other-attributed
PEs were modelled as 0 on ‘privileged’ trials. This family of model has previously
been shown to approximate behaviour well in the probabilistic false belief task20.
The details of each individual model and the quality of fits are summarised in
Supplementary Table 2.

The parameters included learning rate (α), choice temperature (τ), memory
decay (δ) and Self-Other leak (λ). These parameters could be shared between

Self-updates and Other-updates or they could be independent. The leak parameter
operates like a learning rate, but updating with the wrong agent’s PE. PEs were
computed as the difference between the Bernoulli outcome (1 or 0) and the
previous belief (of Self or Other) about the Bernoulli parameter. Beliefs were bound
between 0 and 1. Behaviour is optimal in the FBT when the memory decay and leak
parameters are as close to 0 as possible. Information about the optimal learning
rate is provided in Supplementary Fig. 10. Supplementary Fig. 2 provides some
intuition about the effects of each of these parameters on learning.

Models were fit with maximum likelihood estimation via nonlinear
optimisation in MATLAB using the fmincon function. On each probe trial, the
likelihood of the subject’s actual response was estimated from a Beta distribution,
with mode equal to the current model-derived belief, and variance equal to the
temperature parameter τ, fit to the individual subject. The shape parameters for
this trial-specific Beta distribution were derived from this mode and variance.

The models were fit to four different datasets: The Lo-Share and Hi-Share
contexts in training (day 2) and the Lo-Share and Hi-Share contexts in testing
(day 3). Four model comparisons were conducted by comparing the sum of
Bayesian Information Criteria (BIC) across subjects for each model. For the fMRI
analysis in the test session (day 3), the same model and the same parameters were
used for each subject to estimate PE regressors. The more complex of the two
winning models (for Lo-Share and Hi-Share) was selected (M68). For each subject,
we averaged the parameters across the two sessions, and then took the median
parameter values across subjects.

Parameter recovery was measured in each of the four winning models by
simulating synthetic data using each subject’s fitted parameters and then re-fitting
the model to the simulated data. For each parameter, we computed a between-
subjects Spearman’s rank correlation between generative parameter estimates and
recovered parameter estimates.

Model recovery was performed by simulating choice data using each of the four
best-fitting models for the four datasets, using the parameters estimated for each
subject. Each of these four models was then fit to each of these four simulated
datasets. For each simulated dataset, we computed the proportion of subjects for
whom each of the four models was the best-fitting (lowest BIC). This gives us p(fit|
sim), the probability that a model is best-fitting, given that another (or the same)
model simulated the data. P(fit|sim) was converted into P(sim|fit) using Bayes’ rule
as follows.

P simjfitð Þ ¼
p fitjsimð Þp simð Þ

P

sim p fitjsimð Þp simð Þ
ð2Þ

We assumed a uniform prior on models. This technique to derive P(sim|fit) is
also described in a recent review by Wilson and Collins58.

Perspective-taking paradigm. This was adapted from an older paradigm where
subjects had to count the number of dots in a visual scene21. In our adapted task,
subjects had to count the number of patterns in a scene that matched a target
pattern. On every trial, a target pattern was shown along with a target number.
Then a room was shown with an avatar facing one wall. On every trial, there were
two patterns on a wall visible to the avatar and a further two patterns on a second
wall, not visible to the avatar. Some of the patterns matched the target pattern, and
some of them were distractor patterns, which looked like the target pattern but
were rotated 60 degrees clockwise. The orientation of the target pattern changed
randomly on every trial. Subjects saw three different avatars, throughout the task.
Two of these were the avatars that represented the Lo-Share and Hi-Share contexts
from the FBT. The third ‘avatar’ was an arrow.

Each trial started with a fixation cross for 500–1000 ms, followed by the
perspective that the participant was required to adopt (‘YOU’, ‘HE’, ‘SHE’ or
‘ARROW’) for 500 ms. When the cue said ‘HE’ or ‘SHE’, subjects had to adopt the
perspective of the male or female avatar respectively. When the cue said ‘ARROW’,
subjects simply had to report whether the number of target patterns that an arrow
pointed to was consistent or inconsistent with a target number. Then, the target
pattern and target number were displayed for 750 ms. Finally, the room, along with
an avatar, was presented and subjects had up to three seconds to respond with a
‘yes’ or ‘no’ key (L and K keys on the keyboard, counterbalanced across subjects).
The task consisted of 384 trials presented in a random order (Supplementary
Fig. 6). Perspective (Self or Other), condition (congruent or incongruent), response
(yes or no), avatar on screen (Lo-Share, Hi-Share or arrow) and avatar gaze (left or
right) were balanced in a 2 × 2 × 2 × 3 × 2 design. Subjects played the same visual
perspective-taking task on day 1, before FBT training, and then again on day 2,
after FBT training.

Drift–diffusion modelling. A drift–diffusion model was fit to the visual
perspective-taking task using the fast-dm-30.2 toolbox59 with maximum likelihood
estimation. All trials where subjects responded too slowly (>3000 ms) or quickly
(<500 ms) were excluded from the analysis. 1.4% of trials were excluded in total.

Correct responses were faster than incorrect responses at both baseline [paired
t-test: t(45)=−10.35, p < 0.001] and transfer [paired t-test: t(45)=−7.93, p < 0.001].
In order to allow the model to generate different response time distributions for
correct and incorrect responses, we allowed for between-trial drift rate variability.
This was achieved by randomly sampling the drift rate on each trial from one of
twelve possible Gaussian distributions. These distributions accounted for different
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trial types, namely the three avatars (Hi-Share, Lo-Share, Arrow), two perspectives
(Self, Other) and two conditions (congruent, incongruent). These twelve
distributions had separate mean parameters but shared a subject-specific variance
parameter. All twelve of these mean drift rate parameters were shared for ‘yes’ and
‘no’ responses. Additional parameters included non-decision time (mean and
variance), drift starting point (mean and variance) and boundary separation distance
(mean and variance). These three parameters were randomly sampled on each trial
from Gaussian distributions with mean and variance fit to each subject’s dataset.
Unlike the drift rate, the distributions for these three parameters did not vary as a
function of trial type. The model was fit twice to each subject, once for the baseline
dataset (day 1) and again for the transfer dataset (day 2).

The arrow trials were included to obtain a measure of repeat training effects
that were not related to the FBT. By subtracting any changes in performance on
arrow trials from changes in performance on the Hi-Share and Lo-Share trials, we
could quantify training effects over and above those that were merely due to repeat
exposure to the visual perspective-taking task. For each subject, for each of the
twelve drift rate parameters, we subtracted the estimated parameter at baseline
(day 1) from the estimated parameter at transfer (day 2) to obtain a change score.
The change scores were then corrected by subtracting from them the change scores
for arrow trials. A positive corrected change score indicated that the relevant drift
rate increased more than the increase seen on arrow trials. A negative corrected
change score indicated that the relevant drift rate increased less than the increase
seen on arrow trials. Normality of parameter estimates was determined with
Schapiro-Wilk tests.

MRI data acquisition. Scanning took place in a 3T whole-body MRI scanner
(Magnetom Prisma system from Siemens Healthcare, Erlangen, Germany) with a
body coil for transmission and a 64-channel receive head coil. We collected the
functional data with four 2D EPI scanning sessions (two runs for the Lo-Share
context and two runs for the Hi-Share context). Each volume comprised 40 slices
with a resolution of 3 mm isotropic, with a TR of 2.8 s, TE of 30 ms, slice tilt of
–30°, and Z-shim of –0.4. Heart rate was monitored using a Nonin 8600FO pulse-
oximeter and respiration rate was monitored using a Siemens breathing belt during
scanning. Following the functional scans, a field mapping sequence was used to
measure inhomogeneity of the B0 field. This was a double-echo fast low-angle shot
(FLASH) sequence with a short TE of 10 ms and a long TE of 12.46 ms.

Lastly, a multiple parameter mapping protocol was applied for microstructural
imaging60. Three 3D multi-echo FLASH acquisitions were made, with
predominantly T1, proton density (PD) and magnetisation transfer (MT)
weighting respectively. The flip angle was 6° for the PD-weighted and MT-
weighted images, and 21° for the T1-weighted images. MT-weighting was achieved
through the application of a Gaussian radio-frequency pulse 2 kHz off-resonance
with 4 ms duration and a nominal flip angle of 220°. The data were acquired with
whole-brain coverage at an isotropic resolution of 0.8 mm. Gradient echoes were
acquired with alternating readout gradient polarity at eight equidistant echo times
ranging from 2.3 to 18.4 ms in steps of 2.3 ms. Only six echoes were acquired for
the MT-weighted acquisition in order to maintain a TR of 25 ms of all volumes.

Prior to each FLASH acquisition, two additional low resolution (8 mm
isotropic) volumes were acquired, one with the 64-channel head and neck array
coil and the other with the body coil. A single echo, with a TE of 2.2 ms, was
acquired in each case using a 6° flip angle and a TR of 6 ms. The acquisition time of
each of these calibration volumes was 5.9 s. These ‘sensitivity maps’ were used to
correct the position-specific modulation of the receive sensitivity field.

fMRI pre-processing. The first six volumes of each functional run were discarded.
Slice-timing correction was applied. Motion correction was carried out using the
‘realign and unwarp’ toolbox within SPM12. Images were co-registered to the first
volume acquired for each subject. The motion-corrected images were then
unwarped using the field map. The functional images were co-registered to the
respective subject’s MT map, normalised into Montreal Neurological Institute
(MNI) space and then smoothed with a Gaussian kernel of full-width at half
maximum (FWHM) 8 mm isotropic. Physiological data were converted into 18
nuisance regressors with the PhysIO Toolbox v7.2.061.

PE localisation. Two separate general linear models (GLM) were estimated, one
for localising PEself and one for localising PEother. These variables were not cor-
related with each other (Supplementary Fig. 11). The Self-GLM modelled the
onsets of ‘privileged’ and ‘shared’ trials, parametrically modulated by |PEself|. The
Other-GLM modelled the onsets of ‘shared’ and ‘decoy’ trials, parametrically
modulated by |PEother|. We used unsigned PE signals because we were not inter-
ested in the component of the signal that corresponded to the stimulus outcome
(colour), but rather the surprise component of the signal. Temporal and dispersion
derivatives were also included. All regressors were z-scored within subjects. The
onsets of probes were included in both GLMs, as were 24 nuisance regressors,
describing motion and physiological noise. First-level maps were entered into a
one-sided t-test at the second level. Significantly large clusters (p < 0.05 FWE-
corrected) were identified at the group-level using a cluster-forming threshold of
p < 0.001, in a whole-brain analysis, using Gaussian random field theory (GFRT)
to control the FWE rate.

We then conducted a searchlight multi-voxel pattern analysis using The
Decoding Toolbox (version 3.994)62. We obtained trial-specific activation patterns
by fitting a different GLM for each trial to normalised but unsmoothed images.
One regressor represented the onset of the trial of interest, and one regressor
represented the onsets of all other trials. Temporal and dispersion derivatives of
these two regressors were also included. 24 nuisance regressors, describing motion
and physiological noise, were included. A beta map was produced that represented
the contribution of the trial of interest to the whole functional run. Decoding
analyses were performed on these beta maps. We ran two whole-brain searchlight
procedures, one for |PEself| and one for |PEother|. For each analysis we trained a
least absolute shrinkage and selection operator (LASSO) linear regression model on
three runs of functional data, to predict |PE| from the BOLD signal across voxels
within spherical searchlights of radius four voxels.

The regression model was then tested on the fourth, held-out run of functional
data. Performance was quantified as the Fisher Z-transformed correlation between
the model’s predicted |PE| values and the actual |PE| values. The transformed
correlation coefficients for each of the four test sets were averaged to produce a
mean cross-validated decoding accuracy, which was attributed to the voxel at the
centre of the searchlight. This was repeated for each subject with a range of L1
penalty parameters (10−5 to 10−3 in increments of 2.5 × 10−5). The whole-brain
accuracy maps were then smoothed with a Gaussian kernel of FWHM 8mm
isotropic.

We extracted decoding accuracies from voxels masked by the co-ordinates of
significantly large clusters (p < 0.05, whole-brain FWE-corrected for cluster-extent)
identified in the two respective mass-univariate GLM analyses. For each subject, an
optimal penalty parameter was selected for the PEself analysis, by identifying which
penalty produced the highest median decoding accuracy across masked voxels in
the PEother analysis. Concurrently, optimal penalty parameters were selected for the
PEother analysis by identifying which penalties produced the highest median
decoding accuracies across masked voxels in the PEself analysis. By optimising the
hyperparameters for one analysis on a different analysis, we mitigated the risk of
overfitting.

Once penalty parameters were selected for each subject, first-level decoding
accuracy maps were entered into a one-sided t-test at the second level. Significantly
large clusters (p < 0.05 FWE-corrected) were identified at the group-level using a
cluster-forming threshold of p < 0.001, in a whole-brain analysis, using GFRT to
control the family-wise error rate. These clusters from the PEself and PEother

searchlight analyses were combined to form a single Self-Other multi-cluster mask.
This mask was used to select voxels for the subsequent decoding analyses.

Self-Other classification analysis. Per subject, we randomly sampled pairs of
trials on either side of the median unsigned PE magnitude and subtracted the
BOLD signal in the low PE-magnitude trial from signal in high PE-magnitude trial.
This was performed first for PEself (excluding ‘decoy’ trials) and then again for
PEother (excluding ‘privileged’ trials). This resulted in a series of contrast images
(‘pseudotrials’) that each comprised a noisy representation of |PEself| and another
series of contrast images that each comprised a noisy representation of |PEother|.

We used a two-step decoding approach. The first step was a feature extraction
step, using principal components analysis (PCA). This reduced the dimensionality
down from approximately 10,000 voxels (see PE localisation in Methods) to
approximately 100 components. The second step involved training a LASSO
logistic regression model on these components to classify pseudotrials as being
PEself or PEother.

This approach required tuning of two hyperparameters, the L1 penalty and the
percentage variance-explained by the principal components. We used nested cross-
validation to optimise these two hyperparameters. We used a grid-search, sampling
over a range of L1 values (10−5 to 10−3 in increments of 2.5 × 10−5) and a range of
variance-explained percentages (90%, 92.5%, 95%, 97.5%). Two pseudotrials from
each class were randomly sampled to constitute a hold-out set. The remainder
constituted a training set. For each possible pair of hyperparameter values, 40 inner
folds of cross-validation were performed, by randomly sampling two pseudotrials
of each class from the training set. Hyperparameters were selected that produced
the lowest median cross-entropy across folds.

Cross Entropy ¼ �½yln pð Þ þ 1� yð Þ ln 1� pð Þ� ð3Þ

Here, y denotes the true binary class label (Self or Other) and p denotes the
probability of the pseudotrial being PEself, assigned by the classifier. Therefore,
cross-entropy is lowest when confident accurate predictions are made, and it is
highest when confident inaccurate predictions are made.

Finally, the classifier with optimised hyperparameters was applied to the hold-
out set, and cross-entropy was measured. This whole procedure was repeated for 40
outer folds of cross-validation and performance was quantified as the median
cross-entropy across the 40 outer folds. This analysis was conducted twice, once for
the Hi-Share context and once for the Lo-Share context.

Cross-decoding analysis. This analysis followed the same pipeline as described for
the Self-Other classification analysis, but instead of training a logistic regression
model, a linear regression model was trained with labels of PEself magnitudes and
tested to predict PEother magnitudes, and vice versa. Here, there were only eight
outer folds and one inner-fold of cross-validation, due to the natural split in train
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and test sets (see Supplementary Fig. 12). For tuning hyperparameters, the Fisher
Z-transformed correlation between predicted PE magnitudes and true PE
labels was maximised. Final performance was quantified as the mean Fisher
Z-transformed correlation across the eight outer folds of cross-validation. This
analysis was conducted twice, once for the Hi-Share context and once for the
Lo-Share context.

MT analysis. Quantitative MT maps were created and then spatially processed
using the hMRI toolbox v0.2.0 in SPM1263. Spatial processing involved three steps:
segmentation, diffeomorphic deformation and tissue-weighted smoothing. Each
map was converted into grey matter (GM), white matter (WM) and cerebrospinal
fluid (CSF) tissue class images. Tissue class images were iteratively aligned from all
of the subjects to their own average before normalising the images to MNI space.
Finally, tissue-weighted smoothing was performed with a Gaussian kernel of
FWHM 6mm isotropic. The resulting maps only included those voxels with an a
priori probability of being considered in the relevant tissue class (GM, WM or CSF)
above 5% and an original tissue density above 5%.

We conducted a whole-brain, mass-univariate regression at the group level. The
fMRI cross-decoding effect [Hi-Share – Lo-Share] was the independent variable, and
white matter MT was the dependent variable within each voxel. Age, gender and
intracranial volume were included as covariates. Significantly large clusters (p < 0.05
FWE-corrected) were identified using a cluster-forming threshold of p < 0.001, in a
whole-brain analysis, using GFRT to control the family-wise error rate.

To ensure our analysis had adequate statistical power to detect interindividual
variability in MT maps, we looked at effect sizes from previous studies that
conducted regression analyses on MT maps. Allen et al. reported a peak voxel effect
of r= 0.62 with a sample size of 48 participants, when correlating metacognitive
ability with MT in a whole-brain analysis64. Steiger et al. reported a peak voxel
effect of r= 0.69 with a sample size of 31 participants, when correlating memory
ability with MT in a whole-brain analysis65. To detect an effect size (correlation) of
0.64 with a type I error rate of α= 0.001 (cluster-forming threshold) and a type II
error rate of β= 0.1 (90% power), we would need a sample size of 39 participants66.
As our sample size in this analysis was 40 participants, we consider we are
adequately powered to detect effects of similar magnitude to those seen in previous
studies of interindividual MT variability.

Analysis of shared trial tracking. We constructed a Rescorla–Wagner model to
track the likelihood of observing a ‘shared’ trial:

Ptþ1 ¼ Pt þ ηðS� PtÞ ð4Þ

Where Pt is the probability of observing a ‘shared’ trial on trial t, η is a learning rate
parameter and S indicates whether the trial was shared, coded as 1 on ‘shared’ trials
and 0 on ‘privileged’ and ‘decoy’ trials. We assumed that subjects had learned, on
day 2, that the probability of observing a ‘shared’ trial was 12.5% in the Lo-Share
condition and 50% in the Hi-Share condition, providing starting estimates for the
two conditions during the fMRI session on day 3.

For each subject, we constructed a single GLM to explain BOLD signal
variability using the P regressor along with its temporal and dispersion derivatives.
The regressor was z-scored prior to estimating the GLM. We repeated the analysis
five times, using a different value of η each time. These values were 0.01, 0.025,
0.05, 0.075 and 0.1. We first ran a region of interest (ROI) analysis, using a mask of
bilateral vmPFC, hand-defined as part of the Automated Anatomical Labelling ROI
library67. We then ran a whole-brain analysis. Significantly large clusters (P < 0.05
FWE-corrected) were identified using a cluster-forming threshold of p < 0.001,
using GFRT to control the FWE rate for multiple comparisons across voxels and
then applied additional Bonferroni correction to control the FWE rate for multiple
comparisons across the five values of η.

In this analysis, the model-based regressor was z-scored within each subject,
before estimating GLMs and each subject’s BOLD activation. It has recently been
shown that inter-individual variability in BOLD activation is highly sensitive to the
way that regressors are pre-processed, particularly to whether they are z-scored or
not68. We found that the results of this analysis were not sensitive to whether or
not the P regressor was z-scored prior to estimating the GLM.

Intertemporal choice task. On day 1, before any other tasks, participants
answered sixty binary forced-choice questions. Each question presented the subject
with a choice between an immediate small reward and a delayed larger reward.
Immediate rewards were monetary gifts ranging from £1 to £9, which would be
given to the participant at the end of the experiment. Delayed rewards were
monetary gifts ranging from £2 to £10, which would be given to the participant
after some temporal delay. The set of possible delays comprised: one day, one week,
two weeks, four weeks, six weeks, eight weeks and twelve weeks. All subjects were
presented with the same sixty questions, selected pseudo-randomly to ensure that
all magnitudes and delays were sampled. Subjects were instructed to choose con-
sistently with their subjective preferences. They were told that one of their sixty
choices would be selected at random at the end of experiment, and they would
receive the chosen monetary amount after the chosen temporal delay.

Delay discounting models. We fit two discounting models to subjects’ inter-
temporal choice behaviour. The first model was a hyperbolic discounting model:

Vlater ¼
V

1þ kD
ð5Þ

Vlater denotes the value of the later option after passing it through the discount
function. V denotes the raw, undiscounted value of the option. D denotes the delay
of the reward, in days, and k is a free parameter. The second model was a two-
parameter hyperbolic discounting model, where D is exponentiated by an
additional discounting parameter S, representing Stevens’ power law time
perception69:

Vlater ¼
V

1þ kDS
ð6Þ

In both models, the difference between the values of the two options was passed
through a softmax function to account for probabilistic choice behaviour.

Plater ¼
1

1þ eβðVsooner�VlaterÞ
ð7Þ

Plater denotes the probability of the subject choosing the ‘larger later’ option on a
specific trial. β is a free parameter that governs choice stochasticity.

Models were fit with unconstrained parameter values in log space. Thus, in
native space, parameter values had a lower bound of zero and no upper bound. We
optimised the maximum a posteriori (MAP) of observed data, given a likelihood
and an empirical group level prior over model parameters. The hyperparameters
(mean and variance) of this Gaussian prior were estimated by maximising the
likelihood of all the data from all subjects. To optimise the hyperparameters of the
prior distribution we used an expectation-maximisation (E-M) algorithm, that
iterates between E-steps, where posterior parameter distributions are estimated for
each subject, and M-steps, where the empirical prior is updated. The algorithm
iterates between these two steps until convergence.

At every E-step, a MAP estimate is computed for each subject by minimising
the negative log posterior probabilities with the fminunc function in MATLAB.
The variance on this MAP parameter is computed using a Laplace approximation,
which assumes that the posterior distribution is simply a Gaussian around the
MAP estimate.

These subject-specific means and variances are then used for updating the
hyperparameters of the prior on the M-step. Here, the mean and variance of the
Gaussian prior are updated. The mean is simply set to the mean of all subjects’
MAP estimates. The variance update incorporates both subject-level estimation
error and between-subject variability:

Prior variance ¼
1

N

X

N

j

mj � μj

� �2
þ σ2j

� �

ð8Þ

The variance of the prior distribution incorporates the individual variance (σ2)
of the posterior for each subject j, as well as the deviation of each subject’s mean
(m) from the prior mean (μ). N denotes the total number of subjects. To compare
the goodness-of-fit for each model, we computed an ‘integrated BIC’ score (iBIC)
for each model, approximating the evidence for the full hierarchical model at the
group level70.

Since both parameters in the two-parameter model contribute to discounting,
we defined an aggregate measure of discounting as log(kS) and validated this as a
reasonable measure of discounting propensity by testing its correlation with a
model-free measure of discounting behaviour, area under the discounting curve
(Supplementary Fig. 8). We conducted a leave-one-subject-out logistic regression
analysis to examine if we could predict whether a subject was a high or low
discounter, via a median split on log(kS), using parameters from the learning
models, fit to FBT data. Model performance was quantified as the median cross-
entropy across cross-validation folds, where y was the true binary label (high or low
discounter) and p was the probability of being a high discounter that the classifier
assigned to the subject.

Statistical inference was made by generating permutation-based null
distributions. For each statistical test, the analysis was simulated 5000 times, each
time randomly permuting the class labels. This generated a null distribution to
derive p values, describing whether the prediction accuracy was significantly better
than chance. This technique also allowed us to quantify whether the prediction
accuracy achieved using one parameter was significantly better or worse than the
prediction accuracy achieved using other parameters. To make these statistical
inferences we constructed null distributions of cross-entropy differences.

Unanalysed data. Subjects did not take part in any other behavioural tasks as part
of this experiment but they did fill out personality questionnaires on days 1 and 2
of the experiment, to assess for subclinical personality traits. These included the
Beck Depression Inventory, Community Assessment of Psychic Experience,
Interpersonal Reactivity Index, Empathy Quotient, Inventory of Callous-
Unemotional traits, the Borderline Scale of the Personality Assessment Inventory
and the Borderline Personality Questionnaire.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Data availability
All data generated during this study are freely available on the Open Science Framework
at [osf.io/62mza/]. The source data underlying Figs. 2a, b, 3b, c, 4b–d, 5c, 6a, b,
Supplementary Figs. 1, 3a, b, 6b, c and 8 and Supplementary Tables 1 and 2 are also
provided as a Source Data file. A reporting summary for this Article is available as a
Supplementary Information file.

Code availability
Custom MATLAB code for behavioural modelling is freely available on the Open Science
Framework at [osf.io/62mza/].
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