
SocialCDN: Caching Techniques for Distributed

Social Networks

Lu Han∗, Magdalena Punceva†, Badri Nath∗, S. Muthukrishnan∗, Liviu Iftode∗

Department of Computer Science.

Rutgers, The State University of New Jersey
∗ {luhan, badri, muthu, iftode}@cs.rutgers.edu, † magdalena.punceva@gmail.com

Abstract—Distributed online social networks (DOSN) have
been proposed as an alternative to centralized Online Social
Networks (OSN). In contrast to centralized OSN, DOSNs do not
have central repository of all user data, neither impose control
regarding how users data will be accessed. Therefore, users can
keep control of their private data and are not at the mercy of
the social network providers. However, one of the main problems
in DOSNs is how to efficiently disseminate social updates among
peers. In our previous work, we proposed Social Caches for social
updates dissemination in DOSN. However, the selection of social
caches requires knowledge about the entire social graph. In this
paper, we propose four fully distributed social cache selection
algorithms, and evaluate their performance on five well known
graphs. Using simulations we show that these algorithms perform
almost as good as the centralized best known approximation
algorithm would do. These distributed caching techniques can
be used as a basis for various applications such as those that
represent fusions of social and vehicular networks.

I. INTRODUCTION

Popular Online Social Networks (OSN), such as Facebook,

Twitter, and Google+ have changed the way people com-

municate and share information. This revolution in human

interaction through social media has brought to the forefront

the issues of ownership and control of user generated data.

In the case of centralized “Online Social Networking” sites,

once personal content is stored in an OSN, users give up the

control of their own data. Distributed Online Social Networks

(DOSN), such as Diaspora [1], PeerSoN [2], and PrPI [3], have

been recently proposed as an antidote to centralized OSNs.

DOSN is a P2P infrastructure that supports the features of

OSNs in a distributed way. DOSNs enable users to host and

organize their personal profiles and social connections while

retaining full control over their own data. More precisely,

within DOSNs, users can manage their data, control with

whom to share the data, and determine which third parties

can access their data for online advertisement. An exhaustive

list of the existing DOSNs is maintained on the Wiki page [4].

The obvious advantages of DOSNs over centralized OSNs

are counter-balanced by several challenges in deploying the

DOSNs. Critical among them is the need for a scalable social

update dissemination service. A Social Update is defined as

any social content that users share with their friends, such

as changes to profile information, wall postings, pictures,

videos, status updates, links, messages, tweets, etc. Sending

and browsing social updates represent a significant portion of

the activities in OSNs, and contribute to the majority of the

network traffic. According to a recent Facebook survey [5], on

an average day, 15% of Facebook users update personal status;

22% comment on others’ posts or status; 20% comment on

others’ photos; 26% “Like” other users’ contents; 10% send

another user a private message. Social network sites generate

more network traffic stream than most of the other websites.

28% of the Internet traffic is coming from Social Media [6],

ranking as the second source of the Internet traffic after the

search engines.

While a CDN [7] can effectively reduce the load on a

centralized server, the feasibility of the DOSNs critically

depends on the efficiency of social updates delivery and on

measures taken to support good data availability. The former

can be achieved through caching in the social network, while

the latter can be achieved through redundancy.

In a previous paper, Social Butterfly [8], we proposed Social

Caches, which are nodes selected to act as local bridges for

their friends in order to reduce the number of connections

necessary to collect the social updates in DOSNs. However,

the solution presented in [8]was not fully distributed, as it

required knowledge about the entire social graph topology.

In this paper, we propose SocialCDN, an efficient social

content distribution system based on a distributed social cache

selection mechanism that does not require global knowledge of

the underlying social graph. Within the context of SocialCDN,

we propose and analyze four distributed cache selection algo-

rithms: Randomized algorithm, Triads Elimination algorithm,

Span Elimination algorithm, and Social Score algorithm. The

Randomized algorithm, used as a baseline for comparison,

elects caches based on a uniform probability. In the two

elimination algorithms (Triad Elimination and Span Elimi-

nation algorithms), every pair of nodes select a cache in

the local neighborhood in a greedy manner and afterwards

minimize the total number of caches. These algorithms are

applicable to any arbitrary graph. The Social Score algorithm

is designed specifically for social graphs and takes into account

measures such as centrality of a node in its local network. A

node decides whether it will become a social cache or not

based on its local properties. We evaluate the performance

of these four cache selection algorithms on five different

graphs that can be grouped into three categories: Social, Semi-

Social, and Non-Social Network, and discover that the Span

Elimination algorithm outperforms the others and is the closest

to the centralized Approximate NDS (Neighbor-Dominating

Set) algorithm [8], which we use as a lower bound. Besides the

quantitative differences that we extensively analyze through

simulation, we also discuss the qualitative differences of the

proposed algorithms.

We discuss related work in Section II. Section III introduces

SocialCDN model and the approach, and Section IV clarifies

the notations. Section V presents the four distributed social

cache selection algorithms. In Section VI, we discuss the

properties and measurements of the five social graphs we used

for evaluation. The evaluation on the five graphs is presented in

Section VII. Section VIII presents the mechanism to maintain

selected caches. Section IX discusses our future directions,

and Section X concludes our work.

II. RELATED WORK

The current deployments of DOSNs can be divided into

three categories: (i). Federation, which requires social network

providers to agree upon standards of operation in a collective

fashion. Federated social networks enable users to share their

social contents in one OSN with friends from other OSNs.

(ii). OSNs over unstructured P2P underlay, which have users’

personal data distributed among multiple servers, and utilize a

lookup server for bootstrapping functionalities [9], [10] and

[3]. (iii). OSNs over structured P2P underlay, which utilize

DHT underlays such as My3 [11] and Peerson [2].

The approaches presented in [10] and [11] are the closest

to our approach. In [10], the authors propose a P2P OSN

that assumes that a user’s updates will reach another user

if there is a path in the overlay network between the two

users. Sending content through several links makes the system

more vulnerable to failures and requires stronger incentives

for intermediary peers to store and transfer the content. In

our SocialCDN approach, content can reach the other party

through a common friend, which means within at most two-

hops. My3 [11] is a P2P based OSN that relies on users’

geographical locations and online time statistics to provide

availability. It uses the original Dominating Set (DS) problem

to minimize the number of replicas. Our work does not

consider availability. Instead, we use the Neighbor Dominating

Set (NDS) problem to minimize the number of selected

cache nodes in order to improve social update dissemination

efficiency. NDS is sufficiently different from the DS problem

to render the known DS approximation algorithms unusable

in the NDS case.

There exists other data dissemination schema such as gossip

protocol [12], epidemic routing [13] and probabilistic routing

based on prediction [14]. Giuliano Mega, et al. [12] propose

a modified gossip protocol for data dissemination in DOSN.

They utilize vertex centrality and clustering to select where

to send the gossip message. However, gossip protocol and

epidemic routing schema rely on flooding technique, which do

not help in reducing network traffic. Prediction based methods

do not fit for social updates distribution, since publishing

and browsing in OSNs, although usually follow certain daily

patterns, are very hard to predict.

III. MODEL AND APPROACH

In this section, we first present the underlying models on

which the SocialCDN is relying. Then, the second half of the

section presents the SocialCDN approach for social updates

dissemination in distributed OSN.

A. Model

SocialCDN works by making the following assumptions

about the underlying communication network, social graph,

and trust.

• Network and Communication: For simplicity, we as-

sume a static network and a standard synchronous round-

based distributed communication model. In particular, we

assume that once selected the cache nodes are always

available.

• Social Graph: SocialCDN assumes that each node knows

its immediate friends, and its two-hop friends. Knowing

two-hop neighbors is a common feature in today’s OSNs,

which allows users to see friends-of-friends’ comments,

and to expand their networks of friends. We also assume

that social links in the social graph are equal; no edge

weights to represent social tie strength, distance, delays

or communication loads.

• Trust and Altruism: SocialCDN assumes friends are

trust-able and altruistic. In other words, they do not

misbehave and are willing to cache content for their

friends without compensation. Furthermore, we assume

that the social cache altruism applies to friends only, for

whom personal bandwidth and storage can be sacrificed.

Reputation and economic models are outside the scope

of the paper.

With all these simplifying assumptions, our problem is still

an NP-complete optimization problem.

B. Approach

Within a pure DOSN, dissemination of the social updates

among friends necessitates O(n2) (n is the number of friends)

network connections to be established, which can significantly

degrade the user-perceived performance compared to a central-

ized DSN. SocialCDN proposes social caches to reduce the

total number of P2P connections necessary for social updates

dissemination within a DOSN. Nodes push their social updates

to, and fetch those of their friends from the social caches

they are connected to. If the number of selected caches is

significantly less than the number of friends, then the use of

social caches will significantly reduce the total connections

when compared to a fully P2P pull/push approach. This is

why, in this paper, the goal is to minimize the number social

caches using fully distributed algorithms.

Typically, users in OSNs can be producers of social updates,

as well as consumers of social updates produced by their

friends. These properties of OSN require the selected social

caches to be friends with both nodes. Therefore, the following

Fig. 1. An example of socialCDN network.

Fig. 2. An example architecture of Content Delivery Network (CDN).

constraint holds when selecting social caches: social caches

are a subset of vertices in the graph, whereas a vertex is either

a social cache or connected to a social cache, whereas any

pair of friends must have at least one common friend who is

a social cache, if none of them is a social cache.

Although both SocialCDN and CDN rely on caching

schema for content delivery, the selection methods they em-

ploy are completely different. CDN technology selects the

edge server depending on geographic locations of the users,

edge server traffic loads, and network conditions such as

bandwidth, as shown in Figure 2. SocialCDN decides the

placement of social caches based on social graph topology,

social properties, social tie strength, social traffic pattern, etc.,

as shown in Figure 1. The distributed algorithms used for

selecting social caches are discussed in Section V.

IV. NOTATIONS

We use G = (V,E) to represent an undirected graph,

where V is the set of vertices, and E is the set of edges.

The following terms, social network user, vertex and node are

interchangeably used to represent a vertex in the graph.

We also define the following notations:

• deg(v) to be the degree of node v.

• N(v) to represent the set of immediate neighbors of v.

• The set of edges covered by node v, Sv , is the subset

of E and is composed of any e = (α, β) ∈ E iff v ∈
(N(α) ∩N(β)) ∪ {α, β}. An edge e can be covered by

multiple nodes depending on the topology of the graph.

• size(Sv) denotes the number of edges in Sv .

• T (v) is the number of Transitive Triads a node v is

part of. One of the basic unit of social network theory

is Dyad, which is a pair of parties who may or may not

share a social relation. A Triad is a set of three parties

and consists of three dyads. A triad is transitive if when

Fig. 3. An example graph to illustrate the cache selection algorithms.

there is a tie (social relationship) between party A and

party B, and between B and a third party C, then there

is also a tie between A and C.

• CN(u, v) or CN(e) denotes the set of common neigh-

bors of edge e, where u and v are endpoints of e.

During the execution of a cache selection procedure:

• A node v belongs to one of the following categories:

i). Black: v is selected as a social cache;

ii). Grey: every edge in Sv is covered by social caches

but v is not selected as a social cache;

iii). White: v is not a social cache and there is at least

one edge in Sv that has not been covered.

• The edges covered by a social cache are green edges,

others (uncovered edges) are red edges.

• span(v) is the number of red edges in Sv . At the

beginning of a selection procedure, span(v) = size(Sv),
but decreases as algorithm executes, and will be 0 when

the algorithm terminates.

V. DISTRIBUTED CACHE SELECTION ALGORITHMS

In this section, we present four distributed algorithms to

solve the following social cache selection problem: find the

smallest set of cache nodes such that each edge is connected

by at least one social cache if none of its endpoints is a social

cache. Due to the similarity to the Dominating Set problem, it

is also referred to as a Neighbor-Dominating Set problem [8]

and is defined as:

“ The Neighbor-Dominating Set of graph G =
(V,E) is the set S ⊆ V of vertices such that

for each edge (u, v) ∈ E, there exists a w ∈ S
satisfying w ∈ (N(u) ∩ N(v)) ∪ {u, v}. Given a

graph G = (V,E), find a Neighbor-Dominating Set

of smallest size.”

A. Randomized Algorithm

We use the Randomized algorithm as a baseline for eval-

uation and comparison with the other three. The algorithm

works by letting node v to elect itself as social cache with a

threshold probability θ. More precisely, each node applies the

distributed algorithm in the following steps:

a. calculate span(v),
b. if span(v) == 0, (the edges in Sv are all marked as

green), node v makes itself as grey and quits the loop.

c. if span(v) > 0, randomly generate a number p(v) ∈
[0, 1]. If p(v) > θ, node v elects itself as a social cache, marks

itself as black, and marks all edges in Sv as green, informs

its neighbors about its election and quits the loop.

We use the graph in Figure 3 as an example to explain

all the distributed social cache selection methods. Given the

TABLE I
T (v), size(Sv), ss(v), AND ss prob(v) OF EACH NODE FOR THE GRAPH

IN FIGURE 3

Node 1 2 3 4 5 6

Transitive Triads 1 1 2 1 1 0

size(Sv) 3 3 6 4 3 1

Social Score 0.0 0.0 16/3 12/3 0.0 1.0

Social Score Prob 0 0 13/16 9/12 0 0

social graph in Figure 3, we assume node i generates a random

number p(i) in each iteration, and consider the following

scenario: p(3) > θ, and p(i) < θ for i = 1, 2, 4, 5, 6. In

this case, during the first iteration, node 3 elects itself as a

social cache, and marks edges {e1, e2, e3, e4, e5, e6} as green.

Next, randomly electing a node from {4, 6} will cover the

whole graph. It is clear that the performance of this method

is determined by the predefined θ. The evaluation will be

discussed in Section VII-A.

B. Triad Elimination Algorithm

The Triad Elimination algorithm and the Span Elimination

algorithm presented in Section V-C have two phases: the se-

lection phase, and the elimination phase. During the selection

phase, a social cache is selected for every edge based on

the number of transitivity triads a node is a part of, or the

span of a node, respectively. During the elimination phase, the

redundant caches are being reduced as much as possible. Both

algorithms terminate within a constant number of rounds, i.e.,

two rounds.

In the cache selection phase, each node v calculates T (v)
as the number of transitive triads it is part of. It is relatively

easy to figure out this number of triads once the node knows

its two-hop neighbors. Next, for each edge e = (u, v), u and v
exchange their T (v) and T (u), and select the one with higher

T to be the Temporary Social Cache for the edge, TSC(e).
In case T (u) = T (v), the choice is made randomly.

The selection phase enables all edges to be covered, i.e.,

green, however, the number of caches is not optimal. For

example, in a graph with three nodes A, B and C forming

a transitive triad, it is possible to select all three nodes as

caches in the worst case, as T (v) = 1 for each of them. In

fact, choosing one node as cache is the optimal for this graph.

The elimination phase reduces the redundancy by utilizing

the fact that every common neighbor of an edge can also

be a cache for that edge besides the two endpoint nodes.

The temporary cache for each edge contacts all the common

neighbors of e = (u, v), checks how many times each of them

has been selected during the selection phase, and chooses the

one that has been selected the most number of times as the

final social cache for that edge. More precisely, the temporary

cache TSC(e) for each edge e = (u, v) compares the number

of times it has been selected freq(TSC(e)) with freq(w)
for every w ∈ CN(u, v). Node n ∈ {u, v} ∪ (N(u) ∩N(v))
with the highest freq(n) will be selected as a cache for that

edge. Node n marks itself as black, marks edges in Sn as

green, informs its friends about its selection, and terminates

the algorithm.

TABLE II
MEASUREMENTS OF THE TWO ELIMINATION ALGORITHMS. TSC(e) ARE

DIFFERENT, BUT THE FINAL SELECTION ARE THE SAME.

Edge e1 e2 e3 e4 e5 e6 e7

CN(e) {3} {2} {1} {5} {4} {3} {}

Triad Elimination Method

TSC(e) 1 3 3 3 3 4 4

Cache selected 3 3 3 3 3 3 4

Span Elimination Method

TSC(e) 3 3 3 3 3 3 4

Cache selected 3 3 3 3 3 3 4

Given the graph shown in Figure 3, the number of transitive

triads for each node is listed in Table I, and the selected

TSC(e) and the common neighbors CN(e) are listed in

Table II. Since T (1) = T (2), we select node 1 (randomly)

as TSC for edge e1. A similar situation happens for edge e6,

where node 4 is selected as temporary social cache. Further,

node 3 is selected as a TSC for edges e2, e3, e4, and e5, since

T (3) > T (1), T (2), T (4), T (5). Finally, T (4) = 1 > T (6) =
0, and node 4 is selected for edge e7. During the elimination

phase, node 3 is selected for edges {e1, e2, e3, e4, e5, e6}, and

node 4 is selected as for edge e7 based on frequency. The

results are listed in Table II.

C. Span Elimination Algorithm

Similar to the Triad Elimination algorithm, initially, each

node v calculates Sv , the set of edges that it covers. During

the selection phase, nodes u and v of each edge e = (u, v)
exchange size(Su) and size(Sv), and select the node with

the higher value to be a temporary cache. The selected node

further contacts the common neighbors of edge e, compares

size(Sn) with every node n ∈ {u, v} ∪ (N(u) ∩ N(v)), and

selects the node w that has the largest size(Sw) as TSC(e).
The elimination phase is similar to the one in Triad Elim-

ination algorithm. The TSC(e) for each edge e contacts

every node w ∈ CN(u, v), compares the freq(TSC(e)) with

freq(w), and selects node n ∈ {u, v} ∪ (N(u) ∩N(v)) that

has the highest freq(n). Node n marks itself as black, marks

edges in Sn as green, informs its neighbors, and terminates

the algorithm.

For the graph shown in Figure 3, Table I lists size(Sv) for

each node v. Nodes 1 and 2 cover 3 edges each, and their

common neighbor is CN(1, 2) = 3. Since S3 = 6 edges, node

3 is selected as TSC(e1), as well as for edges e2, e3, e4, and

e5. Since S4 = 4 > S6 = 1, therefore node 4 is selected

for edge e7. During the elimination phase, node 3 is selected

as social cache for edges {e1, e2, e3, e4, e5, e6} since it has

the highest selection frequency. Node 4 remains to be the

cache for edge e7. The results are shown in Table II. Note

that the TSC(e) selected by Span Elimination algorithm are

the same as the final caches, which indicates that Phase 1 alone

is efficient in cache selection.

D. Social Score Algorithm

The Social Score algorithm elects social caches based on a

node’s Social Score Probability, ss prob(v), which is calcu-

lated according to the Equation 1. The ss(v) in the formula

Algorithm 1 Social Score Algorithm - Stage 1

calculate ss prob(v)
if ss prob(v) > ρ then

mark itself as black (*social cache*)

mark edges in Sv as green

inform every node in N(v)
end if

Algorithm 2 Social Score Algorithm - Stage 2

while span(v) > 0 do

calculate ratio(v)
if (ratio(v) > γ) then

mark v as black (*social cache*)

make red edges in Sv as green

else

γ− = RATIO STEPSIZE
recalculate span(v)

end if

end while

is the Social Score [8] of node v to measure the centrality of

a node in its local network.

ss prob(v) =

{

1− 1/ss(v) if ss(v) ≥ 1

0 if ss(v) < 1
(1)

Social Score of a node is a combination of Clustering

Coefficient cc(v) [15], Egocentric Betweenness Centrality

ebc(v) [16], as well as the vertex degree and is defined by

Equation 2.

ss(v) = [(1− cc(v)) + ebc(v)] ∗ deg(v) (2)

Clustering coefficient quantifies how well connected are

the neighbors of a vertex in a graph, and is defined as in

Equation 3:

Ci =
2T (i)

deg(i)(deg(i)− 1)
(3)

where T (i) is the number of transitive triads node i is part

of. An egocentric network is a “local” network consisting of

a node and its immediate neighbors. Betweenness centrality

measures the influence a node has over the spread of informa-

tion through the network, and is defined by Equation 4:

BC(i) =
∑

s 6=t 6=i

σst(i)

σst

(4)

where σst is the total number of shortest paths from node

s to t, and σst(i) is the number of those paths that pass

through i. Egocentric Betweenness Centrality is the between-

ness centrality of a vertex in its egocentric network. Given

the assumption that each node v knows its two hop neighbors,

these measurements can be locally calculated. Therefore, ss(v)
and ss prob(v) can be calculated using local information only.

The Social Score algorithm executes in two stages by

utilizing two predefined variables, the threshold probability,

as ρ, and ratio threshold, as γ. First, each node v calculates

its ss(v) and ss prob(v), and elects itself as a social cache if

ss prob(v) > ρ, marks itself as black, marks edges in Sv as

green, and informs its neighbors as presented in Algorithm 1.

Next, each node that has not been elected executes the

following steps in iterations locally. In each loop, node v re-

calculates its span(v) and color. If every edge in Sv is green

and thus span(v) = 0, node v marks itself as grey and exits

the loop. Any node v with span(v) > 0 calculates a ratio,

ratio(v), which is defined in Equation 5. If ratio(v) > γ,

node v elects itself as social cache, marks itself as black, marks

red edges in Sv to green, and notifies its neighbors as shown

in Algorithm 2.

ratio(v) = span(v)/size(Sv) (5)

In the second stage, span(v) either decreases or remains

the same after each iteration. If node v is elected, span(v)
becomes zero. If an edge in Sv is marked as green by another

cache, span(v) decreases. Otherwise, span(v) remains the

same. ratio(v) changes with span(v) according to Equation 5,

and eventually the algorithm stops once ratio(v) ≤ γ for

node v. Therefore, γ needs to be decreased by stepsize

RATIO STEPSIZE after each iteration to cover the entire

graph, which is shown in Algorithm 2.

For the graph shown in Figure 3, the social scores and the

corresponding probabilities are listed in Table I. If we set the

ρ to be 0.75, nodes 3 and 4 will be elected as social caches

during the first stage. In the second stage, nodes 1, 2, 5, 6

re-calculate their span, which are now equal to zero. They

mark themselves as grey and the algorithm terminates.

E. Time Complexity

The time complexity of the algorithms is measured by the

total number of communication steps. Both Triad Elimination

and Span Elimination algorithms terminate in two rounds. In

the first round (the selection phase), each pair of connected

nodes u, v exchange T (u), T (v) or size(Su), size(Sv) values

respectively, to determine the temporary social caches. Note

that even for Span Elimination algorithm, since every node u
exchanges size(Su) with every neighbor, the information is

sufficient to select a temporary cache. In the second round,

each temporary social cache exchanges how many times it

has been selected with all common neighbors of u and v to

make a final decision. The Social Score algorithm terminates

in: 1 + 1/RATIO STEPSIZE rounds. In the first round,

each node decides if it has been elected as a social cache by

comparing its social score with ρ, and informs its friends about

the election. Next, any node that has not been elected executes

Algorithm 2, where γ is first set to 1, and decreases by

RATIO STEPSIZE in each iteration until the algorithm

terminates. The time complexity in terms of rounds and

communication complexity (messages) for each algorithm are

listed in Table III.

VI. GRAPH AND SOCIAL PROPERTIES

In this section, we will present graph and social char-

acteristics of the datasets that we use for evaluating the

TABLE III
TIME COMPLEXITY IN ROUNDS AND COMMUNICATION COMPLEXITY IN

MESSAGES FOR EACH METHODS.

Algorithm Time Complexity Communication Complexity

Triads 2 4|E|

Span 2 4|E|

Social Score 1 + 1

RATIO STEPSIZE
|E|+

|E|
RATIO STEPSIZE

1 10 100 1000 10000

1

10

100

1000

10000

100000

 citation
 coauthor
 enron
 facebook
 AS

Fr
eq

ue
nc

y
(n

um
be

r o
f n

od
es

)

node degree

Fig. 4. The log-log plot of node degree distributions of the five graphs. The
x axis represents the degree, and y axis represents the frequency.

cache selection methods. Furthermore, since cache selection

algorithms utilize diverse social properties, we will discuss

them for each graph.

A. Dataset Description

To evaluate the proposed algorithms, we choose five widely

used graphs, namely, Facebook graph [17], Enron email

graph [18], Coauthor graph [19], Citation graph [20], and

Autonomous Systems networks graph [21]. These graphs are

considered as un-directed graphs and fit into three categories:

Social Graph, Semi-Social Graph, and Non-Social Graph.

Facebook, as one of the most popular OSNs, is a typical

Social Graph. Enron graph represents social connections but

only when one sends an email to another during the data

collection period. Facebook graph represents cumulative so-

cial connections from the day user registers with Facebook

until the data is collected; while Enron graph only illustrates

periodical social connections during the crawling duration

for the dataset. Therefore, we consider the Enron graph as

a Semi-Social graph. Coauthor and Citation graphs are also

Semi-Social Graphs: the Coauthor graph shows how authors

collaborate to produce papers, while Citation graph shows how

papers cite each other. The Autonomous Systems (AS) graph

shows how routers comprising the Internet are organized, and

forms a Non-Social Graph. The statistics about vertices, edges,

and node degrees are listed in Table IV.

Figure 4 is a log-log scale plot of node degree distributions

for the five datasets. The x axis represents node degree, and

the y axis is the number of nodes having that degree. The

Coauthor, Enron and AS graphs exhibit characteristics of a

power law distribution.

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Facebook Enron Citation Coauthor AS

(a) Clustering Coefficient.

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Facebook Enron Citation Coauthor AS

(b) Egocentric Betweenness Central-
ity.

Fig. 5. Boxplot of Clustering Coefficient and Egocentric Betweenness
Centrality for the five graphs.

B. Social Properties

Table IV lists percentage of nodes that are part of at least

one transitive triad in each graph. This measurement affects

the performance of the Triad Elimination method. Coauthor

graph has the highest value, and we believe the reasons are

posited as being twofold. First, research papers are likely

to be composed by authors from the same lab/institute, and

the same group of authors tend to collaborate to produce

papers. Second, Coauthor graph is crawled from the DBLP

conferences, and authors from the area tend to submit papers to

these conferences over the years. Facebook and Enron graphs

also have high percentage of nodes involved in a transitive

triad. This is because of the social network principle: “your

friend’s friends are more likely to be your friends”. Citation

and Oregon graphs have less percentage of nodes involved in

a transitive triad compared with the other three graphs.

Table IV also lists statistics about number of edges covered

by a node, size(Sv). size(Sv) affects two cache selection al-

gorithms: the Randomized algorithm and the Span Elimination

algorithm. For any node v, size(Sv) ≤ deg(v)∗(deg(v)+1)/2.

Therefore, no surprise that on average size(Sv) correlates

with deg(v). Citation graph has the highest value for the

max(size(Sv)) as well as max(deg(v)).

The Social Score algorithm utilizes Clustering Coefficient,

Egocentric Betweenness Centrality and degree of a vertex as

input parameters. The boxplot of the Clustering Coefficient

for each graph is shown as in Figure 5(a). With lower

quantile and the median being equal to the minimum, the

plot for AS graph shows that at least half of the users have

zero clustering coefficient, and neighbors of a node tend to

be poorly connected. The plot for the Coauthor graph has

upper quantile same as the maximum and median around 0.8.

We believe that this is due to coauthors constructing highly

connected local communities for collaboration. The boxplot of

Enron graph is evenly distributed among [0,1]. The boxplots

for Facebook and Citation graphs show similar layouts.

The boxplot of Egocentric Betweenness Centrality is in

Figure 5(b). The plots for Facebook and Citation graphs are

again similar, with Facebook graph having a higher median.

The plot illustrates that on an average a vertex in Citation

graph connects more non-connected vertices than a vertex in

TABLE IV
STATISTICS AND PROPERTIES OF THE FIVE GRAPHS.

Metrics Graph

Facebook Enron Citation Coauthor AS

Number of Edges 817090 183831 705084 3742140 23409
Number of Vertex 63731 36692 27400 511164 11174

Degree

max 1098 1383 2468 597 2389
min 1 1 1 1
avg 25.64 10.02 25.70 7.32 4.19

median 10 3 15 4 2

% of nodes in transitive triads 77% 67% 40% 87% 41%

Number of edges covered, size(Sv)
max 20189 18770 35995 9661 6027
min 1 1 1 1 1
avg 190.47 69.46 187.60 30.16 9.53

Fig. 7. Boxplot of the social score probability for each graph.

Facebook graph. The median and lower quantile are equal to

the minimum value in the Enron, Coauthor and the AS graphs.

This demonstrates that at least half of the vertices are not

centered in their egocentric graphs, hence, are unlikely to be

selected as caches. The evaluation results in Section VII-C

verify this by showing that the number of social caches

selected is less than half of vertices no matter which method

is used.

We also calculate the social score, and the social score

probability for each node in each graph. The social score

distribution plotted in a 3D coordinate system formed by

degree, clustering coefficient, and egocentric betweenness cen-

trality for each graph is presented in Figure 6, with x axis as

degree, y axis as clustering coefficient, and z axis as egocentric

betweenness centrality. The dots are the social scores, which

is calculated based purely on local information.

Figure 7 shows boxplots of the social score probability for

each graph. Enron, Coauthor, and AS graphs have the medians

and lower quantiles equal to the minimum (0). For Facebook

and Citation graphs, the boxplots have the medians greater

than 0.9 and lower quantiles larger than 0.7. This means

that the percentage of vertices selected as social caches in

Facebook and Citation graphs is higher than the other three

graphs.

Facebook and Citation graphs have similar graph and social

properties in terms of average node degree, percentage of

nodes in transitive triads, average number of edges covered

(size(Sv)), clustering coefficient and egocentric betweenness

centrality distributions, as well as social score probability.

Since we utilized these social properties in various cache

selection methods, we believe that this similarity will translate

into similar performance of the corresponding methods.

VII. EVALUATION

We evaluate four distributed social cache selection algo-

rithms using the five graphs that include both “Social Graph”

to “Non-Social Graph” as discussed in Section VI in order to

answer the following questions:

• Which algorithm performs best in terms of number of

caches selected?

• Do the discussed social properties affect the algorithm

performance, and how?

• Do graph categories, e.g. social graph or non-social

graph, affect the selection of caches?

We will first present some results regarding Randomized

algorithm and Social Score algorithm, and then compare all

the four algorithms.

A. Randomized Algorithm

To evaluate the Randomized algorithm, we vary the proba-

bility threshold θ, and run the algorithm 10 times for any given

θ on each graph. Figure 8 presents fraction of nodes elected

as social caches with error bars (y axis) when varying θ (x

axis) for the five graphs. 1 The minimum value of θ we test is

0.90, since the fraction of nodes elected shows clear pattern of

stability for every graph. Specifically, as θ decreases, fraction

of elected nodes remains almost the same for Facebook and

Citation graphs, but increase slightly for Enron and Coauthor

graphs. As for AS graph, the results zigzag as θ decreases,

and we believe it is due to the following two reasons: (i).

the Randomized method is simply based on the randomly

generated numbers, which makes it unpredictable; (ii). the

topology of AS graph differs from the other four graphs as

it is a “Non-Social” graph.

B. Social Score Algorithm

The performance of the Social Score algorithm is deter-

mined by two key parameters: the social score probability

threshold ρ and the ratio threshold γ. Therefore, we perform a

set of experiments to answer the following questions: (i) What

is the fraction of nodes elected and fraction of edges marked

as green after stage 1 (Algorithm 1) when varying the ρ? (ii)

1In this section, we will compare the performance of different algorithms
given the five graphs. Since each graph has different |E| and |V |, we use
fraction of nodes (edges) for comparison purpose.

(a) Facebook (b) Enron (c) Citation (d) Coauthor (e) AS

Fig. 6. Plots of social score of the five datasets in the 3D coordinate system composed of deg, cc, and ebc as x, y, and z axis.

0.90 0.92 0.94 0.96 0.98 1.00

0.4

0.5

0.6

0.7

0.8

0.9

Fr
ac

tio
n

of
 n

od
es

 s
el

ec
te

d
as

 s
oc

ia
l c

ac
he

s

threshold probability

 Facebook
 Enron
 Citation
 Coauthor
 AS

Fig. 8. Fraction of nodes elected as social caches with error bars (y axis)
by randomized algorithm when varying the θ (x axis).

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

F
ra

c
ti
o
n
 o

f
e
d
g
e
s
 c

o
v
e
re

d

Fraction of nodes selected

Facebook
Enron

Citation
Coauthor

AS

Fig. 9. Fraction of nodes elected (x axis) v.s. fraction of edges marked as
green (y axix) after the first phase of the algorithm when vary the ρ. For each
line, the left most symbol represents ρ = 0.995, and the following symbols
represent ρ decreases by 0.05 to 0.9.

What is the number of social caches elected by the algorithm

when varying both ρ and γ? (iii) How does the algorithm

converge?

First, we observe the stage 1 of the algorithm, where nodes

elect themselves based on the social score probability. Figure 9

plots the fraction of edges marked as green (y axis) depending

on the fraction of nodes elected as social caches (x axis).

For each line (that corresponds to one of the five graphs) the

leftmost symbol represents ρ = 0.995, the following symbols

represent ρ decreased by 0.05 and the rightmost symbol

corresponds to ρ = 0.9. Thus we increase the fraction of nodes

selected (x-axis) by decreasing the threshold probability. As

we decrease the ρ, the fraction of social caches elected, and

the fraction of edges marked as green are both increasing. As

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

F
ra

c
ti
o
n
 o

f
n
o
d
e
s
 s

e
le

c
te

d
 a

s
 s

o
c
ia

l
c
a
c
h
e

threshold probability

Facebook
Enron

Citation
Coauthor

AS

Fig. 10. Fraction of vertices elected as social cache (y axis) when varying
the ρ (x axis) from 0.99 to 0.9 by step size 0.05.

we discussed in Figure 7, more than 50% of vertices in both

Facebook and Citation graphs have social score probability

greater than 0.9. Therefore, above 60% of nodes are elected as

social caches for these two graphs when ρ reaches 0.9. For the

other three graphs, only less than 20% nodes are elected after

the first phase of the algorithm. For each graph, the fraction of

edges that are covered after the first phase approaches 100%.

Second, we study number of caches elected when the

algorithm finishes. The results are shown in Figure 10. The

x axis represents ρ ranging from 0.99 to 0.9, and the y axis

is fraction of nodes elected as social caches. Decreasing ρ
enables stage 1 of the algorithm to elect more social caches,

hence, covers larger portion of the edges in the graph. For

Facebook and Citation graphs, fraction of nodes elected as

social caches reaches a minimum (optimal value) at ρ =

0.97. Reaching an optimal value is observed for the Enron

graph as well. This can be explained by the fact that for the

particular probability threshold optimal number, more edges

become green during the first phase already. For the other two

graphs, Coauthor and AS, the number of caches decreases

when probability decreases.

Finally, we discuss how the algorithm converges when

varying γ for different ρ. We use fraction of green edges in

the graph as measurement to evaluate the convergence rate.

Figure 11 shows convergence of the algorithm via fraction of

green edges (y axis), and the x axis represents γ. The lines with

different colors in each subgraph, from bottom to top, show

γ varying from 0.9 to 0.99 with stepsize equals to 0.05. The

convergence rates for all graphs are similar. In the AS graph,

there is a spike when the γ decreases from 0.6 to 0.4. We

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1F
ra

c
ti
o
n
 o

f
g
re

e
n
 e

d
g
e
s

γ

Facebook

 0.95

 1

 0 0.2 0.4 0.6 0.8 1F
ra

c
ti
o
n
 o

f
g
re

e
n
 e

d
g
e
s

γ

Enron

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1F
ra

c
ti
o
n
 o

f
g
re

e
n
 e

d
g
e
s

γ

Citation

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1F
ra

c
ti
o
n
 o

f
g
re

e
n
 e

d
g
e
s

γ

Coauthor 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1F
ra

c
ti
o
n
 o

f
g
re

e
n
 e

d
g
e
s

γ

AS

Fig. 11. Convergence of the Social Score algorithm in the means of fraction of green edges when γ decreases(x axis). The different lines in each subgraph,
from bottom to top, shows ρ increasing from 0.9 to 0.99.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Facebook Enron Citation Coauthor AS

F
ra

c
ti
o

n
 o

f
n

o
d

e
s
 s

e
le

c
te

d
 a

s
 s

o
c
ia

l
c
a

c
h

e

Approximate_NDS
Randomized

Triad_Elimination
Span_Elimination

Social_Score

Fig. 12. Fraction of nodes selected as social caches for each graph.

believe that this is because the number of nodes with degree

equal to 1 is non-negligible; these nodes will be elected as

social cache only when the ratio threshold decreases to 0.5.

Indeed, a large portion, 3866 out 11174 vertices in the AS

graph, have degree equal to 1.

C. Comparison of Algorithms

We evaluate the performance of the four proposed algo-

rithms by comparing the fraction of nodes selected as social

caches. Specifically, we compare them with the Approximate

NDS algorithm introduced in [8], which is a centralized cache

selection method that has an O(logm) approximation to the

cache selection problem (Neighbor-Dominating Set), where m
is number of edges in the graph.

Table V lists the fraction of nodes selected as social caches

when different methods are being applied on each graph

(number of caches selected are also listed in parentheses).

Specifically, we choose θ = 0.99 for the Randomized method,

and choose ρ = 0.95 for the Social Score method for

the comparison. The results for Triads and Span elimination

methods are averages of ten runs to reduce possible bias. The

standard deviation is also listed. The fraction of nodes selected

as social caches for each graph is also plotted in Figure 12.

From Table V and Figure 12, we observe that Facebook and

Citation graphs select 20% more than the other three graphs no

matter which cache selection method is used, which confirms

our initial guess in Section VI-B. We believe that the social

properties and measurements discussed in Section VI-B are

the key influencers for social caches selection and placement.

Figure 12 shows that all the three algorithms Span Elimina-

tion, Triad Elimination, and Social Score have similar good

performance, yet about 15% or lower than the centralized

best known approximation algorithm, Approximate NDS. Span

Elimination algorithm performs best in all cases, although oc-

casionally (Facebook data), the performance of Social Score is

comparable. We believe this is because Social Score algorithm

is specifically designed for Social Graphs, such as Facebook.

Span elimination algorithm outperforms the Triad elimination,

mainly because it takes into account the span of a node besides

the number of triads around a node.

VIII. CACHE MAINTENANCE

As OSN friends join and leave over time, the underlying

social graph changes as well, requiring a re-election of social

caches. In this section, we discuss the Least Cache Re-election

(LCR) mechanism, which maintains the proper set of caches

while reducing the re-election overhead as much as possible.

The mechanism is inspired by the Least Cluster Change

approach [22] proposed for Mobile Ad-hoc networks.

When a node enters or leaves a social network or when new

connections are created or existing ones removed, a procedure

of friending or de-friending takes place. With respect to

friending, three scenarios are of interest for our method: a

cache node friends with a non-cache, a non-cache friends with

a non-cache, and a cache friends with a cache. In order to

reduce the maintenance overhead, the LCR does not perform

re-elections when a non-cache node friends with a cache, or

when a cache friends with a cache. Although these actions

may result in redundant caches, the existing set of caches will

still be a Neighbor-Dominating set.

When a non-cache node friends with another non-cache

node, a cache re-election occurs to ensure that a cache node

is available for this newly formed connection. In this case, the

two non-cache nodes u and v will exchange their friend lists

and calculate their common neighbor set CN(u, v). If there

exists at least one cache in CN(u, v), no re-election is needed.

Otherwise, a new cache node needs to be selected between u
and v according to the cache selection algorithm used.

Similarly, we consider the following scenarios when de-

friending occurs: a cache node de-friends with a cache, a cache

de-friends with a non-cache, and a non-cache de-friends with

a non-cache. In the situation where a cache de-friends with

a cache, and a non-cache de-friends with a non-cache, no re-

election is needed. In the scenario where a cache de-friends

with a non-cache, the re-election is needed to ensure that every

TABLE V
FRACTION OF NODES SELECTED AS SOCIAL CACHE BY DIFFERENT ALGORITHMS (NUMBER OF CACHES SELECTED ARE LISTED IN PARENTHESES)

.
Algorithms Graph

Facebook Enron Citation Coauthor AS

Number of Vertex 63731 36692 27400 511164 11174

Centralized Apprx NDS 0.41(26288) 0.09(3370) 0.31(8517) 0.15(79672) 0.13(1505)

Randomized Algorithm (p = 0.99) 0.68(43291) 0.39(14416) 0.59(16061) 0.38(193399) 0.54(6079)

Triads Elimination 0.56(35913.6)/(29.42) 0.15(5410.7)/(36.19) 0.52(14355)/(33.56) 0.38(194527.9)/(32.85) 0.18(1998.3)/(12.88)

Span Elimination 0.54(34096.7)/(6.88) 0.11(3929.1)/(7.62) 0.44(12116.0)/(6.55) 0.18(92089.3)/(21.87) 0.14(1585.1)/(3.31)

Social Score (p = 0.95) 0.54(34331) 0.13(4627) 0.48(13107) 0.21(106530) 0.21(2290)

friend of the non-cache can get its social updates. We adopt

a simple approach by letting the non-cache node notifies its

neighbors about the de-friending to initiate a cache re-election.

Note that, in case of a cache miss, a node can always go to

the original node to get the latest social updates. We believe

the “Least Cache Re-election” mechanism is a good trade-off

between cache availability and maintenance overhead.

IX. DISCUSSION

In this section, we discuss several aspects that we did not

cover in this paper but plan to address as future work.

Network Dynamics and Availability: The performance of

SocialCDN is directly influenced by the network dynamics and

the content availability. In Section VIII, we described possible

directions of how to handle nodes’ joins and leaves as well as

unexpected failure situations. Detailed experimental evaluation

with realistic nodes’ reliability data will be one of our future

directions. We also plan to explore availability in SocialCDN

in the future.

Load Balancing: How to balance the network traffic as-

sociated with the cache nodes is another important issue. As

part of future work, we plan to formulate a new optimization

problem by adding an additional constraint related to the load

in terms of number of connections or traffic per cache node.

Privacy: SocialCDN assumes that users know their imme-

diate friends and friends-of-friends. We did not investigate

nodes’ misbehaving scenarios and Sybil attack in this paper,

which are the other directions for our future work.

X. CONCLUSION

In this paper, we presented SocialCDN, a novel social

content dissemination system for Distributed Online Social

Networks based on Social Caches. By caching the social

updates on social caches, SocialCDN enables efficient data

dissemination among social buddies through fewer network

connections. We propose four distributed cache selection al-

gorithms for SocialCDN based on different social properties,

Randomized, Triad Elimination, Span Elimination, and Social

Score algorithm. Empirical evaluations on five well known

graphs show that Span Elimination algorithm has the least

time complexity in term of communication steps, and selects

least number of social caches for any given graph.

XI. ACKNOWLEDGEMENT

We thank our shepherd Venugopalan Ramasubramanian for

his valuable suggestions, and the anonymous reviewers for

their insightful comments. This work is supported in part by

the NSF grant CNS-1111811.

REFERENCES

[1] “Diaspora.” [Online]. Available: http://joindiaspora.com
[2] S. Buchegger, D. Schiöberg, L. H. Vu, and A. Datta, “Peerson: P2p social

networking - early experiences and insights,” in Proc. of the Second ACM

Workshop on Social Network Systems (SNS’09), 2009.
[3] S.-W. Seong, J. Seo, M. Nasielski, D. Sengupta, S. Hangal, S. K.

Teh, R. Chu, B. Dodson, and M. S. Lam, “Prpl: a decentralized
social networking infrastructure,” in Proc. Workshop on Mobile Cloud

Computing Services: Social Networks and Beyond, 2010.
[4] “Distributed online social networks list.” [Online]. Available:

http://en.wikipedia.org/wiki/Distributed social network
[5] K. N. Hampton, L. S. Goulet, L. Raine, and K. Purcell, “Social

networking sites and our lives,” Pew Internet and American Life Project.
[6] “Network traffic distribution.” [Online]. Avail-

able: http://www.greenhostit.com/green-blog/98-blogging/338-blogging-
for-traffic

[7] J. Dilley, B. Maggs, J. Parikh, H. Prokop, and B. Weihl, “Globally
distributed content delivery,” IEEE Internet Computing, 2002.

[8] L. Han, B. Nath, L. Iftode, and S. Muthukrishnan, “Social butterfly:
Social caches for distributed social networks,” in SocialCom, 2011.

[9] O. Schneider, “Trust-aware social networking: A distributed storage
system based on social trust and geographic proximity,” 2009.

[10] A. Olteanu and P. Guillaume, “Towards Robust and Scalable Peer-to-
Peer social networks,” in SNS’12.

[11] R. Narendula, T. G. Papaioannou, and K. Aberer, “My3: A highly-
available P2P-based online social network,” in Proc. of the 11th IEEE

International Conf. on Peer-to-Peer Computing (IEEE P2P’11), 2011.
[12] G. Mega, A. Montresor, and G. P. Picco, “Efficient dissemination

in decentralized social networks,” in Proc. of Conf. on Peer-to-Peer

Computing (P2P’11), Aug. 2011.
[13] A. Vahdat and D. Becker, “Epidemic routing for partially connected ad

hoc networks,” Technical Report CS-200006, Duke University., 2000.
[14] A. Lindgren, A. Doria, and O. Schelén, “Probabilistic routing in inter-

mittently connected networks,” SIGMOBILE Mob. Comput. Commun.

Rev., vol. 7, no. 3, pp. 19–20, Jul. 2003.
[15] P. W. Holland and S. Leinhardt, “Transitivity in structural models of

small groups,” Small Group Research, vol. 2, pp. 107–124, 1971.
[16] P. Marsden, “Egocentric and sociocentric measures of network central-

ity,” Social Networks, vol. 24, no. 4, pp. 407–422, 2002.
[17] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the

evolution of user interaction in facebook,” in Proc. of Workshop on

Online social networks (WOSN’09), 2009.
[18] B. Klimt and Y. Yang, “Introducing the enron corpus.” in In First

Conference on Email and Anti-Spam (CEAS’04), 2004.
[19] “The dblp computer science bibliography coauthor graph.” [Online].

Available: http://www.sommer.jp/graphs
[20] “The kdd competition, citation graph.” [Online]. Available:

http://www.sommer.jp/graphs
[21] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time: densi-

fication laws, shrinking diameters and possible explanations,” in Proc.

of Conf. on Knowledge discovery in data mining (KDD’05), 2005.
[22] C. chuan Chiang and M. Gerla, “Routing and multicast in multihop,

mobile wireless networks,” in Proc. in Multihop, Mobile Wireless

Networks (ICUPC ’97), 1997.

