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1. INTRODUCTION

Images want to be shared. Be it a drawing carved in rock, a painting exposed in a
museum, or a photo capturing a special moment, it is the sharing that relives the
experience stored in the image. Nowadays, several technological developments have
spurred the sharing of images in unprecedented volumes. The first is the ease with
which images can be captured in a digital format by cameras, cell phones, and other
wearable sensory devices. The second is the Internet, which allows transfer of digital
image content to anyone, anywhere in the world. Finally, and most recently, the sharing
of digital imagery has reached new heights by the massive adoption of social network
platforms. All of a sudden images come with tags. Tagging, commenting, and rating of
any digital image have become a common habit. As a result, we observe a downpour
of personally annotated user-generated visual content and associated metadata. The
problem of image retrieval has been dilated with the problem of searching images
generated within social platforms and improving social media annotations in order to
permit effective retrieval.

Excellent surveys on content-based image retrieval have been published in the past.
In their seminal work, Smeulders et al. review the early years up to the year 2000 by
focusing on what can be seen in an image and introducing the main scientific problem
of the field: the semantic gap as “the lack of coincidence between the information that
one can extract from the visual data and the interpretation that the same data have
for a user in a given situation” [Smeulders et al. 2000]. Datta et al. continue along this
line and describe the coming of age of the field, highlighting the key theoretical and
empirical contributions of recent years [Datta et al. 2008]. These reviews completely
ignore social platforms and socially generated images, which is not surprising as the
phenomenon only became apparent after these reviews were published.

In this article, we survey the state of the art of content-based image retrieval in the
context of social image platforms and tagging, with a comprehensive treatise of the
closely linked problems of image tag assignment, image tag refinement, and tag-based
image retrieval. Similar to Smeulders et al. [2000] and Datta et al. [2008], the focus of
our survey is on visual information, but we explicitly take into account and quantify
the value of social tagging.

1.1. Problems and Tasks

Social image tags are provided by common users. They often cannot meet high-quality
standards related to content association, in particular for accurately describing objec-
tive aspects of the visual content according to some expert’s opinion [Dodge et al. 2012].
Social tags tend to follow context, trends, and events in the real world. They are often
used to describe both the situation and the entity represented in the visual content. In
such a context, there are distinct problems to solve. On the one hand, social tags tend
to be imprecise, ambiguous, and incomplete. On the other hand, they are biased toward
personal perspectives. So tagging deviations due to spatial and temporal correlation to
external factors are common phenomena [Golder and Huberman 2006; Sen et al. 2006;
Sigurbjörnsson and Van Zwol 2008; Kennedy et al. 2006]. The focus of interests and
motivations of an image retriever could be different from those of an image uploader.

Quite a few researchers have proposed solutions for image annotation and re-
trieval in social frameworks, although the peculiarities of this domain have been only

ACM Computing Surveys, Vol. 49, No. 1, Article 14, Publication date: June 2016.

http://dx.doi.org/10.1145/2906152


Socializing the Semantic Gap 14:3

partially addressed. Concerning the role of visual content in social image tagging, sev-
eral studies have shown that people are willing to tag objects and scenes presented in
the visual content to favor image retrieval for the general audience [Ames and Naaman
2007; Sigurbjörnsson and Van Zwol 2008; Nov and Ye 2010]. It would be relevant to
survey why people search images on social media platforms and what query terms
they actually use. Although some query log data of a generic web image search have
been made publicly accessible [Hua et al. 2013], its social media counterpart remains
to be established. Most of the existing works have rather investigated the technolog-
ical possibilities to automatically assign, refine, and enrich image tags. They mainly
concentrated on how to expand the set of tags provided by the uploader by looking at
tags that others have associated to similar content, and so expecting to include tags
suited to the retriever’s motivations. Consequently, images will become findable and
potentially appreciated by a wider range of audiences beyond the relatively small social
circle of the image uploader. We categorize these existing works into three different
main tasks and structure our survey along these tasks:

—Tag Assignment. Given an unlabeled image, tag assignment strives to assign a
(fixed) number of tags related to the image content [Makadia et al. 2010; Guillaumin
et al. 2009; Verbeek et al. 2010; Tang et al. 2011].

—Tag Refinement. Given an image associated with some initial tags, tag refinement
aims to remove irrelevant tags from the initial tag list and enrich it with novel, yet
relevant, tags [Li et al. 2010; Wu et al. 2013; Znaidia et al. 2013; Lin et al. 2013;
Feng et al. 2014].

—Tag Retrieval. Given a tag and a collection of images labeled with the tag (and
possibly other tags), the goal of tag retrieval is to retrieve images relevant with
respect to the tag of interest [Li et al. 2009b; Duan et al. 2011; Sun et al. 2011; Gao
et al. 2013; Wu et al. 2013].

Other related tasks such as tag filtering [Zhu et al. 2010; Liu et al. 2011b; Zhu et al.
2012] and tag suggestion [Sigurbjörnsson and Van Zwol 2008; Li et al. 2009b; Wu et al.
2009] have also been studied. We view them as variants of tag refinement.

As a common factor in all the works for tag assignment, refinement, and retrieval,
we reckon that the way in which the tag set expansion is performed relies on the key
functionality of tag relevance, that is, estimating the relevance of a tag with respect to
the visual content of a given image and its social context.

1.2. Scope, Aims, and Organization

We survey papers that learn tag relevance from images tagged in social contexts.
While it would have been important to consider the complementarity of tags, only a
few methods have considered multitag retrieval [Li et al. 2012; Nie et al. 2012; Borth
et al. 2013]. Hence, we focus on methods that implement the unique-tag relevance
model. We do not cover traditional image classification that is grounded on carefully
labeled data. For a state-of-the-art overview in that direction, we refer the interested
reader to Everingham et al. [2015] and Russakovsky et al. [2015]. Nonetheless, one
may question the necessity of using socially tagged examples as training data, given
that a number of labeled resources are already publicly accessible. An exemplar of such
resources is ImageNet [Deng et al. 2009], providing crowdsourced positive examples
for over 20,000 classes. Since ImageNet employs several web image search engines to
obtain candidate images, its positive examples tend to be biased by the search results.
As observed by Vreeswijk et al. [2012], the positive set of vehicles mainly consists of
cars and buses, although vehicles can be tracks, watercraft, and aircraft. Moreover,
controversial images are discarded upon vote disagreement during the crowdsourcing.
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All this reduces diversity in visual appearance. We empirically show in Section 5.4 the
advantage of socially tagged examples against ImageNet for tag relevance learning.

Reviews on social tagging exist. The work by Gupta et al. [2010] discusses papers
on why people tag, what influences the choice of tags, and how to model the tagging
process, but its discussion on content-based image tagging is limited. The focus of
Jabeen et al. [2016] is on papers about adding semantics to tags by exploiting varied
knowledge sources such as Wikipedia, DBpedia, and WordNet. Again, it leaves the
visual information untouched.

Several reviews that consider socially tagged images have appeared recently. In Liu
et al. [2011], technical achievements in content-based tag processing for social im-
ages are briefly surveyed. Sawant et al. [2011], Wang et al. [2012], and Mei et al.
[2014] present extended reviews of particular aspects, that is, collaborative media an-
notation, assistive tagging, and visual search reranking, respectively. In Sawant et al.
[2011], papers that propose collaborative image labeling games and tagging in social
media networks are reviewed. Wang et al. [2012] survey papers where computers as-
sist humans in tagging either by organizing data for manual labeling, by improving
the quality of human-provided tags, or by recommending tags for manual selection,
instead of applying purely automatic tagging. Mei et al. [2014] review techniques that
aim to improve initial search results, typically returned by a text-based visual search
engine, by visual search reranking. These reviews offer resumes of the methods and in-
teresting insights on particular aspects of the domain, without giving an experimental
comparison between the varied methods.

We notice efforts in empirical evaluations of social media annotation and retrieval
[Sun et al. 2011; Uricchio et al. 2013; Ballan et al. 2015]. Sun et al. [2011] analyze
different dimensions to compute the relevance score between a tagged image and a tag.
They evaluate varied combinations of these dimensions for tag-based image retrieval
on NUS-WIDE, a leading benchmark set for social image retrieval [Chua et al. 2009].
However, their evaluation focuses only on tag-based image ranking features, without
comparing content-based methods. Moreover, tag assignment and refinement are not
covered. Uricchio et al. [2013] and Ballan et al. [2015] compared three algorithms
for tag refinement on the NUS-WIDE and MIRFlickr, a popular benchmark set for
tag assignment and refinement [Huiskes et al. 2010]. However, the two reviews lack
a thorough comparison between different methods under the umbrella of a common
experimental protocol. Moreover, they fail to assess the high-level connection between
image tag assignment, refinement, and retrieval.

The aims of this survey are twofold. First, we organize the rich literature in a tax-
onomy to highlight the ingredients of the main works in the literature and recognize
their advantages and limitations. In particular, we structure our survey along the line
of understanding how a specific method constructs the underlying tag relevance func-
tion. Witnessing the absence of a thorough empirical comparison in the literature, our
second goal is to establish a common experimental protocol and successively exert it in
the evaluation of key methods. Our proposed protocol contains training data of varied
scales extracted from social frameworks. This permits us to evaluate the methods un-
der analysis with data that reflect the specificity of the social domain. We have made
the data and source code public1 so that new proposals for tag assignment, tag refine-
ment, and tag retrieval can be evaluated rigorously and easily. Taken together, these
efforts should provide an overview of the field’s past and foster progress for the near
future.

The rest of the survey is organized as follows. Section 2 introduces a taxonomy
to structure the literature on tag relevance learning. Section 3 proposes a new

1https://github.com/li-xirong/jingwei.
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experimental protocol for evaluating the three tasks. A selected set of 11 represen-
tative works, described in Section 4, is compared extensively using this protocol, with
results and analysis provided in Section 5. We provide concluding remarks and our
vision about future directions in Section 6.

2. TAXONOMY AND REVIEW

2.1. Foundations

Our key observation is that the essential component, which measures the relevance
between a given image and a specific tag, stands at the heart of the three tasks. In order
to describe this component in a more formal way, we first introduce some notation.

We use x, t, and u to represent three basic elements in social images, namely, image,
tag, and user. An image x is shared on social media by its user u. A user u can choose a
specific tag t to label x. By sharing and tagging images, a set of users U contribute a set
of n socially tagged images X , wherein Xt denotes the set of images tagged with t. Tags
used to describe the image set form a vocabulary of m tags V. The relationship between
images and tags can be represented by an image-tag association matrix D ∈ {0, 1}n×m,
where Di j = 1 means the ith image is labeled with the jth tag, and 0 otherwise.

Given an image and a tag, we introduce a real-valued function that computes the
relevance between x and t based on the visual content and an optional set of user
information � associated with the image:

f�(x, t; �).

We use � in a broad sense, making it refer to any type of social context provided
by or referring to the user like associated tags, where and when the image was taken,
personal profile, and contacts. The subscript � specifies how the tag relevance function
is constructed.

Having f�(x, t; �) defined, we can easily interpret each of the three tasks. Assignment
and refinement can be done by sorting V in descending order by f�(x, t; �), while
retrieval can be achieved by sorting the labeled image set Xt in descending order in
terms of f�(x, t; �). Note that this formalization does not necessarily imply that the
same implementation of tag relevance is applied for all three tasks. For example, for
retrieval, relevance is intended to obtain image ranking [Li 2016], while tag ranking
for each single image is the goal of assignment [Wu et al. 2009] and refinement [Qian
et al. 2014].

Figure 1 presents a unified framework, illustrating the main data flow of varied
approaches to tag relevance learning. Compared to traditional methods that rely on
expert-labeled examples, a novel characteristic of a social-media-based method is its
capability to learn from socially tagged examples with unreliable and personalized
annotations. Such a training media is marked as S in the framework and includes tags,
images, or user-related information. Optionally, in order to obtain a refined training
media Ŝ, one might consider designing a filter to remove unwanted data. In addition,
prior information such as tag statistics, tag correlations, and image affinities in the
training media are independent of a specific image-tag pair. They can be precomputed
for the sake of efficiency. As the filter and the precomputation appear to be a choice of
implementation, they are positioned as auxiliary components in Figure 1.

A number of implementations of the relevance function have been proposed that
utilize different modes to expand the tag set by learning within the social context.
They may exploit different media, such as tags only, tags and related image content,
or tags, image content, and user-related information. Depending on how f�(x, t; �) is
composed internally, we propose a taxonomy that organizes existing works along two
dimensions, namely, media and learning. The media dimension characterizes what
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Fig. 1. Unified framework of tag relevance learning for image tag assignment, refinement, and
retrieval. We follow the input data as it flows through the process of learning the tag relevance function
f�(x, t; �) to higher-level tasks. Dashed lines indicate optional data flow. The framework jointly classi-
fies existing works on assignment, refinement, and retrieval while at the same determining their main
components.

essential information f�(x, t; �) exploits, while the learning dimension depicts how
such information is exploited. Table I presents a list of the most significant contribu-
tions organized along these two dimensions. For a specific work, while Figure 1 helps
illustrate the main data flow of the method, its position in the two-dimensional
taxonomy is pinpointed via Table I. We believe such a context provides a good starting
point for an in-depth understanding of the work. We explore the taxonomy along the
media dimension in Section 2.2 and the learning dimension in Section 2.3. Auxiliary
components are addressed in Section 2.4. A comparative evaluation of a few represen-
tative methods is presented in Section 4.

2.2. Media for Tag Relevance

Different sources of information may play a role in determining the relevance between
an image and a social tag. For instance, the position of a tag appearing in the tag list
might reflect a user’s tagging priority to some extent [Sun et al. 2011]. Knowing what
other tags are assigned to the image [Zhu et al. 2012] or what other users label about
similar images [Li et al. 2009b; Kennedy et al. 2009] can also be helpful for judging
whether the tag under examination is appropriate or not. Depending on what modali-
ties in S are utilized, we divide existing works into the following three groups: (1) tag
based, (2) tag + image based, and (3) tag + image + user information based, ordered
in light of the amount of information they utilize. Table I shows this classification for
several papers that appeared in the literature on the subject.

2.2.1. Tag Based. These methods build f�(x, t; �) purely based on tag information. The
basic idea is to assign higher relevance scores to tags that are semantically close to
the majority of the tags associated with the test image. To that end, in Sigurbjörnsson
and Van Zwol [2008] and Zhu et al. [2012], relevant tags are suggested based on
tag co-occurrence statistics mined from large-scale collections, while topic modeling is
employed in Xu et al. [2009]. As the tag-based methods presume that the test image
has been labeled with some initial tags (i.e., the initial tags are taken as the user
information �), they are inapplicable for tag assignment.
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2.2.2. Tag + Image Based. Works in this group develop f�(x, t; �) on the base of visual
information and associated tags. The main rationale behind them is visual consistency;
that is, visually similar images shall be labeled with similar tags. Implementations of
this intuition can be grouped in three conducts. One, leverage images visually close to
the test image [Li et al. 2009b, 2010; Verbeek et al. 2010; Ma et al. 2010; Wu et al.
2011; Feng et al. 2012]. Two, exploit relationships between images labeled with the
same tag [Liu et al. 2009; Richter et al. 2012; Liu et al. 2011b; Kuo et al. 2012; Gao
et al. 2013]. Three, learn visual classifiers from socially tagged examples [Wang et al.
2009; Chen et al. 2012; Li and Snoek 2013; Yang et al. 2014]. By propagating tags based
on the visual evidence, the aforementioned works exploit the image modality and the
tag modality in a sequential way. By contrast, there are works that concurrently exploit
the two modalities. This can be approached by generating a common latent space upon
the image-tag association [Srivastava and Salakhutdinov 2014; Niu et al. 2014; Duan
et al. 2014], so that a cross-media similarity can be computed between images and tags
[Zhuang and Hoi 2011; Qi et al. 2012; Liu et al. 2013]. In Pereira et al. [2014], the
latent space is constructed by Canonical Correlation Analysis, finding two matrices
that separately project feature vectors of image and tag into the same subspace. In
Ma et al. [2010], a random walk model is used on a unified graph composed from the
fusion of an image similarity graph with an image-tag connection graph. In Wu et al.
[2013], Xu et al. [2014], and Zhu et al. [2010], predefined image similarity and tag
similarity are used as two constraint terms to enforce that similarities induced from
the recovered image-tag association matrix will be consistent with the two predefined
similarities.

Although late fusion has been actively studied for multimedia data analysis [Atrey
et al. 2010], improving tag relevance estimation by late fusion is not much explored.
There are some efforts in that direction, among which interesting performance has
been reported in Qian et al. [2014] and more recently in Li [2016].

2.2.3. Tag + Image + User-Related Information Based. In addition to tags and images,
this group of works exploits user information, motivated from varied perspectives.
User information ranges from the simplest user identities [Li et al. 2009b], to tagging
preferences [Sawant et al. 2010], to user reliability [Ginsca et al. 2014], to image group
memberships [Johnson et al. 2015]. With the hypothesis that a specific tag chosen
by many users to label visually similar images is more likely to be relevant with
respect to the visual content, Li et al. [2009b] utilize user identity to ensure that
learning examples come from distinct users. A similar idea is reported in Kennedy
et al. [2009], finding visually similar image pairs with matching tags from different
users. Ginsca et al. [2014] improve image retrieval by favoring images uploaded by
users with good credibility estimates. The reliability of an image uploader is inferred
by counting matches between the user-provided tags and machine tags predicted by
visual concept detectors. In Sawant et al. [2010] and Li et al. [2011b], personal tagging
preference is considered in the form of tag statistics computed from images a user has
uploaded in the past. These past images are used in Liu et al. [2014] to learn a user-
specific embedding space. In Sang et al. [2012a], user affinities, measured in terms of
the number of common groups users are sharing, is considered in a tensor analysis
framework. Similarly, tensor-based low-rank data reconstruction is employed in Qian
et al. [2015] to discover latent associations between users, images, and tags. Photo
timestamps are exploited for time-sensitive image retrieval [Kim and Xing 2013], where
the connection between image occurrence and various temporal factors is modeled. In
McParlane et al. [2013b], time-constrained tag co-occurrence statistics are considered
to refine the output of visual classifiers for tag assignment. In their follow-up work
[McParlane et al. 2013a], location-constrained tag co-occurrence computed from images
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Table I. The Taxonomy of Methods for Tag Relevance Learning, Organized Along the Media and Learning
Dimensions of Figure 1 (Methods for Which This Survey Provides an Experimental Evaluation Are

Indicated in Bold Font)

Learning

Media Instance Based Model Based Transduction Based

tag
Sigurbjörnsson and
Van Zwol [2008]
Zhu et al. [2012]

Xu et al. [2009] –

tag + image

Liu et al. [2009]
Makadia et al. [2010]
Tang et al. [2011]
Wu et al. [2011]
Yang et al. [2011]
Truong et al. [2012]
Qi et al. [2012]
Lin et al. [2013]
Lee et al. [2013]
Uricchio et al. [2013]
Zhu et al. [2014]
Ballan et al. [2014]
Pereira et al. [2014]

Wu et al. [2009]
Guillaumin et al. [2009]
Verbeek et al. [2010]
Li et al. [2010]
Ma et al. [2010]
Liu et al. [2011b]
Duan et al. [2011]
Feng et al. [2012]
Srivastava and
Salakhutdinov [2014]

Chen et al. [2012]
Lan and Mori [2013]
Li and Snoek [2013]
Li et al. [2013]
Wang et al. [2014]
Niu et al. [2014]

Zhu et al. [2010]
Wang et al. [2010]
Li et al. [2010]
Zhuang and Hoi [2011]
Richter et al. [2012]
Kuo et al. [2012]
Liu et al. [2013]
Gao et al. [2013]
Wu et al. [2013]
Yang et al. [2014]
Feng et al. [2014]
Xu et al. [2014]

tag + image + user

Li et al. [2009b]
Kennedy et al. [2009]
Li et al. [2010]
Znaidia et al. [2013]
Liu et al. [2014]

Sawant et al. [2010]
Li et al. [2011b]
McAuley and Leskovec
[2012]

Kim and Xing [2013]
McParlane et al. [2013a]
Ginsca et al. [2014]
Johnson et al. [2015]

Sang et al. [2012a]
Sang et al. [2012b]
Qian et al. [2015]

taken in a specific continent is further included. User interactions in social networks
are exploited in Sawant et al. [2010], computing local interaction networks from the
comments left by other users. In McAuley and Leskovec [2012] and Johnson et al.
[2015], social network metadata such as image groups membership or contacts of users
is employed to resolve ambiguity in visual appearance.

Comparing the three groups, tag + image appears to be the mainstream, as evidenced
by the imbalanced distribution in Table I. Intuitively, using more media from S would
typically improve tag relevance estimation. We attribute the imbalance among the
groups, in particular the relatively few works in the third group, to the following
two reasons. First, no publicly available dataset with expert annotations was built
to gather representative and adequate user information; for example, MIRFlickr has
nearly 10,000 users for 25,000 images, while in NUS-WIDE, only 6% of the users have
at least 15 images. As a consequence, current works that leverage user information
are forced to use a minimal subset to alleviate sample insufficiency [Sang et al. 2012a,
2012b] or homemade collections with social tags as ground truth instead of benchmark
sets [Sawant et al. 2010; Li et al. 2011b]. Second, adding more media often results in a
substantial increase in terms of both computation and memory, for example, the cubic
complexity for tensor factorization in Sang et al. [2012a]. As a tradeoff, one has to use
S of a much smaller scale. The dilemma is whether one should use large data with less
media or more media but less data.

It is worth noting that the aforementioned groups are not exclusive. The output of
some methods can be used as a refined input of some other methods. In particular,
we observe a frequent usage of tag-based methods by others for their computational
efficiency. For instance, tag relevance measured in terms of tag similarity is used in
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Zhuang and Hoi [2011], Gao et al. [2013], and Li and Snoek [2013] before applying
more advanced analysis, while nearest neighbor tag propagation is a preprocess used
in Zhu et al. [2010]. The number of tags per image is embedded into image retrieval
functions in Liu et al. [2009], Xu et al. [2009], Zhuang and Hoi [2011], and Chen et al.
[2012].

Given the varied sources of information one could leverage, the subsequent question
is how the information is exactly utilized, which will be made clear next.

2.3. Learning for Tag Relevance

This section presents the second dimension of the taxonomy, elaborating on various
algorithms that implement the computation of tag relevance. Ideally, given the large-
scale nature of social images, a desirable algorithm shall maintain good scalability as
the data grows. The algorithm shall also provide a flexible mechanism to effectively
integrate various types of information including tags, images, social metadata, and so
forth while at the same time being robust when not all the information is available. In
what follows, we review existing algorithms on their efforts to meet the requirements.

Depending on whether the tag relevance learning process is transductive (i.e., pro-
ducing tag relevance scores without distinction as training and testing), we divide
existing works into transduction based and induction based. Since the latter produces
rules or models that are directly applicable to a novel instance [Michalski 1993], it
has a better scalability for large-scale data compared to its transductive counterpart.
Depending on whether an explicit model, let it be discriminative or generative, is built,
a further division for the induction-based methods can be made: instance-based algo-
rithms and model-based algorithms. Consequently, we divide existing works into the
following three exclusive groups: (1) instance based, (2) model based, and (3) transduc-
tion based.

2.3.1. Instance Based. This class of methods does not perform explicit generalization
but instead compares new test images with training instances. It is called instance
based because it constructs hypotheses directly from the training instances themselves.
These methods are nonparametric, and the complexity of the learned hypotheses grows
as the amount of training data increases. The neighbor voting algorithm [Li et al. 2009b]
and its variants [Kennedy et al. 2009; Li et al. 2010; Truong et al. 2012; Lee et al. 2013;
Zhu et al. 2014] estimate the relevance of a tag t with respect to an image x by counting
the occurrence of t in annotations of the visual neighbors of x. The visual neighborhood
is created using features obtained from early fusion of global features [Li et al. 2009b],
distance metric learning to combine local and global features [Verbeek et al. 2010;
Wu et al. 2011], cross-modal learning of tags and image features [Qi et al. 2012; Ballan
et al. 2014; Pereira et al. 2014], and fusion of multiple single-feature learners [Li
et al. 2010; Li 2016]. While the standard neighbor voting algorithm [Li et al. 2009b]
simply lets the neighbors vote equally, efforts have been made to (heuristically) weight
neighbors in terms of their importance. For instance, in Truong et al. [2012] and Lee
et al. [2013], the visual similarity is used as the weights. As an alternative to such a
heuristic strategy, Zhu et al. [2014] model the relationships among the neighbors by
constructing a directed voting graph, wherein there is a directed edge from image xi

to image x j if xi is in the k nearest neighbors of x j . Subsequently, an adaptive random
walk is conducted over the voting graph to estimate the tag relevance. However, the
performance gain obtained by these weighting strategies appears to be limited [Zhu
et al. 2014]. The kernel density estimation technique used in Liu et al. [2009] can be
viewed as another form of weighted voting, but the votes come from images labeled with
t instead of the visual neighbors. Yang et al. [2011] further consider the distance of the
test image to images not labeled with t. In order to eliminate semantically unrelated
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samples in the neighborhood, sparse reconstruction from a k-nearest neighborhood is
used in Tang et al. [2009, 2011]. In Lin et al. [2013], with the intention of recovering
missing tags by matrix reconstruction, the image and tag modalities are separately
exploited in parallel to produce a new candidate image-tag association matrix each.
Then, the two resultant tag relevance scores are linearly combined to produce the
final tag relevance scores. To address the incompleteness of tags associated with the
visual neighbors, Znaidia et al. [2013] propose to enrich these tags by exploiting tag
co-occurrence in advance of neighbor voting.

2.3.2. Model Based. This class of tag relevance learning algorithms puts their foun-
dations on parameterized models learned from the training media. Notice that the
models can be tag specific or holistic for all tags. As an example of holistic modeling,
a topic model approach is presented in Wang et al. [2014] for tag refinement, where a
hidden topic layer is introduced between images and tags. Consequently, the tag rele-
vance function is implemented as the dot product between the topic vector of the image
and the topic vector of the tag. In particular, the authors extend the Latent Dirichlet
Allocation model [Blei et al. 2003] to force images with similar visual content to have
similar topic distribution. According to their experiments [Wang et al. 2014], however,
the gain of such a regularization appears to be marginal compared to the standard La-
tent Dirichlet Allocation model. Li et al. [2013] first find embedding vectors of training
images and tags using the image-tag association matrix of S. The embedding vector
of a test image is obtained by a convex combination of the embedding vectors of its
neighbors retrieved in the original visual feature space. Consequently, the relevance
score is computed in terms of the Euclidean distance between the embedding vectors
of the test image and the tag.

For tag-specific modeling, linear SVM classifiers trained on features augmented by
pretrained classifiers of popular tags are used in Chen et al. [2012] for tag retrieval. Fast
intersection kernel SVMs trained on selected relevant positive and negative examples
are used in Li and Snoek [2013]. A bag-based image reranking framework is introduced
in Duan et al. [2011], where pseudo-relevant images retrieved by tag matching are
partitioned into clusters using visual and textual features. Then, by treating each
cluster as a bag and images within the cluster as its instances, multiple-instance
learning [Andrews et al. 2003] is employed to learn multiple-instance SVMs per tag.
Viewing the social tags of a test image as ground truth, a multimodal tag suggestion
method based on both tags and visual correlation is introduced in Wu et al. [2009].
Each modality is used to generate a ranking feature, and the tag relevance function is
a combination of these ranking features, with the combination weights learned online
by the RankBoost algorithm [Freund et al. 2003]. In Guillaumin et al. [2009] and
Verbeek et al. [2010], logistic regression models are built per tag to promote rare tags.
In a similar spirit to Li and Snoek [2013], Zhou et al. [2015] learn an ensemble of
SVMs by treating tagged images as positive training examples and untagged images
as candidate negative training examples. Using the ensemble to classify image regions
generated by automated image segmentation, the authors assign tags at the image
level and the region level simultaneously.

2.3.3. Transduction Based. This class of methods consists of procedures that evaluate
tag relevance for all image-tag pairs by minimizing a specific cost function. Given the
initial image-tag association matrix D, the output of the procedures is a new matrix
D̂, the elements of which are taken as tag relevance scores. Due to this formulation,
no explicit form of the tag relevance function exists, nor does any distinction between
training and test sets [Joachims 1999]. If novel images are added to the initial set,
minimization of the cost function needs to be recomputed.
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The majority of transduction-based approaches are founded on matrix factorization
[Zhu et al. 2010; Sang et al. 2012a; Liu et al. 2013; Wu et al. 2013; Kalayeh et al. 2014;
Feng et al. 2014; Xu et al. 2014]. In Zhuang and Hoi [2011], the objective function is
a linear combination of the difference between D̂ and the matrix of image similarity,
the distortion between D̂ and the matrix of tag similarity, and the difference between
D̂ and D. A stochastic coordinate descent optimization is applied to a randomly chosen
row of D̂ per iteration. In Zhu et al. [2010], considering the fact that D is corrupted
with noise derived by missing or overpersonalized tags, robust principal component
analysis with Laplacian regularization is applied to recover D̂ as a low-rank matrix.
In Wu et al. [2013], D̂ is regularized such that the image similarity induced from D̂ is
consistent with the image similarity computed in terms of low-level visual features, and
the tag similarity induced from D̂ is consistent with the tag correlation score computed
in terms of tag co-occurrence. Xu et al. [2014] propose to reweight the penalty term of
each image-tag pair by their relevance score, which is estimated by a linear fusion of
tag-based and content-based relevance scores. To incorporate the user element, Sang
et al. [2012a] extend D to a three-way tensor with tag, image, and user as each of
the ways. A core tensor and three matrices representing the three media, obtained by
Tucker decomposition [Tucker 1966], are multiplied to construct D̂.

As an alternative approach, in Feng et al. [2014], it is assumed that the tags of an
image are drawn independently from a fixed but unknown multinomial distribution.
Estimation of this distribution is implemented by maximum likelihood with low-rank
matrix recovery and Laplacian regularization like Zhu et al. [2010].

Graph-based label propagation is another type of transduction-based method. In
Richter et al. [2012], Wang et al. [2010], and Kuo et al. [2012], the image-tag pairs
are represented as a graph in which each node corresponds to a specific image and
the edges are weighted according to a multimodal similarity measure. Viewing the
top-ranked examples in the initial search results as positive instances, tag refinement
is implemented as a semisupervised labeling process by propagating labels from the
positive instances to the remaining examples using random walk. While the edge
weights are fixed in the aforementioned works, Gao et al. [2013] argue that fixing the
weights could be problematic, because tags found to be discriminative in the learning
process should adaptively contribute more to the edge weights. In that regard, the
hypergraph learning algorithm [Zhou et al. 2006] is exploited and weights are optimized
by minimizing a joint loss function that considers both the graph structure and the
divergence between the initial labels and the learned labels. In Liu et al. [2011a], the
hypergraph is embedded into a lower-dimension space by hypergraph Laplacian.

Comparing the three groups of methods for learning tag relevance, an advantage
of instance-based methods against the other two groups is their flexibility to adapt to
previously unseen images and tags. They may simply add new training images into S
or remove outdated ones. The advantage, however, comes with a price that S has to be
maintained, a nontrivial task given the increasing amount of training data available.
Also, the computational complexity and memory footprint grow linearly with respect
to the size of S. In contrast, model-based methods could be more swift, especially when
linear classifiers are used, as the training data is compactly represented by a fixed
number of models. As the imagery of a given tag may evolve, retraining is required to
keep the models up to date.

Different from instance-based and model-based learning, where individual tags are
considered independently, transduction-based learning methods via matrix factoriza-
tion can favorably exploit intertag and interimage relationships. However, their ability
to deal with the extremely large number of social images is a concern. For instance,
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the use of Laplacian graphs results in a memory complexity of O(|S|2). The acceler-
ated proximal gradient algorithm used in Zhu et al. [2010] requires Singular Value
Decomposition, which is known to be an expensive operation. The Tucker decomposi-
tion used in Sang et al. [2012a] has a cubic computational complexity with respect to
the number of training samples. We notice that some engineering tricks have been con-
sidered in these works, which alleviate the scalability issue to some extent. In Zhuang
and Hoi [2011], for instance, clustering is conducted in advance to divide S into much
smaller subsets, and the algorithm is applied to these subsets, separately. By making
the Laplacian more sparse by retaining only the k-nearest neighbors [Zhu et al. 2010;
Sang et al. 2012a], the memory footprint can be reduced to O(k · |S|), with the cost of
performance degeneration. Perhaps due to the scalability concern, works resorting to
matrix factorization tend to experiment with a dataset of relatively small scale.

In summary, instance-based learning, in particular neighbor voting, is the first choice
to try for its simplicity and decent performance. When the test tags are well defined (in
the sense of relevant learning examples that can be collected automatically), model-
based learning is more attractive. When the test images share similar social context
(e.g., images shared by a group of specific interest), they tend to be on similar topics. In
such a scenario, transduction-based learning that exploits the interimage relationship
is more suited.

2.4. Auxiliary Components

The Filter and the Precompute component are auxiliary components that may sustain
and improve tag relevance learning.

Filter. As social tags are known to be subjective and overly personalized, removing
personalized tags appears to be a natural and simple way to improve the tagging qual-
ity. This is usually the first step performed in the framework for tag relevance learning.
Although there is a lack of golden criteria to determine which tags are personalized, a
popular strategy is to exclude tags that cannot be found in the WordNet ontology [Zhu
et al. 2010; Li et al. 2011b; Chen et al. 2012; Zhu et al. 2012] or a Wikipedia thesaurus
[Liu et al. 2009]. Tags with rare occurrence, say, appearing less than 50 times, are
discarded in Verbeek et al. [2010] and Zhu et al. [2010]. For methods that directly work
on the image-tag association matrix [Zhu et al. 2010; Sang et al. 2012a; Wu et al. 2013;
Lin et al. 2013], reducing the size of the vocabulary in terms of tag occurrence is an im-
portant prerequisite to keep the matrix in a manageable scale. Observing that images
tagged in a batch manner are often nearly duplicate and of low tagging quality, batch-
tagged images are excluded in Li et al. [2012]. Since relevant tags may be missing from
user annotations, the negative tags that are semantically similar or co-occurring with
positive ones are discarded in Sang et al. [2012a]. As the previous strategies do not
take the visual content into account, they cannot handle situations where an image is
incorrectly labeled with a valid and frequently used tag, say, “dog.” In Li et al. [2009a],
tag relevance scores are assigned to each image in S by running the neighbor voting
algorithm [Li et al. 2009b], while in Li and Snoek [2013], the semantic field algorithm
[Zhu et al. 2012] is further added to select relevant training examples. In Qian et al.
[2015], the annotation of the training media is enriched by a random walk.

Precompute. The precompute component is responsible for the generation of the prior
information that is jointly used with the refined training media Ŝ in learning. For in-
stance, global statistics and external resources can be used to synthesize new prior
knowledge useful in learning. The prior information commonly used is tag statistics in
S, including tag occurrence and tag co-occurrence. Tag occurrence is used in Li et al.
[2009b] as a penalty to suppress overly frequent tags. Measuring the semantic simi-
larity between two tags is important for tag relevance learning algorithms that exploit
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tag correlations. While linguistic metrics such as those derived from WordNet were
used before the proliferation of social media [Jin et al. 2005; Wang et al. 2006], they do
not directly reflect how people tag images. For instance, the tags “sunset” and “sea” are
weakly related according to the WordNet ontology, but they often appear together in
social tagging as many of the sunset photos are shot around seasides. Therefore, sim-
ilarity measures that are based on tag statistics computed from many socially tagged
images are in dominant use. Sigurbjörnsson and van Zwol [2008] utilized the Jaccard
coefficient and a conditional tag probability in their tag suggestion system, while Liu
et al. [2013] used normalized tag co-occurrence. To better capture the visual relation-
ship between two tags, Wu et al. [2008] proposed the Flickr distance. The authors
represent each tag by a visual language model, trained on bag-of-visual-words features
of images labeled with this tag. The Flickr distance between two tags is computed as
the Jensen-Shannon divergence between the corresponding models. Later, Jiang et al.
[2009] introduced the Flickr context similarity, which also captures the visual rela-
tionship between two tags, but without the need of the expensive visual modeling. The
trick is to compute the Normalized Google Distance [Cilibrasi and Vitanyi 2007] be-
tween two tags, but with tag statistics acquired from Flickr image collections instead of
Google indexed web pages. For its simplicity and effectiveness, we observe a prevalent
use of the Flickr context similarity in the literature [Liu et al. 2009; Zhu et al. 2010;
Wang et al. 2010; Zhuang and Hoi 2011; Zhu et al. 2012; Gao et al. 2013; Li and Snoek
2013; Qian et al. 2014].

3. A NEW EXPERIMENTAL PROTOCOL

In spite of the expanding literature, there is a lack of consensus on the performance of
the individual methods. This is largely due to the fact that existing works either use
homemade data (see Liu et al. [2009], Wang et al. [2010], Chen et al. [2012], and Gao
et al. [2013]), which are not publicly accessible, or use selected subsets of benchmark
data (e.g., as in Zhu et al. [2010], Sang et al. [2012a], and Feng et al. [2014]). As a
consequence, the performance scores reported in the literature are not comparable
across the papers.

Benchmark data with manually verified labels is crucial for an objective evaluation.
As Flickr has been well recognized as a profound manifestation of social image tagging,
Flickr images act as a main source for benchmark construction. MIRFlickr from the
Leiden University [Huiskes et al. 2010] and NUS-WIDE from the National University
of Singapore [Chua et al. 2009] are the two most popular Flickr-based benchmark sets
for social image tagging and retrieval, as demonstrated by the number of citations. On
the use of the benchmarks, one typically follows a single-set protocol, that is, learning
the underlying tag relevance function from the training part of a chosen benchmark
set and evaluating it on the test part. Such a protocol is inadequate given the dynamic
nature of social media, which could easily make an existing benchmark set outdated.
For any method targeting social images, a cross-set evaluation is necessary to test its
generalization ability, which is, however, overlooked in the literature.

Another desirable property is the capability to learn from the increasing amounts of
socially tagged images. Since existing works mostly use training data of a fixed scale,
this property has not been well evaluated.

Following these considerations, we present a new experimental protocol, wherein
training and test data from distinct research groups are chosen for evaluating a num-
ber of representative works in the cross-set scenario. Training sets with their size
ranging from 10,000 to 1 million images are constructed to evaluate methods of varied
complexity. To the best of our knowledge, such a comparison between many methods
on varied scale datasets with a common experimental setup has not been conducted
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Table II. Our Proposed Experimental Protocol Instantiates the Media and Tasks Dimensions of Figure 1 with
Three Training Sets and Three Test Sets for Tag Assignment, Refinement, and Retrieval (Note That the

Training Sets Are Socially Tagged; They Have No Ground Truth Available for Any Tag)

Media Characteristics Tasks

Media # Images # Tags # Users # Test Tags Assignment Refinement Retrieval

Training media S:

Train10k 10,000 41,253 9,249 – � � �

Train100k 100,000 214,666 68,215 – � � �

Train1m [Li et al. 2012] 1,198,818 1,127,139 347,369 – � � �

Test media X :

MIRFlickr [Huiskes
et al. 2010]

25,000 67,389 9,862 14 � � –

Flickr51 [Wang et al.
2010]

81,541 66,900 20,886 51 – – �

NUS-WIDE [Chua et al.
2009]

259,233 355,913 51,645 81 � � �

before. For the sake of experimental reproducibility, all data and code are available
online.1

3.1. Datasets

We describe the training media S and the test media X as follows, with basic data
characteristics and their usage summarized in Table II.

Training media S. We use a set of 1.2 million Flickr images collected by the University
of Amsterdam [Li et al. 2012] by using over 25,000 nouns in WordNet as queries to
uniformly sample images uploaded between 2006 and 2010. Based on our observation
that batch-tagged images, namely, those labeled with the same tags by the same user,
tend to be near duplicate, we have excluded these images beforehand. Other than
this, we do not perform near-duplicate image removal. To meet with methods that
cannot handle large data, we created two random subsets from the entire training sets,
resulting in three training sets of varied sizes, termed as Train10k, Train100k, and
Train1m, respectively.

Test media X . We use MIRFlickr [Huiskes et al. 2010] as in Verbeek et al. [2010], Zhu
et al. [2010], and Uricchio et al. [2013] and NUS-WIDE [Chua et al. 2009] as in Tang
et al. [2011], McAuley and Leskovec [2012], Zhu et al. [2010], and Uricchio et al. [2013]
for tag assignment and refinement. We use NUS-WIDE for evaluating tag retrieval as
in Sun et al. [2011] and Li et al. [2011a]. In addition, for retrieval, we collected another
test set, namely, Flickr51, contributed by Microsoft Research Asia [Wang et al. 2010;
Gao et al. 2013]. The MIRFlickr set contains 25,000 images with ground truth available
for 14 tags. The NUS-WIDE set contains 259,233 images with ground truth available
for 81 tags. The Flickr51 set consists of 81,541 Flickr images with partial ground truth
provided for 55 test tags. Among the 55 tags, there are four tags that either have
zero occurrence in our training data or have no correspondence in WordNet, so we
ignore them. Differently from the binary judgments in NUS-WIDE, Flickr51 provides
graded relevance, with 0, 1, and 2 to indicate irrelevant, relevant, and very relevant,
respectively. Moreover, the set contains several ambiguous tags such as “apple” and
“jaguar,” where relevant instances could exhibit completely different imagery (e.g.,
Apple computers versus fruit apples). Following the original intention of the datasets,
we use MIRFlickr and NUS-WIDE for evaluating tag assignment and tag refinement,
and Flickr51 and NUS-WIDE for tag retrieval. For all three test sets, we use the full
dataset for testing.

Although the training and test media are all from Flickr, they were collected inde-
pendently, and consequently they have a relatively small amount of images overlapped
with each other, as shown in Table III.
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Table III. Data Overlap Between Train1M and the
Three Test Sets, Measured in Terms of the Number
of Shared Images, Tags, and Users, Respectively

Overlap with Train1M

Test Media # Images # Tags # Users

MIRFlickr − 693 6,515
Flickr51 730 538 14,211
NUS-WIDE 7,975 718 38,481

Tag overlap is counted on the top 1,000 most fre-
quent tags. As the original photo ids of MIRFlickr
have been anonymized, we cannot check image
overlap between this dataset and Train1M.

3.2. Implementation

This section describes common implementations applicable to all three tasks, including
the choice of visual features and tag preprocessing. Implementations that are applied
uniquely to single tasks will be described in the coming sections.

Visual features. Two types of features are extracted to provide insights of the perfor-
mance improvement achievable by appropriate feature selection: the classical bag of
visual words (BoVW) and the current state-of-the-art deep learning-based features ex-
tracted from Convolutional Neural Networks (CNNs). The BoVW feature is extracted
by the color descriptor software [Van De Sande et al. 2010]. SIFT descriptors are com-
puted at dense sampled points, at every 6 pixels for two scales. A codebook of size 1,024
is created by K-means clustering. The SIFTs are quantized by the codebook using hard
assignment and aggregated by sum pooling. In addition, we extract a compact 64D
global feature [Li 2007], combining a 44D color correlogram, a 14D texture moment,
and a 6D RGB color moment, to compensate the BoVW feature. The CNN feature is
extracted by the pretrained VGGNet [Simonyan and Zisserman 2015]. In particular,
we adopt the 16-layer VGGNet and take as feature vectors the last fully connected
layer of ReLU activation, resulting in a feature vector of 4,096 dimensions per image.
The BoVW feature is used with the l1 distance and the CNN feature is used with the
cosine distance for their good performance.

Vocabulary V. As what tags a person may use is meant to be open, the need for
specifying a tag vocabulary is merely an engineering convenience. For a tag to be
meaningfully modeled, there has to be a reasonable amount of training images with
respect to that tag. For methods where tags are processed independently from the
others, the size of the vocabulary has no impact on the performance. In the other
cases, in particular, for transductive methods that rely on the image-tag association
matrix, the tag dimension has to be constrained to make the methods runnable. In
our case, for these methods a three-step automatic cleaning procedure is performed
on the training datasets. First, all the tags are lemmatized to their base forms by the
NLTK software [Bird et al. 2009]. Second, tags not defined in WordNet are removed.
Finally, in order to avoid insufficient sampling, we remove tags that cannot meet a
threshold on tag occurrence. The thresholds are empirically set as 50, 250, and 750 for
Train10k, Train100k, and Train1m, respectively, in order to have a linear increase in
vocabulary size versus a logarithmic increase in the number of labeled images. This
results in a final vocabulary of 237, 419, and 1,549 tags, respectively, with all the test
tags included. Note that these numbers of tags are larger than the number of tags that
can be actually evaluated. This allows us to build a unified evaluation framework that
is more handy for cross-dataset evaluation.

3.3. Evaluating Tag Assignment

Evaluation criteria. A good method for tag assignment shall rank relevant tags before
irrelevant tags for a given test image. Moreover, with the assigned tags, relevant
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images shall be ranked before irrelevant images for a given test tag. We therefore use
the image-centric Mean image Average Precision (MiAP) to measure the quality of tag
ranking, and the tag-centric Mean Average Precision (MAP) to measure the quality
of image ranking. Let mgt be the number of ground-truth test tags, which is 14 for
MIRFlickr and 81 for NUS-WIDE. The image-centric Average Precision of a given test
image x is computed as

i AP(x) :=
1

R

mgt
∑

j=1

r j

j
δ(x, tj), (1)

where R is the number of relevant tags of the given image, r j is the number of relevant
tags in the top j ranked tags, and δ(xi, tj) = 1 if tag tj is relevant and 0 otherwise.
MiAP is obtained by averaging i AP(x) over the test images.

The tag-centric Average Precision of a given test tag t is computed as

AP(t) :=
1

R

n
∑

i=1

ri

i
δ(xi, t), (2)

where R is the number of relevant images for the given tag and ri is the number of
relevant images in the top i ranked images. MAP is obtained by averaging AP(t) over
the test tags.

The two metrics are complementary to some extent. Since MiAP is averaged over
images, each test image contributes equally to MiAP, as opposed to MAP, where each
tag contributes equally. Consequently, MiAP is biased toward frequent tags, while MAP
can be easily affected by the performance of rare tags, especially when mgt is relatively
small.

Baseline. Any method targeting at tag assignment shall be better than a random
guess, which simply returns a random set of tags. The RandomGuess baseline is ob-
tained by computing MiAP and MAP given the random prediction, which is run 100
times with the resulting scores averaged.

3.4. Evaluating Tag Refinement

Evaluation criteria. As tag refinement is also meant for improving tag ranking and
image ranking, it is evaluated by the same criteria (i.e., MiAP and MAP) as used for
tag assignment.

Baseline. A natural baseline for tag refinement is the original user tags assigned to
an image, which we term as UserTags.

3.5. Evaluating Tag Retrieval

Evaluation criteria. To compare methods for tag retrieval, for each test tag we first
conduct a tag-based image search to retrieve images labeled with that tag, and then
sort the images by the tag relevance scores. We use MAP to measure the quality of
the entire image ranking. As users often look at the top-ranked results and hardly
go through the entire list, we also report Normalized Discounted Cumulative Gain
(NDCG), commonly used to evaluate the top few ranked results of an information
retrieval system [Järvelin and Kekäläinen 2002]. Given a test tag t, its NDCG at a
particular rank position h is defined as

NDCGh(t) :=
DCGh(t)

IDCGh(t)
, (3)

where DCGh(t) =
∑h

i=1
2reli −1

log2(i+1) , reli is the graded relevance of the result at position

i, and IDCGh is the maximum possible DCG till position h. We set h to be 20, which
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corresponds to a typical number of search results presented on the first two pages of a
web search engine. Similar to MAP, NDCG20 of a specific method on a specific test set
is averaged over the test tags of that test set.

Baselines. When searching for relevant images for a given tag, it is natural to ask
how much a specific method gains compared to a baseline system that simply returns
a random subset of images labeled with that tag. Similar to the refinement baseline,
we also denote this baseline as UserTags, as both of them purely use the original user
tags. For each test tag, the test images labeled with this tag are sorted at random, and
MAP and NDCG20 are computed accordingly. The process is executed 100 times, and
the average score over the 100 runs is reported.

The number of tags per image is often included for image ranking in previous works
[Liu et al. 2009; Xu et al. 2009]. Hence, we build another baseline system, denoted as
TagNum, which sorts images in ascending order by the number of tags per image. The
third baseline, denoted as TagPosition, is from Sun et al. [2011], where the relevance
score of a tag is determined by its position in the original tag list uploaded by the user.
More precisely, the score is computed as 1− position(t)/l, where l is the number of tags.

4. METHODS SELECTED FOR COMPARISON

Despite the rich literature, most works do not provide code. An exhaustive evaluation
covering all published methods is impractical. We have to leave out methods that do
not show significant improvements or novelties w.r.t. the seminal papers in the field,
and methods that are difficult to replicate with the same mathematical preciseness as
intended by their developers. We drive our choice by the intention to cover methods
that aim for each of the three tasks, exploiting varied modalities by distinct learning
mechanisms. Eventually we evaluate 11 representative methods. For each method,
we analyze its scalability in terms of both computation and memory. Our analysis
leaves out operations that are independent of specific tags and thus only need to be
executed once in an offline manner, such as visual feature extraction, tag preprocessing,
prior information precomputing, and filtering. The main properties of the methods are
summarized in Table IV. Concerning the choices of parameters, we adopt what the
original papers recommend. When no recommendation is given for a specific method,
we try a range of values to our best understanding and choose the parameters that
yield the best overall performance.

4.1. Methods Under Analysis

1. SemanticField [Zhu et al. 2012]. This method measures tag relevance in terms of
an averaged semantic similarity between the tag and the other tags assigned to the
image:

fSemField(x, t) :=
1

lx

lx
∑

i=1

sim(t, ti), (4)

where {t1, . . . , tlx } is a list of lx social tags assigned to the image x, and sim(t, ti) de-
notes a semantic similarity between two tags. SemanticField explicitly assumes that
several tags are associated to visual data and their coexistence is accounted for in the
evaluation of tag relevance. Following Zhu et al. [2012], the similarity is computed by
combining the Flickr context similarity and the WordNet Wu-Palmer similarity [Wu
and Palmer 1994]. The WordNet-based similarity exploits path length in the Word-
Net hierarchy to infer tag relatedness. We make a small revision of Zhu et al. [2012]
(i.e., combining the two similarities by averaging instead of multiplication), because
the former strategy produces slightly better results. SemanticField requires no train-
ing except for computing tag-wise similarity, which can be computed offline and is thus
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omitted. Having all tag-wise similarities in memory, applying Equation (4) requires lx

table lookups per tag. Hence, the computational complexity is O(m · lx), and O(m2) for
memory.

2. TagRanking [Liu et al. 2009]. The tag ranking algorithm consists of two steps.
Given an image x and its tags, the first step produces an initial tag relevance score for
each of the tags, obtained by (Gaussian) kernel density estimation on a set of n̄ = 1,000
images labeled with each tag, separately. Second, a random walk is performed on a tag
graph where the edges are weighted by a tag-wise similarity. We use the same similarity
as in SemanticField. Notice that when applied for tag retrieval, the algorithm uses the
rank of t instead of its score, that is,

fTagRanking(x, t) = −rank(t) +
1

lx

, (5)

where rank(t) returns the rank of t produced by the tag ranking algorithm. The term
1
lx

is a tie-breaker when two images have the same tag rank. Hence, for a given tag t,

TagRanking cannot distinguish relevant images from irrelevant images if t is the sole
tag assigned to them. It explicitly exploits the coexistence of several tags per image.
TagRanking has no learning stage. To derive tag ranks for Equation (5), the main
computation is the kernel density estimation on n̄ socially tagged examples for each
tag, followed by an L iteration random walk on the tag graph of mnodes. All this results
in a computation cost of O(m · d · n̄ + L · m2) per test image. Because the two steps are
executed sequentially, the corresponding memory cost is O(max(dn̄, m2)).

3. KNN [Makadia et al. 2010]. This algorithm estimates the relevance of a given
tag with respect to an image by first retrieving k-nearest neighbors from S based on
a visual distance d, and then counting the tag occurrence in associated tags of the
neighborhood. In particular, KNN builds f�(x, t; �) as

fKNN(x, t) := kt, (6)

where kt is the number of images with t in the visual neighborhood of x. The instance-
based KNN requires no training. The main computation of fKNN is to find k-nearest
neighbors from S, which has a complexity of O(d · |S| + k · log |S|) per test image,
and a memory footprint of O(d · |S|) to store all the d-dimensional feature vectors. It is
worth noting that these complexities are drawn from a straightforward implementation
of k-nn search and can be substantially reduced by employing more efficient search
techniques (c.f. Jegou et al. [2011]). Accelerating KNN by the product quantization
technique [Jegou et al. 2011] imposes an extra training step, where one has to construct
multiple vector quantizers by K-means clustering and further use the quantizers to
compress the original feature vector into a few codes.

4. TagVote [Li et al. 2009b]. The TagVote algorithm estimates the relevance of a
tag t w.r.t. an image x by counting the occurrence frequency of t in social annotations
of the visual neighbors of x. Different from KNN, TagVote exploits the user element,
introducing a unique-user constraint on the neighbor set to make the voting result
more objective. Each user has at most one image in the neighbor set. Moreover, TagVote
takes into account tag prior frequency to suppress over frequent tags. In particular, the
TagVote algorithm builds f�(x, t; �) as

fTagVote(x, t) := kt − k
nt

|S|
, (7)

where nt is the number of images labeled with t in S. Following Li et al. [2009b], we set
k to be 1,000 for both KNN and TagVote. TagVote has the same order of complexity as
KNN.
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5. TagProp [Guillaumin et al. 2009; Verbeek et al. 2010]. TagProp employs neighbor
voting plus distance metric learning. A probabilistic framework is proposed where the
probability of using images in the neighborhood is defined based on rank or distance-
based weights. TagProp builds f�(x, t; �) as

fTagProp(x, t) :=
k

∑

j

π j · I(x j, t), (8)

where π j is a nonnegative weight indicating the importance of the jth neighbor x j , and
I(x j, t) returns 1 if x j is labeled with t, and 0 otherwise. Following Verbeek et al. [2010],
we use k = 1,000 and the rank-based weights, which showed similar performance
to the distance-based weights. Different from TagVote that uses tag prior to penalize
frequent tags, TagProp promotes rare tags and penalizes frequent ones by training a
logistic model per tag upon fTagProp(x, t).

The use of the logistic model makes TagProp a model-based method. In contrast
to KNN and TagVote, wherein visual neighbors are treated equally, TagProp employs
distance metric learning to reweight the neighbors, yielding a learning complexity of
O(l · m · k), where l is the number of gradient descent iterations it needs (typically
less than 10). TagProp maintains 2m extra parameters for the logistic models, though
their storage cost is ignorable compared to the visual features. Therefore, running
Equation (8) has the same order of complexity as KNN and TagVote.

6. TagCooccur [Sigurbjörnsson and Van Zwol 2008]. While both SemanticField and
TagCooccur are tag based, the main difference lies in how they compute the contribu-
tion of a specific tag to the test tag’s relevance score. Different from SemanticField,
which uses tag similarities, TagCooccur uses the test tag’s rank in the tag ranking list
created by sorting all tags in terms of their co-occurrence frequency with the tag in
S. In addition, TagCooccur takes into account the stability of the tag, measured by its
frequency. The method is implemented as

ftagcooccur(x, t) = descriptive(t)

lx
∑

i=1

vote(ti, t) · rank-promotion(ti, t) · stability(ti), (9)

where descriptive(t) is to damp the contribution of tags with a very high frequency,
rank-promotion(ti, t) measures the rank-based contribution of ti to t, stability(ti) is
for promoting tags for which the statistics are more stable, and vote(ti, t) is 1 if t is
among the top 25 ranked tags of ti, and 0 otherwise. TagCooccur has the same order of
complexity as SemanticField.

7. TagCooccur+ [Li et al. 2009b]. TagCooccur+ is proposed to improve TagCooccur
by adding the visual content. This is achieved by multiplying ftagcooccur(x, t) with a
content-based term, that is,

ftagcooccur+(x, t) = ftagcooccur(x, t) ·
kc

kc + rc(t) − 1
, (10)

where rc(t) is the rank of t when sorting the vocabulary by fTagVote(x, t) in descending
order, and kc is a positive weighting parameter, which is empirically set to 1. While
TagCooccur+ is grounded on TagCooccur and TagVote, the complexity of the former
is ignorable compared to the latter, so the complexity of TagCooccurs+ is the same as
KNN.

8. TagFeature [Chen et al. 2012]. The basic idea is to enrich image features by
adding an extra tag feature. A tag vocabulary that consists of d′ most frequent tags in S
is constructed first. Then, for each tag, a two-class linear SVM classifier is trained using
LIBLINEAR [Fan et al. 2008]. The positive training set consists of p images labeled
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with the tag in S, and the same amount of negative training examples is randomly
sampled from images not labeled with the tag. The probabilistic output of the classifier,
obtained by Platt’s scaling [Lin et al. 2007], corresponds to a specific dimension in the
tag feature. By concatenating the tag and visual features, an augmented feature of the
d + d′ dimension is obtained. For a test tag t, its tag relevance function fTagFeature(x, t)
is obtained by retraining an SVM classifier using the augmented feature. The linear
property of the classifier allows us to first sum up all the support vectors into a single
vector and consequently to classify a test image by the inner product with this vector.
That is,

fTagFeature(x, t) := b + <xt, x>, (11)

where xt is the weighted sum of all support vectors and b the intercept. To build
meaningful classifiers, we use tags that have at least 100 positive examples. While
d′ is chosen to be 400 in Chen et al. [2012], the two smaller training sets, namely,
Train10k and Train100k, have 76 and 396 tags satisfying the previous requirement.
We empirically set p to 500 and do random down-sampling if the amount of images
for a tag exceeds this number. For TagFeature, learning a linear classifier for each
tag from p positive and p negative examples requires O((d + d′)p) in computation and
O((d + d′)p) in memory [Fan et al. 2008]. Running Equation (11) for all the m tags and
n images needs O(nm(d + d′)) in computation and O(m(d + d′)) in memory.

9. RelExample [Li and Snoek 2013]. Different from TagFeature [Chen et al. 2012],
which directly learns from tagged images, RelExample exploits positive and negative
training examples that are deemed to be more relevant with respect to the test tag t. In
particular, relevant positive examples are selected from S by combining SemanticField
and TagVote in a late fusion manner. For negative training example acquisition, they
leverage Negative Bootstrap [Li et al. 2013], a negative sampling algorithm that itera-
tively selects negative examples deemed most relevant for improving classification. A
T-iteration Negative Bootstrap will produce T metaclassifiers. The corresponding tag
relevance function is written as

fRelExample(x, t) :=
1

T

T
∑

l=1

⎛

⎝bl +

nl
∑

j=1

αl, j · yl, j · K(x, xl, j)

⎞

⎠ , (12)

where αl, j is a positive coefficient of support vector xl, j , yl, j ∈ {−1, 1} is class label, and
nl is the number of support vectors in the lth classifier. For the sake of efficiency, the
kernel function K is instantiated with the fast intersection kernel [Maji et al. 2008].
RelExample uses the same amount of positive training examples as TagFeature. The
number of iterations T is empirically set to 10. For the SVM classifiers used in TagFea-
ture and RelExample, Platt’s scaling [Lin et al. 2007] is employed to convert prediction
scores into probabilistic output. In RelExample, for each tag learning a histogram in-
tersection kernel, SVM has a computation cost of O(dp2) per iteration, and O(T dp2) for
T iterations. By jointly using the fast intersection kernel with a quantization factor of
q [Maji et al. 2008] and model compression [Li et al. 2013], an order of O(dq) is needed
to keep all learned metaclassifiers in memory. Since learning a new classifier needs a
memory of O(dp), the overall memory cost for training RelExample is O(dp + dq). For
each tag, model compression is applied to its learned ensemble in advance to running
Equation (12). As a consequence, the compressed classifier can be cached in an order
of O(dq) and executed in an order of O(d).

10. RobustPCA [Zhu et al. 2010]. On the base of robust principal component analysis
[Candès et al. 2011], RobustPCA factorizes the image-tag matrix D by a low-rank
decomposition with error sparsity. That is,

D = D̂ + E, (13)
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where the reconstructed D̂ has a low-rank constraint based on the nuclear norm, and E
is an error matrix with an ℓ1-norm sparsity constraint. Notice that the decomposition is
not unique. So for a better solution, the decomposition process takes into account image
affinities and tag affinities by adding two extra penalties with respect to a Laplacian
matrix Li from the image affinity graph and another Laplacian matrix Lt from the tag
affinity graph. Consequently, two hyperparameters λ1 and λ2 are introduced to balance
the error sparsity and the two Laplacian strengths. We follow the original paper and
set the two parameters by performing a grid search on the very same proposed range.
To address the tag sparseness, the authors employ a preprocessing step to refine D
by a weighted KNN propagation based on the visual similarity. RobustPCA requires
an iterative procedure based on the accelerated proximal gradient method with a
quadratic convergence rate [Zhu et al. 2010]. Each iteration spends the majority of
the required time performing Singular Value Decomposition that, according to Golub
and Van Loan [2012], has a well-known complexity of O(cm2n + c′n3), where c, c′ are
constants. Regarding memory, it has a requirement of O(cn·m+c′ · (n2 +m2)) as it needs
to maintain a full copy of D and Laplacians of images and labels.

11. TensorAnalysis [Sang et al. 2012a]. This method considers ternary relation-
ships between images, tags, and the user by extending the image-tag association matrix
to a binary user-image-tag tensor F ∈ {0, 1}|X |×|V|×|U |. The tensor is factorized by Tucker
decomposition into a dense core C and three low-rank matrices U , I, T , corresponding
to the user, image, and tag modalities, respectively:

F = C ×u U ×i I ×t T . (14)

Here × j is the tensor product between a tensor and a matrix along dimension j ∈

{u, i, t}. The idea is that C contains the interactions between modalities, while each low-
rank matrix represents the main components of each modality. Every modality has to be
sized manually or by energy retention, adding three needed parameters R = (rI, rT , rU ).
The tag relevance scores are obtained by computing D̂ = C ×i I ×t T ×u 1ru

. Similar to
RobustPCA, the decomposition in Equation (14) is not unique and a better solution may
be found by regularizing the optimization process with a Laplacian built on a similarity
graph for each modality (i.e., Li, Lt, and Lu) and an ℓ2 regularizer on each factor (i.e.,
C, U , I and T ). For TensorAnalysis, the complexity is O(|P1| · (rT · m2 + rU · rI · rT )),
proportional to the number of tags P1 asserted in D and the dimension of low-rank
rU , rI, rT factors. The memory required is O(n2 + m2 + u2) for the Laplacians of images,
tags, and users.

4.2. Considerations

An overview of the methods analyzed is given Table IV. Among them, SemanticField,
counting solely on the tag modality, has the best scalability with respect to both compu-
tation and memory. Among the instance-based methods, TagRanking, which works on
selected subsets of S rather than the entire collection, has the lowest memory request.
When the number of tags to be modeled is substantially smaller than the size of S,
the model-based methods require less memory and run faster in the test stage, but at
the expense of SVM model learning in the training stage. The two transduction-based
methods have limited scalability and can operate only on small-sized S.

5. EVALUATION

This section presents our evaluation of the 11 methods according to their applicability
to the three tasks using the proposed experimental protocol, that is, KNN, TagVote,
TagProp, TagFeature, and RelExample for tag assignment (Section 5.1); TagCooccur,
TagCooccur+, RobustPCA, and TensorAnalysis for tag refinement (Section 5.2); and
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Table V. Evaluating Methods for Tag Assignment (Given the Same Feature, Bold Values Indicate
Top Performers on Individual Test Sets)

MIRFlickr NUS-WIDE

Method Train10k Train100k Train1m Train10k Train100k Train1m

MiAP scores:

RandomGuess 0.147 0.147 0.147 0.061 0.061 0.061

BovW + KNN 0.232 0.286 0.312 0.171 0.217 0.248

BovW + TagVote 0.276 0.310 0.328 0.183 0.231 0.259

BovW + TagProp 0.276 0.299 0.314 0.230 0.249 0.268

BovW + TagFeature 0.278 0.294 0.298 0.244 0.221 0.214

BovW + RelExample 0.284 0.309 0.303 0.257 0.233 0.245

CNN + KNN 0.326 0.366 0.379 0.315 0.343 0.376

CNN + TagVote 0.355 0.378 0.389 0.340 0.370 0.396

CNN + TagProp 0.373 0.384 0.392 0.366 0.376 0.380

CNN + TagFeature 0.359 0.378 0.383 0.367 0.338 0.373

CNN + RelExample 0.309 0.385 0.373 0.365 0.354 0.388

MAP scores:

RandomGuess 0.072 0.072 0.072 0.023 0.023 0.023

BovW + KNN 0.231 0.282 0.336 0.094 0.139 0.185

BovW + TagVote 0.228 0.280 0.334 0.093 0.137 0.184

BovW + TagProp 0.245 0.293 0.342 0.102 0.149 0.193

BovW + TagFeature 0.200 0.199 0.201 0.090 0.096 0.098

BovW + RelExample 0.284 0.303 0.310 0.119 0.155 0.172

CNN + KNN 0.564 0.613 0.639 0.271 0.356 0.400

CNN + TagVote 0.561 0.613 0.638 0.257 0.358 0.402

CNN + TagProp 0.586 0.619 0.641 0.305 0.376 0.397

CNN + TagFeature 0.444 0.554 0.563 0.262 0.310 0.326

CNN + RelExample 0.538 0.603 0.584 0.300 0.346 0.373

all for tag retrieval (Section 5.3). For TensorAnalysis, we were able to evaluate only
tag refinement with BovW features on MIRFlickr with Train10k and Train100k. The
reason for this exception is that our implementation of TensorAnalysis performs worse
than the baseline. Consequently, the results of TensorAnalysis were kindly provided by
the authors in the form of tag ranks. Since the provided tag ranks cannot be converted
to image ranks, we could not compute MAP scores. A comparison between our Flickr-
based training data and ImageNet is given in Section 5.4.

5.1. Tag Assignment

Table V shows the tag assignment performance of KNN, TagVote, TagProp, TagFea-
ture, and RelExample. Their superior performance against the RandomGuess baseline
shows that learning purely from social media is meaningful. TagVote and TagProp
are the two best-performing methods on both test sets. Substituting CNN for BovW
consistently brings improvements for all methods.

In more detail, the following considerations hold. TagProp has higher MAP perfor-
mance than KNN and TagVote in almost all the cases under analysis. As discussed in
Section 4, TagProp is built upon KNN, but it weights the neighbor images by rank and
applies a logistic model per tag. Since the logistic model does not affect the image rank-
ing, the superior performance of TagProp should be ascribed to rank-based neighbor
weighting. A per-tag comparison on MIRFlickr is given in Figure 2. TagProp is almost
always ahead of KNN and TagVote. Concerning TagVote and KNN, recall that their
main difference is that TagVote applies the unique-user constraint on the neighborhood
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Fig. 2. Per-tag comparison of methods for tag assignment on MIRFlickr, trained on Train1m. The
colors identify the features used: blue for BovW, red for CNN. The test tags have been sorted in descending
order by the performance of CNN + TagProp.

Fig. 3. Per-image comparison of methods for tag assignment on NUS-WIDE. Test images are grouped
in terms of their number of ground-truth tags. The area of a colored bar is proportional to the number of
images for which the corresponding method scores best.

and employs tag prior as a penalty term. The fact that the training data contains no
batch-tagged images minimizes the influence of the unique-user constraint. While the
penalty term does not affect image ranking for a given tag, it affects tag ranking for a
given image. This explains why KNN and TagVote have mostly the same MAP. Also,
the result suggests that the tag-prior-based penalty is helpful for doing tag assignment
by neighbor voting.

We observe that RelExample has a better MAP than TagFeature in every case. The
absence of a filtering component makes TagFeature more likely to overfit to training
examples irrelevant to the test tags. For the other two model-based methods, the overfit
issue is alleviated by different strategies: RelExample employs a filtering component
to select more relevant training examples, while TagProp has fewer parameters to
tune.

A per-image comparison on NUS-WIDE is given in Figure 3. The test images are put
into disjoint groups so that images within the same group have the same number of
ground-truth tags. For each group, the area of the colored bars is proportional to the
number of images on which the corresponding methods score best. The first group (i.e.,
images containing only one ground-truth tag) has the most noticeable change as the
training set grows. There are 75,378 images in this group, and for 39% of the images,
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Table VI. Evaluating Methods for Tag Refinement

MIRFlickr NUS-WIDE

Method Train10k Train100k Train1m Train10k Train100k Train1m

MiAP scores:

UserTags 0.204 0.204 0.204 0.255 0.255 0.255

TagCooccur 0.213 0.242 0.253 0.269 0.305 0.317

BovW + TagCooccur+ 0.217 0.262 0.286 0.245 0.297 0.324

BovW + RobustPCA 0.271 0.310 – 0.332 0.323 –

BovW + TensorAnalysis *0.298 *0.297 – – – –

CNN + TagCooccur+ 0.234 0.277 0.310 0.305 0.359 0.387

CNN + RobustPCA 0.368 0.376 – 0.424 0.419 –

CNN + TensorAnalysis – – – – – –

MAP scores:

UserTags 0.263 0.263 0.263 0.338 0.338 0.338

TagCooccur 0.266 0.298 0.313 0.223 0.321 0.308

BovW + TagCooccur+ 0.294 0.343 0.377 0.231 0.345 0.353

BovW + RobustPCA 0.225 0.337 – 0.229 0.234 –

BovW + TensorAnalysis – – – – – –

CNN + TagCooccur+ 0.330 0.381 0.420 0.264 0.391 0.406

CNN + RobustPCA 0.566 0.627 – 0.439 0.440 –

CNN + TensorAnalysis – – – – – –

The asterisk (*) indicates results provided by the authors of the corresponding methods, while the dash (–)
means we were unable to produce results. Given the same feature, bold values indicate top performers on
individual test sets per performance metric.

their single label is “person.” When Train1m is used, RelExample beats KNN, TagVote,
and TagProp for this frequent label. This explains the leading position of RelExample
in the first group. The result also confirms our earlier discussion in Section 3.3 that
MiAP is likely to be biased by frequent tags.

In summary, as long as enough training examples are provided, instance-based meth-
ods are on par with model-based methods for tag assignment. Model-based methods
are more suited when the training data is of limited availability. However, they are less
resilient to noise, and consequently a proper filtering strategy for refining the training
data becomes essential.

5.2. Tag Refinement

Table VI shows the performance of different methods for tag refinement. We were un-
able to complete the table. In particular, RobustPCA could not go over 350,000 images
due to its high demand in both CPU time and memory (see Table IV), while Tensor-
Analysis was provided by the authors only on MIRFlickr with Train10k, Train100k,
and the BovW feature.

RobustPCA outperforms the competitors on both test sets when provided with the
CNN feature. Figure 4 presents a per-tag comparison on MIRFlickr. RobustPCA has
the best scores for nine out of the 14 tags with BovW and wins all the tags when CNN
is used.

Concerning the influence of the media dimension, the tag + image-based methods
(RobustPCA and TagCooccur+) are in general better than the tag-based method (Tag-
Cooccur). As shown in Figure 4, except for three out of 14 MIRFlickr test tags with
BovW, using the image media is beneficial. As in the tag assignment task, the use of
the CNN feature strongly improves the performance.
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Fig. 4. Per-tag comparison of methods for tag refinement on MIRFlickr, trained on Train100k. The
colors identify the features used: blue for BovW, red for CNN. The test tags have been sorted in descending
order by the performance of CNN + RobustPCA.

Concerning the learning methods, TensorAnalysis has the potential to leverage tag,
image, and user simultaneously. However, due to its relatively poor scalability, we
were able to run this method only with Train10k and Train100k on MIRFlickr. For
Train10k, TensorAnalysis yielded higher MiAP than RobustPCA, probably thanks to
its capability of modeling user correlations. It is outperformed by RobustPCA when
more training data is used.

As more training data is used, the performance of TagCooccur, TagCooccur+, and
RobustPCA on MIRFlickr consistently improves. Since these three methods rely on
data-driven tag affinity, image affinity, or tag and image affinity, a small set of 10,000
images is generally inadequate to compute these affinities. The effect of increasing the
training set size is clearly visible if we compare scores corresponding to Train10k and
Train100k. The results on NUS-WIDE show some inconsistency. For TagCooccur, MiAP
improves from Train100k to Train1m, while MAP drops. This is presumably due to
the fact that in the experiments, we used the parameters recommended in the original
paper, appropriately selected to optimize tag ranking. Hence, they might be suboptimal
for image ranking. BovW + RobustPCA scores a lower MAP than BovW + TagCooccur+.
This is probably due to the fact that the low-rank matrix factorization technique, while
being able to jointly exploit tag and image information, is more sensitive to the content-
based representation.

A per-image comparison is given in Figure 5. As for tag assignment, the test images
have been grouped according to the number of ground-truth tags associated. The size
of the colored areas is proportional to the number of images where the corresponding
method scores best. For the majority of test images, the three tag refinement methods
have higher average precision than UserTags. This means more relevant tags are
added, so the tags are refined. It should be noted that the success of tag refinement
depends much on the quality of the original tags assigned to the test images. Examples
are shown in Table VII: in row 6, although the tag “earthquake” is irrelevant to the
image content, it is ranked at the top by RobustPCA. To what extent a tag refinement
method shall count on the existing tags is tricky.

To summarize, the tag + image-based methods outperform the tag-based method
for tag refinement. RobustPCA is the best and improves as more training data is
employed. Nonetheless, implementing RobustPCA is challenging for both computation
and memory footprint. In contrast, TagCooccur+ is more scalable and it can learn from
large-scale data.
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Fig. 5. Per-image comparison of methods for tag refinement on NUS-WIDE. Test images are grouped
in terms of their number of ground-truth tags. The area of a colored bar is proportional to the number of
images for which the corresponding method scores best.

5.3. Tag Retrieval

Table VIII shows the performance of different methods for tag retrieval. Recall that
when retrieving images for a specific test tag, we consider only images that are labeled
with this tag. Hence, MAP scores here are higher than their counterpart in Table VI.

We start our analysis by comparing the three baselines, namely, UserTags, TagNum,
and TagPosition, which retrieve images simply by the original tags. As can be noticed,
TagNum and TagPosition are more effective than UserTags, TagNum outperforms Tag-
Position on Flickr51, and the latter has better scores on NUS-WIDE. The effectiveness
of such metadata-based features depends much on datasets and are unreliable for tag
retrieval.

All the methods considered have higher MAP than the three baselines. All the meth-
ods have better performance than the baselines on Flickr51, and performance increases
with the size of the training set. On NUS-WIDE, SemanticField, TagCooccur, and
TagRanking are less effective than TagPosition. We attribute this result to the fact
that, for these methods, the tag relevance functions favor images with fewer tags. So
they closely follow similar performance and dataset dependency.

Concerning the influence of the media dimension, the tag + image-based methods
(KNN, TagVote, TagProp, TagCooccur+, TagFeature, RobustPCA, RelExample) are in
general better than the tag-based method (SemanticField and TagCooccur). Figure 6
shows the per-tag retrieval performance on Flickr51. For 33 out of the 51 test tags,
RelExample exhibits average precision higher than 0.9. By examining the top retrieved
images, we observe that the results produced by tag + image-based methods and tag-
based methods are complementary to some extent. For example, consider “military,”
one of the test tags of NUS-WIDE. RelExample retrieves images with strong visual
patterns such as military vehicles, while SemanticField returns images of military
personnel. Since the visual content is ignored, the results of SemanticField tend to be
visually different, making it possible to handle tags with visual ambiguity. This fact
can be observed in Figure 7, which shows the top 10 ranked images of “jaguar” by Tag-
Position, SemanticField, BovW + RelExample, and CNN + RelExample. Although their
results are all correct, RelExample finds Jaguar-brand cars only, while SemanticField
covers both cars and animals. However, for a complete evaluation of the capability of
managing ambiguous tags, fine-grained ground truth beyond what we currently have is
required.
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Table VII. Selected Tag Assignment and Refinement Results on NUS-WIDE

Visual feature: BovW. The top five ranked tags are shown, with correct prediction marked by the bold
italic font.

Concerning the learning methods, TagVote consistently performs well, as in the
tag assignment experiment. KNN is comparable to TagVote, for the reason we have
discussed in Section 5.1. Given the CNN feature, the two methods even outperform
their model-based variant TagProp. Similar to the tag refinement experiment, the
effectiveness of RobustPCA for tag retrieval is sensitive to the choice of visual features.
While BovW + RobustPCA is worse than the majority on Flickrt51, the performance
of CNN + RobustPCA is more stable and performs well. For TagFeature, its gain from
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Table VIII. Evaluating Methods for Tag Retrieval

Flickr51 NUS-WIDE

Method Train10k Train100k Train1m Train10k Train100k Train1m

MAP scores:

UserTags 0.595 0.595 0.595 0.489 0.489 0.489

TagNum 0.664 0.664 0.664 0.520 0.520 0.520

TagPosition 0.640 0.640 0.640 0.557 0.557 0.557

SemanticField 0.687 0.707 0.713 0.565 0.584 0.584

TagCooccur 0.625 0.679 0.704 0.534 0.576 0.588

BovW + TagCooccur+ 0.640 0.732 0.764 0.560 0.622 0.643

BovW + TagRanking 0.685 0.686 0.708 0.557 0.574 0.578

BovW + KNN 0.678 0.742 0.770 0.587 0.632 0.658

BovW + TagVote 0.678 0.741 0.769 0.587 0.632 0.659

BovW + TagProp 0.671 0.748 0.772 0.585 0.636 0.657

BovW + TagFeature 0.689 0.726 0.737 0.589 0.602 0.606

BovW + RelExample 0.706 0.756 0.783 0.609 0.645 0.663

BovW + RobustPCA 0.697 0.701 – 0.650 0.650 –

BovW + TensorAnalysis – – – – – –

CNN + TagCooccur+ 0.654 0.781 0.821 0.572 0.653 0.674

CNN + TagRanking 0.744 0.735 0.747 0.589 0.590 0.590

CNN + KNN 0.811 0.859 0.880 0.683 0.722 0.734

CNN + TagVote 0.808 0.859 0.881 0.675 0.724 0.738

CNN + TagProp 0.824 0.867 0.879 0.689 0.727 0.731

CNN + TagFeature 0.827 0.853 0.859 0.675 0.700 0.703

CNN + RelExample 0.838 0.863 0.878 0.689 0.717 0.734

CNN + RobustPCA 0.811 0.839 – 0.725 0.726 –

CNN + TensorAnalysis – – – – – –

NDCG20 scores:

UserTags 0.432 0.432 0.432 0.487 0.487 0.487

TagNum 0.522 0.522 0.522 0.541 0.541 0.541

TagPosition 0.511 0.511 0.511 0.623 0.623 0.623

SemanticField 0.591 0.623 0.645 0.596 0.622 0.624

TagCooccur 0.482 0.527 0.631 0.529 0.602 0.614

BovW + TagCooccur+ 0.503 0.625 0.686 0.590 0.681 0.734

BovW + TagRanking 0.530 0.568 0.571 0.557 0.572 0.572

BovW + KNN 0.577 0.699 0.756 0.638 0.734 0.799

BovW + TagVote 0.573 0.701 0.754 0.629 0.734 0.804

BovW + TagProp 0.570 0.715 0.759 0.666 0.750 0.809

BovW + TagFeature 0.547 0.626 0.646 0.622 0.615 0.618

BovW + RelExample 0.614 0.722 0.748 0.692 0.736 0.776

BovW + RobustPCA 0.549 0.548 – 0.768 0.781 –

BovW + TensorAnalysis – – – – – –

CNN + TagCooccur+ 0.504 0.615 0.724 0.571 0.705 0.738

CNN + TagRanking 0.577 0.607 0.597 0.578 0.594 0.583

CNN + KNN 0.709 0.830 0.897 0.773 0.832 0.863

CNN + TagVote 0.722 0.826 0.899 0.740 0.837 0.879

CNN + TagProp 0.768 0.857 0.865 0.764 0.839 0.845

CNN + TagFeature 0.755 0.813 0.818 0.704 0.807 0.787

CNN + RelExample 0.764 0.843 0.879 0.773 0.814 0.866

CNN + RobustPCA 0.733 0.821 – 0.865 0.862 –

CNN + TensorAnalysis – – – – – –

Given the same feature, bold values indicate top performers on individual test sets per performance metric.
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Fig. 6. Per-tag comparison between TagPosition, SemanticField, TagVote, TagProp, and RelEx-
ample on Flickr51, with Train1m as the training set. The 51 test tags have been sorted in descending
order by the performance of RelExample.

using larger training data is relatively limited due to the absence of denoising. In
contrast, RelExample, by jointly using SemanticField and TagVote in its denoising
component, is consistently better than TagFeature.

The performance of individual methods consistently improves as more training data
is used. As the size of the training set increases, the performance gap between the best
model-based method (RelExample) and the best instance-based method (TagVote) re-
duces. This suggests that large-scale training data diminishes the advantage of model-
based methods against the relatively simple instance-based methods.

In summary, even though the performance of the methods evaluated varies over
datasets, common patterns have been observed. First, the more social data for train-
ing are used, the better performance is obtained. Since the tag relevance functions
are learned purely from social data without any extra manual labeling, and social
data are increasingly growing, this result promises that better tag relevance functions
can be learned. Second, given small-scale training data, tag + image-based methods
that conduct model-based learning with denoised training examples turn out to be
the most effective solution. This, however, comes with a price of reducing the visual
diversity in the retrieval results. Moreover, the advantage of model-based learning
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Fig. 7. Top 10 ranked images of “jaguar,” by (a) TagPosition, (b) SemanticField, (c) BovW + RelEx-
ample, and (d) CNN + RelExample. Checkmarks (�) indicate relevant results. While both RelExample
and SemanticField outperform the TagPosition baseline, the results of SemanticField show more diversity
for this ambiguous tag. The difference between (c) and (d) suggests that the results of RelExample can be
diversified by varying the visual feature in use.

vanishes as more training data and the CNN feature are used, and TagVote performs
the best.

5.4. Flickr Versus ImageNet

To address the question of whether one shall resort to an existing resource such as
ImageNet for tag relevance learning, this section presents an empirical comparison be-
tween our Flickr-based training data and ImageNet. A number of methods do not work
with ImageNet or require modifications. For instance, tag + image + user information-
based methods must be able to remove their dependency on user information, as such
information is unavailable in ImageNet. Tag co-occurrence statistics are also strongly
limited, because an ImageNet example is annotated with a single label. Because of
these limitations, we evaluate only the two best-performing methods, TagVote and
TagProp. TagProp can be directly used since it comes from classic image annotation,
while TagVote is slightly modified by removing the unique user constraint. The CNN
feature is used for its superior performance against the BovW feature.

To construct a customized subset of ImageNet that fits the three test sets, we take
ImageNet examples whose labels precisely match with the test tags. Notice that some
test tags (e.g., “portrait” and “night”) have no match, while some other tags (e.g, “car”
and “dog”) have more than one match. In particular, MIRFlickr has two missing tags,
while the number of missing tags on Flickr51 and NUS-WIDE is nine and 15, re-
spectively. For a fair comparison these missing tags are excluded from the evaluation.
Putting the remaining test tags together, we obtain a subset of ImageNet, containing
166 labels and over 200k images, termed ImageNet200k.

The left half of Table IX shows the performance of tag assignment. TagVote/TagProp
trained on the ImageNet data are less effective than their counterparts trained on the
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Table IX. Flickr Versus ImageNet

Tag Assignment

MIRFlickr NUS-WIDE

Training Set TagVote TagProp TagVote TagProp

MiAP scores:

Train100k 0.377 0.383 0.392 0.389

Train1M 0.389 0.392 0.414 0.393

ImageNet200k 0.345 0.304 0.325 0.368

MAP scores:

Train100k 0.641 0.647 0.386 0.405

Train1M 0.664 0.668 0.429 0.420

ImageNet200k 0.532 0.532 0.363 0.362

Tag Retrieval

Flickr51 NUS-WIDE

Training Set TagVote TagProp TagVote TagProp

MAP scores:

Train100k 0.854 0.860 0.742 0.745

Train1M 0.874 0.871 0.753 0.745

ImageNet200k 0.873 0.873 0.762 0.762

NDCG20 scores:

Train100k 0.838 0.863 0.849 0.856

Train1M 0.894 0.851 0.891 0.853

ImageNet200k 0.920 0.898 0.843 0.847

NoticeThat the numbers on Train100k and Train1M are different from Tables V and VIII due to the use of
a reduced set of test tags. Bold values indicate top performers on a specific test set per performance metric.

Fig. 8. Per-image comparison of TagVote/TagProp learned from different training datasets, tested
on NUS-WIDE. Test images are grouped in terms of the number of ground-truth tags. Within each group,
the area of a colored bar is proportional to the number of images for which (the method derived from) the
corresponding training dataset scores the best. ImageNet200k is less effective for assigning multiple labels
to an image.

Flickr data. For a better understanding of the result, we employ the same visualization
technique as used in Section 5.1, that is, grouping the test images in terms of the
number of their ground-truth tags, and subsequently checking the performance per
group. As shown in Figure 8, while ImageNet200k performs better on the first group
(i.e., images with a single relevant tag), it is outperformed by Train100k and Train1M
on the other groups. For its single-label nature, ImageNet is less effective for assigning
multiple labels to an image.

For tag retrieval, as shown in the right half of Table IX, TagVote and TagProp
learned from ImageNet200k in general have higher MAP and NDCG scores than their
counterparts learned from the Flickr data. By comparing the performance difference
per concept, we find that the gain is largely contributed by a relatively small amount of
concepts. Consider, for instance, TagVote + ImageNet200k and TagVote + Train1M on
NUS-WIDE. The former outperforms the latter for 25 out of the 66 tested concepts. By
sorting the concepts according to their absolute performance gain, the top three winning
concepts of TagVote + ImageNet200k are “sand,” “garden,” and “rainbow,” with AP gain
of 0.391, 0.284, and 0.176, respectively. Here, the lower performance of TagVote +
Train1M is largely due to the subjectiveness of social tagging. For instance, Flickr
images labeled with “sand” tend be much more diverse, showing a wide range of things
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visually irrelevant to sand. Interestingly, the top three losing concepts of TagVote +
ImageNet200k are “running,” “valley,” and “building,” with AP loss of 0.150, 0.107, and
0.090, respectively. For these concepts, we observe that their ImageNet examples lack
diversity. For example, “running” in ImageNet200k mostly shows a person running on
a track. In contrast, the subjectiveness of social tagging now has a positive effect on
generating diverse training examples.

In summary, for tag assignment, social media examples are a preferred resource of
training data. For tag retrieval, ImageNet yields better performance, yet the perfor-
mance gain is largely due to a few tags where social tagging is very noisy. In such a
case, controlled manual labeling seems indispensable. In contrast, with clever tag rele-
vance learning algorithms, social training data demonstrate competitive or even better
performance for many of the tested tags. Nevertheless, where the boundary between
the two cases is precisely located remains unexplored.

6. CONCLUSIONS AND PERSPECTIVES

6.1. Concluding Remarks

This article presents a survey on image tag assignment, refinement, and retrieval, with
the hope of illustrating connections and differences between the many methods and
their applicabilities, and consequently helping the interested audience to either pick up
an existing method or devise a method of their own given the data at hand. As the topics
are being actively studied, inevitably this survey will miss some papers. Nevertheless,
it provides a unified view of many existing works, and consequently eases the effort of
placing future works in a proper context, both theoretically and experimentally.

Based on the key observation that all works rely on tag relevance learning as the com-
mon ingredient, existing works, which vary in terms of their methodologies and target
tasks, have been interpreted in a unified framework. Consequently, a two-dimensional
taxonomy has been developed, allowing us to structure the growing literature in light
of what information a specific method exploits and how the information is leveraged
in order to produce their tag relevance scores. Having established the common ground
between methods, a new experimental protocol has been introduced for a head-to-
head comparison with the state of the art. A selected set of 11 representative works
was implemented and evaluated for tag assignment, refinement, and/or retrieval. The
evaluation justifies the state of the art on the three tasks.

Concerning what media is essential for tag relevance learning, tag + image is con-
sistently found to be better than tag alone. While the joint use of tag, image, and user
information (via TensorAnalysis) demonstrates its potential on small-scale datasets,
it becomes computationally prohibitive as the dataset size increases to 100,000 and
beyond. Comparing the three learning strategies, instance-based and model-based
methods are found to be more reliable and scalable than their transduction-based
counterparts. As model-based methods are more sensitive to the quality of social image
tagging, a proper filtering strategy for refining the training media is crucial for their
success. Despite their leading performance on the small training dataset, we find that
the performance gain over the instance-based alternatives diminishes as more training
data is used. Finally, the CNN feature used as a substitute for the BovW feature brings
considerable improvements for all the tasks.

Much progress has been made. Given the current test tag set, the best-performing
methods already outperform user-provided tags for tag assignment (MiAP of 0.392
vs. 0.204 on MIRFlickr and 0.396 vs. 0.255 on NUS-WIDE). Image retrieval using
learned tag relevance also yields more accurate results compared to image retrieval
using original tags (MAP of 0.881 vs. 0.595 on Flickr55 and 0.738 vs. 0.489 on NUS-
WIDE). For tag assignment and tag retrieval, methods that exploit tag + image media
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by instance-based learning take the leading position. In particular, for tag assignment,
TagProp and TagVote perform best. For tag retrieval, TagVote achieves the best overall
performance. Methods that exploit tag + image by transduction-based learning are
more suited for tag refinement. RobustPCA is the choice for this task. These baselines
need to be compared against when one advocates a new method.

6.2. Reflections on Future Work

Much remains to be done. Several exciting recent developments open up new oppor-
tunities for the future. First, employing novel deep-learning-based visual features is
likely to boost the performance of the tag + image-based methods. What is scientifically
more interesting is to devise a learning strategy that is capable of jointly exploiting
tag, image, and user information in a much more scalable manner than currently fea-
sible. The importance of the filter component, which refines socially tagged training
examples in advance to learning, is underestimated. As denoising often comes with the
price of reducing visual diversity, more research attention is required to understand
what an acceptable level of noise shall be for learning tag relevance. Having a number
of collaboratively labeled resources publicly available, research on joint exploration of
social data and these resources is important. This connects to the most fundamental
aspect of content-based image retrieval in the context of sharing and tagging within
social media platforms: to what extent a social tag can be trusted remains open. Image
retrieval by multitag query is another important yet largely unexplored problem. For
a query of two tags, it is suggested to view the two tags as a single bigram tag [Li et al.
2012; Nie et al. 2012; Borth et al. 2013], which is found to be superior to late fusion of
individual tag scores. Nonetheless, due to the increasing sparseness of n-grams, how
to effectively answer generic queries of more than two tags is challenging. Test tags
in the current benchmark sets were picked based on availability. It would be relevant
to study what motivates people to search images on social media platforms and how
the search is conducted. We have not seen any quantitative study in this direction.
Last but not least, fine-grained ground truth that enables us to evaluate various tag
relevance learning methods for answering ambiguous tags is currently missing.

“One way to resolve the semantic gap comes from sources outside the image”
Smeulders et al. [2000] wrote at the end of their seminal paper. While what such
sources would be was mostly unknown at that time, it is now becoming evident that
the many images shared and tagged in social media platforms are promising to re-
solve the semantic gap. By adding new relevant tags, refining the existing ones, or
directly addressing retrieval, the access to the semantics of the visual content has been
much improved. This is achieved only when appropriate care is taken to attack the
unreliability of social tagging.
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