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Abstract—We propose SocialFilter, a trust-aware collaborative
spam mitigation system. Our proposal enables nodes with no
email classification functionality to query the network on whether
a host is a spammer. It employs Sybil-resilient trust inference to
weigh the reports concerning spamming hosts that collaborating
spam-detecting nodes (reporters) submit to the system. It weighs
the spam reports according to the trustworthiness of their
reporters to derive a measure of the system’s belief that a host
is a spammer. SocialFilter is the first collaborative unwanted
traffic mitigation system that assesses the trustworthiness of spam
reporters by both auditing their reports and by leveraging the
social network of the reporters’ administrators.

The design and evaluation of our proposal offers us the follow-
ing lessons: a) it is plausible to introduce Sybil-resilient Online-
Social-Network-based trust inference mechanisms to improve
the reliability and the attack-resistance of collaborative spam
mitigation; b) using social links to obtain the trustworthiness of
reports concerning spammers can result in comparable spam-
blocking effectiveness with approaches that use social links to
rate-limit spam (e.g., Ostra [27]); c) unlike Ostra, in the absence
of reports that incriminate benign email senders, SocialFilter
yields no false positives.

I. INTRODUCTION

Centralized email reputation services that rely on a small
number of trusted nodes to detect and report spammers,
e.g., [1, 5, 8], are being challenged by the increasing scale
and sophistication of botnets. In particular, spammers employ
multiple malicious hosts, each for a short period of time. In
turn, those hosts spam multiple domains for short periods [7,
23, 30]. The above strategies reduce the effectiveness of spam
detection from a small number of vantage points. Moreover,
several of these services require paid subscription (e.g., Cloud-
Mark [1] and TrustedSource [5]).
Motivated by the shortcomings in terms of effectiveness

and cost of the above email reputation services, researchers
have proposed open and collaborative peer-to-peer spam fil-
tering platforms, e.g., [44, 45]. These collaborative systems
assume compliant behavior from all participating spam report-
ing nodes, i.e., that nodes submit truthful reports regarding
spammers. However, this is often an unrealistic assumption
given that these nodes may belong to distinct trust domains.
A recent collaborative spam email sender detection sys-

tem [33] employs trust inference [21, 26, 31] to weigh spam-
mer reports according to the trustworthiness of their reporters.
However it is still susceptible to Sybil [15] attacks.
To address the above challenges, we propose SocialFilter:

a collaborative spam filtering system that uses social trust
embedded in Online Social Networks (OSN) to assess the
trustworthiness of spam reporters. Our proposal aims at ag-
gregating the experiences of multiple spam detectors, thus
democratizing spam mitigation. In particular, each SocialFil-
ter node submits spammer reports (§II-B) to a centralized

repository. These reports concern spamming hosts identified
by their IP addresses. SocialFilter is a trust layer that exports
a measure of the system’s belief that a host is spamming. Thus,
it enables nodes without spam detection capability to collect
the experiences of nodes with such capability and use them to
classify email connection requests from unknown hosts.
SocialFilter nodes are managed by human administrators

(admins). Our insight is that nodes maintained by competent
and trusted admins are likely to generate trustworthy spammer
reports, while nodes maintained by admins known to be
less competent are likely to generate unreliable reports. The
repository utilizes a trust inference method to assign to each
node a reporter trust (§III-A) value. This value reflects the
system’s belief that the spammer reports of a node are reliable.

The trust inference method exploits trust transitivity and
operates on a trust graph that is formed at the repository as
follows (§III-A). Each vertex in the graph is a SocialFilter
node, which is administered by a human admin. The edges in
the graph are direct trust values between nodes administered
by admins that are socially acquainted. The social relationships
between admins are obtained from massive OSN providers,
First, each admin explicitly assigns a direct trust value to nodes
that are administered by his friends, based on his assessment
of their competency. Second, the direct trust values between
nodes are updated to reflect the similarity between their spam-
mer reports. This is based on the observation that trustworthy
nodes are likely to report similarly on commonly encountered
hosts. Third, the repository computes the maximum trust path
from pre-trusted nodes to all other nodes in the trust graph.
However, such transitive trust schemes are known to be

vulnerable to the Sybil attack [12, 13, 15]. To mitigate this
attack, we again use the social network to assess the belief
that a node is a Sybil attacker, which we refer to as identity

uniqueness (§III-B).
The originator of a spammer report also assigns a confidence

level to its report. The reporter trust of a node, its identity
uniqueness and its confidence level determine how much
weight the repository should place on its report. Subsequently,
the repository combines the reports to compute a spammer

belief value for each host IP reported to the system. This value
has a partially Bayesian interpretation, reflecting the belief that
a host is spamming (§III-A2,§III-B). This value is exported by
the repository to other online systems for diverse purposes.
For example, email servers can use them to filter out email
messages that originate from IPs designated as spammers.
A recent proposal, Ostra [27], combats unwanted traffic

by forcing it to traverse social links annotated by credit
balances. The per-link credit balances rate-limit unwanted
communication. Unlike Ostra, our proposal does not use social
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Figure 1. SocialFilter architecture.

links to rate-limit unwanted traffic. Instead it utilizes social
links to bootstrap trust between reporters, and to suppress
Sybil attacks. We compare Ostra’s and SocialFilter’s approach
in leveraging social trust.
We evaluate our design (§IV) using a 50K-node sample

of the Facebook social network. We demonstrate through
simulation that collaborating SocialFilter nodes are able to
suppress spam email traffic in a reliable and responsive man-
ner. Our comparison with Ostra shows that our approach is less
effective in suppressing spam when the portion of spammers
in the network and the number of Sybils they employ exceeds
a threshold. However, Ostra can result in a non-negligible
percentage of legitimate emails being blocked (false positives),
which is highly undesirable. This holds even when receivers do
not falsely classify legitimate email as spam. In contrast, in this
case SocialFilter yields no false positives. Given the severity
of false positives, these results suggest that our system can be
a better alternative under a multitude of deployment scenarios.

To the best of our knowledge, SocialFilter is the first OSN-
based collaborative spam filtering system to use Sybil-resilient
trust inference to assess the overall trustworthiness of a node’s
spammer reports. Our contributions are:

• We have combined existing trust inference mechanisms
to derive an attack-resistant mechanism that assigns trust
values (spammer belief) to hosts detected by a collabo-
rative spam mitigation system.

• We have evaluated our design using simulations and com-
pared it to Ostra [27] to illustrate our design’s advantages
and shortcomings.

• We have demonstrated the plausibility of using social
trust to improve the reliability and attack-resilience of
collaborative spam mitigation systems.

An early version of this work appeared as a workshop
short paper [34]. In this paper, we provide a more detailed
description of the identity uniqueness mechanism. We also
present more evaluation results with respect to our proposal’s
effectiveness in the absence of false reporters and colluders.

II. SYSTEM OVERVIEW

A. SocialFilter Components

Figure 1 depicts SocialFilter’s architecture. At a high-level,
the system comprises the following components: 1) human
users that administer networked devices/networks (admins)
and join a social network and maintain a unique account;
2) SocialFilter nodes (or reporters) that are administered by
specific admins and participate in monitoring and reporting the
behavior of email senders; 3) spammer reports submitted by
SocialFilter nodes concerning email senders they observe; and

4) a centralized repository that receives and stores spammer
reports, and computes trust values.
The same admin that administers a SocialFilter node also

administers a group of online systems that interface with the
node to report spamming behavior. Interfacing systems can
be SMTP servers or IDS systems [29] that register with the
repository. The interfacing system can also be one driven by
a human user who reports an email (and consequently its
originating email server) as spam.

B. Spammer Reports

An email characterization system uses the
ReportSpammer(h, confidence) call of the SocialFilter
node RPC API to feedback its observed behavior for an
email sender h to the node. The first argument identifies the
email sender, i.e., an IP address. The second argument is
the confidence with which the system is reporting that the
specified host is a spammer. The confidence takes values
from 0% to 100% and reflects the fact that in many occasions
traffic classification has a level of uncertainty. For example,
an email server that sends both spam and legitimate email
may or may not be a spammer. For instance, the confidence
may be equal to the portion of emails received by host h that
are spam [32].
Then, the node submits a corresponding spammer report to

the repository to share its experience. For example, if a node
i’s spam analysis indicates that half of the emails received
from host with IP h are spam, i reports:

[spammer report] h, 50%
To prevent forgery of reports and maintain accountability,

nodes authenticate with both the repository and the OSN
provider using standard single-sign-on authentication tech-
niques, e.g., [16, 37] or Facebook Connect [4].

C. Determining whether a Host is Spamming

Our system relies on the fact that nodes comprising Internet
systems such as email servers, honeypots, IDS, and etc, are
administered by human admins. These users maintain accounts
in online social networks (OSN). The SocialFilter centralized
repository utilizes two dimensions of trust embedded in OSNs
to determine the trustworthiness of the reports submitted by
SocialFilter nodes:
Reporter trust. The repository computes reporter trust val-
ues for all nodes by employing a transitive trust inference
mechanism. This mechanism relies on comparing the reports
of nodes that are socially acquainted to derive pairwise di-

rect trust values (§III-A). If two friend nodes i and j have
submitted reports concerning the same hosts, the repository
can compare their reports to determine the direct trust value
dij . The repository initializes the direct trust dij to a trust
value explicitly submitted by the admin of i. This value is i’s
assessment on his friend j’s ability to correctly maintain its
node.
Identity uniqueness. The repository defends against Sybil
attacks [15] by exploiting the fact that OSNs can be used for
resource testing [27, 38, 42]. The test in question is a Sybil
attacker’s ability to create and sustain acquaintances. Using
a SybilLimit-based [42] technique (§III-B), the OSN provider
assigns an identity uniqueness value to each node. This value
quantifies the system’s belief in that node not being a Sybil.



A characterization system can use the IsSpammer(h) call
of the SocialFilter node RPC API to obtain a spammer belief

value, which quantifies how certain the system is that host h is
spamming. The node obtains this value by querying the reposi-
tory. The repository derives this value by aggregating spammer
reports concerning h, and these reports are weighted by the
reporter trust and identity uniqueness of their submitters.

D. Assumptions

We make the following assumptions in our design:
Trustworthy SocialFilter reporters send mostly correct

reports and report similarly: We assume that competent
and trustworthy SocialFilter admins have correctly configured
their spam detection systems, so that their node sends mostly
correct reports. We also assume that when they report the
same spamming host, their reports mostly match, since a host
is expected to send spam to most of the nodes it connects
to [41]. In the rest of this paper, we call correctly configured
and trustworthy SocialFilter reporters honest.
Trusted repository: We assume that the OSN provider and
the SocialFilter repository reliably maintain the social graph,
and the spammer reports. We trust the repository to correctly
compute the spammer belief values.

E. Threat Model

SocialFilter is a collaborative platform aiming at suppress-
ing malicious traffic. In addition, it is an open system, meaning
that any admin with a social network account and a device can
join. As such, it is reasonable to assume that our system itself
will be targeted in order to disrupt its operation. Our system
faces the following security challenges:
False spammer reports. Malicious nodes may issue false
reports aiming at reducing the system’s ability to detect spam
or at disrupting legitimate email traffic. We treat incorrectly
configured nodes as malicious.
Direct trust manipulation. The transitive trust scheme we
use to determine a node’s reporter trust is vulnerable to
manipulation as follows. First, a malicious SocialFilter node
may purposely send false spammer reports in order to increase
the direct trust between himself and malicious friends that
also send false reports. This can result in himself or his
malicious friends to have increased reporter trust. Second, he
may purposely send true spammer reports in order to increase
its direct trust with honest nodes and consequently his reporter
trust. Third, he may purposely send false spammer reports to
reduce his direct trust with honest nodes, aiming at the honest
nodes obtaining decreased reporter trust. Fourth, a malicious
host may send legitimate email to an honest node x and spam
email to x’s honest friend node y, aiming at decreasing the
direct trust between x and y. This manipulation can decrease
the reporter trust of x or y.
Sybil attack. An adversary may attempt to create multiple
SocialFilter identities aiming at increasing its ability to subvert
the system using false spammer reports. Defending against
Sybil attacks without a trusted central authority that issues
verified identities is hard. Many decentralized systems try to
cope with Sybil attacks by binding an identity to an IP address.
However, malicious users can readily harvest IP addresses
through BGP hijacking [30] or by commanding a large botnet.

III. DESIGN

A. Reporter Trust

Malicious nodes may issue false spammer reports to ma-
nipulate the perceived belief that a host is a spammer. In
addition, misconfigured nodes may also issue erroneous spam-
mer reports. SocialFilter can mitigate the negative impact of
malicious or incorrect reports by assigning higher weights to
reports obtained from more nodes with higher reporter trust.

The repository maintains a reporter trust value 0 ≤ rti ≤ 1
for each node i managed by an admin in the social graph.
This trust value corresponds to the repository’s estimation of
the belief that node j’s reports are accurate. It is obtained from
three sources: a) manual trust assignments between friends in
the social networks; b) spammer report comparison; and c)
transitive trust.
To derive trust values, the repository needs to maintain

the social graph S(V, E) of the admins in the system. V
denotes the set of the admins and E denotes the set of the
friend connections between socially acquainted admins. The
repository also maintains a reporter trust graph T (V, E). The
vertices of this graph is the set of all admins as is the case
for graph S(V, E). The edges E are the edges in E annotated
with direct trust values between acquainted SocialFilter nodes.
Next, we describe how the direct trust values are derived and
how the reporter trust values are computed using T (V, E).
User-defined trust. First, to initialize the direct trust values,
the repository relies on the fact that nodes are administered by
human users. Admins that are socially acquainted can assess
each other’s competence. An admin i tags his acquaintance
admin j with a user-defined trust value 0 ≤ utij ≤ 1 based on
his belief on j’s ability to correctly configure his node. The
repository uses this value to initialize the direct trust value
between friend nodes i and j: dij = utij . Users frequently
use the OSN to add friends and to communicate with each
other, thus the requirement for administrators to rate each other
should not induce a substantial usability burden.
Spammer reports comparison. Second, the repository dy-
namically updates the direct trust dij by comparing spammer
reports submitted by two nodes i and j. The spammer reports
of two friend nodes i and j can be compared if both nodes
have reported on the same host h. Intuitively, if i and j share
similar opinions on h, i should place high trust in j’s reports.
Let 0 ≤ vkij ≤ 1 be a measure of similarity between i and
j’s kth report on a common host. The repository updates i’s
direct trust to j using an exponential moving average:

dk+1
ij = α ∗ dkij + (1− α) ∗ vk+1

ij (1)

As i and j submit more common reports, the direct trust
dkij gradually converges to the similarity of reports from i and
j. α is a system parameter that affects the influence of history
on direct trust assessment.
Transitive trust. Third, the repository incorporates direct trust
and transitive trust [18, 19] to obtain the reporter trust value for
i: rti. It does so by analyzing the reporter trust graph T (V, E)
from the point of view of a small set of pre-trusted nodes in V .
These pre-trusted nodes are administered by competent admins
that are fully trusted by the SocialFilter repository.
We use transitive trust for the following reasons: a) due to



the large number of nodes, the admin of a pre-trusted node
i cannot assign a user-defined trust utij to every admin of a
node j, as he may not know him; b) due to the large number
of email hosts, a pre-trusted node i may not have encountered
the same hosts with another node j, thus the repository may
be unable to directly verify j’s reports; and c) even if a pre-
trusted node i has a direct trust value for another node j, the
repository can improve the correctness of rtj by learning the
opinions of other nodes about j.

The overall reporter trust rtj can be obtained as the maxi-
mum trust path between a pre-trusted node i and the node j in
the trust graph T (V, E). That is, for each path p ∈ P , where
P is the set of all paths between the pre-trusted node and j:

rtj = maxp∈P (Πu→v∈pduv) (2)

The above trust value is computed from the point of view of
a single pre-trusted node. We repeat this process for every pre-
trusted node. We then average the reporter trust values for all
pre-trusted nodes to derive a final rtj value. We use multiple
pre-trusted nodes to ensure that there is a trust path from a
pre-trusted node to most honest nodes j. Also, use many pre-
trusted nodes limit the influence of attackers that manage to
establish a high trust path with one of them.
Similar to Credence [39], we use the maximum trust path

because it can be efficiently computed with Dijkstra’s shortest
path algorithm in O(|E| log |V|) time for a sparse T (V, E).
In addition, it yields larger trust values than the minimum
or average trust path, resulting in faster convergence to high
confidence on whether a host is spamming. Finally, it mitigates
the effect of malicious nodes that have low direct trust value
towards honest nodes.
We compute the reporter trust from the point of view of

a few pre-trusted nodes, instead of the point of view of
each individual node for two reasons: a) we would need to
compute the maximum trust path from each of the nodes in the
social graph, which would result in a significant computation
overhead ; b) the system aims at assessing the ground truth
fact of whether a host is a spammer, and not a subjective fact,
therefore it is appropriate to incorporate the transitive trust
from multiple points of view.
We compute the maximum trust path from the pre-trusted

nodes to all other nodes periodically to reflect changes in direct
trust values.

1) Direct Trust Manipulation Attack: Our design is inher-
ently resilient to the direct trust manipulation attack mentioned
in §II-E. We discuss each manifestation of this attack in turn
using the enumeration used in §II-E.

The reporter trust mechanism by itself does not defend
against the first attack. To tackle this attack when the ma-
licious friends are Sybils, we incorporate an additional trust
mechanism as described in §III-B. By performing the second
attack a malicious node may increase its reporter trust, but
in doing so, it will have to submit truthful spammer reports.
The third attack is effective only if the maximum trust path to
the targeted honest node passes through the malicious node. If
there is at least one alternative trust path that yields a higher
trust value, then the direct trust value between the malicious
and the honest node is ignored. The fourth attack can be
effective only if the malicious host has a legitimate reason

to send email to the targeted honest nodes.
2) Bayesian Interpretation of Reporter Trust: We note that

the max trust path metric described above has a partially
Bayesian interpretation. The direct trust edge dij corresponds
to the probability that i assigns to j to correctly assign direct
trust to other users or to correctly classify spamming hosts.
The maximum trust path from the pre-trusted nodes to a
node i, rti is derived by multiplying the correct classification
probabilities that each intermediate node along the maximum
trust path assigns to the next node. Thus, it quantifies the belief
that user i will correctly classify spam.

B. Identity Uniqueness

Each node that participates in SocialFilter is administered
by human users that have accounts with OSN providers. The
system needs to ensure that each user’s social network identity
is bound to its SocialFilter node. To this end, SocialFilter
employs single sign-on authentication mechanisms, such as
Facebook Connect [4], to associate the OSN account with the
spammer repository account.
However, when malicious users create numerous fake OSN

accounts, the spammer belief measure can be subverted.
Specifically, a malicious user a with high reporter trust may
create Sybils and assign high direct trust to them. As a result,
all the Sybils of the attacker would gain high reporter trust. The
Sybils can then submit reports that greatly affect the spammer
belief values.
We leverage existing OSN repositories for Sybil user de-

tection. Using a SybilLimit-like [42] technique, OSNs can
approximate the belief that a node’s identity is not a Sybil.
We refer to this belief as identity uniqueness.
Social-network-based Sybil detection takes advantage of

the fact that most social network users have a one-to-one
correspondence between their social network identities and
their real-world identities. Malicious users can create many
identities or connect to many other malicious users, but they
can establish only a limited number of trust relationships with
real users. Thus, clusters of Sybil attackers are likely to con-
nect to the rest of the social network with a disproportionately
small number of edges, forming small quotient cuts.
SocialFilter adapts the SybilLimit algorithm to determine

an identity-uniqueness value 0 ≤ idi ≤ 1 for each node i.
This value indicates the belief that the administrator of node
i corresponds to a unique user in real life and thus is not
part of a network of Sybils. To be Sybil-resistant, SocialFilter
multiplies the identity-uniqueness value idi by the reporter
trust to obtain the trustworthiness of node i’s spammer reports.
We now describe in detail how we compute idi.
First, we provide a brief background on the theoretical

justification of SybilLimit. It is known that randomly-grown
topologies such as social networks and the web are fast mixing
small-world topologies [40]. Thus, in the social graph S(V, E),
the last edge (also referred to as the tail) traversed by a
random walk of Θ(log |V|) steps is an independent sample
edge approximately drawn from the stationary distribution of

the graph. If we draw Θ(
√

|E|) Θ(log |V|)-long random walks
from a legitimate verifier node v and a legitimate suspect node
s, it follows from the generalized Birthday Paradox that the
sample tails intersect with high probability. The opposite holds
if the suspect resides in a region of Sybil attackers. This is



because the Sybil region is connected via a disproportionally
small number of edges to the region of legitimate nodes.
Consequently, the tails of random walks from the Sybil suspect
are not samples from the same distribution as the tails of
random walks from the verifier.
SybilLimit [42] replaces random walks with “random

routes” and a verifier node v accepts the suspect s if routes
originating from both nodes intersect at the tail. For random
routes, each node uses a pre-computed random permutation
as a one-to-one mapping from incoming edges to outgoing
edges. Each random permutation generates a unique routing
table at each node. As a result, two random routes entering an
honest node along the same edge always exit along the same
edge. This property guarantees that random routes from a Sybil
region that is connected to the honest region through a single
edge will traverse only one distinct path, further reducing the
probability that a Sybil’s random routes will intersect with a
verifier’s random routes.
With SocialFilter’s SybilLimit-based technique, the OSN

provider computes an identity uniqueness value for each node
s in the social graph S(V, E). At initialization time, the OSN
provider selects l pre-trusted verifier nodes. It also creates 2r
independent instances of pre-computed random permutation as
a one-to-one mapping from incoming edges to outgoing edges

(routing table). The first r = Θ(
√

|E|) routing tables are used
to draw random routes from suspect nodes s and the rest r
routing tables are used to draw random routes from the verifier
nodes v. For each s, the OSN provider runs the SybilLimit-like
algorithm as follows:

1) For each of the l verifiers v, it picks a random neighbor
of v. It draws along the random neighbors r random
routes of length w = Θ(log |V|), for each instance of

the r = Θ(
√

|E|) routing tables. It stores the last edge
(tail) of each verifier random route.

2) It picks a random neighbor of s and draws along it
r random routes of length w = Θ(log |V|), for each
instance of the nodes’ routing tables. It stores the tail
of each suspect random route. We refer to steps (1) and
(2) of the algorithm as random routing.

3) For each verifier v, if one tail from s intersects one tail
from v, that verifier v is considered to “accept” s. We
refer to this step as verification.

4) It computes the ratio of the number of verifiers that
accept s over the total number of verifiers l. That ratio
is the computed identity uniqueness value ids.

Nodes query the OSN provider for the identity uniqueness
of their peers. The OSN provider performs the above compu-
tations periodically to accommodate for topology changes.
Similar to SybilLimit, SybilInfer [14] takes advantage of

the fact that clusters of Sybils are connected to the honest
regions of social networks with a disproportionally small
number of edges. SybilInfer’s [14] Bayesian Sybil detection
method derives the probability of a suspect node being a
Sybil, which is an explicitly actionable measure of trust-
worthiness. We considered SybilInfer as an alternative of
SybilLimit in SocialFilter. Although SybilInfer provides a
more formal probabilistic interpretation of identity uniqueness,
it is more expensive (O(|V|2 log |V|) than SybilLimit, which

costs (O(
√

|E||V| log |V|) in our sparse social graph setting.

C. Spammer Belief

We now describe how we combine reporter trust, identity
uniqueness and spammer reports to derive a measure of the
belief that a host is spamming. We define spammer belief as a
score in 0% to 100% that can be interpreted as the belief that
a host is spamming: a host with 0% spammer belief is very
unlikely to be a spammer, whereas a host with 100% spammer
belief is very likely to be one.

1) Spammer Reports: A node i may have email classifica-
tion functionality through online systems that interface with it
using the i’s ReportSpammer() API. In this case, i considers
only the reports of those systems in calculating the belief
that a host is spamming. When i receives reports by more
than one systems for the same h, i’s confidence ci(h) that
h is a spammer is the average (possibly weighted) of these
applications’ reports. The repository uses this reported average
confidence to compute the similarity of i’s reports with the
reports of its friends, which is used to derive direct trust values.

At initialization time, SocialFilter nodes consider all hosts to
be legitimate. As nodes receive emails from hosts, they update
their confidence (§ II-B). For efficiency, nodes send spammer
report to the repository only when the difference between the
previous confidence in the node being a spammer and the new
confidence exceeds a predetermined threshold δ.
When the repository receives a new spammer report for h,

this new report preempts an older report from the same node,
which is thereafter ignored. Consequently, SocialFilter nodes
are able to revoke spammer reports by updating them. Each
spammer report carries a timestamp. The time interval during
which a spammer report is valid is a tunable system parameter.
Reports that have expired are not considered in the calculation
of the belief that a host is spamming.

2) Spammer Belief Equation: The repository may receive
multiple spammer reports originating from multiple nodes
j ∈ V and concerning the same host h. Subsequently, the
repository needs to aggregate the spammer reports to deter-
mine an overall belief IsSpammer(h) that h is a spammer. It
derives the spammer belief by weighing the spammer reports’
confidence with the reporter trust and identity uniqueness of
their reporters:

IsSpammer(h) =
Σj∈Vh rtj idj cj(h)

S
Logistic(S) (3)

In the above equation, Vh ⊆ V is the set of nodes that
have posted a spammer report for h. In addition, S =
Σj∈Vh rtj idj .
The factor 0 ≤ Logistic(S) ≤ 1 discounts the belief in a

host h being spammer in case the reporter trust and identity
uniqueness of the nodes that sent a spammer report for h is
low. It is used to differentiate between the cases in which
there are only a few reports from non-highly trustworthy nodes
and the cases there are sufficiently many and trustworthy
reports. When S is sufficiently large, we should consider the
weighted average of the confidence in the reports to better
approximate the belief that a host is spammer. But when S is
small we cannot use the spammer reports to derive a reliable
spammer belief value. Based on these observations, we define
the function Logistic as the logistic (S-shaped) function of S:



Logistic(S) =
1

1 + e(b−aS)
(4)

a and b are small constants set to 5 in our design. For
S ≤ 0.4, Logistic(S) is very small. However, when S exceeds
0.6, Logistic(S) increases drastically until it becomes 0.5 for
S = 1. For S = 2, Logistic(S) approximates 1.

D. Repository

Practice has shown that centralized infrastructures such as
web mail, OSN providers, and email reputation services can
scale to millions of clients. Thus, to simplify the design and
provide better consistency and availability assurances we use
a centralized repository. This repository can in fact consist of
a well-provisioned cluster of machines or even a datacenter.

When a node queries the repository for the spammer belief
of a host, the repository is interested on the reports for a
single host. These reports are sent by multiple nodes, thus
for efficiency it is reasonable to index(key) the reports based
on the hash of the host’s IP.

IV. EVALUATION

We evaluate SocialFilter’s ability to block spam traffic and
compare it to Ostra [27]. The goal of our evaluation is two-
fold: a) to illustrate the importance of our design choices, i.e.,
incorporating identity uniqueness and initializing direct trust
with user-defined trust; and b) to shed light on the benefits and
drawbacks of our and Ostra’s approach in using social links
to mitigate spam. In [35], we also demonstrate the efficacy of
performing trust computations at the centralized repository.

A. Ostra Primer

Before we proceed with the comparative evaluation, we
briefly describe Ostra to provide insights on its operation.
Ostra bounds the total amount of unwanted communication a
user can send based on the number of social trust relationships
the user has and the amount of communication that has been
flagged as wanted by its receivers. Similar to SocialFilter,
in Ostra an OSN repository maintains the social network.
When a sender wishes to establish an email connection to
a receiver, it first has to obtain a cryptographic token from
the OSN repository. The OSN repository uses the social links
connecting the admins of the sender and the receiver nodes to
determine whether a token can be issued.
In particular, a node is assigned a credit balance, B, for

each social link it’s administrator is adjacent to. B has an
initial value of 0. Ostra also maintains a per-link balance range
[L,U ], with L ≤ 0 ≤ U , which limits the range of the users
credit balance (i.e., always L ≤ B ≤ U ). The balance and
balance range for a user is denoted as BU

L . For instance, the

link’s adjacent user’s state 2+5
−4 denotes that the user’s current

credit balance is 2, and it can range between −4 and 5.
When a communication token is issued, Ostra requires that

there is a path between the sender and the receiver in the social
network. Subsequently, for each link along the social path the
first adjacent nodes credit limit L is increased by one, and the
second adjacent nodes credit limit U is decreased by one. This
process propagates recursively from the sender to the receiver
along the social links. If this process results in any of the
links in the path to have adjacent nodes of which the credit

balances exceed the balance range, Ostra refuses to issue the
token. When the email connection is classified by the receiver,
the credit limits L and U are restored to their previous state. If
the connection is marked as unwanted, one credit is transferred
from the balance of the first node of the link to the balance
of the second one.
As a consequence of this design, the social links that

connect spammers to their receivers eventually have balance
beyond the allowed range, and a spammer is prevented from
establishing further email connections. In addition, Ostra is
Sybil-resilient because the credit available to a sender is not
dependent on the number of Sybils it has. It is only dependent
on the sender’s social connectivity and on whether the sender’s
emails are classified as wanted.
In summary, Ostra uses the social network as a rate-limiting

communication conduit. SocialFilter on the other hand uses the
social network as a trust layer from which the trustworthiness
of the spam detectors can be extracted.

B. Simulation Settings

For a more realistic evaluation, we use a 50K-user crawled
sample of the Facebook social graph [17]. The sample is a
connected component obtained from a 50M -user sample via
the “forest fire” sampling method [25], and contains 442, 772
symmetric links. The average number of friends of each user
in the graph is approximately 18. The diameter of this graph
is 11. The clustering coefficient is 0.178. Each user in the
social network is the admin of an email relay server, which
we also refer to as a SocialFilter or Ostra node. Nodes can send
and receive email connections. We use the SimPy 1.9.1 [28]
discrete-event simulation Python framework to simulate the
operation of SocialFilter and Ostra. The source code and the
OSN data set are available at [6].
We have two types of nodes: honest and spammers. Honest

nodes send 3 legitimate emails per day. 80% and 13% of
the legitimate emails are sent to sender’s friends and sender’s
friends of friends respectively, and the destination of the rest
7% emails is randomly chosen by the sender. Spammers send
500 spam emails per 24h, each to random honest nodes in the
network. We set Ostra’s credit bounds as L = −5 and U = 5.
The above settings are obtained from Ostra’s evaluation [27].
Honest and spammer nodes correspond to users uniformly
randomly distributed over the social network.
Several nodes can instantly classify spam connections.

These instant classifiers correspond to systems that detect
spam by subscribing to commercial blacklists or by employing
content-based filters. On the other hand, normal nodes can
classify connections only after their users read the email.
That is, the normal classification can be delayed based on the
behavior of the users (how frequently they check their email).
10% of honest SocialFilter nodes have the ability of instant
classification and the average delay of the normal classification
is 2 hours [27].
In SocialFilter, when a node classifies an SMPTP connec-

tion as spam, it issues a spammer report. The issued spammer
reports are gathered and aggregated in the repository. When
normal users with no capability of instant classification receive
SMTP connection requests from previously unencountered
hosts they query the repository. Subsequently, the repository
returns to them a value that corresponds to the belief that a
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Figure 2. (a) percentage of blocked spam and legitimate emails connections
for SocialFilter (SF) and Ostra as a function of simulated time length. The
percentage of spammer nodes is 0.5%; (b) Percentage of blocked spam and
legitimate email connections for SocialFilter (SF) and Ostra as a function of
the percentage of spammer nodes. The simulated time duration is 340h.

host is a spammer (§III-C2). In summary, classifier nodes share
their experiences by issuing spammer reports, and normal
nodes use the reports to block spam from senders they had
not previously encountered.
The reporter trust assigned to nodes is computed using

Dijkstra’s algorithm based on the pairwise direct trust value
between users that are connected in the 50K-node social graph
(§III-A). The pairwise direct trust values are derived using
Equation 1. The direct trust between users that are friends is
initialized to a random value in [0, 1]. The number of pre-
trusted nodes used is 100 and we recompute the reporter trust
every 24 simulated hours.
In this evaluation, we compute the similarity between re-

ports using Equation 1 (α = 0.8). Assume that the repository
receives the kth spammer report from both nodes i and node
j that involves a host h to which i and j have assigned
confidence ci(h) and cj(h). The repository computes the

similarity vkij as follows:

vkij =
min(ci(h), cj(h))

max(ci(h), cj(h))
(5)

The identity uniqueness of each node is computed as
described in §III-B by processing the 50K-node social graph.
The parameters of the computation are set as follows: w = 15,
r = 2000 and l = 100. If the overall spammer belief computed
by Equation 3 is over 0.5, a node blocks the SMTP connection.

C. Resilience to Spammers

In Figure 2(a), we depict SocialFilter’s and Ostra’s spam
mitigation effectiveness with varying simulated time duration.
We observe that SocialFilter manages to block 99% to 100% of
spam after 179h. Once the repository has obtained sufficiently
trustworthy spammer reports from nodes, it can inform all
other nodes about the detected spammers. In Ostra, after the
percentage of blocked spam reaches only 95% at 340h, it
does not improve with the passage of time. We attribute this
difference on the fact that in Ostra spam detection affects
only a region of the social network: the one that is affected
by the change in the credit balances of the links adjacent to
the detector node. On the other hand in SocialFilter, once
a sufficiently trustworthy node detects spam, its report can
be used by all other nodes in the network to classify the
spamming host. Importantly, we also observe that Ostra incurs
a non-negligible false positive rate (blocked legitimate emails),
which is equal to ∼ 0.4%. In contrast, SocialFilter yields no
false positives.

Figure 2(b) presents the spam mitigation effectiveness of
SocialFilter and Ostra under a varying number of spammers.
We make two observations. The first is that as in Figure 2(a),
Ostra suffers from a substantial false positive rate when the
percentage of spammers is greater than 0.1%. When the
percentage of spammers is 1% (500 spammers), around 0.8%
of legitimate emails are blocked. We can attribute Ostra’s high
false positive rate to the following. In SocialFilter, a node
blocks an email sender only if it has been explicitly reported
as spammer. On the other hand, Ostra blocks links (the credit
balance goes out of bounds) in the socials path used by a
spammer, and some honest nodes cannot send email because
the blocked links are included in all the social paths used by
those honest nodes.
The second observation is that our proposal always blocks

∼ 99% of spam as the portion of spammers varies in 0.1% to
1%. Ostra always blocks 93% to 97% of spam connections. We
observe that the spam detection rate increases substantially for
Ostra and slightly for SocialFilter as the number of spammers
increases. This is because the increased spam induces nodes
to share more information. As a result, the reporter trust graph
becomes more connected, allowing the repository to consider
reports from more nodes as trustworthy. In the case of Ostra,
it reduces the balance on social links adjacent to spammers
resulting in less spam passing through.

D. Importance of User-defined Trust

In this portion of our evaluation, we demonstrate the impor-
tance of using the user-defined trust value (§III-A) to initialize
the direct trust between nodes.
Figure 2(a) also shows the spam mitigation capability of

SocialFilter when the initial user-defined (UD) trust assigned
by friends in the admin social network is 0 (“SF-Spam-without
UD trust”). As can be seen, SocialFilter with direct trust
initialized with user-defined trust is effective in blocking 99%
of spam emails after 85h. On the other hand, when the user-
defined trust is 0, it takes a lot more time (up to 340h) for
SocialFilter to start effectively blocking spam.
When we do not initialize direct trust with user-defined trust,

after 85h, a SocialFilter node has on average only 0.22 reporter
trust. This is because early in the simulation, nodes have
encountered a small number of common spamming hosts, thus
the repository cannot derive meaningful direct trust values.
Consequently the reporter trust graph T (V, E) is disconnected,
resulting in low report trust values. Consequently, the repos-
itory is unable to consider many valid spammer reports from
the nodes. As time progresses, the repository can derive more
meaningful direct trust values by comparing the reports of
friend nodes. Therefore, we observe that after 170h our system
is able to block almost 100% of spam.

This result validates our choice to tap into the user-defined
trust between acquainted SocialFilter admins. This source of
trust is important because it enables the initial trust graph to
be sufficiently connected, prior to performing spammer report
comparisons. User-defined trust also contributes in trust values
converging to correct ones faster (given that the admins have
assigned appropriate values), even in case common spammer
reports are infrequent.
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Figure 3. (a) percentage of blocked spam and legitimate email connections
for SocialFilter (SF) and Ostra as a function of the portion of colluding
spammers; (b) percentage of blocked spam and legitimate email connections
for SocialFilter (SF) and Ostra as a function of the number of Sybils
created per spammer. The percentage of spammer nodes is 0.5%. Results for
SocialFilter that does not employ identity uniqueness (IU) are also included.
The simulated time is 340h.

E. Resilience to Colluders and Sybils

We also consider attack scenarios under which spammers
collude to evade SocialFilter and Ostra, and to disrupt email
communication from legitimate hosts. We assume that spam-
mers are aware of each other, which is reasonable if the
spammers belong to the same botnet. To attack SocialFilter,
a spammer submits a report {[spammer report] s, 0%} for
each of the other spammers s in the network. Also, when a
spammer receives a connection from a legitimate host l, it
submits {[spammer report] l, 100%} to induce SocialFilter
to block l’s emails. To attack Ostra, each spammer classifies
a legitimate email and a spam email connection as unwanted
and legitimate, respectively.
Figure 3(a) shows the percentage of blocked spam and

legitimate email connections in SocialFilter and Ostra as a
function of the portion of colluding spammers in the network.
Ostra achieves almost the same effectiveness in blocking spam
connections as in the absence of colluding spammers. How-
ever, the false positive rate (percentage of blocked legitimate
email) increases substantially with the percentage of colluders.
Ostra is more affected by false classification because it does
not have any method to recognize it.
As can be seen in Figure 3(a), SocialFilter is less effective

in blocking spam in the presence of false classification. In
fact, when the percentage of colluding spammers reaches 1%,
SocialFilter becomes less effective than Ostra. Moreover, the
existence of false reporters that incriminate legitimate senders
results in a non-zero false positive rate for SocialFilter, which
however is substantially less than for Ostra. This is because
colluding spammers have very low direct trust to other honest
users as their reports are different to those honest nodes. As
a result, the reporter trust for spammers is lower, resulting in
their reports to be mostly ignored by honest nodes.

1) Sybil Attack: We also consider the case in which col-
luding spammers create Sybils. These Sybils form a cluster
that is directly connected to their creator spammer node. The
purpose of the Sybils is to decrease the belief of the repository
in the spammer node being malicious and to increase the belief
in an honest node being spammer. In addition, Sybils allow
the spammer to send messages from many different sources,
enabling him to further evade defenses.
At the start of the SocialFilter simulation, Sybils send pos-

itive spam reports for all other spammer nodes (including the
Sybils). Honest nodes may send legitimate email to spammer

nodes but not to their Sybils. When a spammer node receives
legitimate email from an honest node, the spammer reports
the honest user as a spammer and so do all the Sybils of the
spammer. 10% of all Sybils act as spammers sending spam
messages at the same rate as their creator. In the simulation
for Ostra, Sybil nodes classify a legitimate email and a spam
email connection as unwanted and legitimate, respectively.

Figure 3(b) shows the percentage of blocked spam and
legitimate email connections as a function of the number of
Sybils per spammer in the network. In SocialFilter, Sybil users
gets very low identity uniqueness, which becomes even lower
as the number of Sybil users per spammer increases. We can
thus see that SocialFilter is resilient to the Sybil attack. In
Ostra, Sybil spammers cannot send spam because the few
social links that connect the creator of the Sybils with the
rest of the network become blocked. We observe that when
each spammer creates more than 100 Sybils, Ostra is able
to block more spam than our proposal. However, Ostra still
suffers from higher false positive rate.

2) Importance of Identity Uniqueness: Figure 3(b) also
shows the case in which SocialFilter does not employ identity
uniqueness (“SF-Spam/Legitimate-without IU”). As can be
seen, attackers are very effective in manipulating the system
in this case. SocialFilter without identity uniqueness cannot
block a substantial percentage of spam, while it blocks a
high percentage of legitimate email. This result profoundly
illustrates the importance of integrating identity uniqueness in
the spammer belief computation (Equation 3).

V. RELATED WORK

Reputation Systems: SocialFilter is inspired by prior work on
reputation and trust management systems [10, 21, 26]. Well-
known trust and reputation management systems include the
rating scheme used by the eBay on-line auction site, object
reputation systems for P2P file sharing networks [22, 39] and
PageRank [11]. In contrary to the above systems, our system
incorporates social trust to mitigate false reporting and Sybil
attacks. EigenTrust [22], PageRank [11] and TrustRank [20],
provide trust values that enable a system to rank users based on
their trustworthiness. However, this value cannot be explicitly
interpreted as the belief in a node being honest.
IP Blacklisting: SocialFilter is similar to IP blacklisting
services such as SpamHaus [8], DShield [2], CloudMark [1],
and TrustedSource [5] in that it employs a centralized repos-
itory. Currently, IP blacklisting relies on a relatively small
number (in the order of a few hundreds or thousands) of
reporters. Reporters submit their attack logs to the centralized
repositories, and the repository synthesizes blacklists based
on the attack logs. SocialFilter differs in that it automates the
process of evaluating the trustworthiness of the reports. Thus
it does not incur the management overhead of traditional IP
blacklisting services, and can scale to millions of reporters.

Predictive blacklisting [36, 43] improves upon IP blacklist-
ing by creating a customized blacklist for each reporter that
is shorter and more likely to be relevant. However, it does not
address adversarial behavior by reporters, i.e., false reporting
and Sybil attacks. In addition, because it does not employ
user-defined social trust, a node is able to obtain a customized
ranking only if the node itself has classification functionality.



Collaborative Email Reputation Systems: Prior work also
includes proposals for collaborative spam filtering [3, 9, 44,
45]. Kong et al. [24] also consider untrustworthy reporters,
using Eigentrust to derive their reputation. These solutions
only classify the contents of emails and not the source of
spam. This requires email servers to waste resources on email
reception and filtering. SocialFilter can assign trust metrics to
sources, thereby rejecting unwanted email traffic on the outset.
Similar to SocialFilter, RepuScore [33] is a collaborative

reputation management system that allows participating orga-
nizations to establish email sender accountability on the basis
of past actions. It provides a global reputation value for IP
addresses and email domains. Repuscore assigns the same
global reputation value for both email senders and reporters
of spam. To calculate a global reputation for a sender or
reporter, it weighs the local reputation values submitted by
the reporters and concerning the sender or the reporter, by the
global reputation of the reporters. Unlike SocialFilter, it does
not employ sybil-resilient and transitive trust inference, which
results in the trust values being susceptible to manipulation.
In particular, an email server’s reported local reputations are
considered reliable unless the email server itself sends spam
and becomes detected by other reporters.

VI. CONCLUSION

We introduced the first collaborative spam mitigation system
that assesses the trustworthiness of spam reporters by both
auditing their reports and by leveraging the social network
of the reporters’ administrators. SocialFilter weighs the spam
reports according to the trustworthiness of their submitters to
derive the a measure of the belief that a host is spamming.
The design and evaluation of SocialFilter illustrates that:

a) we can improve the reliability and the attack-resilience of
collaborative spam mitigation by introducing Sybil-resilient
OSN-based trust inference mechanisms; b) using social links
to obtain the trustworthiness of spammer reports can result in
comparable spam-blocking effectiveness with approaches that
use social links to rate-limit spam (e.g., Ostra [27]); c) unlike
Ostra, SocialFilter yields no false positives in the absence of
reports that incriminate benign email senders.
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